- C1: Optikai alapok az ELI-ALPS tükrében - MSc
- Bevezető I.
- A lézerfizika alapelvei és bevezetés a nemlineáris optikába I.
- A lézerműködés alapelvei
- Gerjesztett kvantumállapotok spontán emissziója
- Indukált abszorpció és emisszió
- Populácóinverzió és erősítés
- Pozitív visszacsatolás és lézeroszcillációk
- Abszorpció telítődése
- Abszorpció és indukált emisszió, kvázi-klasszikus leírás
- Abszorpciós hatáskeresztmetszet, homogén vonalkiszélesedés
- Abszorpciós hatáskeresztmetszet, inhomogén vonalkiszélesedés
- Vonalkiszélesedést okozó hatások
- Gyakori lézerátmenetek paraméterei
- Rezonátorok
- Pumpálás
- Tesztkérdések I.
- A lézerműködés alapelvei
- A lézerfizika alapelvei és bevezetés a nemlineáris optikába II.
- A lézerfizika alapelvei és bevezetés a nemlineáris optikába III.
- Folytonos üzemű lézerek: rate-egyenletek, 4-nívós séma
- Lézerek hangolása
- Sokmódusú lézeroszcilláció homogén frekvenciakiszélesedés esetén
- Sokmódusú lézeroszcilláció inhomogén frekvenciakiszélesedés esetén
- Transzverzális egymódus-szelekció
- Longitudinális egymódus-szelekció
- Fabry-Perot etalonok, mint módusszelektív elemek
- Egymódus-szelekció egyirányú gyűrűrezonátorok segítségével
- Lézerfrekvencia fluktuációi és frekvenciastabilizáció
- Lézerintenzitás zaja és zajcsökkentés
- Q-kapcsolás
- Móduscsatolás (Mode locking)
- Tesztkérdések III.
- A lézerfizika alapelvei és bevezetés a nemlineáris optikába IV.
- Bevezetés a nemlineáris optikába
- Tesztkérdések IV.
- Az optikai méréstechnika alapjai I. - Az optikai méréstechnika eszközei
- Az optikai méréstechnika alapjai II. - Interferometria
- Az optikai méréstechnika alapjai III. - Fényszórás, polarizáció
- Az optikai méréstechnika alapjai IV.
- Tartalomjegyzék
- Bevezetés
- UV-látható spektroszkópia
- Infravörös spektroszkópia
- Raman spektroszkópia
- Lumineszcencia (fluoreszcencia) spektroszkópia
- Tesztkérdések VIII.
- Vékonyrétegek I.
- Vékonyrétegek II.
- Vékonyrétegek III.
- Vékonyrétegek IV.
Veszteségek
A geometriai optikával jól leírhatók a fénytörés és visszaverődés törvényei, a veszteségekről azonban nem tud számot adni.
Ha a fény nem vákuumban halad, mindig fellépnek veszteségek. A hasznos fényenergia csökken két közeg határán, de magában a közegben való haladás során is.
Ha a veszteségek túl nagyok, a jel olyan gyenge lesz, hogy detektálhatatlanná válik. Ennek elkerülése érdekében tudnunk kell, melyek ezek a veszteségek, mik okozzák, és hogyan kerülhetjük el, vagy legalább is hogyan csökkenthetjük azokat.
Az veszteségeknek öt fő oka van: abszorpció, diszperzió, szóródás, a tükröződés és a szórt visszaverődés.
Abszorpció:
Abszorpcióról akkor beszélünk, ha az atom, vagy molekula a beérkező fotont elnyeli, s hatására magasabb energiájú állapotba kerül. Ez lehet egy elektron energiaszint átmenete, vagy egy atom vagy egy atomcsoport kezd intenzívebb rezgő mozgást végezni. A fotonnak az így átadott energiája a szomszédos atomokkal való ütközések során fokozatosan szétterjed az egész anyagban, vagyis hővé alakul.
A különböző anyagok különböző mértékben nyelik el a fényt. Emellett pedig az abszorpció hullámhosszfüggő.