

Dr. Hegedűs Péter, Dr. Ferenc Rudolf

Nagyméretű adatbázisok

Jelen tananyag a Szegedi Tudományegyetemen készült az Európai Unió támogatásával.

Projekt azonosító: EFOP-3.4.3-16-2016-00014

Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.szechenyi2020.hu

Apache Hadoop és HDFS

Összefoglalás

Ez a kombinált olvasó és video lecke bemutatja hogyan használható az Apache Hadoop HDFS elosztott fájlrendszer a gyakorlatban. Docker virtualizáció segítségével bemutatjuk, hogyan lehet egy HDFS klasztert felállítani, majd azon fájlműveleteket végezni. Mindezt egy videó leckével is demonstráljuk, a könnyebb követhetőség érdekében. A lecke fejezetei:

- 1. fejezet: Hadoop klaszter létrehozása és futtatása Docker segítségével (olvasó)
- 2. fejezet: HDFS használata, alapvető parancsok (videó)

Téma típusa: **gyakorlati** Olvasási idő: **30 perc**

1. fejezet Apache Hadoop klaszter indítása

Ahogy azt az előadásban is láthattuk, az Apache Hadoop keretrendszer és a HDFS elosztott fájlrendszer üzemeltetéséhez több szoftverkomponensre is szükségünk van: NameNode, ResourceManager, DataNode, HistoryNode, stb. Ebben a fejezetben bemutatjuk, hogy lehet telepítés nélkül, viszonylag egyszerű módon egy ilyen klasztert tetszőleges gépen beüzemelni. Ehhez a Docker [1] konténer szoftvert és előre elkészített konténer fájlokat fogunk használni. A Docker rendszer bemutatása nem tartozik jelen anyag keretébe, de az alábbi forrásokból további információk szerezhetők róla:

- <u>https://www.youtube.com/watch?v=fqMOX6JJhGo</u>
- <u>https://www.youtube.com/watch?v=zJ6WbK9zFpI</u>
- <u>https://docs.docker.com/get-started/</u>

Docker elérhető az összes fontosabb operációs rendszerre, a következők feltételezik, hogy rendelkezésre áll egy telepített Docker rendszer a gépen, ami a hivatalos dokumentáció [1] alapján könnyen kivitelezhető. A klaszterhez szükséges egyes node-ok képfáljai GitHub-on elérhetők [2], a példa során innen fogjuk letölteni őket.

Képfájlok letöltése és Hadoop klaszter indítása

Első lépésként a Big Data Europe GitHub repozitóriumból töltsük le a megfelelő képfájlokat. Ehhez feltétel, hogy a Git [3] verziókövető elérhető legyen gépünkön. Amennyiben nem az, először telepítsük. Ezután a következő parancssal letölthetjük gépünkre a megfelelő Docker image fájlokat:

\$ git clone https://github.com/big-data-europe/docker-hadoop.git

A parancs végrehajtása után letöltődnek a szükséges image-ek a docker-hadoop mappába a saját gépünkre. A klaszter elemeit a docker-compose.yml fájl írja le, amennyiben szükséges a klaszter működésének módosítása, úgy ezt a fájlt kell átszerkeszteni. A példánk során mi a módosítatlan konfigurációs fájlt fogjuk használni, ami a következő komponenseket definiálja:

- namenode a Hadoop NameNode csomópont a megfelelő port beállításokkal, ami a master primary node szerepét tölti be
- datanode adattároló csomópont, egy darab (a klaszter egyetlen adat node-ot tartalmaz)
- resourcemanager erőforrás kezelésért felelős node (Apache Yarn)
- nodemanager1 Hadoop Node Manager csomópont
- historyserver Hadoop history server node

A klaszter elindításához az alábbi Docker parancsot kell kiadnunk:

\$ docker-compose up -d

A parancs hatására a megfelelő Docker image-ek letöltődnek a Docker-Hub [4] központi image tárhelyről, lefordulnak és előállnak a szükséges állományok, majd a fenti szolgáltatások elindulnak. A futó szolgáltatásokat és a Hadoop klaszter elemeit az alábbi ábra szemléltet.

Hadoop klaszter beállításai

Először ellenőrizzük le, hogy a fenti parancs sikeresen végrehajtódott. Adjuk ki az alábbi Docker parancsot:

\$ docker ps

Ez a parancs az éppen futó Docker konténereket listázza ki, így a fenti ábrán is látható öt komponens mindegyikét látnunk kell a listában:

λ docker ps				
CONTAINER ID	IMAGE	COMMAND	CREATED	STATUS
PORTS	NAMES			
f9f64f9e7eb8	bde2020/hadoop-namenode:2.0.0-hadoop3.2.1-java8	"/entrypoint.sh /run…"	14 hours ago	Up 14 hours (healthy)
0.0.0.0:9000->9000	/tcp, 0.0.0.0:9870->9870/tcp namenode			
9beae689e0fd	bde2020/hadoop-resourcemanager:2.0.0-hadoop3.2.1-java8	"/entrypoint.sh /run…"	14 hours ago	Up 14 hours (healthy)
8088/tcp	resourcemanager			
daa75a13e848	bde2020/hadoop-historyserver:2.0.0-hadoop3.2.1-java8	"/entrypoint.sh /run…"	14 hours ago	Up 14 hours (healthy)
8188/tcp	historyserver			
8dbf9a06a4fe	bde2020/hadoop-nodemanager:2.0.0-hadoop3.2.1-java8	"/entrypoint.sh /run…"	14 hours ago	Up 14 hours (healthy)
8042/tcp	nodemanager			
e4782339acd9	bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8	"/entrypoint.sh /run"	14 hours ago	Up 14 hours (healthy)
9864/tcn	datanode			

Ha minden rendben van, a NameNode komponenst böngészőből is elérjük a <u>http://localhost:9870</u> címen. A következő kép a NameNode webes felületét mutatja:

← → ♂ ☆	🛛 🗋 localho	🛛 🗋 localhost:9870/dfshealth.html#tab-overview \cdots 🖾 🏠					⊘ ☆	⊻
Hadoo	p Overview							

Overview 'namenode:9000' (active)

Started:	Thu Aug 06 21:18:36 +0200 2020
Version:	3.2.1, rb3cbbb467e22ea829b3808f4b7b01d07e0bf3842
Compiled:	Tue Sep 10 17:56:00 +0200 2019 by rohithsharmaks from branch-3.2.1
Cluster ID:	CID-d07764c7-56a9-4602-b776-a65083b5eea9
Block Pool ID:	BP-1855640961-172.22.0.6-1596736551543

Summary

Security is off.					
Safemode is off.					
64 files and directories, 31 blocks (31 replicated blocks, 0 erasure coded block groups) = 95 total filesystem object(s).					
Heap Memory used 76.12 MB of 149.5 MB Heap Memory. Max Heap Memory is 443 MB.					
Non Heap Memory used 62.9 MB of 64.63 MB Commited Non Heap Memory. Max Non Heap Memory is <unbounded>.</unbounded>					
Configured Capacity:	58.42 GB				
Configured Remote Capacity:	0 B				
DFS Used:	1.46 MB (0%)				

Előfordulhat, hogy a NameNode indulás után ún. safe mode-ba kerül, ekkor a fenti áttekintő oldalon a Safemonde is on felirat jelenik meg. Ekkor az adat csomópontok nem írhatók, a klasztert nem tudjuk teljes körűen használni. Ebben az esetben a következő lépéseket kell végrehajtanunk.

1. Indítsunk egy bash terminált a futó NameNode konténeren belül:

```
$ docker exec -it namenode bash
```

2. Hagyjuk el a safe mode állapotot a következő parancs kiadásával

root@f9f64f9e7eb8:/# hdfs dfsadmin -safemode leave

3. Töröljünk és állítsunk helyre minden hibás blokkot, amit a safe mode miatti read only mód okozott

```
root@f9f64f9e7eb8:/# hdfs fsck / -delete
```

Ezután töltsük be a NameNode webes felületét, már a fenti Safemode is off feliratot kell látnunk.

Hadoop klaszter tesztelése

Amennyiben fut a Hadoop klaszterünk, a NameNode konténerben futtatott bash terminál segítségével Hadoop parancsokat adhatunk ki a hdfs parancssori kliens segítségével. Ezt az eszközt használhatjuk arra, hogy fájlműveleteket végezzünk a HDFS-en (lásd 2. fejezet). Ehhez lépjünk ismét be a futó NameNode dokcer konténerbe és indítsunk egy bash terminált:

\$ docker exec -t namenode bash

Hozzunk létre pár egyszerű szöveges fájlt és másoljuk fel őket HDFS-re:

```
root@f9f64f9e7eb8:/# mkdir input
root@f9f64f9e7eb8:/# echo "Hello World Bye World" >input/file01
root@f9f64f9e7eb8:/# echo "Hello Hadoop Goodbye Hadoop" >input/file02
```

Miután a NameNode konténeren belül létrehoztuk a fájlokat, hozzunk létre egy könyvtárat HDFSen és másoljuk fel ezt a két fájlt:

```
root@f9f64f9e7eb8:/# hadoop fs -mkdir -p input
root@f9f64f9e7eb8:/# hdfs dfs -put ./input/* input
```

Most már a HDFS-en is elérhető a két fájl, tetszőleges Hadoop kompatibilis eszközzel feldolgozható (pl. MapReduce, Spark, stb.). Listázzuk ki az input könyvtár tartalmát és nézzük meg a fájl tartalmát:

```
root@f9f64f9e7eb8:/# hadoop fs -ls /input

Found 2 items

-rw-r--r-- 3 root supergroup 21 2020-08-07 07:56 /input/file01

-rw-r--r-- 3 root supergroup 27 2020-08-07 07:56 /input/file02
```

```
root@f9f64f9e7eb8:/# hadoop fs -cat /input/file01
2020-08-07 11:34:03,619 INFO sasl.SaslDataTransferClient: SASL encryption trust
check: localHostTrusted = false, remoteHostTrusted = false
Hello World Bye World
```

A HDFS klaszter leállításához az alábbi Docker parancsot kell használni:

\$ docker-compose down

🛄 <u>2. fejezet</u>

Apache Hadoop File System (HDFS)

Az alábbi videó lecke a HDFS használatát, a rajta végezhető műveleteket demonstrálja:

video/3g_BigData-hadoop-SPOC/hdfs-demo.mp4

További feladatok

- 1. Módosítsuk a Hadoop lkaszter konfigurációt úgy, hogy egy data node helyett három induljon! Segítség: <u>https://github.com/big-data-europe/docker-hadoop/issues/40</u>
- 2. Hozz létre egy feladat mappát a HDFS fájlrendszerben, és másolj fel egy tetszőleges csv fájlt bele, ezután listázd ki a fájlt parancssorból és nézd meg a NameNode webes felületén keresztül is a browser utility segítségével! Ezután pedig töltsd le a csv fájlt HDFS-ről a saját gépre!

Referenciák

- [1] https://www.docker.com/
- [2] https://github.com/big-data-europe/docker-hadoop
- [3] https://git-scm.com/
- [4] https://hub.docker.com/
- [5] https://www.tutorialspoint.com/hadoop/hadoop command reference.htm