Hyperovals on Hermitian generalized quadrangles

Francesco Pavese

UNIVERSITÁ DEGLI STUDI DELLA BASILICATA-Potenza-Italy

francesco.pavese@unibas.it

Finite Geometry Workshop, Szeged 2013

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let S be a GQ(s, t). A hyperoval of S is a non-empty set of points of S which intersects every line of S in either 0 or 2 points.

 $G = (\mathcal{P}, \mathcal{B})$ connected incidence system. Let $a \in \mathcal{P}$. The residue of *G* at *a* is a geometry $G_a = (\mathcal{P}_a, \mathcal{B}_a)$,

- *P_a* points of *P* collinear with *a*,
- $\mathcal{B}_a := \{B \setminus \{a\} : a \in B \in \mathcal{B}\}.$

G is called an *extended* GQ(s, t) (or EGQ(s, t)) if and only if each residue is a GQ(s, t)

Definition

Let S be a GQ(s, t). A hyperoval of S is a non-empty set of points of S which intersects every line of S in either 0 or 2 points.

 $G = (\mathcal{P}, \mathcal{B})$ connected incidence system. Let $a \in \mathcal{P}$. The residue of *G* at *a* is a geometry $G_a = (\mathcal{P}_a, \mathcal{B}_a)$,

- *P_a* points of *P* collinear with *a*,
- $\mathcal{B}_a := \{B \setminus \{a\} : a \in B \in \mathcal{B}\}.$

G is called an *extended* GQ(s, t) (or EGQ(s, t)) if and only if each residue is a GQ(s, t)

Let S be a GQ(s, t). A hyperoval of S is a non-empty set of points of S which intersects every line of S in either 0 or 2 points.

 $G = (\mathcal{P}, \mathcal{B})$ connected incidence system. Let $a \in \mathcal{P}$. The residue of *G* at *a* is a geometry $G_a = (\mathcal{P}_a, \mathcal{B}_a)$,

- \mathcal{P}_a points of \mathcal{P} collinear with a,
- $\mathcal{B}_a := \{ B \setminus \{ a \} : a \in B \in \mathcal{B} \}.$

G is called an *extended* GQ(s, t) (or EGQ(s, t)) if and only if each residue is a GQ(s, t)

Let S be a GQ(s, t). A hyperoval of S is a non-empty set of points of S which intersects every line of S in either 0 or 2 points.

 $G = (\mathcal{P}, \mathcal{B})$ connected incidence system. Let $a \in \mathcal{P}$. The residue of *G* at *a* is a geometry $G_a = (\mathcal{P}_a, \mathcal{B}_a)$,

- \mathcal{P}_a points of \mathcal{P} collinear with a,
- $\mathcal{B}_a := \{ B \setminus \{ a \} : a \in B \in \mathcal{B} \}.$

G is called an *extended* GQ(s, t) (or EGQ(s, t)) if and only if each residue is a GQ(s, t)

Let S be a GQ(s, t). A hyperoval of S is a non-empty set of points of S which intersects every line of S in either 0 or 2 points.

 $G = (\mathcal{P}, \mathcal{B})$ connected incidence system. Let $a \in \mathcal{P}$. The residue of *G* at *a* is a geometry $G_a = (\mathcal{P}_a, \mathcal{B}_a)$,

• \mathcal{P}_a points of \mathcal{P} collinear with a,

•
$$\mathcal{B}_a := \{ \boldsymbol{B} \setminus \{ \boldsymbol{a} \} : \boldsymbol{a} \in \boldsymbol{B} \in \mathcal{B} \}.$$

G is called an *extended* GQ(s, t) (or EGQ(s, t)) if and only if each residue is a GQ(s, t)

Let S be a GQ(s, t). A hyperoval of S is a non-empty set of points of S which intersects every line of S in either 0 or 2 points.

 $G = (\mathcal{P}, \mathcal{B})$ connected incidence system. Let $a \in \mathcal{P}$. The residue of *G* at *a* is a geometry $G_a = (\mathcal{P}_a, \mathcal{B}_a)$,

• \mathcal{P}_a points of \mathcal{P} collinear with a,

•
$$\mathcal{B}_a := \{ \boldsymbol{B} \setminus \{ \boldsymbol{a} \} : \boldsymbol{a} \in \boldsymbol{B} \in \mathcal{B} \}.$$

G is called an *extended* GQ(s, t) (or EGQ(s, t)) if and only if each residue is a GQ(s, t)

Let S be a GQ(s, t). A hyperoval of S is a non-empty set of points of S which intersects every line of S in either 0 or 2 points.

 $G = (\mathcal{P}, \mathcal{B})$ connected incidence system. Let $a \in \mathcal{P}$. The residue of *G* at *a* is a geometry $G_a = (\mathcal{P}_a, \mathcal{B}_a)$,

• \mathcal{P}_a points of \mathcal{P} collinear with a,

•
$$\mathcal{B}_a := \{ \boldsymbol{B} \setminus \{ \boldsymbol{a} \} : \boldsymbol{a} \in \boldsymbol{B} \in \mathcal{B} \}.$$

G is called an *extended* GQ(s, t) (or EGQ(s, t)) if and only if each residue is a GQ(s, t)

Let *G* be a triangular EGQ(s, t), Γ the point-graph of *G*, Γ_a the subgraph of Γ induced by G_a . If the distance between $a, b \in \Gamma$ is 2, then $\Gamma_a \cap \Gamma_b$ is the subgraph of a point GQ(s, t)-graph induced by a hyperoval of GQ(s, t).

- Cameron, Hughes, Pasini, Extended generalized quadrangles, *Geom. Ded.* 35 (1990), 193-228.
- Buekenhout, Hubaut, Locally polar spaces and related rank 3 groups, *J.Algebra* 45 (1977), 391-434.
- Del Fra, Ghinelli, Payne, (0, *n*)-Sets in a generalized quadrangle *Ann. Disc. Math.* 52 (1992), 139-157.

Let *G* be a triangular EGQ(s, t), Γ the point-graph of *G*, Γ_a the subgraph of Γ induced by G_a . If the distance between $a, b \in \Gamma$ is 2, then $\Gamma_a \cap \Gamma_b$ is the subgraph of a point GQ(s, t)-graph induced by a hyperoval of GQ(s, t).

- Cameron, Hughes, Pasini, Extended generalized quadrangles, *Geom. Ded.* 35 (1990), 193-228.
- Buekenhout, Hubaut, Locally polar spaces and related rank 3 groups, *J.Algebra* 45 (1977), 391-434.
- Del Fra, Ghinelli, Payne, (0, *n*)-Sets in a generalized quadrangle *Ann. Disc. Math.* 52 (1992), 139-157.

Let *G* be a triangular EGQ(s, t), Γ the point-graph of *G*, Γ_a the subgraph of Γ induced by G_a . If the distance between $a, b \in \Gamma$ is 2, then $\Gamma_a \cap \Gamma_b$ is the subgraph of a point GQ(s, t)-graph induced by a hyperoval of GQ(s, t).

- Cameron, Hughes, Pasini, Extended generalized quadrangles, *Geom. Ded.* 35 (1990), 193-228.
- Buekenhout, Hubaut, Locally polar spaces and related rank 3 groups, *J.Algebra* 45 (1977), 391-434.
- Del Fra, Ghinelli, Payne, (0, *n*)-Sets in a generalized quadrangle *Ann. Disc. Math.* 52 (1992), 139-157.

Let *G* be a triangular EGQ(s, t), Γ the point-graph of *G*, Γ_a the subgraph of Γ induced by G_a . If the distance between $a, b \in \Gamma$ is 2, then $\Gamma_a \cap \Gamma_b$ is the subgraph of a point GQ(s, t)-graph induced by a hyperoval of GQ(s, t).

- Cameron, Hughes, Pasini, Extended generalized quadrangles, *Geom. Ded.* 35 (1990), 193-228.
- Buekenhout, Hubaut, Locally polar spaces and related rank 3 groups, *J.Algebra* 45 (1977), 391-434.
- Del Fra, Ghinelli, Payne, (0, *n*)-Sets in a generalized quadrangle *Ann. Disc. Math.* 52 (1992), 139-157.

Let *G* be a triangular EGQ(s, t), Γ the point-graph of *G*, Γ_a the subgraph of Γ induced by G_a . If the distance between $a, b \in \Gamma$ is 2, then $\Gamma_a \cap \Gamma_b$ is the subgraph of a point GQ(s, t)-graph induced by a hyperoval of GQ(s, t).

- Cameron, Hughes, Pasini, Extended generalized quadrangles, *Geom. Ded.* 35 (1990), 193-228.
- Buekenhout, Hubaut, Locally polar spaces and related rank 3 groups, *J.Algebra* 45 (1977), 391-434.
- Del Fra, Ghinelli, Payne, (0, *n*)-Sets in a generalized quadrangle *Ann. Disc. Math.* 52 (1992), 139-157.

Let S be a GQ(s, t) and let H be a hyperoval of S. Then

i) 2 is a divisor of $|\mathcal{H}|$;

- ii) $|\mathcal{H}| \ge 2(t+1)$ and equality holds if and only if there exists a regular pair $\{x, y\}$ of non-collinear points of S such that $\mathcal{H} = \{x, y\}^{\perp} \cup \{x, y\}^{\perp \perp};$
- iii) $|\mathcal{H}| \ge (t s + 2)(s + 1)$ and if equality holds then every point outside \mathcal{H} is incident with precisely 1 + (t s)/2 lines which meet \mathcal{H} (hence $s \equiv t \pmod{2}$);
- iv) $|\mathcal{H}| \leq 2(st + 1)$ and equality holds if and only if every line of S intersects \mathcal{H} in exactly 2 points.

Let S be a GQ(s, t) and let H be a hyperoval of S. Then i) 2 is a divisor of |H|;

- ii) $|\mathcal{H}| \ge 2(t+1)$ and equality holds if and only if there exists a regular pair $\{x, y\}$ of non-collinear points of S such that $\mathcal{H} = \{x, y\}^{\perp} \cup \{x, y\}^{\perp \perp};$
- iii) $|\mathcal{H}| \ge (t s + 2)(s + 1)$ and if equality holds then every point outside \mathcal{H} is incident with precisely 1 + (t s)/2 lines which meet \mathcal{H} (hence $s \equiv t \pmod{2}$);
- iv) $|\mathcal{H}| \leq 2(st + 1)$ and equality holds if and only if every line of S intersects \mathcal{H} in exactly 2 points.

Let S be a GQ(s, t) and let H be a hyperoval of S. Then

- i) 2 is a divisor of $|\mathcal{H}|$;
- ii) $|\mathcal{H}| \ge 2(t+1)$ and equality holds if and only if there exists a regular pair $\{x, y\}$ of non-collinear points of S such that $\mathcal{H} = \{x, y\}^{\perp} \cup \{x, y\}^{\perp \perp};$
- iii) $|\mathcal{H}| \ge (t s + 2)(s + 1)$ and if equality holds then every point outside \mathcal{H} is incident with precisely 1 + (t s)/2 lines which meet \mathcal{H} (hence $s \equiv t \pmod{2}$);
- iv) $|\mathcal{H}| \leq 2(st + 1)$ and equality holds if and only if every line of S intersects \mathcal{H} in exactly 2 points.

Let S be a GQ(s, t) and let H be a hyperoval of S. Then

- i) 2 is a divisor of $|\mathcal{H}|$;
- ii) $|\mathcal{H}| \ge 2(t+1)$ and equality holds if and only if there exists a regular pair $\{x, y\}$ of non-collinear points of S such that $\mathcal{H} = \{x, y\}^{\perp} \cup \{x, y\}^{\perp \perp};$
- iii) $|\mathcal{H}| \ge (t s + 2)(s + 1)$ and if equality holds then every point outside \mathcal{H} is incident with precisely 1 + (t s)/2 lines which meet \mathcal{H} (hence $s \equiv t \pmod{2}$);

iv) $|\mathcal{H}| \leq 2(st + 1)$ and equality holds if and only if every line of S intersects \mathcal{H} in exactly 2 points.

Let S be a GQ(s, t) and let H be a hyperoval of S. Then

- i) 2 is a divisor of $|\mathcal{H}|$;
- ii) $|\mathcal{H}| \ge 2(t+1)$ and equality holds if and only if there exists a regular pair $\{x, y\}$ of non-collinear points of S such that $\mathcal{H} = \{x, y\}^{\perp} \cup \{x, y\}^{\perp \perp};$
- iii) $|\mathcal{H}| \ge (t s + 2)(s + 1)$ and if equality holds then every point outside \mathcal{H} is incident with precisely 1 + (t s)/2 lines which meet \mathcal{H} (hence $s \equiv t \pmod{2}$);
- iv) $|\mathcal{H}| \leq 2(st + 1)$ and equality holds if and only if every line of S intersects \mathcal{H} in exactly 2 points.

Let S be a GQ(s, t) and let H be a hyperoval of S. Then

- i) 2 is a divisor of $|\mathcal{H}|$;
- ii) $|\mathcal{H}| \ge 2(t+1)$ and equality holds if and only if there exists a regular pair $\{x, y\}$ of non-collinear points of S such that $\mathcal{H} = \{x, y\}^{\perp} \cup \{x, y\}^{\perp \perp};$
- iii) $|\mathcal{H}| \ge (t s + 2)(s + 1)$ and if equality holds then every point outside \mathcal{H} is incident with precisely 1 + (t s)/2 lines which meet \mathcal{H} (hence $s \equiv t \pmod{2}$);
- iv) $|\mathcal{H}| \leq 2(st + 1)$ and equality holds if and only if every line of S intersects \mathcal{H} in exactly 2 points.

The first two known infinite families on $\mathcal{H}(3, q^2)$:

- |*H*| = 2q³: union of two hermitian curves with a common tangent deleted,
- |*H*| = 2(q³ − q): union of two hermitian curves with a common chord deleted.

- Cossidente, Hyperovals on H(3, q²), J. Combin. Theory A 118 (2011), 1190-1195.
- Cossidente, Marino, Singer action on H(3, q²), q even, (preprint).
- Cossidente, Pavese, Hyperoval constructions on the Hermitian surface, *Finite Fields Appl.* (to appear).
- Pavese, Hyperovals on *H*(3, q²) left invariant by a group of order 6(q + 1)³, *Discrete Math.* 313 (2013), 1543-1546.

The first two known infinite families on $\mathcal{H}(3, q^2)$:

- |*H*| = 2q³: union of two hermitian curves with a common tangent deleted,
- |*H*| = 2(q³ − q): union of two hermitian curves with a common chord deleted.

- Cossidente, Hyperovals on H(3, q²), J. Combin. Theory A 118 (2011), 1190-1195.
- Cossidente, Marino, Singer action on H(3, q²), q even, (preprint).
- Cossidente, Pavese, Hyperoval constructions on the Hermitian surface, *Finite Fields Appl.* (to appear).
- Pavese, Hyperovals on *H*(3, q²) left invariant by a group of order 6(q + 1)³, *Discrete Math.* 313 (2013), 1543-1546.

The first two known infinite families on $\mathcal{H}(3, q^2)$:

- |*H*| = 2q³: union of two hermitian curves with a common tangent deleted,
- |*H*| = 2(q³ − q): union of two hermitian curves with a common chord deleted.

- Cossidente, Hyperovals on H(3, q²), J. Combin. Theory A 118 (2011), 1190-1195.
- Cossidente, Marino, Singer action on H(3, q²), q even, (preprint).
- Cossidente, Pavese, Hyperoval constructions on the Hermitian surface, *Finite Fields Appl.* (to appear).
- Pavese, Hyperovals on *H*(3, q²) left invariant by a group of order 6(q + 1)³, *Discrete Math.* 313 (2013), 1543-1546.

The first two known infinite families on $\mathcal{H}(3, q^2)$:

- |*H*| = 2q³: union of two hermitian curves with a common tangent deleted,
- |*H*| = 2(q³ − q): union of two hermitian curves with a common chord deleted.

- Cossidente, Hyperovals on H(3, q²), J. Combin. Theory A 118 (2011), 1190-1195.
- Cossidente, Marino, Singer action on H(3, q²), q even, (preprint).
- Cossidente, Pavese, Hyperoval constructions on the Hermitian surface, *Finite Fields Appl.* (to appear).
- Pavese, Hyperovals on H(3, q²) left invariant by a group of order 6(q + 1)³, Discrete Math. 313 (2013), 1543-1546.

The first two known infinite families on $\mathcal{H}(3, q^2)$:

- |*H*| = 2q³: union of two hermitian curves with a common tangent deleted,
- |*H*| = 2(q³ − q): union of two hermitian curves with a common chord deleted.

- Cossidente, Hyperovals on H(3, q²), J. Combin. Theory A 118 (2011), 1190-1195.
- Cossidente, Marino, Singer action on H(3, q²), q even, (preprint).
- Cossidente, Pavese, Hyperoval constructions on the Hermitian surface, *Finite Fields Appl.* (to appear).
- Pavese, Hyperovals on H(3, q²) left invariant by a group of order 6(q + 1)³, Discrete Math. 313 (2013), 1543-1546.

The first two known infinite families on $\mathcal{H}(3, q^2)$:

- |*H*| = 2q³: union of two hermitian curves with a common tangent deleted,
- |*H*| = 2(q³ − q): union of two hermitian curves with a common chord deleted.

- Cossidente, Hyperovals on H(3, q²), J. Combin. Theory A 118 (2011), 1190-1195.
- Cossidente, Marino, Singer action on H(3, q²), q even, (preprint).
- Cossidente, Pavese, Hyperoval constructions on the Hermitian surface, *Finite Fields Appl.* (to appear).
- Pavese, Hyperovals on $\mathcal{H}(3, q^2)$ left invariant by a group of order $6(q+1)^3$, *Discrete Math.* 313 (2013), 1543-1546.

The first two known infinite families on $\mathcal{H}(3, q^2)$:

- |*H*| = 2q³: union of two hermitian curves with a common tangent deleted,
- |*H*| = 2(q³ − q): union of two hermitian curves with a common chord deleted.

- Cossidente, Hyperovals on H(3, q²), J. Combin. Theory A 118 (2011), 1190-1195.
- Cossidente, Marino, Singer action on H(3, q²), q even, (preprint).
- Cossidente, Pavese, Hyperoval constructions on the Hermitian surface, *Finite Fields Appl.* (to appear).
- Pavese, Hyperovals on $\mathcal{H}(3, q^2)$ left invariant by a group of order $6(q+1)^3$, *Discrete Math.* 313 (2013), 1543-1546.

- Cossidente, King, Marino, Hyperovals of H(3, q²), when q is even, J. Combin. Theory A 120 (2013), 1131-1140.
- Cossidente, Pavese, New infinite families of hyperovals on H(3, q²), q odd, Des. Codes Cryptogr. (to appear).

The intersection of $\mathcal{H}(3, q^2)$ and $Q^-(3, q^2)$, q even

tangent lines to $Q^-(3,q^2) \to$ lines of a symplectic generalized quadrangle $\mathcal{W}(3,q^2)$

Plücker map

lines of $PG(3, q^2) \rightarrow$ points on $\mathcal{Q}^+(5, q^2)$ pencil of lines of $PG(3, q^2) \rightarrow$ line on $\mathcal{Q}^+(5, q^2)$ $\mathcal{H}(3, q^2) \rightarrow$ elliptic quadric $\mathcal{Q}^-(5, q) \subseteq \Sigma, \Sigma \simeq PG(5, q)$

- Cossidente, King, Marino, Hyperovals of H(3, q²), when q is even, J. Combin. Theory A 120 (2013), 1131-1140.
- Cossidente, Pavese, New infinite families of hyperovals on $\mathcal{H}(3, q^2)$, *q* odd, *Des. Codes Cryptogr.* (to appear).

The intersection of $\mathcal{H}(3,q^2)$ and $Q^-(3,q^2)$, q even

tangent lines to $Q^-(3,q^2) \to$ lines of a symplectic generalized quadrangle $\mathcal{W}(3,q^2)$

Plücker map

lines of $PG(3, q^2) \rightarrow$ points on $\mathcal{Q}^+(5, q^2)$ pencil of lines of $PG(3, q^2) \rightarrow$ line on $\mathcal{Q}^+(5, q^2)$ $\mathcal{H}(3, q^2) \rightarrow$ elliptic quadric $\mathcal{Q}^-(5, q) \subseteq \Sigma, \Sigma \simeq PG(5, q)$

- Cossidente, King, Marino, Hyperovals of H(3, q²), when q is even, J. Combin. Theory A 120 (2013), 1131-1140.
- Cossidente, Pavese, New infinite families of hyperovals on $\mathcal{H}(3, q^2)$, *q* odd, *Des. Codes Cryptogr.* (to appear).

The intersection of $\mathcal{H}(3, q^2)$ and $Q^-(3, q^2)$, q even

tangent lines to $Q^-(3,q^2) \to$ lines of a symplectic generalized quadrangle $\mathcal{W}(3,q^2)$

Plücker map

lines of $PG(3, q^2) \rightarrow$ points on $\mathcal{Q}^+(5, q^2)$ pencil of lines of $PG(3, q^2) \rightarrow$ line on $\mathcal{Q}^+(5, q^2)$ $\mathcal{H}(3, q^2) \rightarrow$ elliptic quadric $\mathcal{Q}^-(5, q) \subseteq \Sigma, \Sigma \simeq PG(5, q)$

- Cossidente, King, Marino, Hyperovals of H(3, q²), when q is even, J. Combin. Theory A 120 (2013), 1131-1140.
- Cossidente, Pavese, New infinite families of hyperovals on $\mathcal{H}(3, q^2)$, *q* odd, *Des. Codes Cryptogr.* (to appear).

The intersection of $\mathcal{H}(3, q^2)$ and $Q^-(3, q^2)$, q even

tangent lines to $Q^-(3,q^2) \to$ lines of a symplectic generalized quadrangle $\mathcal{W}(3,q^2)$

Plücker map

- Cossidente, King, Marino, Hyperovals of H(3, q²), when q is even, J. Combin. Theory A 120 (2013), 1131-1140.
- Cossidente, Pavese, New infinite families of hyperovals on $\mathcal{H}(3, q^2)$, *q* odd, *Des. Codes Cryptogr.* (to appear).

The intersection of $\mathcal{H}(3, q^2)$ and $Q^-(3, q^2)$, q even

tangent lines to $Q^-(3,q^2) \to$ lines of a symplectic generalized quadrangle $\mathcal{W}(3,q^2)$

Plücker map

- Cossidente, King, Marino, Hyperovals of H(3, q²), when q is even, J. Combin. Theory A 120 (2013), 1131-1140.
- Cossidente, Pavese, New infinite families of hyperovals on $\mathcal{H}(3, q^2)$, *q* odd, *Des. Codes Cryptogr.* (to appear).

The intersection of $\mathcal{H}(3, q^2)$ and $Q^-(3, q^2)$, q even

tangent lines to $Q^-(3,q^2) \to$ lines of a symplectic generalized quadrangle $\mathcal{W}(3,q^2)$

Plücker map

- Cossidente, King, Marino, Hyperovals of H(3, q²), when q is even, J. Combin. Theory A 120 (2013), 1131-1140.
- Cossidente, Pavese, New infinite families of hyperovals on $\mathcal{H}(3, q^2)$, *q* odd, *Des. Codes Cryptogr.* (to appear).

The intersection of $\mathcal{H}(3, q^2)$ and $Q^-(3, q^2)$, q even

tangent lines to $Q^-(3,q^2) \to$ lines of a symplectic generalized quadrangle $\mathcal{W}(3,q^2)$

Plücker map

- Cossidente, King, Marino, Hyperovals of H(3, q²), when q is even, J. Combin. Theory A 120 (2013), 1131-1140.
- Cossidente, Pavese, New infinite families of hyperovals on $\mathcal{H}(3, q^2)$, *q* odd, *Des. Codes Cryptogr.* (to appear).

The intersection of $\mathcal{H}(3, q^2)$ and $Q^-(3, q^2)$, q even

tangent lines to $Q^-(3,q^2) \to$ lines of a symplectic generalized quadrangle $\mathcal{W}(3,q^2)$

Plücker map

On the intersection of $\mathcal{H}(3, q^2)$ and $Q^-(3, q^2)$, q even

Plücker map

 $\mathcal{W}(3,q^2) \rightarrow \mathcal{Q}(4,q^2)$ in a hyperplane \mathcal{I} of $PG(5,q^2)$ $q^4 + 1$ pencils of tangent lines to $\mathcal{Q}^-(3,q^2) \rightarrow$ spread of lines of $\mathcal{Q}(4,q^2)$.

 $\mathcal{I} \cap \Sigma$ is a $PG(4, q) \rightarrow \mathcal{Q}(4, q^2) \cap \mathcal{Q}^-(5, q) = \mathcal{Q}(4, q)$ $\mathcal{I} \cap \Sigma$ is a $PG(3, q) \rightarrow \mathcal{Q}(4, q^2) \cap \mathcal{Q}^-(5, q)$ elliptic quadric, hyperbolic quadric, cone of PG(3, q).

Lemma

Let $\mathcal{H}(3, q^2)$ be a Hermitian surface and $\mathcal{Q}^-(3, q^2)$ an elliptic quadric in $PG(3, q^2)$, q even. Then, the generators of $\mathcal{H}(3, q^2)$ that are tangents to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$, an elliptic congruence, a hyperbolic congruence or a parabolic congruence of a PG(3, q).

On the intersection of $\mathcal{H}(3, q^2)$ and $Q^-(3, q^2)$, q even

Plücker map

 $\mathcal{W}(3, q^2) \rightarrow \mathcal{Q}(4, q^2)$ in a hyperplane \mathcal{I} of $PG(5, q^2)$ $q^4 + 1$ pencils of tangent lines to $\mathcal{Q}^-(3, q^2) \rightarrow \text{spread}$

 $\mathcal{I} \cap \Sigma$ is a $PG(4, q) \rightarrow \mathcal{Q}(4, q^2) \cap \mathcal{Q}^-(5, q) = \mathcal{Q}(4, q)$ $\mathcal{I} \cap \Sigma$ is a $PG(3, q) \rightarrow \mathcal{Q}(4, q^2) \cap \mathcal{Q}^-(5, q)$ elliptic quadric, hyperbolic quadric, cone of PG(3, q).

Lemma

Let $\mathcal{H}(3, q^2)$ be a Hermitian surface and $\mathcal{Q}^-(3, q^2)$ an elliptic quadric in $PG(3, q^2)$, q even. Then, the generators of $\mathcal{H}(3, q^2)$ that are tangents to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$, an elliptic congruence, a hyperbolic congruence or a parabolic congruence of a PG(3, q).

Plücker map

 $\mathcal{W}(3, q^2) \rightarrow \mathcal{Q}(4, q^2)$ in a hyperplane \mathcal{I} of $PG(5, q^2)$ $q^4 + 1$ pencils of tangent lines to $\mathcal{Q}^-(3, q^2) \rightarrow$ spread of lines of $\mathcal{Q}(4, q^2)$.

 $\mathcal{I} \cap \Sigma$ is a $PG(4, q) \rightarrow \mathcal{Q}(4, q^2) \cap \mathcal{Q}^-(5, q) = \mathcal{Q}(4, q)$ $\mathcal{I} \cap \Sigma$ is a $PG(3, q) \rightarrow \mathcal{Q}(4, q^2) \cap \mathcal{Q}^-(5, q)$ elliptic quadric, hyperbolic quadric, cone of PG(3, q).

Lemma

Plücker map

 $\mathcal{W}(3, q^2) \rightarrow \mathcal{Q}(4, q^2)$ in a hyperplane \mathcal{I} of $PG(5, q^2)$ $q^4 + 1$ pencils of tangent lines to $\mathcal{Q}^-(3, q^2) \rightarrow$ spread of lines of $\mathcal{Q}(4, q^2)$.

 $\mathcal{I} \cap \Sigma$ is a $PG(4, q) \rightarrow \mathcal{Q}(4, q^2) \cap \mathcal{Q}^-(5, q) = \mathcal{Q}(4, q)$ $\mathcal{I} \cap \Sigma$ is a $PG(3, q) \rightarrow \mathcal{Q}(4, q^2) \cap \mathcal{Q}^-(5, q)$ elliptic quadric, hyperbolic quadric, cone of PG(3, q).

Lemma

Plücker map

 $\mathcal{W}(3, q^2) \rightarrow \mathcal{Q}(4, q^2)$ in a hyperplane \mathcal{I} of $PG(5, q^2)$ $q^4 + 1$ pencils of tangent lines to $\mathcal{Q}^-(3, q^2) \rightarrow$ spread of lines of $\mathcal{Q}(4, q^2)$.

 $\mathcal{I} \cap \Sigma$ is a $PG(4,q) \rightarrow \mathcal{Q}(4,q^2) \cap \mathcal{Q}^-(5,q) = \mathcal{Q}(4,q)$ $\mathcal{I} \cap \Sigma$ is a $PG(3,q) \rightarrow \mathcal{Q}(4,q^2) \cap \mathcal{Q}^-(5,q)$ elliptic quadric, hyperbolic quadric, cone of PG(3,q).

Lemma

Plücker map

 $\mathcal{W}(3, q^2) \rightarrow \mathcal{Q}(4, q^2)$ in a hyperplane \mathcal{I} of $PG(5, q^2)$ $q^4 + 1$ pencils of tangent lines to $\mathcal{Q}^-(3, q^2) \rightarrow$ spread of lines of $\mathcal{Q}(4, q^2)$.

 $\mathcal{I} \cap \Sigma$ is a $PG(4,q) \rightarrow \mathcal{Q}(4,q^2) \cap \mathcal{Q}^-(5,q) = \mathcal{Q}(4,q)$ $\mathcal{I} \cap \Sigma$ is a $PG(3,q) \rightarrow \mathcal{Q}(4,q^2) \cap \mathcal{Q}^-(5,q)$ elliptic quadric, hyperbolic quadric, cone of PG(3,q).

Lemma

Generators of $\mathcal{H}(3, q^2)$ tangents to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$

 $PG(3, q^2),$ $\mathcal{H}(3, q^2): X_1X_4^q + X_4X_1^q + X_2X_3^q + X_3X_2^q = 0.$

 $PGU(4, q^2)$ acts transitively on the symplectic subquadrangles embedded in $\mathcal{H}(3, q^2)$,

 $\mathcal{W}(3,q)$:

 $H((X_1, X_2, X_3, X_4), (Y_1, Y_2, Y_3, Y_4)) = X_1 Y_4 + X_4 Y_1 + X_2 Y_3 + X_3 Y_2,$

Generators of $\mathcal{H}(3, q^2)$ tangents to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$

 $PG(3, q^2),$

$$\mathcal{H}(3,q^2): \ X_1X_4^q + X_4X_1^q + X_2X_3^q + X_3X_2^q = 0.$$

PGU(4, q^2) acts transitively on the symplectic subquadrangles embedded in $\mathcal{H}(3, q^2)$,

 $\mathcal{W}(3,q)$:

 $H((X_1, X_2, X_3, X_4), (Y_1, Y_2, Y_3, Y_4)) = X_1 Y_4 + X_4 Y_1 + X_2 Y_3 + X_3 Y_2,$

Generators of $\mathcal{H}(3, q^2)$ tangents to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$

 $PG(3, q^2),$

$$\mathcal{H}(3,q^2): \ X_1X_4^q + X_4X_1^q + X_2X_3^q + X_3X_2^q = 0.$$

 $PGU(4, q^2)$ acts transitively on the symplectic subquadrangles embedded in $\mathcal{H}(3, q^2)$,

 $\mathcal{W}(3,q)$:

 $H((X_1, X_2, X_3, X_4), (Y_1, Y_2, Y_3, Y_4)) = X_1 Y_4 + X_4 Y_1 + X_2 Y_3 + X_3 Y_2,$

Generators of $\mathcal{H}(3, q^2)$ tangents to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$

 $PG(3, q^2),$

$$\mathcal{H}(3,q^2): \ X_1X_4^q + X_4X_1^q + X_2X_3^q + X_3X_2^q = 0.$$

 $PGU(4, q^2)$ acts transitively on the symplectic subquadrangles embedded in $\mathcal{H}(3, q^2)$,

 $\mathcal{W}(3,q)$:

 $H((X_1, X_2, X_3, X_4), (Y_1, Y_2, Y_3, Y_4)) = X_1 Y_4 + X_4 Y_1 + X_2 Y_3 + X_3 Y_2,$

Th.: $Q^{-}(3, q^2)$ intersects W(3, q) in a Baer conic

 $PSp(4, q^2)$ acts transitively on the set of $q^4(q^4 - 1)/2$ elliptic quadrics of $PG(3, q^2)$ whose tangent lines are the lines of $W(3, q^2)$,

 $\mathcal{P} \rightarrow$ pencil of $q^2/2$ elliptic quadrics of $PG(3, q^2)$, passing through the conic

 $\bar{\mathcal{C}}: X_1^2 + X_2 X_3 = 0.$

 $\mathcal{E} \in \mathcal{P}$:

$$\mathcal{E}: X_1^2 + X_1 X_4 + w X_4^2 + X_2 X_3 = 0,$$

for some $w\in GF(q^2)$ such that w has GF(2)–trace 1.

イロト イポト イヨト イヨ

Th.: $Q^{-}(3, q^2)$ intersects W(3, q) in a Baer conic

 $PSp(4, q^2)$ acts transitively on the set of $q^4(q^4 - 1)/2$ elliptic quadrics of $PG(3, q^2)$ whose tangent lines are the lines of $W(3, q^2)$,

 $\mathcal{P} \rightarrow$ pencil of $q^2/2$ elliptic quadrics of $PG(3, q^2)$, passing through the conic

 $\bar{\mathcal{C}}: X_1^2 + X_2 X_3 = 0.$

 $\mathcal{E} \in \mathcal{P}$:

$$\mathcal{E}: X_1^2 + X_1 X_4 + w X_4^2 + X_2 X_3 = 0,$$

for some $w\in GF(q^2)$ such that w has GF(2)–trace 1.

イロト イ理ト イヨト イヨト

Th.: $Q^{-}(3, q^2)$ intersects W(3, q) in a Baer conic

 $PSp(4, q^2)$ acts transitively on the set of $q^4(q^4 - 1)/2$ elliptic quadrics of $PG(3, q^2)$ whose tangent lines are the lines of $W(3, q^2)$,

 $\mathcal{P} \rightarrow$ pencil of $q^2/2$ elliptic quadrics of $PG(3,q^2)$, passing through the conic

$$\bar{\mathcal{C}}: X_1^2 + X_2 X_3 = 0.$$

 $\mathcal{E} \in \mathcal{P}$:

$$\mathcal{E}: X_1^2 + X_1 X_4 + w X_4^2 + X_2 X_3 = 0,$$

for some $w\in GF(q^2)$ such that w has GF(2)–trace 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

Th.: $Q^{-}(3, q^2)$ intersects W(3, q) in a Baer conic

 $PSp(4, q^2)$ acts transitively on the set of $q^4(q^4 - 1)/2$ elliptic quadrics of $PG(3, q^2)$ whose tangent lines are the lines of $W(3, q^2)$,

 $\mathcal{P} \rightarrow$ pencil of $q^2/2$ elliptic quadrics of $PG(3,q^2)$, passing through the conic

$$\bar{\mathcal{C}}: X_1^2 + X_2 X_3 = 0.$$

 $\mathcal{E}\in\mathcal{P}$:

$$\mathcal{E}: X_1^2 + X_1 X_4 + w X_4^2 + X_2 X_3 = 0,$$

for some $w \in GF(q^2)$ such that w has GF(2)-trace 1.

★ Ξ → ★ Ξ →

 $\mathcal{C} := \mathcal{W}(3, q) \cap \overline{\mathcal{C}} \text{ is a Baer conic,}$ $G := Stab_{\text{PSp}(4,q)}(\mathcal{C}), |G| = q^2(q^2 - 1),$ PSL(2, q) is a subgroup of G of index q.

 $G' := Stab_G(\mathcal{E}), |G'| = 2q(q^2 - 1),$ $\mathcal{W}(3, q) \cap \mathcal{E} = \mathcal{C}, \rightarrow Stab_{\mathrm{PSp}(4,q)}(\mathcal{E}) \simeq G'.$

 $G \rightarrow$ the $q^2/2$ elliptic quadrics in \mathcal{P} are partitioned into q orbits, say $\overline{\mathcal{O}}_1, \ldots, \overline{\mathcal{O}}_q$, where $|\overline{\mathcal{O}}_i| = q/2$, for $1 \le i \le q$.

 \mathcal{E}_i elliptic quadric of \mathcal{P} in $\overline{\mathcal{O}}_i$, for $1 \leq i \leq q$.

 $\mathcal{C} := \mathcal{W}(3, q) \cap \overline{\mathcal{C}}$ is a Baer conic, $G := Stab_{\mathrm{PSp}(4,q)}(\mathcal{C}), |G| = q^2(q^2 - 1),$ $\mathrm{PSL}(2, q)$ is a subgroup of *G* of index *q*.

$$G' := Stab_G(\mathcal{E}), |G'| = 2q(q^2 - 1),$$

 $\mathcal{W}(3, q) \cap \mathcal{E} = \mathcal{C}, \rightarrow Stab_{\mathrm{PSp}(4,q)}(\mathcal{E}) \simeq G'.$

 $G \to \text{the } q^2/2$ elliptic quadrics in \mathcal{P} are partitioned into q orbits, say $\overline{\mathcal{O}}_1, \ldots, \overline{\mathcal{O}}_q$, where $|\overline{\mathcal{O}}_i| = q/2$, for $1 \le i \le q$.

 \mathcal{E}_i elliptic quadric of \mathcal{P} in $\overline{\mathcal{O}}_i$, for $1 \leq i \leq q$.

 $\mathcal{C} := \mathcal{W}(3, q) \cap \overline{\mathcal{C}}$ is a Baer conic, $G := Stab_{\operatorname{PSp}(4,q)}(\mathcal{C}), |G| = q^2(q^2 - 1),$ $\operatorname{PSL}(2, q)$ is a subgroup of *G* of index *q*.

 $G' := Stab_G(\mathcal{E}), |G'| = 2q(q^2 - 1),$ $\mathcal{W}(3, q) \cap \mathcal{E} = \mathcal{C}, \rightarrow Stab_{\mathrm{PSp}(4,q)}(\mathcal{E}) \simeq G'.$

 $G \to \text{the } q^2/2$ elliptic quadrics in \mathcal{P} are partitioned into q orbits, say $\overline{\mathcal{O}}_1, \ldots, \overline{\mathcal{O}}_q$, where $|\overline{\mathcal{O}}_i| = q/2$, for $1 \le i \le q$.

 \mathcal{E}_i elliptic quadric of \mathcal{P} in $\overline{\mathcal{O}}_i$, for $1 \leq i \leq q$.

 $\mathcal{C} := \mathcal{W}(3, q) \cap \overline{\mathcal{C}}$ is a Baer conic, $G := Stab_{\operatorname{PSp}(4,q)}(\mathcal{C}), |G| = q^2(q^2 - 1),$ $\operatorname{PSL}(2, q)$ is a subgroup of *G* of index *q*.

$$G' := Stab_G(\mathcal{E}), |G'| = 2q(q^2 - 1),$$

 $G \to \text{the } q^2/2$ elliptic quadrics in \mathcal{P} are partitioned into q orbits, say $\overline{\mathcal{O}}_1, \ldots, \overline{\mathcal{O}}_q$, where $|\overline{\mathcal{O}}_i| = q/2$, for $1 \le i \le q$.

 \mathcal{E}_i elliptic quadric of \mathcal{P} in $\overline{\mathcal{O}}_i$, for $1 \leq i \leq q$.

 $\mathcal{C} := \mathcal{W}(3, q) \cap \overline{\mathcal{C}}$ is a Baer conic, $G := Stab_{\operatorname{PSp}(4,q)}(\mathcal{C}), |G| = q^2(q^2 - 1),$ $\operatorname{PSL}(2, q)$ is a subgroup of *G* of index *q*.

$$egin{aligned} G' &:= Stab_G(\mathcal{E}), \, |G'| = 2q(q^2-1), \ \mathcal{W}(\mathbf{3},q) \cap \mathcal{E} = \mathcal{C}, o Stab_{ ext{PSp}(\mathbf{4},q)}(\mathcal{E}) \simeq G'. \end{aligned}$$

 $G \to \text{the } q^2/2$ elliptic quadrics in \mathcal{P} are partitioned into q orbits, say $\overline{\mathcal{O}}_1, \ldots, \overline{\mathcal{O}}_q$, where $|\overline{\mathcal{O}}_i| = q/2$, for $1 \le i \le q$.

 \mathcal{E}_i elliptic quadric of \mathcal{P} in $\overline{\mathcal{O}}_i$, for $1 \leq i \leq q$.

 $\mathcal{C} := \mathcal{W}(3, q) \cap \overline{\mathcal{C}}$ is a Baer conic, $G := Stab_{\operatorname{PSp}(4,q)}(\mathcal{C}), |G| = q^2(q^2 - 1),$ $\operatorname{PSL}(2, q)$ is a subgroup of *G* of index *q*.

$$G' := Stab_G(\mathcal{E}), |G'| = 2q(q^2 - 1), \ \mathcal{W}(3, q) \cap \mathcal{E} = \mathcal{C},
ightarrow Stab_{ ext{PSp}(4,q)}(\mathcal{E}) \simeq G'.$$

 $G \to \text{the } q^2/2$ elliptic quadrics in \mathcal{P} are partitioned into q orbits, say $\overline{\mathcal{O}}_1, \ldots, \overline{\mathcal{O}}_q$, where $|\overline{\mathcal{O}}_i| = q/2$, for $1 \le i \le q$.

 \mathcal{E}_i elliptic quadric of \mathcal{P} in $\overline{\mathcal{O}}_i$, for $1 \leq i \leq q$.

 $\mathcal{C} := \mathcal{W}(3, q) \cap \overline{\mathcal{C}}$ is a Baer conic, $G := Stab_{\operatorname{PSp}(4,q)}(\mathcal{C}), |G| = q^2(q^2 - 1),$ $\operatorname{PSL}(2, q)$ is a subgroup of *G* of index *q*.

$$G' := Stab_G(\mathcal{E}), |G'| = 2q(q^2 - 1), \ \mathcal{W}(3,q) \cap \mathcal{E} = \mathcal{C},
ightarrow Stab_{ ext{PSp}(4,q)}(\mathcal{E}) \simeq G'.$$

 $G \to \text{the } q^2/2$ elliptic quadrics in \mathcal{P} are partitioned into q orbits, say $\overline{\mathcal{O}}_1, \ldots, \overline{\mathcal{O}}_q$, where $|\overline{\mathcal{O}}_i| = q/2$, for $1 \le i \le q$.

 \mathcal{E}_i elliptic quadric of \mathcal{P} in $\overline{\mathcal{O}}_i$, for $1 \leq i \leq q$.

 $\mathcal{C} := \mathcal{W}(3, q) \cap \overline{\mathcal{C}}$ is a Baer conic, $G := Stab_{\operatorname{PSp}(4,q)}(\mathcal{C}), |G| = q^2(q^2 - 1),$ $\operatorname{PSL}(2, q)$ is a subgroup of *G* of index *q*.

$$G' := Stab_G(\mathcal{E}), |G'| = 2q(q^2 - 1), \ \mathcal{W}(3,q) \cap \mathcal{E} = \mathcal{C},
ightarrow Stab_{ ext{PSp}(4,q)}(\mathcal{E}) \simeq G'.$$

 $G \to \text{the } q^2/2$ elliptic quadrics in \mathcal{P} are partitioned into q orbits, say $\overline{\mathcal{O}}_1, \ldots, \overline{\mathcal{O}}_q$, where $|\overline{\mathcal{O}}_i| = q/2$, for $1 \le i \le q$.

 \mathcal{E}_i elliptic quadric of \mathcal{P} in $\overline{\mathcal{O}}_i$, for $1 \leq i \leq q$.

On the other hand $q^4(q^4 - 1)/2$ is the number of all elliptic quadrics of $PG(3, q^2)$ whose tangent lines are the lines of $W(3, q^2) \rightarrow$ each of those elliptic quadrics intersects W(3, q) in a Baer conic.

g a generator of $\mathcal{H}(3, q^2) \to g \cap \mathcal{W}(3, q)$ is a Baer line of $\mathcal{W}(3, q)$ or $g \cap \mathcal{W}(3, q)$ is empty, a point of $\mathcal{H}(3, q^2) \setminus \mathcal{W}(3, q)$ lies on a unique extended Baer line of $\mathcal{W}(3, q)$.

Each extended Baer line of $\mathcal{W}(3, q)$ is tangent to $\mathcal{Q}^{-}(3, q^2)$.

There are q + 1 extended lines of $\mathcal{W}(3, q)$ through each point of \mathcal{C} , the remaining $q(q^2 - 1)$ extended lines of $\mathcal{W}(3, q)$ meet $\mathcal{Q}^-(3, q^2)$ in a point on $\mathcal{W}(3, q^2) \setminus \mathcal{W}(3, q)$

On the other hand $q^4(q^4 - 1)/2$ is the number of all elliptic quadrics of $PG(3, q^2)$ whose tangent lines are the lines of $W(3, q^2) \rightarrow$ each of those elliptic quadrics intersects W(3, q) in a Baer conic.

g a generator of $\mathcal{H}(3, q^2) \rightarrow g \cap \mathcal{W}(3, q)$ is a Baer line of $\mathcal{W}(3, q)$ or $g \cap \mathcal{W}(3, q)$ is empty,

a point of $\mathcal{H}(3, q^2) \setminus \mathcal{W}(3, q)$ lies on a unique extended Baer line of $\mathcal{W}(3, q)$.

Each extended Baer line of $\mathcal{W}(3, q)$ is tangent to $\mathcal{Q}^{-}(3, q^2)$.

There are q + 1 extended lines of $\mathcal{W}(3, q)$ through each point of \mathcal{C} , the remaining $q(q^2 - 1)$ extended lines of $\mathcal{W}(3, q)$ meet $\mathcal{Q}^-(3, q^2)$ in a point on $\mathcal{W}(3, q^2) \setminus \mathcal{W}(3, q)$

On the other hand $q^4(q^4 - 1)/2$ is the number of all elliptic quadrics of $PG(3, q^2)$ whose tangent lines are the lines of $W(3, q^2) \rightarrow$ each of those elliptic quadrics intersects W(3, q) in a Baer conic.

g a generator of $\mathcal{H}(3, q^2) \rightarrow g \cap \mathcal{W}(3, q)$ is a Baer line of $\mathcal{W}(3, q)$ or $g \cap \mathcal{W}(3, q)$ is empty, a point of $\mathcal{H}(3, q^2) \setminus \mathcal{W}(3, q)$ lies on a unique extended Baer line of $\mathcal{W}(3, q)$.

Each extended Baer line of $\mathcal{W}(3, q)$ is tangent to $\mathcal{Q}^{-}(3, q^2)$.

There are q + 1 extended lines of $\mathcal{W}(3, q)$ through each point of \mathcal{C} , the remaining $q(q^2 - 1)$ extended lines of $\mathcal{W}(3, q)$ meet $\mathcal{Q}^-(3, q^2)$ in a point on $\mathcal{W}(3, q^2) \setminus \mathcal{W}(3, q)$

On the other hand $q^4(q^4 - 1)/2$ is the number of all elliptic quadrics of $PG(3, q^2)$ whose tangent lines are the lines of $W(3, q^2) \rightarrow$ each of those elliptic quadrics intersects W(3, q) in a Baer conic.

g a generator of $\mathcal{H}(3, q^2) \to g \cap \mathcal{W}(3, q)$ is a Baer line of $\mathcal{W}(3, q)$ or $g \cap \mathcal{W}(3, q)$ is empty, a point of $\mathcal{H}(3, q^2) \setminus \mathcal{W}(3, q)$ lies on a unique extended Baer line of $\mathcal{W}(3, q)$.

Each extended Baer line of $\mathcal{W}(3, q)$ is tangent to $\mathcal{Q}^{-}(3, q^2)$.

There are q + 1 extended lines of $\mathcal{W}(3, q)$ through each point of C, the remaining $q(q^2 - 1)$ extended lines of $\mathcal{W}(3, q)$ meet $\mathcal{Q}^-(3, q^2)$ in a point on $\mathcal{W}(3, q^2) \setminus \mathcal{W}(3, q)$.

On the other hand $q^4(q^4 - 1)/2$ is the number of all elliptic quadrics of $PG(3, q^2)$ whose tangent lines are the lines of $\mathcal{W}(3, q^2) \rightarrow$ each of those elliptic quadrics intersects $\mathcal{W}(3, q)$ in a Baer conic.

g a generator of $\mathcal{H}(3, q^2) \rightarrow g \cap \mathcal{W}(3, q)$ is a Baer line of $\mathcal{W}(3, q)$ or $g \cap \mathcal{W}(3, q)$ is empty, a point of $\mathcal{H}(3, q^2) \setminus \mathcal{W}(3, q)$ lies on a unique extended Baer line of $\mathcal{W}(3, q)$.

Each extended Baer line of $\mathcal{W}(3, q)$ is tangent to $\mathcal{Q}^{-}(3, q^2)$.

There are q + 1 extended lines of $\mathcal{W}(3, q)$ through each point of C, the remaining $q(q^2 - 1)$ extended lines of $\mathcal{W}(3, q)$ meet $\mathcal{Q}^-(3, q^2)$ in a point on $\mathcal{W}(3, q^2) \setminus \mathcal{W}(3, q)$,

$$|\mathcal{H}(3,q^2)\cap\mathcal{Q}^-(3,q^2)|=(q^3-q)+(q+1)=q^3+1.$$

Theorem

In $PG(3, q^2)$, q even, let $\mathcal{H}(3, q^2)$ be a Hermitian surface and $\mathcal{Q}^-(3, q^2)$ be an elliptic quadric such that the generators of $\mathcal{H}(3, q^2)$ that are tangent with respect to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$, then

- i) if S is a symplectic subquadrangle embedded in $\mathcal{H}(3, q^2)$, then $S \cap \mathcal{Q}^-(3, q^2)$ is a Baer conic,
- ii) $|\mathcal{H}(3,q^2) \cap \mathcal{Q}^-(3,q^2)| = q^3 + 1.$

 $PSp(4, q^2)$ acts transitively on the symplectic subquadrangles embedded in $W(3, q^2)$,

$$|\mathcal{H}(3,q^2)\cap\mathcal{Q}^-(3,q^2)|=(q^3-q)+(q+1)=q^3+1.$$

Theorem

In $PG(3, q^2)$, q even, let $\mathcal{H}(3, q^2)$ be a Hermitian surface and $\mathcal{Q}^-(3, q^2)$ be an elliptic quadric such that the generators of $\mathcal{H}(3, q^2)$ that are tangent with respect to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$, then

- i) if S is a symplectic subquadrangle embedded in $\mathcal{H}(3, q^2)$, then $S \cap Q^-(3, q^2)$ is a Baer conic,
- ii) $|\mathcal{H}(3,q^2) \cap \mathcal{Q}^-(3,q^2)| = q^3 + 1.$

 $PSp(4, q^2)$ acts transitively on the symplectic subquadrangles embedded in $\mathcal{W}(3, q^2)$,

イロト イ理ト イヨト

$$|\mathcal{H}(3,q^2)\cap\mathcal{Q}^-(3,q^2)|=(q^3-q)+(q+1)=q^3+1.$$

Theorem

In $PG(3, q^2)$, q even, let $\mathcal{H}(3, q^2)$ be a Hermitian surface and $\mathcal{Q}^-(3, q^2)$ be an elliptic quadric such that the generators of $\mathcal{H}(3, q^2)$ that are tangent with respect to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$, then

- i) if S is a symplectic subquadrangle embedded in $\mathcal{H}(3, q^2)$, then $S \cap \mathcal{Q}^-(3, q^2)$ is a Baer conic,
- ii) $|\mathcal{H}(3,q^2) \cap \mathcal{Q}^-(3,q^2)| = q^3 + 1.$

 $PSp(4, q^2)$ acts transitively on the symplectic subquadrangles embedded in $\mathcal{W}(3, q^2)$,

Corollary

In $PG(3, q^2)$, q even, let $\mathcal{W}(3, q^2)$ be a symplectic space and $\mathcal{Q}^-(3, q^2)$ be an elliptic quadric such that $\mathcal{Q}^-(3, q^2)$ is an ovoid of $\mathcal{W}(3, q^2)$. If \mathcal{S} is a symplectic subquadrangle embedded in $\mathcal{W}(3, q^2)$, then $\mathcal{S} \cap \mathcal{Q}^-(3, q^2)$ is a Baer conic.

Bamberg, Law, Penttila, Tight sets and m-ovoids of finite generalized quadrangles, *Combinatorica* 29 (2009), 1-17.

m-ovoids of a GQ(s, t)

Let S be a GQ(s, t). An *m*-ovoid O of S, is a set of points of S such that

- *P* is collinear with (t + 1)(m 1) + 1 points of \mathcal{O} , if $P \in \mathcal{O}$
- *P* is collinear with (t + 1)m points of \mathcal{O} , if $P \in S \setminus \mathcal{O}$,

 $|\mathcal{O}| = m(st+1)$

Corollary

In $PG(3, q^2)$, q even, let $\mathcal{W}(3, q^2)$ be a symplectic space and $\mathcal{Q}^-(3, q^2)$ be an elliptic quadric such that $\mathcal{Q}^-(3, q^2)$ is an ovoid of $\mathcal{W}(3, q^2)$. If \mathcal{S} is a symplectic subquadrangle embedded in $\mathcal{W}(3, q^2)$, then $\mathcal{S} \cap \mathcal{Q}^-(3, q^2)$ is a Baer conic.

Bamberg, Law, Penttila, Tight sets and m-ovoids of finite generalized quadrangles, *Combinatorica* 29 (2009), 1-17.

m-ovoids of a GQ(s, t)

Let S be a GQ(s, t). An *m*-ovoid O of S, is a set of points of S such that

- *P* is collinear with (t + 1)(m 1) + 1 points of \mathcal{O} , if $P \in \mathcal{O}$
- *P* is collinear with (t + 1)m points of \mathcal{O} , if $P \in S \setminus \mathcal{O}$,

 $|\mathcal{O}| = m(st+1)$

Corollary

In $PG(3, q^2)$, q even, let $\mathcal{W}(3, q^2)$ be a symplectic space and $\mathcal{Q}^-(3, q^2)$ be an elliptic quadric such that $\mathcal{Q}^-(3, q^2)$ is an ovoid of $\mathcal{W}(3, q^2)$. If S is a symplectic subquadrangle embedded in $\mathcal{W}(3, q^2)$, then $S \cap \mathcal{Q}^-(3, q^2)$ is a Baer conic.

Bamberg, Law, Penttila, Tight sets and m-ovoids of finite generalized quadrangles, *Combinatorica* 29 (2009), 1-17.

m-ovoids of a GQ(s, t)

Let \mathcal{S} be a GQ(s, t). An *m*-ovoid \mathcal{O} of \mathcal{S} , is a set of points of \mathcal{S} such that

- *P* is collinear with (t + 1)(m 1) + 1 points of \mathcal{O} , if $P \in \mathcal{O}$,
- *P* is collinear with (t + 1)m points of \mathcal{O} , if $P \in S \setminus \mathcal{O}$,

 $|\mathcal{O}| = m(st+1).$

Corollary

In $PG(3, q^2)$, q even, let $\mathcal{W}(3, q^2)$ be a symplectic space and $\mathcal{Q}^-(3, q^2)$ be an elliptic quadric such that $\mathcal{Q}^-(3, q^2)$ is an ovoid of $\mathcal{W}(3, q^2)$. If S is a symplectic subquadrangle embedded in $\mathcal{W}(3, q^2)$, then $S \cap \mathcal{Q}^-(3, q^2)$ is a Baer conic.

Bamberg, Law, Penttila, Tight sets and m-ovoids of finite generalized quadrangles, *Combinatorica* 29 (2009), 1-17.

m-ovoids of a GQ(s, t)

Let S be a GQ(s, t). An *m*-ovoid O of S, is a set of points of S such that

- *P* is collinear with (t + 1)(m 1) + 1 points of \mathcal{O} , if $P \in \mathcal{O}$,
- *P* is collinear with (t + 1)m points of \mathcal{O} , if $P \in S \setminus \mathcal{O}$,

 $|\mathcal{O}| = m(st+1).$

Corollary

In $PG(3, q^2)$, q even, let $\mathcal{W}(3, q^2)$ be a symplectic space and $\mathcal{Q}^-(3, q^2)$ be an elliptic quadric such that $\mathcal{Q}^-(3, q^2)$ is an ovoid of $\mathcal{W}(3, q^2)$. If S is a symplectic subquadrangle embedded in $\mathcal{W}(3, q^2)$, then $S \cap \mathcal{Q}^-(3, q^2)$ is a Baer conic.

Bamberg, Law, Penttila, Tight sets and m-ovoids of finite generalized quadrangles, *Combinatorica* 29 (2009), 1-17.

m-ovoids of a GQ(s, t)

Let S be a GQ(s, t). An *m*-ovoid O of S, is a set of points of S such that

- *P* is collinear with (t + 1)(m 1) + 1 points of \mathcal{O} , if $P \in \mathcal{O}$,
- *P* is collinear with (t + 1)m points of \mathcal{O} , if $P \in S \setminus \mathcal{O}$,

 $|\mathcal{O}|=m(st+1).$

Corollary

In $PG(3, q^2)$, q even, let $\mathcal{W}(3, q^2)$ be a symplectic space and $\mathcal{Q}^-(3, q^2)$ be an elliptic quadric such that $\mathcal{Q}^-(3, q^2)$ is an ovoid of $\mathcal{W}(3, q^2)$. If S is a symplectic subquadrangle embedded in $\mathcal{W}(3, q^2)$, then $S \cap \mathcal{Q}^-(3, q^2)$ is a Baer conic.

Bamberg, Law, Penttila, Tight sets and m-ovoids of finite generalized quadrangles, *Combinatorica* 29 (2009), 1-17.

m-ovoids of a GQ(s, t)

Let S be a GQ(s, t). An *m*-ovoid O of S, is a set of points of S such that

- *P* is collinear with (t + 1)(m 1) + 1 points of \mathcal{O} , if $P \in \mathcal{O}$,
- *P* is collinear with (t + 1)m points of \mathcal{O} , if $P \in S \setminus \mathcal{O}$,

$$|\mathcal{O}|=m(st+1).$$

Hyperovals on $\mathcal{H}(3, q^2)$ from elliptic quadrics

Tight sets of a GQ(s, t)

Let S be a GQ(s, t). A tight set T of S, is a set of points of S such that

- *P* is collinear with s + i points of \mathcal{T} , if $P \in \mathcal{T}$,
- *P* is collinear with *i* points of \mathcal{T} , if $P \in S \setminus \mathcal{T}$,

 $\mathcal{T}|=i(s+1).$

mi-Lemma

Let *S* be a GQ(s, t), \mathcal{O} an *m*-ovoid of *S* and \mathcal{T} an *i*-tight set of *S*, then $|\mathcal{O} \cap \mathcal{T}| = mi$.

 $\mathcal{H}(3, q^2), \mathcal{Q}^-(3, q^2)$ such that the generators of $\mathcal{H}(3, q^2)$ that are tangent with respect to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$ and $\mathcal{W}(3, q) \cap \mathcal{Q}^-(3, q^2) = C$, \mathcal{E}' Baer elliptic quadric, ovoid of $\mathcal{W}(3, q)$, passing through C.

Hyperovals on $\mathcal{H}(3, q^2)$ from elliptic quadrics

Tight sets of a GQ(s, t)

Let S be a GQ(s, t). A tight set T of S, is a set of points of S such that

- *P* is collinear with s + i points of T, if $P \in T$,
- *P* is collinear with *i* points of \mathcal{T} , if $P \in S \setminus \mathcal{T}$,

 $\mathcal{T}|=i(s+1).$

mi-Lemma

Let S be a GQ(s, t), \mathcal{O} an *m*-ovoid of S and \mathcal{T} an *i*-tight set of S, then $|\mathcal{O} \cap \mathcal{T}| = mi$.

 $\mathcal{H}(3, q^2), \mathcal{Q}^-(3, q^2)$ such that the generators of $\mathcal{H}(3, q^2)$ that are tangent with respect to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$ and $\mathcal{W}(3, q) \cap \mathcal{Q}^-(3, q^2) = C$, \mathcal{E}' Baer elliptic quadric, ovoid of $\mathcal{W}(3, q)$, passing through C.

Tight sets of a GQ(s, t)

Let S be a GQ(s, t). A tight set T of S, is a set of points of S such that

- *P* is collinear with s + i points of T, if $P \in T$,
- *P* is collinear with *i* points of \mathcal{T} , if $P \in \mathcal{S} \setminus \mathcal{T}$,

 $|\mathcal{T}| = i(s+1).$

mi-Lemma

Let S be a GQ(s, t), O an *m*-ovoid of S and T an *i*-tight set of S, then $|O \cap T| = mi$.

 $\mathcal{H}(3, q^2), \mathcal{Q}^-(3, q^2)$ such that the generators of $\mathcal{H}(3, q^2)$ that are tangent with respect to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$ and $\mathcal{W}(3, q) \cap \mathcal{Q}^-(3, q^2) = C$, \mathcal{E}' Baer elliptic quadric, ovoid of $\mathcal{W}(3, q)$, passing through C.

Tight sets of a GQ(s, t)

Let S be a GQ(s, t). A tight set T of S, is a set of points of S such that

- *P* is collinear with s + i points of T, if $P \in T$,
- *P* is collinear with *i* points of \mathcal{T} , if $P \in \mathcal{S} \setminus \mathcal{T}$,

$$|\mathcal{T}|=i(s+1).$$

mi-Lemma

Let S be a GQ(s, t), \mathcal{O} an *m*-ovoid of S and \mathcal{T} an *i*-tight set of S, then $|\mathcal{O} \cap \mathcal{T}| = mi$.

 $\mathcal{H}(3, q^2), \mathcal{Q}^-(3, q^2)$ such that the generators of $\mathcal{H}(3, q^2)$ that are tangent with respect to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$ and $\mathcal{W}(3, q) \cap \mathcal{Q}^-(3, q^2) = C$, \mathcal{E}' Baer elliptic quadric, ovoid of $\mathcal{W}(3, q)$, passing through C.

Tight sets of a GQ(s, t)

Let S be a GQ(s, t). A tight set T of S, is a set of points of S such that

- *P* is collinear with s + i points of T, if $P \in T$,
- *P* is collinear with *i* points of \mathcal{T} , if $P \in \mathcal{S} \setminus \mathcal{T}$,

$$|\mathcal{T}|=i(s+1).$$

mi-Lemma

Let S be a GQ(s, t), O an *m*-ovoid of S and T an *i*-tight set of S, then $|O \cap T| = mi$.

 $\mathcal{H}(3, q^2), \mathcal{Q}^-(3, q^2)$ such that the generators of $\mathcal{H}(3, q^2)$ that are tangent with respect to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$ and $\mathcal{W}(3, q) \cap \mathcal{Q}^-(3, q^2) = C$, \mathcal{E}' Baer elliptic quadric, ovoid of $\mathcal{W}(3, q)$, passing through C.

Tight sets of a GQ(s, t)

Let S be a GQ(s, t). A tight set T of S, is a set of points of S such that

- *P* is collinear with s + i points of T, if $P \in T$,
- *P* is collinear with *i* points of \mathcal{T} , if $P \in \mathcal{S} \setminus \mathcal{T}$,

$$|\mathcal{T}|=i(s+1).$$

mi-Lemma

Let S be a GQ(s, t), O an *m*-ovoid of S and T an *i*-tight set of S, then $|O \cap T| = mi$.

 $\mathcal{H}(3, q^2), \mathcal{Q}^-(3, q^2)$ such that the generators of $\mathcal{H}(3, q^2)$ that are tangent with respect to $\mathcal{Q}^-(3, q^2)$ are extended lines of a $\mathcal{W}(3, q)$ and $\mathcal{W}(3, q) \cap \mathcal{Q}^-(3, q^2) = C$, \mathcal{E}' Baer elliptic quadric, ovoid of $\mathcal{W}(3, q)$, passing through C.

$$egin{aligned} \mathcal{H} &= ((\mathcal{H}(3,q^2) \cap \mathcal{Q}^-(3,q^2)) \cup \mathcal{E}') \setminus \mathcal{C}. \ \ \mathcal{H} &\subseteq \mathcal{H}(3,q^2), \, |\mathcal{H}| = q^3 + q^2 - 2q. \end{aligned}$$

g a generator of $\mathcal{H}(3, q^2)$

g is disjoint from $\mathcal{W}(3,q)
ightarrow g$ meets $\mathcal{Q}^+(3,q^2)$ in either 0 or 2 points,

g meets $\mathcal{W}(3, q)$ in a Baer line of $\mathcal{W}(3, q) \rightarrow g$ intersects \mathcal{H} in 0 or 2 points according as g meets \mathcal{C} in one point or none.

Corollary

$$egin{aligned} \mathcal{H} &= ((\mathcal{H}(3,q^2) \cap \mathcal{Q}^-(3,q^2)) \cup \mathcal{E}') \setminus \mathcal{C}. \ \ \mathcal{H} &\subseteq \mathcal{H}(3,q^2), \ |\mathcal{H}| = q^3 + q^2 - 2q. \end{aligned}$$

g a generator of $\mathcal{H}(3, q^2)$

g is disjoint from $\mathcal{W}(3,q)
ightarrow g$ meets $\mathcal{Q}^-(3,q^2)$ in either 0 or 2 points,

g meets $\mathcal{W}(3, q)$ in a Baer line of $\mathcal{W}(3, q) \rightarrow g$ intersects \mathcal{H} in 0 or 2 points according as *g* meets \mathcal{C} in one point or none.

Corollary

$$egin{aligned} \mathcal{H} &= ((\mathcal{H}(3,q^2) \cap \mathcal{Q}^-(3,q^2)) \cup \mathcal{E}') \setminus \mathcal{C}. \ \ \mathcal{H} &\subseteq \mathcal{H}(3,q^2), \ |\mathcal{H}| = q^3 + q^2 - 2q. \end{aligned}$$

g a generator of $\mathcal{H}(3, q^2)$

g is disjoint from $\mathcal{W}(3,q) \to g$ meets $\mathcal{Q}^-(3,q^2)$ in either 0 or 2 points,

g meets W(3, q) in a Baer line of $W(3, q) \rightarrow g$ intersects \mathcal{H} in 0 or 2 points according as *g* meets C in one point or none.

Corollary

$$egin{aligned} \mathcal{H} &= ((\mathcal{H}(3,q^2) \cap \mathcal{Q}^-(3,q^2)) \cup \mathcal{E}') \setminus \mathcal{C}. \ \ \mathcal{H} &\subseteq \mathcal{H}(3,q^2), \ |\mathcal{H}| = q^3 + q^2 - 2q. \end{aligned}$$

g a generator of $\mathcal{H}(3, q^2)$

g is disjoint from $\mathcal{W}(3,q) \to g$ meets $\mathcal{Q}^{-}(3,q^2)$ in either 0 or 2 points,

g meets $\mathcal{W}(3,q)$ in a Baer line of $\mathcal{W}(3,q) \rightarrow g$ intersects \mathcal{H} in 0 or 2 points according as g meets \mathcal{C} in one point or none.

Corollary

$$egin{aligned} \mathcal{H} &= ((\mathcal{H}(3,q^2) \cap \mathcal{Q}^-(3,q^2)) \cup \mathcal{E}') \setminus \mathcal{C}. \ \ \mathcal{H} &\subseteq \mathcal{H}(3,q^2), \ |\mathcal{H}| = q^3 + q^2 - 2q. \end{aligned}$$

g a generator of $\mathcal{H}(3, q^2)$

g is disjoint from $\mathcal{W}(3,q) \to g$ meets $\mathcal{Q}^{-}(3,q^2)$ in either 0 or 2 points,

g meets $\mathcal{W}(3, q)$ in a Baer line of $\mathcal{W}(3, q) \rightarrow g$ intersects \mathcal{H} in 0 or 2 points according as g meets \mathcal{C} in one point or none.

Corollary

Let S be a GQ(s, t), \mathcal{H} a hyperoval of S $|\mathcal{H}| \leq 2(st + 1),$ $|\mathcal{H}| \geq \begin{cases} 2(t + 1) & \text{if } s \geq t \\ (t - s + 2)(s + 1) & \text{if } s \leq t \end{cases}$

_emma

Let S be a GQ(s, t), \mathcal{H} a hyperoval of S,

 $|\mathcal{H}| = 2(st + 1) \rightarrow \mathcal{H}$ is a 2-ovoid of \mathcal{S} ,

 $s \leq t$ and $|\mathcal{H}| = (t - s + 2)(s + 1) \rightarrow \mathcal{H}$ is a (t - s + 2)-tight set of S.

The first infinite family on $\mathcal{H}(4, q^2)$:

Let S be a GQ(s, t), \mathcal{H} a hyperoval of S $|\mathcal{H}| \leq 2(st + 1),$ $|\mathcal{H}| \geq \begin{cases} 2(t+1) & \text{if } s \geq t \\ (t-s+2)(s+1) & \text{if } s \leq t \end{cases}$

Lemma

Let S be a GQ(s, t), H a hyperoval of S,

 $|\mathcal{H}| = 2(st + 1) \rightarrow \mathcal{H}$ is a 2-ovoid of \mathcal{S} ,

 $s \leq t$ and $|\mathcal{H}| = (t - s + 2)(s + 1) \rightarrow \mathcal{H}$ is a (t - s + 2)-tight set of S.

The first infinite family on $\mathcal{H}(4, q^2)$:

Let S be a GQ(s, t), \mathcal{H} a hyperoval of S $|\mathcal{H}| \leq 2(st + 1),$ $|\mathcal{H}| \geq \begin{cases} 2(t+1) & \text{if } s \geq t \\ (t-s+2)(s+1) & \text{if } s \leq t \end{cases}$

Lemma

Let S be a GQ(s, t), H a hyperoval of S,

 $|\mathcal{H}| = 2(st + 1) \rightarrow \mathcal{H}$ is a 2-ovoid of \mathcal{S} ,

 $s \leq t$ and $|\mathcal{H}| = (t - s + 2)(s + 1) \rightarrow \mathcal{H}$ is a (t - s + 2)-tight set of S.

The first infinite family on $\mathcal{H}(4, q^2)$:

Let S be a GQ(s, t), \mathcal{H} a hyperoval of S $|\mathcal{H}| \leq 2(st + 1),$ $|\mathcal{H}| \geq \begin{cases} 2(t + 1) & \text{if } s \geq t \\ (t - s + 2)(s + 1) & \text{if } s \leq t \end{cases}$

Lemma

Let S be a GQ(s, t), H a hyperoval of S, $|\mathcal{H}| = 2(st + 1) \rightarrow \mathcal{H}$ is a 2-ovoid of S, $s \leq t$ and $|\mathcal{H}| = (t - s + 2)(s + 1) \rightarrow \mathcal{H}$ is a (t - s + 2)-tight set of S.

The first infinite family on $\mathcal{H}(4, q^2)$:

Let S be a GQ(s, t), \mathcal{H} a hyperoval of S $|\mathcal{H}| \leq 2(st + 1),$ $|\mathcal{H}| \geq \left\{ \begin{array}{cc} 2(t+1) & ext{if} & s \geq t \\ (t-s+2)(s+1) & ext{if} & s \leq t \end{array} \right.$

Lemma

Let S be a GQ(s, t), H a hyperoval of S, $|\mathcal{H}| = 2(st + 1) \rightarrow H$ is a 2-ovoid of S, $s \leq t$ and $|\mathcal{H}| = (t - s + 2)(s + 1) \rightarrow H$ is a (t - s + 2)-tight set of S.

The first infinite family on $\mathcal{H}(4, q^2)$:

Let S be a GQ(s, t), \mathcal{H} a hyperoval of S $|\mathcal{H}| \leq 2(st + 1),$ $|\mathcal{H}| \geq \begin{cases} 2(t + 1) & \text{if } s \geq t \\ (t - s + 2)(s + 1) & \text{if } s \leq t \end{cases}$

Lemma

Let S be a GQ(s, t), H a hyperoval of S, $|\mathcal{H}| = 2(st + 1) \rightarrow H$ is a 2-ovoid of S, $s \leq t$ and $|\mathcal{H}| = (t - s + 2)(s + 1) \rightarrow H$ is a (t - s + 2)-tight set of S.

The first infinite family on $\mathcal{H}(4, q^2)$:

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $I := \pi^{\perp}$ secant line.

 $G := Stab_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2))/C_{q+1}$

Orbits of G on $\mathcal{H}(4,q^2)$

$$\begin{aligned} \mathcal{O}_1 &= I \cap \mathcal{H}(4, q^2), \ q+1, \\ \mathcal{O}_2 &= \mathcal{U}, \ q^3+1, \\ \mathcal{O}_3, \ q^2(q^3-q)(q^2-q+1), \\ \mathcal{O}_4, \ (q^2-1)(q+1)(q^3+1). \end{aligned}$$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $I := \pi^{\perp}$ secant line.

 $G := Stab_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2))/C_{q+1}$

Orbits of G on $\mathcal{H}(4, q^2)$

$$\mathcal{O}_1 = I \cap \mathcal{H}(4, q^2), q + 1, \\ \mathcal{O}_2 = \mathcal{U}, q^3 + 1, \\ \mathcal{O}_3, q^2(q^3 - q)(q^2 - q + 1), \\ \mathcal{O}_4, (q^2 - 1)(q + 1)(q^3 + 1).$$

$\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $l := \pi^{\perp}$ secant line.

 $G := Stab_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2))/\mathcal{C}_{q+1}$

Orbits of G on $\mathcal{H}(4, q^2)$

$$\mathcal{O}_1 = I \cap \mathcal{H}(4, q^2), q + 1, \\ \mathcal{O}_2 = \mathcal{U}, q^3 + 1, \\ \mathcal{O}_3, q^2(q^3 - q)(q^2 - q + 1), \\ \mathcal{O}_4, (q^2 - 1)(q + 1)(q^3 + 1).$$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $l := \pi^{\perp}$ secant line.

 $G := Stab_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2))/\mathcal{C}_{q+1}$

Orbits of G on $\mathcal{H}(4, q^2)$

$$\mathcal{O}_1 = I \cap \mathcal{H}(4, q^2), q + 1, \\ \mathcal{O}_2 = \mathcal{U}, q^3 + 1, \\ \mathcal{O}_3, q^2(q^3 - q)(q^2 - q + 1), \\ \mathcal{O}_4, (q^2 - 1)(q + 1)(q^3 + 1).$$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $\ell := \pi^{\perp}$ secant line.

 $G := Stab_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2))/C_{q+1}$

Orbits of G on $\mathcal{H}(4, q^2)$

$$\begin{aligned} \mathcal{O}_1 &= I \cap \mathcal{H}(4, q^2), \ q+1, \\ \mathcal{O}_2 &= \mathcal{U}, \ q^3+1, \\ \mathcal{O}_3, \ q^2(q^3-q)(q^2-q+1), \\ \mathcal{O}_4, \ (q^2-1)(q+1)(q^3+1). \end{aligned}$$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $I := \pi^{\perp}$ secant line.

 $G := Stab_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) \times \mathrm{GU}(3,q^2))/C_{q+1}$

Orbits of G on $\mathcal{H}(4, q^2)$

$$\begin{aligned} \mathcal{O}_1 &= I \cap \mathcal{H}(4, q^2), \, q+1, \\ \mathcal{O}_2 &= \mathcal{U}, \, q^3+1, \\ \mathcal{O}_3, \, q^2(q^3-q)(q^2-q+1), \\ \mathcal{O}_4, \, (q^2-1)(q+1)(q^3+1). \end{aligned}$$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $I := \pi^{\perp}$ secant line.

 $G := \mathit{Stab}_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2)) / \mathcal{C}_{q+1}$

Orbits of G on $\mathcal{H}(4, q^2)$

$$\begin{aligned} \mathcal{O}_1 &= I \cap \mathcal{H}(4, q^2), \ q+1, \\ \mathcal{O}_2 &= \mathcal{U}, \ q^3+1, \\ \mathcal{O}_3, \ q^2(q^3-q)(q^2-q+1), \\ \mathcal{O}_4, \ (q^2-1)(q+1)(q^3+1). \end{aligned}$$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2)$, q even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2)$, $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $I := \pi^{\perp}$ secant line.

 $G := \mathit{Stab}_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2)) / \mathcal{C}_{q+1}$

Orbits of *G* on $\mathcal{H}(4, q^2)$

$$\mathcal{O}_1 = I \cap \mathcal{H}(4, q^2), q + 1,$$

 $\mathcal{O}_2 = \mathcal{U}, q^3 + 1,$
 $\mathcal{O}_3, q^2(q^3 - q)(q^2 - q + 1),$
 $\mathcal{O}_4, (q^2 - 1)(q + 1)(q^3 + 1).$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2)$, q even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2)$, $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $I := \pi^{\perp}$ secant line.

 $G := \mathit{Stab}_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2)) / \mathcal{C}_{q+1}$

Orbits of G on $\mathcal{H}(4, q^2)$

$$\mathcal{O}_{1} = I \cap \mathcal{H}(4, q^{2}), q + 1,$$

$$\mathcal{O}_{2} = \mathcal{U}, q^{3} + 1,$$

$$\mathcal{O}_{3}, q^{2}(q^{3} - q)(q^{2} - q + 1),$$

$$\mathcal{O}_{4}, (q^{2} - 1)(q + 1)(q^{3} + 1).$$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2)$, q even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2)$, $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $I := \pi^{\perp}$ secant line.

 $G := \mathit{Stab}_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2)) / \mathcal{C}_{q+1}$

Orbits of *G* on $\mathcal{H}(4, q^2)$

$$\mathcal{O}_{1} = I \cap \mathcal{H}(4, q^{2}), q + 1,$$

$$\mathcal{O}_{2} = \mathcal{U}, q^{3} + 1,$$

$$\mathcal{O}_{3}, q^{2}(q^{3} - q)(q^{2} - q + 1),$$

$$\mathcal{O}_{4}, (q^{2} - 1)(q + 1)(q^{3} + 1).$$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2)$, q even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2)$, $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $I := \pi^{\perp}$ secant line.

 $G := \mathit{Stab}_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2)) / \mathcal{C}_{q+1}$

Orbits of *G* on $\mathcal{H}(4, q^2)$

$$\mathcal{O}_1 = I \cap \mathcal{H}(4, q^2), q + 1,$$

 $\mathcal{O}_2 = \mathcal{U}, q^3 + 1,$
 $\mathcal{O}_3, q^2(q^3 - q)(q^2 - q + 1),$
 $\mathcal{O}_4, (q^2 - 1)(q + 1)(q^3 + 1).$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2)$, q even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2)$, $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $I := \pi^{\perp}$ secant line.

 $G := \mathit{Stab}_{\mathrm{PGU}(5,q^2)}(\pi) \simeq (\mathrm{GU}(2,q^2) imes \mathrm{GU}(3,q^2)) / \mathcal{C}_{q+1}$

Orbits of *G* on $\mathcal{H}(4, q^2)$

$$egin{aligned} \mathcal{O}_1 &= I \cap \mathcal{H}(4,q^2), \, q+1, \ \mathcal{O}_2 &= \mathcal{U}, \, q^3+1, \ \mathcal{O}_3, \, q^2(q^3-q)(q^2-q+1), \ \mathcal{O}_4, \, (q^2-1)(q+1)(q^3+1). \end{aligned}$$

$1\times \mathcal{S} \leq \textbf{\textit{G}}$

$1 imes \mathcal{S}$ cyclic group of order $q^2 - q + 1$

Baker, Ebert, Korchmàros, Szönyi, Orthogonally divergent spreads of Hermitian curve, *LMS. Lecture Note Ser.* 191 (1993), 17-30.

There exists a unique cyclic spread of \mathcal{U} , invariant under $1 \times S$, i.e. a family of $q^2 - q + 1$ secant, no two intersecting in a point of \mathcal{U} , no three in a pencil.

$H = (\operatorname{PGU}(2,q^2) \times \mathcal{S})/\mathcal{C}_{q+1}, \ H \leq G,$

 \mathcal{O}_3 splits into q^2 *H*-orbits, one of which, \mathcal{O}' , of size $(q^2 - q + 1)(q^3 - q)$ relative to the cyclic spread,

$1\times \mathcal{S} \leq G$

 $1\times \mathcal{S}$ cyclic group of order q^2-q+1

Baker, Ebert, Korchmàros, Szönyi, Orthogonally divergent spreads of Hermitian curve, *LMS. Lecture Note Ser.* 191 (1993), 17-30.

There exists a unique cyclic spread of \mathcal{U} , invariant under $1 \times S$, i.e. a family of $q^2 - q + 1$ secant, no two intersecting in a point of \mathcal{U} , no three in a pencil.

$$H = (\operatorname{PGU}(2,q^2) \times \mathcal{S}) / C_{q+1}, \ H \leq G,$$

 \mathcal{O}_3 splits into q^2 *H*-orbits, one of which, \mathcal{O}' , of size $(q^2 - q + 1)(q^3 - q)$ relative to the cyclic spread,

$1 \times S \leq G$

 $1 imes \mathcal{S}$ cyclic group of order $q^2 - q + 1$

Baker, Ebert, Korchmàros, Szönyi, Orthogonally divergent spreads of Hermitian curve, *LMS. Lecture Note Ser.* 191 (1993), 17-30.

There exists a unique cyclic spread of \mathcal{U} , invariant under $1 \times S$, i.e. a family of $q^2 - q + 1$ secant, no two intersecting in a point of \mathcal{U} , no three in a pencil.

 $H = (\operatorname{PGU}(2, q^2) \times S) / C_{q+1}, \ H \leq G,$

 \mathcal{D}_3 splits into q^2 *H*-orbits, one of which, \mathcal{O}' , of size $(q^2 - q + 1)(q^3 - q)$ relative to the cyclic spread,

$$1 \times S \leq G$$

 $1 imes \mathcal{S}$ cyclic group of order $q^2 - q + 1$

Baker, Ebert, Korchmàros, Szönyi, Orthogonally divergent spreads of Hermitian curve, *LMS. Lecture Note Ser.* 191 (1993), 17-30.

There exists a unique cyclic spread of \mathcal{U} , invariant under $1 \times S$, i.e. a family of $q^2 - q + 1$ secant, no two intersecting in a point of \mathcal{U} , no three in a pencil.

$$H = (PGU(2, q^2) \times S)/C_{q+1}, H \leq G,$$

 \mathcal{O}_3 splits into q^2 *H*-orbits, one of which, \mathcal{O}' , of size $(q^2 - q + 1)(q^3 - q)$ relative to the cyclic spread,

$$1 \times S \leq G$$

 $1 imes \mathcal{S}$ cyclic group of order $q^2 - q + 1$

Baker, Ebert, Korchmàros, Szönyi, Orthogonally divergent spreads of Hermitian curve, *LMS. Lecture Note Ser.* 191 (1993), 17-30.

There exists a unique cyclic spread of \mathcal{U} , invariant under $1 \times S$, i.e. a family of $q^2 - q + 1$ secant, no two intersecting in a point of \mathcal{U} , no three in a pencil.

$$H = (PGU(2, q^2) \times S)/C_{q+1}, H \leq G,$$

 \mathcal{O}_3 splits into q^2 *H*-orbits, one of which, \mathcal{O}' , of size $(q^2 - q + 1)(q^3 - q)$ relative to the cyclic spread,

 \mathcal{O}' is the union of $q^2 - q + 1$ Hermitian curve sharing the points $l \cap \mathcal{H}(4, q^2)$.

$$\mathcal{H} := \mathcal{U} \cup (I \cap \mathcal{H}(4, q^2)) \cup \mathcal{O}'$$

$$\begin{aligned} \mathcal{H} \text{ is a hyperoval of } \mathcal{H}(4,q^2), \\ |\mathcal{H}| &= (q^2 - q + 1)(q^3 - q) + (q + 1) + (q^3 + 1) = \\ q^5 - q^4 + q^3 + q^2 + 2 = (q^3 - q^2 + 2)(q^2 + 1) \end{aligned}$$

Corollary

$$\mathcal{H}$$
 is a $(q^3 - q^2 + 2)$ -tight set of $\mathcal{H}(4, q^2)$.

イロン 不得 とくほ とくほ とうほ

 \mathcal{O}' is the union of $q^2 - q + 1$ Hermitian curve sharing the points $I \cap \mathcal{H}(4, q^2)$.

$$\mathcal{H} := \mathcal{U} \cup (I \cap \mathcal{H}(4, q^2)) \cup \mathcal{O}'$$

$$\begin{aligned} \mathcal{H} \text{ is a hyperoval of } \mathcal{H}(4,q^2), \\ |\mathcal{H}| &= (q^2 - q + 1)(q^3 - q) + (q + 1) + (q^3 + 1) = \\ q^5 - q^4 + q^3 + q^2 + 2 = (q^3 - q^2 + 2)(q^2 + 1) \end{aligned}$$

Corollary

$$\mathcal{H}$$
 is a $(q^3 - q^2 + 2)$ -tight set of $\mathcal{H}(4, q^2)$.

イロン 不得 とくほ とくほ とうほ

 \mathcal{O}' is the union of $q^2 - q + 1$ Hermitian curve sharing the points $I \cap \mathcal{H}(4, q^2)$.

$$\mathcal{H} := \mathcal{U} \cup (I \cap \mathcal{H}(4, q^2)) \cup \mathcal{O}'$$

$$\mathcal{H}$$
 is a hyperoval of $\mathcal{H}(4, q^2)$,
 $|\mathcal{H}| = (q^2 - q + 1)(q^3 - q) + (q + 1) + (q^3 + 1) = q^5 - q^4 + q^3 + q^2 + 2 = (q^3 - q^2 + 2)(q^2 + 1)$

Corollary

$$\mathcal{H}$$
 is a $(q^3 - q^2 + 2)$ -tight set of $\mathcal{H}(4, q^2)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 \mathcal{O}' is the union of $q^2 - q + 1$ Hermitian curve sharing the points $I \cap \mathcal{H}(4, q^2)$.

$$\mathcal{H} := \mathcal{U} \cup (I \cap \mathcal{H}(4, q^2)) \cup \mathcal{O}'$$

$$\mathcal{H}$$
 is a hyperoval of $\mathcal{H}(4, q^2)$,
 $|\mathcal{H}| = (q^2 - q + 1)(q^3 - q) + (q + 1) + (q^3 + 1) = q^5 - q^4 + q^3 + q^2 + 2 = (q^3 - q^2 + 2)(q^2 + 1)$

Corollary

$$\mathcal{H}$$
 is a $(q^3 - q^2 + 2)$ -tight set of $\mathcal{H}(4, q^2)$.

イロン 不得 とくほ とくほ とうほ

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even,

 \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2)$, $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $\mathcal{U}_1 := \pi^{\perp}$ secant line, l_2 tangent line, l_2 disjoint from π .

 $\mathcal{B}_i := \{ P \in \pi : (\pi_P \cap \mathcal{H}(4, q^2)) \text{ is a non-degenerate Hermitian} \}$

curve, where $\pi_P := \langle P, I_i \rangle$,

 $\mathcal{B}_i = \begin{cases} \pi \setminus \mathcal{U} & \text{if } i = 1\\ \pi \setminus r & \text{if } i = 2 \end{cases}$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $l_1 := \pi^{\perp}$ secant line, l_2 tangent line, l_2 disjoint from π

 $\mathcal{B}_i := \{ P \in \pi : (\pi_P \cap \mathcal{H}(4, q^2)) \text{ is a non-degenerate Hermitian} \}$

curve, where $\pi_P := \langle P, I_i \rangle$,

 $\mathcal{B}_i = \begin{cases} \pi \setminus \mathcal{U} & \text{if } i = 1 \\ \pi \setminus r & \text{if } i = 2 \end{cases}$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $l_1 := \pi^{\perp}$ secant line, l_2 tangent line, l_2 disjoint from π

 $\mathcal{B}_i := \{ P \in \pi : (\pi_P \cap \mathcal{H}(4, q^2)) \text{ is a non-degenerate Hermitian} \}$

curve, where $\pi_P := \langle P, I_i \rangle$,

 $\mathcal{B}_i = \begin{cases} \pi \setminus \mathcal{U} & \text{if } i = 1 \\ \pi \setminus r & \text{if } i = 2 \end{cases}$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve,

 $\mathcal{B}_i := \{ P \in \pi : (\pi_P \cap \mathcal{H}(4, q^2)) \text{ is a non-degenerate Hermitian} \}$

curve, where $\pi_P := \langle P, I_i \rangle$,

 $\mathcal{B}_i = \begin{cases} \pi \setminus \mathcal{U} & \text{if } i = 1\\ \pi \setminus r & \text{if } i = 2 \end{cases}$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $l_1 := \pi^{\perp}$ secant line, l_2 tangent line, l_2 disjoint from π .

 $\mathcal{B}_i := \{ P \in \pi : (\pi_P \cap \mathcal{H}(4, q^2)) \text{ is a non-degenerate Hermitian} \}$

curve, where $\pi_P := \langle P, I_i \rangle$,

 $\mathcal{B}_i = \begin{cases} \pi \setminus \mathcal{U} & \text{if } i = 1\\ \pi \setminus r & \text{if } i = 2 \end{cases}$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $l_1 := \pi^{\perp}$ secant line, l_2 tangent line, l_2 disjoint from π .

 $\mathcal{B}_i := \{ P \in \pi : (\pi_P \cap \mathcal{H}(4, q^2)) \text{ is a non-degenerate Hermitian} \}$

curve, where $\pi_P := \langle P, I_i \rangle$,

 $\mathcal{B}_i = \begin{cases} \pi \setminus \mathcal{U} & \text{if } i = 1 \\ \pi \setminus r & \text{if } i = 2 \end{cases}$

 $\mathcal{H}(4, q^2)$ Hermitian variety of $PG(4, q^2), q$ even, \perp unitary polarity, π secant plane to $\mathcal{H}(4, q^2),$ $\mathcal{U} := \mathcal{H}(4, q^2) \cap \pi$ Hermitian curve, $l_1 := \pi^{\perp}$ secant line, l_2 tangent line, l_2 disjoint from π .

 $\mathcal{B}_i := \{ \boldsymbol{P} \in \pi : (\pi_{\boldsymbol{P}} \cap \mathcal{H}(4, q^2)) \text{ is a non-degenerate Hermitian} \}$

curve, where $\pi_P := \langle P, I_i \rangle$,

$$\mathcal{B}_i = \left\{ egin{array}{ccc} \pi \setminus \mathcal{U} & ext{if} & i = 1 \ \pi \setminus r & ext{if} & i = 2 \end{array}
ight.$$

For *i* = 2, there exists a hyperoval of the plane π embedded in \mathcal{B}_2 , say \mathcal{I}_2

Donati, Durante, Korchmáros, On the intersection pattern of a unital and an oval in $PG(2, q^2)$, *Finite Fields Appl.* 15 (2009), 785-795.

There exists a non-degenerate conic of $PG(2, q^2)$ disjoint from a non-degenerate Hermitian curve.

$$\mathcal{H}_i := \bigcup_{P \in \mathcal{I}_i} (\mathcal{H}(4, q^2) \cap \pi_P) \setminus (l_i \cap \mathcal{H}(4, q^2)),$$

Donati, Durante, Korchmáros, On the intersection pattern of a unital and an oval in $PG(2, q^2)$, *Finite Fields Appl.* 15 (2009), 785-795.

There exists a non-degenerate conic of $PG(2, q^2)$ disjoint from a non-degenerate Hermitian curve.

$$\mathcal{H}_i := \bigcup_{P \in \mathcal{I}_i} (\mathcal{H}(4, q^2) \cap \pi_P) \setminus (l_i \cap \mathcal{H}(4, q^2)),$$

Donati, Durante, Korchmáros, On the intersection pattern of a unital and an oval in $PG(2, q^2)$, *Finite Fields Appl.* 15 (2009), 785-795.

There exists a non-degenerate conic of $PG(2, q^2)$ disjoint from a non-degenerate Hermitian curve.

$$\mathcal{H}_i := \bigcup_{P \in \mathcal{T}_i} (\mathcal{H}(4, q^2) \cap \pi_P) \setminus (l_i \cap \mathcal{H}(4, q^2)),$$

Donati, Durante, Korchmáros, On the intersection pattern of a unital and an oval in $PG(2, q^2)$, *Finite Fields Appl.* 15 (2009), 785-795.

There exists a non-degenerate conic of $PG(2, q^2)$ disjoint from a non-degenerate Hermitian curve.

$$\mathcal{H}_i := \bigcup_{P \in \mathcal{T}} (\mathcal{H}(4, q^2) \cap \pi_P) \setminus (I_i \cap \mathcal{H}(4, q^2)),$$

Donati, Durante, Korchmáros, On the intersection pattern of a unital and an oval in $PG(2, q^2)$, *Finite Fields Appl.* 15 (2009), 785-795.

There exists a non-degenerate conic of $PG(2, q^2)$ disjoint from a non-degenerate Hermitian curve.

$$\mathcal{H}_i := igcup_{P \in \mathcal{I}_i} (\mathcal{H}(4,q^2) \cap \pi_P) \setminus (I_i \cap \mathcal{H}(4,q^2)),$$

$$|\mathcal{H}_i| = \left\{ egin{array}{cc} (q^3-q)(q^2+2) & ext{if} & i=1 \ q^3(q^2+2) & ext{if} & i=2 \end{array}
ight.$$

In both cases \mathcal{H}_i is the union of $q^2 + 2$ non-degenerate Hermitian curve minus the points $I_i \cap \mathcal{H}(4, q^2)$.

> g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is a point $\to \pi' := \langle I_i, g \rangle, \pi' \cap \mathcal{H}(4, q^2)$ is degenerate Hermitian curve, $\pi' \cap \pi$ is a point $Q \to Q \notin B_i$, $Q \notin \mathcal{I}_i \to \pi' \cap \mathcal{H}_i$ is empty $\to |g \cap \mathcal{H}_i| = 0$

イロト イ理ト イヨト イヨト

$$|\mathcal{H}_i| = \left\{ egin{array}{ccc} (q^3-q)(q^2+2) & ext{if} & i=1 \ q^3(q^2+2) & ext{if} & i=2 \end{array}
ight.$$

In both cases \mathcal{H}_i is the union of $q^2 + 2$ non-degenerate Hermitian curve minus the points $I_i \cap \mathcal{H}(4, q^2)$.

> g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is a point $\to \pi' := \langle I_i, g \rangle, \pi' \cap \mathcal{H}(4, q^2)$ is degenerate Hermitian curve, $\pi' \cap \pi$ is a point $Q \to Q \notin B_i$, $Q \notin I_i \to \pi' \cap \mathcal{H}_i$ is empty $\to |g \cap \mathcal{H}_i| = 0$

イロト イポト イヨト イヨト

$$|\mathcal{H}_i| = \left\{ egin{array}{ccc} (q^3-q)(q^2+2) & ext{if} & i=1 \ q^3(q^2+2) & ext{if} & i=2 \end{array}
ight.$$

In both cases \mathcal{H}_i is the union of $q^2 + 2$ non-degenerate Hermitian curve minus the points $I_i \cap \mathcal{H}(4, q^2)$.

> g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is a point $\rightarrow \pi' := \langle I_i, g \rangle, \pi' \cap \mathcal{H}(4, q^2)$ is degenerate Hermitian curve, $\pi' \cap \pi$ is a point $Q \rightarrow Q \notin \mathcal{B}_i$, $Q \notin \mathcal{I}_i \rightarrow \pi' \cap \mathcal{H}_i$ is empty $\rightarrow |g \cap \mathcal{H}_i| = 0$

イロト イポト イヨト イヨト

$$|\mathcal{H}_i| = \left\{ egin{array}{ccc} (q^3-q)(q^2+2) & ext{if} & i=1 \ q^3(q^2+2) & ext{if} & i=2 \end{array}
ight.$$

In both cases \mathcal{H}_i is the union of $q^2 + 2$ non-degenerate Hermitian curve minus the points $I_i \cap \mathcal{H}(4, q^2)$.

> g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is a point $\rightarrow \pi' := \langle I_i, g \rangle, \pi' \cap \mathcal{H}(4, q^2)$ is degenerate Hermitian curve, $\pi' \cap \pi$ is a point $Q \rightarrow Q \notin \mathcal{B}_i$, $Q \notin \mathcal{I}_i \rightarrow \pi' \cap \mathcal{H}_i$ is empty $\rightarrow |g \cap \mathcal{H}_i| = 0$

くロト (過) (目) (日)

$$|\mathcal{H}_i| = \left\{ egin{array}{ccc} (q^3-q)(q^2+2) & ext{if} & i=1 \ q^3(q^2+2) & ext{if} & i=2 \end{array}
ight.$$

In both cases \mathcal{H}_i is the union of $q^2 + 2$ non-degenerate Hermitian curve minus the points $I_i \cap \mathcal{H}(4, q^2)$.

> g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is a point $\rightarrow \pi' := < I_i, g >, \pi' \cap \mathcal{H}(4, q^2)$ is degenerate Hermitian curve, $\pi' \cap \pi$ is a point $Q \rightarrow Q \notin \mathcal{B}_i$, $Q \notin \mathcal{I}_i \rightarrow \pi' \cap \mathcal{H}_i$ is empty $\rightarrow |g \cap \mathcal{H}_i| = 0$

イロト イポト イヨト イヨト

$$|\mathcal{H}_i| = \left\{ egin{array}{ccc} (q^3-q)(q^2+2) & ext{if} & i=1 \ q^3(q^2+2) & ext{if} & i=2 \end{array}
ight.$$

In both cases \mathcal{H}_i is the union of $q^2 + 2$ non-degenerate Hermitian curve minus the points $I_i \cap \mathcal{H}(4, q^2)$.

> g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is a point $\rightarrow \pi' := < I_i, g >, \pi' \cap \mathcal{H}(4, q^2)$ is degenerate Hermitian curve, $\pi' \cap \pi$ is a point $Q \rightarrow Q \notin \mathcal{B}_i$, $Q \notin \mathcal{I}_i \rightarrow \pi' \cap \mathcal{H}_i$ is empty $\rightarrow |g \cap \mathcal{H}_i| = 0$

・ロト ・ 日本・ ・ 日本・

g a generator of $\mathcal{H}(4, q^2)$,

if $g \cap I_i$ is empty, $g \cap \mathcal{H}_i$ is a point $Q \leftrightarrow$ if $\pi' := < I_i, Q >$, $\pi' \cap \mathcal{H}(4, q^2)$ is non-degenerate Hermitian curve and $\pi' \cap \pi$ is a point of \mathcal{I}_i , g' the projection of g from I_i onto $\pi \rightarrow$ $|\mathcal{H}_i \cap g| = |\mathcal{I}_i \cap g'| \in \{0, 2\}$

De Clerck, De Feyter, Durante, Two intersection sets with respect to lines on the Klein quadric, *Bull. Belg. Math. Soc. Simon Stevin* 12 (2005), 743-750.

Proposition

On $\mathcal{H}(4, q^2)$, *q* even, there exist two hyperovals of size $(q^3 - q)(q^2 + 2)$ and $q^3(q^2 + 2)$, respectively.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is empty, $g \cap \mathcal{H}_i$ is a point $Q \leftrightarrow$ if $\pi' := \langle I_i, Q \rangle$, $\pi' \cap \mathcal{H}(4, q^2)$ is non-degenerate Hermitian curve and $\pi' \cap \pi$ is a point of \mathcal{I}_i , *g'* the projection of *g* from I_i onto $\pi \rightarrow$

De Clerck, De Feyter, Durante, Two intersection sets with respect to lines on the Klein quadric, *Bull. Belg. Math. Soc. Simon Stevin* 12 (2005), 743-750.

Proposition

On $\mathcal{H}(4, q^2)$, *q* even, there exist two hyperovals of size $(q^3 - q)(q^2 + 2)$ and $q^3(q^2 + 2)$, respectively.

g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is empty, $g \cap \mathcal{H}_i$ is a point $Q \leftrightarrow$ if $\pi' := < I_i, Q >$, $\pi' \cap \mathcal{H}(4, q^2)$ is non-degenerate Hermitian curve and $\pi' \cap \pi$ is a point of \mathcal{I}_i , g' the projection of g from I_i onto $\pi \rightarrow$ $|\mathcal{H}_i \cap g| = |\mathcal{I}_i \cap g'| \in \{0, 2\}$

De Clerck, De Feyter, Durante, Two intersection sets with respect to lines on the Klein quadric, *Bull. Belg. Math. Soc. Simon Stevin* 12 (2005), 743-750.

Proposition

On $\mathcal{H}(4, q^2)$, *q* even, there exist two hyperovals of size $(q^3 - q)(q^2 + 2)$ and $q^3(q^2 + 2)$, respectively.

g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is empty, $g \cap \mathcal{H}_i$ is a point $Q \leftrightarrow$ if $\pi' := \langle I_i, Q \rangle$, $\pi' \cap \mathcal{H}(4, q^2)$ is non-degenerate Hermitian curve and $\pi' \cap \pi$ is a point of \mathcal{I}_i , g' the projection of g from I_i onto $\pi \rightarrow$ $|\mathcal{H}_i \cap g| = |\mathcal{I}_i \cap g'| \in \{0, 2\}$

De Clerck, De Feyter, Durante, Two intersection sets with respect to lines on the Klein quadric, *Bull. Belg. Math. Soc. Simon Stevin* 12 (2005), 743-750.

Proposition

On $\mathcal{H}(4, q^2)$, *q* even, there exist two hyperovals of size $(q^3 - q)(q^2 + 2)$ and $q^3(q^2 + 2)$, respectively.

g a generator of $\mathcal{H}(4, q^2)$, if $g \cap I_i$ is empty, $g \cap \mathcal{H}_i$ is a point $Q \leftrightarrow$ if $\pi' := < I_i, Q >$, $\pi' \cap \mathcal{H}(4, q^2)$ is non-degenerate Hermitian curve and $\pi' \cap \pi$ is a point of \mathcal{I}_i , g' the projection of g from I_i onto $\pi \rightarrow$ $|\mathcal{H}_i \cap g| = |\mathcal{I}_i \cap g'| \in \{0, 2\}$

De Clerck, De Feyter, Durante, Two intersection sets with respect to lines on the Klein quadric, *Bull. Belg. Math. Soc. Simon Stevin* 12 (2005), 743-750.

Proposition

On $\mathcal{H}(4, q^2)$, *q* even, there exist two hyperovals of size $(q^3 - q)(q^2 + 2)$ and $q^3(q^2 + 2)$, respectively.

A (1) > A (2) > A

THANKS

Francesco Pavese Hyperovals on Hermitian generalized quadrangles

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで