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Let M be a nonempty bounded set in a metric space (X , ρ).

The diameter of M is

diam M := sup{ρ(x , y) : x , y ∈ M}.

M is diametrically complete if

diam (M ∪ {x}) > diam M ∀ x ∈ X \M.

A (diametric) completion of M is any diametrically complete set
containing M and with the same diameter.

Every nonempty bounded set has a completion (many, in
general); for example, by Zorn’s lemma.

E. Akin: Maximal r -diameter sets and solids of constant width.
arXiv:1003.5824v2
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In Euclidean spaces, Meissner (1911) proved:

K is diametrically complete ⇐⇒ K is of constant width.

Recall that a convex body K in Euclidean space Rn is of
constant width d if any two parallel supporting planes of K have
distance d .

Equivalent:

The support function of K satisfies

h(K ,u) + h(K ,−u) = d ∀u.

Equivalent:

K + (−K ) = B(o,d), ball of radius d .
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The space of bodies of constant width d in Rn is an
infinite-dimensional closed convex set in Kn, the space of
convex bodies:

If K1,K2 are bodies of constant width d , then

(1− λ)K1 + λK2 (0 ≤ λ ≤ 1)

is a body of constant width d .

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

What about diametrically complete sets in Minkowski spaces?

Some answers are given in:
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Joint work with José Pedro Moreno:

• Local Lipschitz continuity of the diametric completion
mapping.
Houston J. Math.

• Diametrically complete sets in Minkowski spaces.
Israel J. Math.

• The structure of the space of diametrically complete sets in a
Minkowski space.
Discrete Comput. Geom.

• Canonical diametric completions in Minkowski spaces.
(work in progress)
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Minkowski spaces

X = (Rn, ‖ · ‖) Minkowski space:
a finite-dimensional real normed space

The norm ‖ · ‖ defines distance ρ(x , y) := ‖x − y‖, width,
diameter, unit ball B := {x ∈ Rn : ‖x‖ ≤ 1}, balls λB + z.

Bodies of constant width and (diametrically) complete sets are
defined as before. Facts:

• Every set of diameter d is contained in a complete set of
diameter d .

• K is of constant width =⇒ K is diametrically complete

Meissner stated the converse, and this was believed for more
than 50 years (and ‘reproved’), until Eggleston (1965) gave
counterexamples. The situation is worse:
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Theorem 1. For a Minkowski space X, the following are
equivalent:

• Every complete set is of constant width.
• The set of complete sets is convex.
• The set of completions of any given set is convex.

Two-dimensional spaces have these properties.

Theorem 2. (Yost 1991, M–S 2010)
Let n ≥ 3. In the space of all n-dimensional Minkowski spaces,
a dense open set of Minkowski spaces has the following
properties:

• The only bodies of constant width are balls.
• The sum of a complete body and a ball need not be complete.
• The set of completions of a given set need not be convex.
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Description of complete bodies

K ,M ∈ Kn, dim K = n, d > 0

Supporting slab of K :
set bounded by two parallel supporting hyperplanes of K

A supporting slab of K is M-regular if at least one of the
bounding hyperplanes of the parallel supporting slab of M
contains a smooth boundary point of M.

Theorem 3. K is a diametrically complete body of diameter d if
and only if (a) and (b) hold:

(a) Every B-regular supporting slab of K has width ≤ d.
(b) Every K -regular supporting slab of K has width = d.
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On the space of diametrically complete sets

Let DX be the space of translation classes of diametrically
complete sets of diameter 2 in X .

Theorem 4. If X = (Rn, ‖ · ‖) is polyhedral (i.e., the unit ball B is
a polytope), then DX is the union set of a finite polytopal
complex.

The proof uses representations of polyhedral sets introduced
by McMullen (1973) (a variant of the Gale diagram technique).

Corollary. If X is polyhedral, then DX has only finitely many
extreme points.

Open problem: Does this characterize polyhedral norms?
(Yes, if n = 2)
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Let D2 be the space of diametrically complete sets of diameter
2 in X .

In Euclidean space, D2 is convex.

In a typical Minkowski space (in the sense of Baire category),
D2 is not even starshaped.

A positive result:

Theorem 5. The space D2 is contractible.
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γ(K ) := set of completions of K

vmax(K ) := max{V (M) : M ∈ γ(K )}

γmv (K ) := {M ∈ γ(K ) : V (M) = vmax(K )}

Groemer (1986): γmv (K ) consists of translates of one body

τ(K ) := M − s(M) for any M ∈ γmv (K ), s Steiner point

loc. Lip. continuity of γ (M–S 2010)⇒ vmax is continuous

⇒ τ is continuous

For K ∈ D2 and λ ∈ [0,1], let Kλ := (1− λ)K + λB and

F (K , λ) := τ

(
2

diam Kλ
Kλ

)
+ (1− λ)s(K ) + λs(B).

Then F : D2 × [0,1]→ D2 is continuous and F (K ,0) = K ,
F (K ,1) = B. Hence, D2 is contractible.
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Canonical completions

Is ‘completion’ continuous?

Let γ(K ) be the set of all completions of K ∈ Kn.

Theorem 6. The mapping γ : Kn → C(Kn) is locally Lipschitz
continuous, with respect to the Hausdorff metric δ induced by
the norm on Kn and the Hausdorff metric ∆ induced by δ on
C(Kn), the space of nonempty compact subsets of Kn.

In general, γ is many-valued.

For example, if K is a segment of length d in Euclidean space,
then a suitable translate of any body of constant width d is a
completion of K .
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Does γ have a continuous selection?

The usual constructions of completions involve many arbitrary
choices and hence cannot yield continuous completions.

This raises the question for ‘canonical’ completions.

A construction by Maehara (1984) can be slightly generalized.

Definition. For K ∈ Kn of diameter d , let

η(K ) :=
⋂

x∈K

B(x ,d), θ(K ) :=
⋂

x∈η(K )

B(x ,d).

Then
µ(K ) :=

1
2

[η(K ) + θ(K )]

is the Maehara set of K .
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Always true: µ(K ) is a tight cover of K (i.e., contains K and has
diameter d).

In Euclidean spaces: µ(K ) is of constant width, and hence
a completion of K .

Where does this work?

Definition. The norm ‖ · ‖ with unit ball B has the s-property if
B ∩ (B + x) is a summand of B, for each x with ‖x‖ ≤ 1.

Maehara (1984), Sallee (1987), Balashov & Polovinkin (2000),
Karasëv (2001):

Theorem. The Maehara set µ(K ), for any K ∈ Kn, is of
constant width and hence a completion of K , if and only if the
norm of X has the s-property.

This completion is locally Lipschitz continuous:
26 / 41



Theorem 7. Suppose that the norm of X has the s-property,
and let 2C denote the Jung constant of X .

Let K ,L ∈ Kn be convex bodies with

δ(K ,L) ≤ ε ≤ 1
3

(1− C) min{dK ,dL}.

Then
δ(µ(K ), µ(L)) ≤ 7− C

1− C
ε ≤ 13

2
(n + 1) ε.

In particular, if X is a Euclidean space, then

δ(µ(K ), µ(L)) ≤ 20 ε,

and if X is a two-dimensional Minkowski space, then

δ(µ(K ), µ(L)) ≤ 15
2
ε.
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Two new properties of the Maehara completion in Euclidean
spaces:

Recall that γ(K ) denotes the set of all completions of K .

Theorem 8. The Maehara completion of K is a metric centre of
γ(K ), that is, it minimizes the maximal Hausdorff distance from
the elements of γ(K ).

The Maehara completion of a convex body is at least as
smooth as the body itself:

Theorem 9. Every normal cone of the Maehara completion
µ(K ) is contained in some normal cone of K .

Back to Minkowski spaces:
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The only known examples of Minkowski spaces with the
s-property are Euclidean spaces, two-dimensional Minkowski
spaces, and ⊕∞ sums of such spaces.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Therefore, for general Minkowski spaces, a different canonical
completion procedure is needed.

For this, we extend a Euclidean method of Reinhardt (1922)
(n = 2) and Bückner (1936) (n = 3).

In a first step, we replace each K by

1
2

[η(K ) + K ],

which is a tight cover of K and has inradius at least
(2(n + 1))−1(diam K ).
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The generalized Bückner completion

A convex body K of diameter d is complete if and only if

K =
⋂

x∈K

B(x ,d)

(the spherical intersection property).

Aiming at completing a convex body K of diameter d , one is
therefore tempted to consider

η(K ) :=
⋂

x∈K

B(x ,d),

the wide spherical hull of K .

However, in general, diam η(K ) > d .
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Bückner had the idea to consider a ‘one-sided’ version of the
wide spherical hull, namely

Cu(K ) := η(K ) ∩ Z+(K ,u) for given u 6= o,

with
Z+(K ,u) := {x + λu : x ∈ K , λ ≥ 0}.

Cu(K ) is a tight cover of K !

But Cu(K ) is generally not complete.

However, it is ‘partially complete’:

Each ‘upper’ boundary point (w.r.t. u) is the endpoint of a
diameter segment of Cu(K ).
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Finitely many iterations, for m fixed directions u1, . . . ,um (where
m depends only on n) yield a completion C(K ) of K .

We call C the generalized Bückner completion.

Theorem 10. The generalized Bückner completion is locally
Lipschitz continuous.
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Perfect norms

Recall:

Theorem 1. For a Minkowski space X, the following are
equivalent:

• Every complete set is of constant width.
• The set of complete sets is convex.
• The set of completions of any given set is convex.

Two-dimensional spaces have these properties.

Definition. (Karasëv) A Minkowski space with these properties
and its norm are called perfect.

Eggleston (1965) and Chakerian & Groemer (1983) have asked
for a determination of all perfect Minkowski spaces.
This is still open.
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We know from Maehara and Karasëv:

Theorem. If the norm of X has the s-property, then X is perfect.

Conjectures. Let K be a convex body of dimension ≥ 3 with
the s-property. If K is either smooth (R. S. 1974) or strictly
convex (Karasëv 2001), then it is an ellipsoid.

Theorem (Karasëv 2001). A Minkowski space with a strictly
convex norm is perfect if and only if its norm has the s-property.

For general norms, this is not true.

Example:
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A new necessary condition:

Theorem 11. If B is the unit ball of a perfect norm, then

1
2
(
B ∩ (B + x)

)
is a summand of B for all x with ‖x‖ ≤ 1.

Dürer’s (1514) octahedron shows that the constant 1
2 is best

possible.

The proof of Theorem 11:

Lemma. Let K ,L ∈ Kn. If to each supporting hyperplane H of K
there are a point x ∈ H ∩ K and a vector t ∈ Rn such that
x ⊂ L + t ⊂ K , then L is a summand of K .
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The steps to prove Theorem 11:

‖u‖ ≤ 1, H arbitrary support plane to B ∩ (B + u)

y ∈ H ∩ B ∩ (B + u)

S := 1
2((B ∩ (B + u)− y) + y ⇒ diam S ∪ {o,u} ≤ 1

C := completion of S ∪ {o,u} ⇒ C ⊂ B ∩ (B + u)

⇒ H supports C at y

H ′ := support plane of C parallel to H

‖ · ‖ is perfect ⇒ dist (H,H ′) = 1

Let y ′ ∈ C ∩ H ′ ⇒ C ⊂ B + y ′

H supports B + y ′, since dist (H, y ′) = 1

Since H was arbitrary, the lemma shows that 1
2(B ∩ (B + u)) is

a summand of B.
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Thank you for your attention!

And the organizers for the Workshop!
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