Diametric completions

Rolf Schneider

Universitat Freiburg

Szeged Workshop in Convex and Discrete Geometry
May 21-23, 2012



Let M be a nonempty bounded set in a metric space (X, p).

The diameter of M is
diam M := sup{p(x,y) : x,y € M}.
M is diametrically complete if
diam (MU {x}) > diamM Vx e X\ M.

A (diametric) completion of M is any diametrically complete set
containing M and with the same diameter.

Every nonempty bounded set has a completion (many, in
general); for example, by Zorn’s lemma.

E. Akin: Maximal r-diameter sets and solids of constant width.
arXiv:1003.5824v2
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In Euclidean spaces, Meissner (1911) proved:
K is diametrically complete <= K is of constant width.

Recall that a convex body K in Euclidean space R" is of
constant width d if any two parallel supporting planes of K have
distance d.

Equivalent:

The support function of K satisfies
h(K,u) + h(K,—u) =d Vu.
Equivalent:

K + (—K) = B(o,d), ball of radius d.



Reuleaux triangle

named after Franz Reuleaux (1829-1905)
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The space of bodies of constant width d in R” is an
infinite-dimensional closed convex set in K", the space of
convex bodies:

If Ky, K> are bodies of constant width d, then
(1—)\)K1—|—)\K2 (0§)\§1)

is a body of constant width d.
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The space of bodies of constant width d in R” is an
infinite-dimensional closed convex set in K", the space of
convex bodies:
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What about diametrically complete sets in Minkowski spaces?

Some answers are given in:
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Joint work with José Pedro Moreno:

e Local Lipschitz continuity of the diametric completion

mapping.
Houston J. Math.

e Diametrically complete sets in Minkowski spaces.
Israel J. Math.

e The structure of the space of diametrically complete sets in a
Minkowski space.
Discrete Comput. Geom.

e Canonical diametric completions in Minkowski spaces.
(work in progress)
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Minkowski spaces
X = (R", |- ||) Minkowski space:
a finite-dimensional real normed space

The norm || - || defines distance p(x, y) := ||x — y||, width,
diameter, unit ball B:= {x € R" : ||x|| < 1}, balls A\B + z.

Bodies of constant width and (diametrically) complete sets are
defined as before. Facts:

e Every set of diameter d is contained in a complete set of
diameter d.

e K is of constant width — K is diametrically complete
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Minkowski spaces
X = (R", |- ||) Minkowski space:
a finite-dimensional real normed space

The norm || - || defines distance p(x, y) := ||x — y||, width,
diameter, unit ball B:= {x € R" : ||x|| < 1}, balls A\B + z.

Bodies of constant width and (diametrically) complete sets are
defined as before. Facts:

e Every set of diameter d is contained in a complete set of
diameter d.

e K is of constant width — K is diametrically complete

Meissner stated the converse, and this was believed for more
than 50 years (and ‘reproved’), until Eggleston (1965) gave
counterexamples. The situation is worse:
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Theorem 1. For a Minkowski space X, the following are
equivalent:

e Every complete set is of constant width.
e The set of complete sets is convex.

e The set of completions of any given set is convex.

Two-dimensional spaces have these properties.
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Theorem 1. For a Minkowski space X, the following are
equivalent:

e Every complete set is of constant width.

e The set of complete sets is convex.

e The set of completions of any given set is convex.

Two-dimensional spaces have these properties.

Theorem 2. (Yost 1991, M-S 2010)

Let n > 3. In the space of all n-dimensional Minkowski spaces,
a dense open set of Minkowski spaces has the following
properties:

e The only bodies of constant width are balls.

e The sum of a complete body and a ball need not be complete.
e The set of completions of a given set need not be convex.
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Description of complete bodies

KMecK' dmK=nd>0

Supporting slab of K:
set bounded by two parallel supporting hyperplanes of K

A supporting slab of K is M-regular if at least one of the
bounding hyperplanes of the parallel supporting slab of M
contains a smooth boundary point of M.

Theorem 3. K is a diametrically complete body of diameter d if
and only if (a) and (b) hold:

(a) Every B-regular supporting slab of K has width < d.
(b) Every K-regular supporting slab of K has width = d.
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On the space of diametrically complete sets
Let Dx be the space of translation classes of diametrically
complete sets of diameter 2 in X.

Theorem 4. If X = (R, || - ||) is polyhedral (i.e., the unit ball B is
a polytope), then Dy is the union set of a finite polytopal
complex.

The proof uses representations of polyhedral sets introduced
by McMullen (1973) (a variant of the Gale diagram technique).

Corollary. If X is polyhedral, then Dx has only finitely many
extreme points.

Open problem: Does this characterize polyhedral norms?
(Yes, if n=2)
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Let D, be the space of diametrically complete sets of diameter
2in X.

In Euclidean space, D» is convex.

In a typical Minkowski space (in the sense of Baire category),
D> is not even starshaped.
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Let D, be the space of diametrically complete sets of diameter
2in X.

In Euclidean space, D- is convex.

In a typical Minkowski space (in the sense of Baire category),
D> is not even starshaped.

A positive result:

Theorem 5. The space D- is contractible.
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~v(K) := set of completions of K

Vmax(K) := max{ V(M) : M € (K)}

Ymv(K) == {M € 4(K) : V(M) = Vinax(K)}

Groemer (1986): vmv(K) consists of translates of one body
7(K) := M — s(M) for any M € yny(K), s Steiner point

loc. Lip. continuity of v (M=S 2010) = Vjnax iS continuous
= 7 is continuous

For K € D, and A € [0,1], let K := (1 — A\)K + AB and

F(K,\) =71 ( KA> + (1 = A)s(K) + As(B).

diam K,

Then F : D, x [0,1] — D5 is continuous and F(K,0) = K,
F(K,1) = B. Hence, D is contractible.
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Canonical completions

Is ‘completion’ continuous?
Let v(K) be the set of all completions of K € K".

Theorem 6. The mapping ~ : K" — C(K") is locally Lipschitz
continuous, with respect to the Hausdorff metric 6 induced by
the norm on K" and the Hausdorff metric A induced by é§ on
C(K"), the space of nonempty compact subsets of K".

In general, v is many-valued.

For example, if K is a segment of length d in Euclidean space,
then a suitable translate of any body of constant width d is a
completion of K.
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Does ~ have a continuous selection?

The usual constructions of completions involve many arbitrary
choices and hence cannot yield continuous completions.

This raises the question for ‘canonical’ completions.

A construction by Maehara (1984) can be slightly generalized.
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Does ~ have a continuous selection?

The usual constructions of completions involve many arbitrary
choices and hence cannot yield continuous completions.

This raises the question for ‘canonical’ completions.
A construction by Maehara (1984) can be slightly generalized.

Definition. For K € K" of diameter d, let

n(K):=(]B(x.d), 6(K):= () B(x,d).

xekK xen(K)

Then

is the Maehara set of K.
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Always true: u(K) is a tight cover of K (i.e., contains K and has
diameter d).

In Euclidean spaces: u(K) is of constant width, and hence
a completion of K.
Where does this work?

Definition. The norm || - || with unit ball B has the s-property if
BN (B+ x) is a summand of B, for each x with ||x|| < 1.

Maehara (1984), Sallee (1987), Balashov & Polovinkin (2000),
Karasév (2001):

Theorem. The Maehara set ji(K), for any K € K", is of
constant width and hence a completion of K, if and only if the
norm of X has the s-property.

This completion is locally Lipschitz continuous:
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Theorem 7. Suppose that the norm of X has the s-property,
and let 2C denote the Jung constant of X.

LetK,L € K" be convex bodies with

1

5(K, L) < e < 5(1 - C)min{dk. d}.

Then

r=C %(n+1)e.

< <
In particular, if X is a Euclidean space, then
6(u(K), u(L)) < 20,

and if X is a two-dimensional Minkowski space, then

15

3(u(K), ulL)) = 5 e
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Two new properties of the Maehara completion in Euclidean
spaces:

Recall that 7(K) denotes the set of all completions of K.

Theorem 8. The Maehara completion of K is a metric centre of
v(K), that is, it minimizes the maximal Hausdorff distance from
the elements of y(K).

The Maehara completion of a convex body is at least as
smooth as the body itself:

Theorem 9. Every normal cone of the Maehara completion
u(K) is contained in some normal cone of K.

Back to Minkowski spaces:
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The only known examples of Minkowski spaces with the
s-property are Euclidean spaces, two-dimensional Minkowski
spaces, and @,, sums of such spaces.

119,9,0.0,0,0.9,0,0.9.0,0.9,0,0.0,0,0.0,0,0,0,0.0.0,0.0,0,0.9,0,:0.9,0,0,9.0,0,0,0,0.0,0.0,0,0.0,0,0.9.0,0,0,0.4
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Therefore, for general Minkowski spaces, a different canonical
completion procedure is needed.

For this, we extend a Euclidean method of Reinhardt (1922)
(n = 2) and Buckner (1936) (n = 3).

In a first step, we replace each K by
1
5In(K) + K],

which is a tight cover of K and has inradius at least
(2(n+1))""(diam K).
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The generalized Blckner completion

A convex body K of diameter d is complete if and only if

K= () B(x,d)

xeK

(the spherical intersection property).

Aiming at completing a convex body K of diameter d, one is
therefore tempted to consider

n(K) = () B(x,d),

xeK

the wide spherical hull of K.

However, in general, diam n(K) > d.
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Blickner had the idea to consider a ‘one-sided’ version of the
wide spherical hull, namely

Cu(K) :=n(K)NZ*(K,u) forgiven u # o,

with
ZH(K,u):={x+Au:xeK, A\>0}.

Cu(K) is a tight cover of K!
But C,(K) is generally not complete.
However, it is ‘partially complete’:

Each ‘upper’ boundary point (w.r.t. u) is the endpoint of a
diameter segment of C,(K).
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Finitely many iterations, for m fixed directions uy, ..., un (Where
m depends only on n) yield a completion C(K) of K.

We call C the generalized Blickner completion.

Theorem 10. The generalized Biickner completion is locally
Lipschitz continuous.
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Perfect norms

Recall:

Theorem 1. For a Minkowski space X, the following are
equivalent:

e Every complete set is of constant widlth.
e The set of complete sets is convex.
e The set of completions of any given set is convex.

Two-dimensional spaces have these properties.

Definition. (Karasév) A Minkowski space with these properties
and its norm are called perfect.

Eggleston (1965) and Chakerian & Groemer (1983) have asked
for a determination of all perfect Minkowski spaces.
This is still open.
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We know from Maehara and Karasév:

Theorem. If the norm of X has the s-property, then X is perfect.

Conjectures. Let K be a convex body of dimension > 3 with
the s-property. If K is either smooth (R. S. 1974) or strictly
convex (Karasév 2001), then it is an ellipsoid.

Theorem (Karasév 2001). A Minkowski space with a strictly
convex norm is perfect if and only if its norm has the s-property.

For general norms, this is not true.

Example:
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A new necessary condition:

Theorem 11. If B is the unit ball of a perfect norm, then

1
E(Bﬂ(B—i—X))

is a summand of B for all x with || x|| < 1.

Darer’s (1514) octahedron shows that the constant % is best
possible.

The proof of Theorem 11:

Lemma. Let K, L € K". If to each supporting hyperplane H of K
there are a point x € HnN K and a vector t € R" such that
xCL+tcK,thenlL isasummand of K.
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The steps to prove Theorem 11:

|lull <1, H arbitrary support plane to BN (B + u)
yeHNBN(B+u)

S:=3((Bn(B+u)-y)+y = diamSu{o,u} <1
C := completion of SU{o,u} = CcC BN (B+u)
= H supports C at y

H' .= support plane of C parallel to H

|- |l'is perfect = dist(H,H') =1

letyy e CNnH' =CcB+y

H supports B+ y’, since dist (H, y’) = 1

Since H was arbitrary, the lemma shows that (BN (B + u)) is
a summand of B.
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Thank you for your attention!
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Thank you for your attention!

And the organizers for the Workshop!
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