Frequent Connected Subgraph Mining

Tamás Horváth

University of Bonn & Fraunhofer IAIS, Sankt Augustin, Germany tamas.horvath@iais.fraunhofer.de

Fraunhofer

Frequent Connected Subgraph Mining

Outline

- motivation, problem definition, and a negative complexity result
- mining trees with the levelwise search algorithm
- mining bounded tree-width graphs

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Notions: Isomorphism and Subgraph Isomorphism

 $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$: labeled graphs

· each vertex and edge is associated with some symbol of an alphabet

 G_1 is **isomorphic** to G_2 if there is a bijection $\varphi: V_1 \to V_2$ preserving

· the edges in both directions

- i.e., $\{u, v\} \in E_1$ if and only if $\{\varphi(u), \varphi(v)\} \in E_2$

- the vertex labels
 - i.e., $\varphi(u)$ has the same label as u for all $u \in V_1$
- the edge labels
 - i.e., $\{\varphi(u), \varphi(v)\}$ has the same label as $\{u, v\}$ for all $\{u, v\} \in E_1$
- G_1 is **subgraph isomorphic** to G_2 if G_2 has a subgraph isomorphic to G_1

Mining Frequent Connected Subgraphs

frequent connected subgraph mining problem:

Given a set *D* of labeled graphs and an integer t > 0, list the set of *t*-frequent connected subgraphs w.r.t. *D*

- t > 0 integer: *frequency threshold*
- *t*-frequent subgraph: subgraph isomorphic to at least t graphs in D

instance of the theory extraction problem:

- D : set of labeled graphs
- *L*: set of all labeled *connected* graphs
- *interestingness predicate* q_D : for a pattern $H \in \mathcal{L}$, $q_D(H)$ is true iff H is subgraph isomorphic to at least t graphs in D
 - q_D is *anti-monotone*: any connected subgraph of a *t*-frequent connected graph is also *t*-frequent

5

Frequent Subgraph Mining: Motivation

Virtual screening in drug discovery:

select a limited number of candidate compounds from millions of database molecules that are most likely to possess a desired biological activity

Virtual Screening in Drug Discovery

molecules give rise to labeled undirected graphs

PhD Course, Szeged, 2012 - © T.Horváth

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Virtual Screening in Drug Discovery

approach [Deshpande, Kuramochi, Wale, & Karypis, 2005]:

- 1. compute the set $\{p_1, \ldots, p_k\}$ of **frequent connected subgraphs** for the molecular graphs of the training molecules
- 2. assign a **binary colored (feature) vector** v of length k to each training molecule m with

 $v[i] := \begin{cases} 1 & \text{if } p_i \text{ is a subgraph of the molecular graph of } m \\ 0 & \text{o/w} \end{cases}$

 $(i=1,\ldots,k)$

- \Rightarrow each molecule is represented by a colored vertex of the k-dimensional unit hypercube
 - green: active
 - red: inactive

Virtual Screening in Drug Discovery

approach [Deshpande, Kuramochi, Wale, & Karypis, 2005] (cont'd):

- 3. compute a hyperplane h in the k-dimensional space that separates the green points from the red ones, as good as possible
 - Support Vector Machines
 [Boser, Guyon, & Vapnik, 1992; Cortes & Vapnik, 1995]:
 - choose the hyperplane with maximum distance from nearest data points
- 4. for each test molecule, compute the vector as defined in step 2 and predict its activity according to the halfspace defined by h it belongs to
 - empirical experiments: good predictive performance
 - rest of the lecture: how to perform step 1?

Enumeration Complexity

the **size** of the output (theory) can be **exponential** in the size of the input *D*

 \Rightarrow the output cannot be computed in time polynomial in the size of D

enumeration complexities:

a set of S with N elements, say s_1, \ldots, s_N , are listed with

- **polynomial delay** if the time before printing s_1 , the time between printing s_i and s_{i+1} for every i=1,...,N-1, and the termination time after printing s_N is bounded by a polynomial of the size of the input,
- **incremental polynomial time** if s_1 is printed with polynomial delay, the time between printing s_i and s_{i+1} for every i=1,...,N-1 (resp. the termination time after printing s_N) is bounded by a polynomial of the combined size of the input and the set $s_1,...,s_i$ (resp. S),
- output polynomial time if S is printed in the combined size of the input and the entire set S

PhD Course, Szeged, 2012 - © T.Horváth

A Negative Complexity Result

Thm: The frequent connected subgraph mining problem cannot be solved in output-polynomial time (unless P = NP).

Proof:

reduction: Hamiltonian path problem

- Hamiltonian path problem:
 - *Given* a graph *G* with *n* vertices, decide whether or not *G* has a Hamiltonian path, i.e., a path containing each vertex of *G* exactly once
 - NP-complete problem

Proof of the Negative Complexity Result

- $D = \{G_1, G_2\}$, where
 - G_1 is an arbitrary unlabeled graph with n vertices
 - G_2 is an unlabeled path of length n-1 (i.e., has n vertices)
- \mathcal{L} : set of all unlabeled connected graphs
- q_D : 2-frequency w.r.t. D
- $\Rightarrow Th(\mathcal{L}, D, q_D)$ is the set of 2-frequent paths
 - the size of $Th(\mathcal{L}, D, q_D)$ is polynomial in the size of $D(|Th(\mathcal{L}, D, q_D)| \le n)$
 - $|Th(\mathcal{L}, D, q_D)| = n$ if and only if G_1 has a Hamiltonian path
 - cannot be computed in output polynomial time, as otherwise the NPcomplete Hamiltonian path problem could be decided in polynomial time

Frequent Connected Subgraph Mining

Outline

- motivation, problem definition, and a negative complexity result
- mining trees with the levelwise search algorithm
- mining bounded tree-width graphs

A Generic Levelwise Search Graph Mining Algorithm

PhD Course, Szeged, 2012 - © T.Horváth

Fraunhofer

Efficiency Conditions for the Generic Graph Mining Algorithm

Thm: Let \mathcal{G} be a graph class satisfying

- (i) G is closed under taking subgraphs (i.e., $\forall G \in G$, all subgraphs of G belong to G),
- (ii) the membership problem in \mathcal{G} (i.e., does $G \in \mathcal{G}$ hold for any graph G) can be decided in polynomial time, and
- (iii) for every $H, G \in \mathcal{G}$ such that H is connected, it can be decided in polynomial time whether H is subgraph isomorphic to G.

If the transaction graphs in D belong to G then the previous algorithm lists the frequent connected subgraphs with polynomial delay.

Efficiency Conditions for the Generic Graph Mining Algorithm

Proof (sketch):

- the cardinalities (and hence, the sizes) of the sets $\rho(H) \cap \mathcal{G}$ and $\rho^{-1}(H)$ in line 6 are bounded by a polynomial of the size of D,
- both sets can be computed in polynomial time,
- conditions (i) and (iii) together imply that one can define a canonical string representation for the graphs in *G* that can be computed in time polynomial in the size of *D*.
 - canonical string representation: unique modulo isomorphism (i.e., two graphs have the same canonical strings if and only if they are isomorphic)
- \Rightarrow using some advanced (e.g., trie-based) data structure for the storage of S_l and the elements of C_{l+1} generated before H, conditions (i) and (ii) in line 6 can be decided in time polynomial in the size of D

Application: Frequent Subtree Mining in Forests

problem:

Given a set D of labeled *forests* and an integer t > 0, list all trees that are subtrees of at least t forests in D.

- forest: set of vertex disjoint labeled free trees
- free tree: unordered, unrooted tree

Frequent Subtree Mining in Forests

Thm: The frequent connected subgraph mining problem can be solved with *polynomial delay* for **forest** transaction graphs.

proof:

each condition of the previous theorem holds, i.e.,

- (i) forests are *closed downward*,
- (ii) it can be decided in polynomial time, whether a graph G is a forest,
- (iii) *subtree isomorphism* can be decided in polynomial time
 - in time O(n^{2.5}) [Matula,1978]
 - can further be improved by a *log* factor [Shamir &Tsur,1999]

Subtree Isomorphism

- T tree, F forest; decide, whether T is subgraph isomorphic to F: decide for all trees T' in F, whether T is subgraph isomorphic to T'
- T and T' are trees; decide, whether T is subgraph isomorphic to T': decide for some fixed vertex u in T and for all vertices v in T', whether there is a subgraph isomorphism from the tree T rooted at u to the tree T' rooted at v that maps u to v
 - problem is reduced to subtree isomorphism between labeled, rooted, unordered trees
 - can be solved with a **bottom-up** (recursive) algorithm (next slide)

Bottom-up Subtree Isomorphism algorithm for Rooted Trees

- 1. T_u : tree T rooted at u; u_1, \ldots, u_m : children of u in T_u T'_{v} : tree T' rooted at v; v_1, \ldots, v_n : children of v in T_{v}
- 2. decide (recursively) whether there is a subgraph isomorphism from the subtree of T_u rooted at u_i to the subtree of T'_v rooted at v_i that maps u_i to v_i for every $i = 1, \ldots, m$ and $j = 1, \ldots, n$; if so, **mark** the pair (i, j) if u and v have the same vertex label, and the edges between u, u_i and between v, v_j have the same edge labels
- 3. return YES (i.e., T_u is subgraph isomorphic to T'_v) if the bipartite graph

$$(\{u_1, \ldots, u_m\}, \{v_1, \ldots, v_n\}, \{\{u_i, v_j\} : (i, j) \text{ is marked }\})$$

has a (maximum) matching of size m

maximum bipartite matching can be solved in polynomial time

universitä

Summary

- mining frequent connected subgraphs in arbitrary transaction graphs is computationally hard
 - cannot be solved in output-polynomial time (unless P = NP)
- for forest transaction graphs, the problem can be solved with polynomial delay
 - obtained by using a generic levelwise search algorithm
 - frequent patterns are not printed immediately after their generation
 - · polynomial delay vs. incremental polynomial time

Frequent Connected Subgraph Mining

Outline

- motivation, problem definition, and a negative complexity result
- mining trees with the levelwise search algorithm
- mining bounded tree-width graphs

Positive and Negative Results So Far

frequent connected subgraph mining:

- © computationally **intractable** for **arbitrary** transaction graphs
 - cannot be solved in output-polynomial time (unless P = NP)
- © can be solved **efficiently** for **forest** transaction graphs
 - with polynomial delay

Goal: Generalize the positive result on forests to a broader graph class!

- What about graphs of bounded tree-width?
 - parameterized graph class (naturally) generalizing forests

A Generic Levelwise Search Graph Mining Algorithm (recap)

PhD Course, Szeged, 2012 - © T.Horváth

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Fraunhofer

Efficiency Conditions (recap)

Thm: Let \mathcal{G} be a graph class satisfying

- (i) G is closed under taking subgraphs (i.e., $\forall G \in G$, all subgraphs of G belong to G),
- (ii) the membership problem in G (i.e., does $G \in G$ hold for any graph G) can be decided in polynomial time, and
- (iii) for every $H, G \in \mathcal{G}$ such that H is connected, it can be decided in polynomial time whether H is subgraph isomorphic to G.

If the transaction graphs in D belong to G then the previous algorithm lists the frequent connected subgraphs with polynomial delay.

Problem:

- ⁽²⁾ subgraph isomorphism is NP-complete even for graphs of tree-width 2
- © Condition (iii) can be relaxed!

PhD Course, Szeged, 2012 - © T.Horváth

Problem Setting

Given

database D: finite set of labeled graphs of bounded tree-width

• will be defined

language \mathcal{L} : set of all connected labeled graphs of bounded tree-width,

interestingness predicate q_D : $\varphi \in \mathcal{L}$ is "interesting" w.r.t. D if it is subgraph isomorphic to at least t graphs in D

• t > 0 integer: *frequency threshold*

compute the theory of D w.r.t. \mathcal{L} and q_D , i.e.,

$$Th(\mathcal{L}, D, q_D) = \{\varphi \in \mathcal{L} : q_D(\varphi) = \mathsf{true}\}$$

• special case of the theory extraction problem

Main Result

Thm [H. & Ramon, 2010]:

the frequent connected subgraph mining problem can be solved in *incremental polynomial time* for graphs of *bounded tree-width*

significance of this result:

- efficient pattern mining is possible even for computationally hard pattern matching operators
 - subgraph isomorphism is NP-complete for bounded tree-width graphs
- first positive non-trivial result beyond trees
- positive result for a practically relevant graph class
 - e.g., molecular graphs of most pharmacological compounds have tree-width ≤ 3

Example

NCI Chemical Dataset:

250251 compounds

tree-width #molecules

0	13	isolated vertices
1	21950	trees
2	221675	mostly outerplanar
3	6548	
≥4	65	

Outline for the Rest (Technical Part) of this Topic

- tree-width
- subgraph isomorphism for bounded tree-width graphs
- remarks and open problems

Tree-width (Robertson & Seymour, 1986)

- tree decomposition of a graph G = (V, E): a pair $TD = (T, \mathcal{X})$, where
 - T = (I, F) is an unordered tree,
 - $\mathcal{X} = \{ bag(i) : i \in I \}$ is a family of subsets of V, called **bags**, s.t.
 - * $\bigcup_{i\in I} \mathsf{bag}(i) = V$,
 - * for every $\{u, v\} \in E$ there is an $i \in I$ with $\{u, v\} \subseteq bag(i)$,
 - * for all $i, j, k \in I$, if j is on the path from i to k in T then $bag(i) \cap bag(k) \subseteq bag(j)$
- tree-width of TD: $\max_i |\mathsf{bag}(i)| 1$
- tree-width of G: minimum tree-width over any TD
- graphs of bounded tree-width: graphs with tree-width bounded by some constant \boldsymbol{k}

PhD Course, Szeged, 2012 - © T.Horváth

Tree-width (Robertson & Seymour, 1986)

- **measure** of the tree-likeness of graphs
 - e.g., the tree-width of trees is 1 and the tree-width of cycles is 2
- **useful** tool in the design of algorithms because
 - many computationally hard problems on graphs become polynomial for graphs of bounded tree-width
 - many practically relevant graph classes have small tree-width
 - e.g., *k*-outerplanar graphs have tree-width at most 3*k*-1

Some Properties of Bounded Tree-width Graphs

- ③ the class of bounded tree-width graphs is *closed downward*
 - any subgraph of a graph of tree-width at most *k* has tree-width at most *k*
- © membership problem can be decided in linear time
 - for **constant** *k*, one can decide in linear time, whether a graph has tree-width at most *k*, and if so, compute a tree-decomposition of tree-width at most *k*
 - [Bodlaender, 1996]
- Subgraph isomorphism remains NP-complete for graphs of bounded tree-width
 - NP-complete if the pattern is not k-connected or has more than O(k) vertices of unbounded degree; o/w it can be decided in polynomial time
 - [Gupta & Nishimura, 1996]

Mining Bounded Tree-Width Graphs

- ⇒ generic mining algoritm: candidate generation/test is **not** directly applicable
 - because subgraph isomorphism is NP-complete
- ⇒ polynomial delay: open question

What about incremental polynomial time?

- modify the generic levelwise search graph mining algorithm
 - slide 34
 - **changes:** print frequent patterns directly after their generation (slide 35)

A Generic Levelwise Search Graph Mining Algorithm (recap)

PhD Course, Szeged, 2012 - © T.Horváth

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Fraunhofer

Modified Levelwise Search Graph Mining Algorithm

Input : database D of transaction graphs and integer t > 0**Output**: all frequent connected subgraphs

MAIN:

```
1: let S_0 \subseteq \mathcal{G} be the set of frequent graphs consisting of a single labeled vertex
```

```
2: print S<sub>0</sub>
```

3: for
$$(l := 0; S_l \neq \emptyset; l := l + 1)$$
 do

4:
$$C_{l+1} := S_{l+1} := \emptyset$$

5: forall $P \in S_l$ do

6: forall
$$H \in \rho(P) \cap \mathcal{G}$$
 satisfying (i) $H \notin C_{l+1}$ and (ii) $\rho^{-1}(H) \subseteq S_l$ do

- 7: add H to C_{l+1}
- 8: **if** SUPPORTCOUNT(H) $\geq t$ **then**
- 9: **print** *H* and add it to S_{l+1}
- 10: add H to S_{l+1}

SUPPORT COUNT(H, D, t):

- 1: counter := 0
- **2:** forall G in D do
- 3: if $H \preccurlyeq G$ then
- 4: counter := counter + 1
- 5: return counter

PhD Course, Szeged, 2012 - © T.Horváth

Efficiency Conditions for the Modified Graph Mining Algorithm

Thm: Let \mathcal{G} be a graph class satisfying

- (i) \mathcal{G} is closed under taking subgraphs,
- (ii) the membership problem in \mathcal{G} can be decided in polynomial time,
- (iii*) for any strong candidate pattern H and transaction graph $G, H \preccurlyeq G$ can be decided in time polynomial in the combined size of G and the set of frequent patterns generated before H, and
- (iv) isomorphism for \mathcal{G} can be decided in polynomial time.

If the transaction graphs in D belong to G then the previous algorithm lists the frequent connected subgraphs in incremental polynomial time.

proof: exercise

Application to Mining Bounded Tree-Width Graphs

Let \mathcal{G} be the class of graphs of tree-width at most k for some constant k.

- (i) \mathcal{G} is closed under taking subgraphs.
- (ii) The membership problem in \mathcal{G} can be decided in polynomial time.
 - one can decide in linear time, whether a graph has tree-width at most k [Bodlaender, 1996]
- (iv) Isomorphism between graphs of tree-width at most k can be decided in polynomial time [Bodlaender, 1990].
- ⇒ to show that frequent connected subgraph mining in bounded tree-width graphs can be done in incremental polynomial time, we need to prove condition (iii*)

Mining Bounded Tree-width Graphs

H: strong candidate pattern generated by levelwise search

- G: transaction graph
 - both of tree-width at most k
- \mathcal{F}_H : H + set of all frequent connected subgraphs generated by the modified levelwise search algorithm before H
- **Thm:** Given *H* and *G* above, it can be decided in time $poly(size(G), size(\mathcal{F}_H))$, whether *H* is subgraph isomorphic to *G*
 - poly(size(G), size(F_H)): polynom of the combined size of G and the set of frequent patterns computed before H
 - incremental polynomial time

rest of this and next talk(s): proof sketch

PhD Course, Szeged, 2012 - © T.Horváth

Main Idea of the Proof

to decide subgraph isomorphism from a strong candidate pattern H into a transaction graph G, we can utilize the information computed earlier for the subgraphs of H

- strong candidate pattern: each of its subgraphs is frequent
- only non-redundant information, certain set of tuples, is actually required
- number of non-redundant tuples is bounded by $poly(size(G), size(\mathcal{F}_H))$
- we can identify a superset ${\cal S}$ of the set of non-redundant tuples such that
 - the size of S is bounded by $poly(size(G), size(\mathcal{F}_H))$
 - each tuple in S can be computed in time $poly(size(G), size(\mathcal{F}_H))$

Preprocessing Step

compute a nice tree-decomposition TD(G) for every transaction graph G

- nice tree-decomposition: rooted tree with 3 different types of nodes
 - leaf node: it has no children
 - separator node z: has a single child z' such that

 $\mathsf{bag}(z) \subseteq \mathsf{bag}(z')$

– join node z: has two children z_1 and z_2 such that

 $\mathsf{bag}(z) = \mathsf{bag}(z_1) \cup \mathsf{bag}(z_2)$

- size of TD(G) is linear in the size of G
- · can be computed in linear time for graphs of bounded tree-width

use TD(G) for the entire mining process

PhD Course, Szeged, 2012 - © T.Horváth

Nice Tree-Decomposition

41

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

universität**bon**

Iso-Quadruples

given pattern graph H, transaction graph G, and tree-decomposition TD(G)

- iso-quadruple of H relative to a node z of TD(G): $(S, \mathcal{D}, K, \psi)$ such that
 - $S \subseteq V(H)$ satisfying $|S| \leq k+1$,
 - \mathcal{D} is a subset of the set of connected components of the induced subgraph $H[V(H)\setminus S]$,
 - K is the induced subgraph $H[S \cup V(\mathcal{D})]$,
 - ψ is an injective function mapping S to $\mathrm{bag}(z)$

Iso-Quadruples

z-characteristic of H for a node z in TD(G):

iso-quadruple $(S, \mathcal{D}, K, \psi)$ of H relative to z such that there is a subgraph isomorphism φ from K into $G_{[z]}$ satisfying

- $\varphi(u) = \psi(u)$ for every $u \in S$,
- $\varphi(v) \not\in \mathsf{bag}(z)$ for every $v \in V(\mathcal{D})$

induced subgraph of *G* defined by the union of the bags of *z*'s descendants (*z* is also a descendant of itself)

Lemma: *H* is subgraph isomorphic to *G* if and only if there exists an *r*-characteristic $(S, \mathcal{D}, \boldsymbol{H}, \psi)$ for the root *r* of TD(G)

proof: exercise

- \Rightarrow check whether an iso-quadruple relative to the root is a characteristic
 - · the number of iso-quadruples to be checked for the root is bounded by

 $O(|V(H)|^{k+1})$

Computing Characteristics

[Matoušek & Thomas, 1992; also Hajiaghayi & Nishimura, 2007]: compute the set of *z*-characteristics for every node *z* in *TD(G)* with **dynamic programming**:

- postorder traversal of *TD(G)*
 - straightforward for *leaf* nodes (next slide),
 - use only the characteristics of the child(ren) for separator and join nodes (next slides)

notations: for pattern graph *H*, transaction graph *G*, both of bounded tree-width, nice tree-decomposition TD(G), and node *z* in TD(G):

- $\Gamma(H,z)$ denotes the set of iso-quadruples of H relative to z
- $\Gamma_{ch}(H,z)$ denotes the set of *z*-characteristics of *H*

Computing Characteristics: Leaf Nodes

Leaf Lemma: Let G and H be graphs of bounded treewidth and z be a leaf node in TD(G). Then, for every $(S, \mathcal{D}, K, \psi) \in \Gamma(H, z)$

 $(S, \mathcal{D}, K, \psi) \in \Gamma_{\mathrm{ch}}(H, z) \iff$

 $\mathcal{D} = \emptyset$ and ψ is a subgraph isomorphism from H[S] to G[bag(z)]

proof: exercise

• $\mathcal{D} = \emptyset$ implies K = H[S]

Computing Characteristics: Leaf Nodes

Computing Characteristics: Separator Nodes

Separator Lemma: Let H, G be as in the previous case and z be a separator node in TD(G) with (a single) child z'. Then for all $(S, \mathcal{D}, K, \psi) \in \Gamma(H, z)$

 $(S, \mathcal{D}, K, \psi) \in \Gamma_{\mathrm{ch}}(H, z) \iff \exists (S', \mathcal{D}', K', \psi') \in \Gamma_{\mathrm{ch}}(H, z') \text{ such that }$

- $\bullet \ S=\{v\in S':\psi'(v)\in \mathsf{bag}(z)\},$
- \mathcal{D}' : set of all connected components C of $H[V(H) \setminus S']$ such that C is a subgraph of (a connected component in) \mathcal{D} ,
- $\psi(v) = \psi'(v)$ for every $v \in S$.

Proof: see [Hajiaghayi & Nishimura, 2007]

universitatbo

Computing Characteristics: Separator Nodes

Computing Characteristics: Join Nodes

Join Lemma: Let H, G be as in the previous cases and z be a join node in TD(G) with children z_1 and z_2 . Then for all $(S, \mathcal{D}, K, \psi) \in \Gamma(H, z)$

 $\begin{aligned} (S,\mathcal{D},K,\psi) \in \Gamma_{\mathrm{ch}}(H,z) \iff \\ \exists (S_1,\mathcal{D}_1,K_1,\psi_1) \in \Gamma_{\mathrm{ch}}(H,z_1) \land \exists (S_2,\mathcal{D}_2,K_2,\psi_2) \in \Gamma_{\mathrm{ch}}(H,z_2) \text{ s.t.} \end{aligned}$

- $S_i = \{v \in S : \psi(v) \in bag(z_i)\}$ for i = 1, 2,
- the connected components of $\mathcal D$ is partitioned into $\mathcal D_1$ and $\mathcal D_2$
 - i.e., \mathcal{D}_1 and \mathcal{D}_2 are disjoint and $\mathcal{D}=\mathcal{D}_1\cup\mathcal{D}_2$

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

- $\psi_i(v) = \psi(v)$ for every $v \in S_i$ (i = 1, 2),
- ψ preserves the labels and the edges

Proof: see [Hajiaghayi & Nishimura, 2007]

Computing Characteristics: Join Nodes

Example

- all vertices in H and G have the same label (not denoted)
- edge labels are denoted by colors (i.e., there are 3 edge labels)

Example (cont'd) – Nice Tree-Decomposition

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

universität**bon**

Computing Characteristics

problem: the number of iso-quadruples for separator and join nodes can be exponentially large

- Thm: For graphs of bounded tree-width and bounded degree, the set of z-characteristics can be computed in polynomial time for every node z
 - [Matoušek & Thomas, 1992]
- we cannot use this result
 - no additional assumption besides bounded tree-width

Equivalent Iso-Quadruples

- H_1, H_2, G : connected graphs of bounded treewidth
- TD(G): nice tree-decomposition of G computed in the preprocessing step
- z: node in TD(G)
- $\xi_1 = (S_1, \mathcal{D}_1, K_1, \psi_1) \in \Gamma(H_1, z); \xi_2 = (S_2, D_2, K_2, \psi_2) \in \Gamma(H_2, z)$
- **Def.:** ξ_1 is equivalent to ξ_2 if there is an isomorphism π between K_1 and K_2 such that
 - π is a bijection between S_1 and S_2
 - $\psi_1(v) = \psi_2(\pi(v))$ for every $v \in S_1$

Notation: $\xi_1 \equiv \xi_2$

Equivalent Iso-Quadruples

Prop. 1: Equivalence of iso-quadruples can be decided in polynomial time.

Proof: exercise

Prop. 2: If ξ_1, ξ_2 in the above definition are equivalent then $\xi_1 \in \Gamma_{ch}(H_1, z) \iff \xi_2 \in \Gamma_{ch}(H_2, z)$

Proof: exercise

⇒ it suffices to store only one representative z-characteristic for each equivalence class of the set of z-characteristics

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Non-Redundant Iso-Quadruples

- \Rightarrow **given** a strong candidate pattern H generated by levelwise search and a node z in TD(G), it is **sufficient to check** only those iso-quadruples of $\Gamma(H, z)$ for which there exists no equivalent z-characteristic for some frequent pattern listed before H
 - non-redundant iso-quadruples of H relative to z
 - $\Gamma_{nr}(H, z)$: set of non-redundant iso-quadruples of H relative to z
 - $\Gamma_{nr,ch}(H,z)$: set of non-redundant *z*-characteristics of *H*

Non-Redundant Iso-Quadruples

Prop.: Let *H* be a strong candidate pattern, *G* be a transaction graph, both of bounded treewidth, *z* be a node in TD(G), and $\xi \in \Gamma(H, z)$. Then

$$\xi \in \Gamma_{\mathsf{ch}}(H, z) \iff \exists \xi' \in \bigcup_{P \in \mathcal{F}_H} \Gamma_{\mathsf{nr}, \mathsf{ch}}(P, z) \text{ such that } \xi' \equiv \xi$$

- \mathcal{F}_H : {*H*} \cup set of frequent patterns computed before *H*

Proof: exercise

Non-Redundant Iso-Quadruples

Theorem

(i) The number of non-redundant iso-quadruples of H relative to z is bounded by

$O(|V(H)|^{k+1}).$

- instead of computing $\Gamma_{nr}(H, z)$, we will efficiently compute a superset $\Gamma_{f}(H, z) \supseteq \Gamma_{nr}(H, z)$ of cardinality bounded by $O(|V(H)|^{k+1})$
- ⇒ we must test only for polynomially many iso-quadruples whether they are characteristics
- (ii) It can be decided in time polynomial in the combined size of G and the set of frequent patterns listed before H whether an iso-quadruple in $\Gamma_{f}(H, z)$ is a characteristic.

Lemma: Let *H* be a strong candidate pattern generated by levelwise search, *z* be a node in TD(G), and $\xi = (S, \mathcal{D}, K, \psi) \in \Gamma_{nr}(H, z)$. Then, for every vertex $v \in V(H) \setminus V(K)$ it holds that

(i) the degree of v in H is at least 2 and

(ii) H has no cycle containing v

Proof: (blackboard)

Lemma: Let *H* be a strong candidate pattern generated by levelwise search, *S* be a subset of V(H) having at most k + 1 elements, and C_A be the maximal subset of the set of connected components of $H[V(H) \setminus S]$) such that for every $C \in C_A$, all vertices of *C* satisfy (i) and (ii) in the lemma on the previous slide. Then

 $|\mathcal{C}_A| \leq k$.

- feasible iso-quadruples: for a strong candidate pattern H generated by levelwise search and for a node z in TD(G), an iso-quadruple $\xi = (S, \mathcal{D}, K, \psi) \in \Gamma(H, z)$ is called feasible if it satisfies the previous two conditions, i.e.,
 - (i) the degree of v in H is at least 2 and
 - (ii) H has no cycle containing v

for every $v \in V(H) \setminus V(K)$

- set of feasible iso-quadruples in $\Gamma(H, z)$ is denoted by $\Gamma_{f}(H, z)$
- $\Rightarrow \Gamma_{\rm nr}(H,z) \subseteq \Gamma_{\rm f}(H,z)$

Thm.: Let *H* be a strong candidate pattern generated by levelwise search and let *z* be a node of TD(G) for some transaction graph *G*. Then

 $|\Gamma_{\mathsf{f}}(H,z)| \le O(|V(H)|^{k+1})$

proof: How many different $\xi = (S, \mathcal{D}, K, \psi) \in \Gamma_{f}(H, z)$ can we have at most?

- S can be chosen in at most $|V(H)|^{k+1}$ different ways,
- \mathcal{D} can be chosen in at most $2^{|\mathcal{C}_A|} \leq 2^k$ different ways (lemma on slide 61),
- there are at most (k+1)! injective functions from H[S] to G[bag(z)],
- \Rightarrow we have

```
|\Gamma_{f}(H,z)| \le 2^{k} \cdot (k+1)! \cdot |V(H)^{k+1}|,
```

from which the claim directly follows, as k is assumed to be a constant.

Claim (ii): Algorithm Computing Feasible Characteristics

Input:

- connected strong pattern graph H generated by levelwise search and transaction graph G, both of tree-width at most k for some constant k,
- a nice tree-decomposition TD(G) of G with nodes associated with

1

$$\bigcup_{P \in \mathcal{F}_H \setminus \{H\}} \Gamma_{\mathsf{f},\mathsf{ch}}(P,w)$$

for every node w in TD(G), and

• a node z in TD(G)

Output: set $\Gamma_{f,ch}(H, z)$ of feasible *z*-characteristics

Algorithm: next slide

IAIS

Claim (ii): Algorithm FeasibleCharacteristics

I. Computing Feasible Iso-Quadruples (Line 2)

2: $\Gamma_{f}(H, z) := FEASIBLEISOQUADRUPLES(H, bag(z))$

Lemma: $\Gamma_{f}(H, z)$ can be computed in time $O(|V(H)|^{k+1}|)$

Proof: By slides 62 and 63, the algorithm below is correct and computes $\Gamma_{\rm f}(H,z)$ in time $O(|V(H)|^{k+1}|)$.

Input: connected graph H and bag(z) of a node z in TD(G)**Output:** $\Gamma_{\rm f}(H,z)$

- 1: $Y := \emptyset$
- 2: forall $S \subseteq V(H)$ satisfying $|S| \leq |\mathsf{bag}(z)|$ do
- 3: let C be the set of connected components of $H[V(H) \setminus S]$
- 4: compute the subset $C_A \subseteq C$ defined on slide 61
- 5: forall $\mathcal{D}' \subseteq \mathcal{C}_A$ do
- $6: \qquad \mathcal{D} := \mathcal{C} \setminus \mathcal{D}'$
- 7: forall subgraph isomorphisms $\psi: S \to bag(z)$ from H[S] to G[bag(z)] do
- 8: add $(S, \mathcal{D}, H[S \cup V(\mathcal{D})], \psi)$ to Y
- 9: return Y

PhD Course, Szeged, 2012 - © T.Horváth

II. Leaf Nodes (Line 5)

5: if ξ satisfies the condition of the Leaf Lemma then add ξ to $\Gamma_{f,ch}(H, z)$

condition of the Leaf Lemma for $\xi = (S, \mathcal{D}, K, \psi)$: $\mathcal{D} = \emptyset$ and ψ is a subgraph isomorphism from H[S] to G[bag(z)]

Lemma: The condition of the Leaf Lemma can be decided in constant time.

Proof: ψ is already a required subgraph isomorphism

• see lines 7-8 on the previous slide

III. Separator Nodes (Lines 7-9)

- // z is a separator node in TD(G) with child z^\prime
- 7: $\Gamma_{f,ch}(H, z') := \mathsf{FEASIBLECHARACTERISTICS}(H, G, TD(G), z')$
- 8: if $\exists \xi' \in \mathfrak{S}(\xi)$ and $\exists \xi'' \in \Gamma_{f,ch}(H, z')$ such that $\xi' \equiv \xi''$ then
- 9: add ξ to $\Gamma_{\rm f,ch}(H,z)$

let $\xi \in \Gamma_{f}(H, z)$ be of the form $\xi = (S, \mathcal{D}, K, \psi)$

 $\underbrace{\mathfrak{S}(\xi)}_{\text{of the Separator Lemma}, \text{ i.e.,}} \mathfrak{S}(\xi) \in \Gamma(H, z') \text{ satisfying the conditions}$

(S.a)
$$S = \{v \in S' : \psi'(v) \in bag(z)\},\$$

(S.b) $\mathcal{D}' = \{C : C \text{ is a connected component of } H[V(H) \setminus S'] \text{ and } C \text{ is a subgraph of } \mathcal{D}\},\$

(S.c) $\psi(v) = \psi'(v)$ for every $v \in S$.

III. Separator Nodes (Lines 7-9)

Lemma: Suppose that $\Gamma_{f,ch}(P, z')$ has been computed correctly by the alg. on Slide 65 for every $P \in \mathcal{F}_H$. Then the alg. on Slide 65 computes $\Gamma_{f,ch}(H, z)$ correctly in time polynomial in |V(H)|.

Proof (sketch): (correctness)

Claim: $\mathfrak{S}(\xi) \subseteq \Gamma_{\mathfrak{f}}(H, z')$ for all $\xi \in \Gamma_{\mathfrak{f}}(H, z)$

Proof (sketch): let $\xi \in \Gamma_{f}(H, z)$ with $\xi = (S, \mathcal{D}, K, \psi)$

- ⇒ *K* is a subgraph of *K'* for all $\xi' = (S', \mathcal{D}', K', \psi') \in \mathfrak{S}(\xi)$ by (S.b) (see previous slide)
- \Rightarrow all $v \in V(H) \setminus V(K')$ satisfy the two conditions on slide 62

 \Rightarrow ξ' is feasible

⇒ correctness follows together with Prop. 2 (Slide 56) and the Separator lemma

PhD Course, Szeged, 2012 - © T.Horváth

III. Separator Nodes (Lines 7-9)

Proof (sketch) of the lemma on the previous slide: (efficiency)

- **1.** compute $\mathfrak{S}(\xi)$
 - $\mathfrak{S}(\xi)$ has at most $(k+1)! \cdot |V(H)|^{k+1}$ elements and it can be computed in time polynomial in |V(H)|
- **2.** for all $\xi' \in \mathfrak{S}(\xi)$, check whether $\xi' \equiv \xi''$ for some $\xi'' \in \Gamma_{f,ch}(H, z')$
 - $|\Gamma_{f,ch}(H,z')| \le |\Gamma_{f}(H,z')| = O(|V(H)|^{k+1})$ by the theorem on Slide 63
 - equivalence between iso-quadruples can be decided in polynomial time (Prop. 1 on Slide 56)
 - $\Rightarrow\,$ the condition above for ξ' can be decided in polynomial time

70

universita

IV. Join Nodes (Lines 11-14)

- $/\!/ z$ is a join node in TD(G) with children z_1 and z_2
- 11: $\Gamma_{f,ch}(H, z_1) := \mathsf{FEASIBLECHARACTERISTICS}(H, G, TD(G), z_1)$
- 12: $\Gamma_{f,ch}(H, z_2) := \mathsf{FEASIBLECHARACTERISTICS}(H, G, TD(G), z_2)$
- 13: if $\exists \xi_1 \in \bigcup_{P \in \mathcal{F}_H} \Gamma_{\mathsf{f},\mathsf{ch}}(P,z_1) \land \exists \xi_2 \in \bigcup_{P \in \mathcal{F}_H} \Gamma_{\mathsf{f},\mathsf{ch}}(P,z_2)$ such that $\xi \equiv \bigoplus_{\xi}(\xi_1,\xi_2)$ then
- 14: add ξ to $\Gamma_{\rm f,ch}(H,z)$
- let $\xi = (S, \mathcal{D}, K, \psi) \in \Gamma_{f}(H, z)$ and $\xi_{i} = (S_{i}, \mathcal{D}_{i}, K_{i}, \psi_{i}) \in \Gamma_{f}(H, z_{i})$ (i = 1, 2)// ψ is guaranteed a subgraph isom. from H[S] to G[bag(z)] by slide 66
- ξ_1 and ξ_2 are **join consistent** with ξ if they satisfy the following conditions in the **Join Lemma**:
 - (J.a) $S_i = \{v \in S : \psi(v) \in bag(z_i)\}$ for i = 1, 2,
 - (J.b) the connected components of \mathcal{D} are partitioned into \mathcal{D}_1 and \mathcal{D}_2 , and
 - (J.c) for i = 1, 2, $\psi_i(v) = \psi(v)$ for every $v \in S_i$.

IV. Join Nodes (Lines 11-14): The Join Operator

let z be a join node with children z_1 and z_2 , and let

•
$$\xi_0 = (S_0, \mathcal{D}_0, K_0, \psi_0) \in \Gamma(H_0, z_0),$$

• $\xi_1 = (S_1, \mathcal{D}_1, K_1, \psi_1) \in \Gamma(H_1, z_1)$ and $\xi_2 = (S_2, \mathcal{D}_2, K_2, \psi_2) \in \Gamma(H_2, z_2)$

for some graphs H_0 , H_1 , and H_1

• assumption (w.l.o.g.): K_0, K_1 , and K_2 are pairwise vertex disjoint

the join of ξ_1 and ξ_2 w.r.t. ξ_0 , denoted $\bigoplus_{\xi_0} (\xi_1, \xi_2)$, is a **quadruple** $\xi = (S, \mathcal{D}, K, \psi)$ with

- $S = \{w_u : u \in \psi_1(S_1) \cup \psi_2(S_2)\}$ is a set of **new** vertices,
- $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$,
- K is the graph ... (continued on the next slide)

IV. Join Nodes (Lines 11-14): The Join Operator

- K is the graph obtained from the union of S and D by labeling all $w_u \in S$ with the label of the corresponding vertex u and connecting
 - (i) $w_{\psi_i(u)}$ and $w_{\psi_i(v)}$ by an edge associated with the label of $\{u, v\}$ for all $\{u, v\} \in E(K_i)$ such that $u, v \in S_i$ (i = 1, 2),
 - (ii) $w_{\psi_i(u)}$ and v by an edge associated with the label of $\{u, v\}$ for all $\{u, v\} \in E(K_i)$ such that $u \in S_i$ and $v \in V(\mathcal{D}_i)$ (i = 1, 2), and
 - (iii) $w_{\psi_1(u)}$ and $w_{\psi_2(v)}$ by an edge associated with the label of $\{u', v'\}$ for all $\{u', v'\} \in E(K_0)$ such that $\psi_0(u') = \psi_1(u)$, $\psi_0(v') = \psi_2(v)$ for some $u \in S_1$, $v \in S_2$, and $\psi_1(u), \psi_2(v) \notin \psi_1(S_1) \cap \psi_2(S_2)$,
- $\psi: S \to X_z$ is defined by $\psi(w_u) = u$ for every $w_u \in S$.

IV. Join Nodes (Lines 11-14): The Join Operator

Prop.: Let *z* be a join node with children z_1 and z_2 , and let $\xi_i = (S_i, \mathcal{D}_i, K_i, \psi_i) \in \Gamma_{ch}(H_i, z_i)$ for some graph H_i (i = 0, 1, 2) such that $z_0 = z$, and K_0, K_1 , and K_2 are pairwise vertex disjoint. Then $\bigoplus_{\xi_0} (\xi_1, \xi_2) = (S, \mathcal{D}, K, \psi)$ is uniquely defined and it is an element of $\Gamma(P, z)$ for some pattern *P*.

Proof (sketch):

- uniqueness is straightforward
- any graph P satisfying K = P[V(K)] is appropriate
- $|S| \le k+1$
- since the ψ_i 's are all injective, ψ is also injective

IV. Join Nodes (Lines 11-14)

- **Lemma:** Let z be a join node in TD(G) with children z_1 and z_2 , and suppose that $\Gamma_{f,ch}(P, z_i)$ has been computed correctly by Alg. FEASIBLECHARAC-TERISTICS for every $P \in \mathcal{F}_H$ and i = 1, 2. Then Alg. FEASIBLECHARACTERISTICS computes $\Gamma_{f,ch}(H, z)$ correctly in time polynomial in the combined size of H and the set of frequent patterns computed before H.
- **Proof (sketch):** For the correctness, let $\xi = (S, \mathcal{D}, K, \psi) \in \Gamma_{f}(H, z)$. Then, as ψ is a subgraph isomorphism from H[S] to G[bag(z)] by the alg. on slide 66, we have

$$\begin{split} \xi \in \Gamma_{\mathsf{f},\mathsf{ch}}\left(H,z\right) \\ \iff & \exists \xi_i \in \Gamma_{\mathsf{ch}}(H,z_i) \text{ for } i=1,2 \text{ such that } \xi_1,\xi_2, \text{ and } \xi \\ & \text{ satisfy the conditions of the Join Lemma} \\ \iff & \exists \xi_i \in \bigcup_{P \in \mathcal{F}_H} \Gamma_{\mathsf{f},\mathsf{ch}}(P,z_i) \text{ for } i=1,2 \text{ with } \xi \equiv \oplus_{\xi}(\xi_1,\xi_2) \end{split}$$

IV. Join Nodes (Lines 11-14)

Proof (sketch) of the lemma on the previous slide: (efficiency)

- 1. the join operator can be computed in polynomial time
- **2.** the number of pairs ξ_1 , ξ_2 to be considered is bounded by

 $\mathsf{poly}(\mathsf{size}(H),\mathsf{size}(\mathcal{F}_H))$

- the last equivalence on the previous slides implies quadratic time algorithm in $\text{size}(\mathcal{F}_H)$
- in fact, it can be done in time **linear** in $size(\mathcal{F}_H)$
- equivalence of iso-quadruples can be decided in polynomial time (Prop. 1 on Slide 56)

Putting Together

- **Thm:** The algorithm on the next two slides lists frequent connected subgraphs in incremental polynomial time.
- **Proof:** Using the previous results, it follows by induction on the depth of the treedecomposition of the transaction graph.

universitatbo

The Mining Algorithm

Input: database DB of graphs of tree-width at most k and integer t > 0**Output:** all *t*-frequent connected subgraphs

- 1: // (preprocessing of the transaction graphs)
- 2: forall G in DB do
- 3: compute a nice tree-decomposition TD(G) of G
- 4: forall node z in TD(G) do $\Sigma_{G,z} := \{(\emptyset, \emptyset, \emptyset, \emptyset)\}$
- 5: // (computing frequent subgraphs consisting of a single vertex)
- 6: $S_0 = \emptyset$
- 7: forall graphs H consisting of a single labeled vertex do $PROCESS(H, S_0)$
- 8: // (computing frequent subgraphs consisting of at least one edge)

9: for
$$(l := 0; S_l \neq \emptyset; l := l + 1)$$
 do

- $10: \quad C_{l+1} := S_{l+1} := \emptyset$
- 11: forall $P \in S_l$ do
- 12: forall $H \in \rho(P)$ satisfying tree-width $(H) \leq k \wedge H \notin C_{l+1} \wedge \rho^{-1}(H) \subseteq S_l$ do
- 13: add H to C_{l+1}
- 14: $\mathsf{PROCESS}(H, S_{l+1})$

// next slide

Function Process (Lines 7 and 14)

function PROCESS(H, S)

- 1: counter := 0
- 2: forall G in DB do
- 3: unmark G
- 4: r := root of TD(G)
- $\Gamma_{f,ch}(H,r) := FEASIBLECHARACTERISTICS(H, G, TD(G), r)$ 5: // (Slide 66)
- 6: if $\exists (S, \mathcal{D}, H, \psi) \in \Gamma(H, r)$ equivalent to some $\xi \in \Sigma_{G, r} \cup \Gamma_{\mathsf{f.ch}}(H, r)$ then // (H is subgraph isomorphic to G)
- 7: counter := counter + 1
- 8: mark G
- 9: if counter > t then
- 10: **print** H and add it to S
- forall G in DB such that G is marked do 11:
- forall node z in TD(G) do $\Sigma_{G,z} := \Sigma_{G,z} \cup \Gamma_{f,ch}(H,z)$ 12:

universitatbo

// (H is frequent)

Example

mining problem:

list all 1-frequent connected subgraphs of the database consisting of the single transaction graph *G*:

- i.e., all subtrees
- all vertices in *H* and *G* have the same label (not denoted)
- edge labels are denoted by colors (i.e., there are 3 edge labels)
 - see also the previous example

Example (cont'd)

Steps 1 - 4 of the alg. on slide 78:

- compute nice tree-decomposition of G
- assign the empty iso-quadruple to each node

universitätbor

Example: Feasible Characteristics

Steps 6-7 of the alg. on Slide 78

pattern $H_0: \bullet_u$

 (S, \mathcal{D}, K) -triples for possible feasible iso-quadruples:

• $(\emptyset, \emptyset, \emptyset), (\emptyset, H_0, H_0)$

a

b

C

е

• $(\{u\}, \emptyset, H_0)$

transaction

graph G:

d

 $(\{x\}, y, H_1, x \mapsto b)$

 $(\{y\}, x, H_1, y \mapsto b)$

 $(\{u\}, \emptyset, H_0, u \mapsto b)$

 $(\emptyset, H_0, H_0, \emptyset)$

 $(\emptyset, H_0, H_0, \emptyset)$

 $(\emptyset, H_0, H_0, \emptyset)$

 $(\emptyset, \emptyset, \emptyset, \emptyset)$

 $(\emptyset, \emptyset, \emptyset, \emptyset)$

 $(\emptyset, \emptyset, \emptyset, \emptyset)$

 $(\{u\}, \emptyset, H_0, u \mapsto c)$

 $(\{u\}, \emptyset, H_0, u \mapsto c)$

 $(\{u\}, \emptyset, H_0, u \mapsto d)$

 $\{\{u\}, \emptyset, H_0, u \mapsto c\}$

IAIS

83

 $(\emptyset, H_0, H_0, \emptyset)$

 $(\emptyset, \emptyset, \emptyset, \emptyset)$

 $(\{x,y\}, \emptyset, H_1, x \mapsto b, y \mapsto c)$

 $(\{x, y\}, \emptyset, H_1, x \mapsto c, y \mapsto b)$

 $(\emptyset, H_0, H_0, \emptyset)$

(0, 0, 0, 0)

 $(\{u\}, \emptyset, H_0, u \mapsto b)$

 $(\{u\}, \emptyset, H_0, u \mapsto c)$

Example (cont'd)

 $H_1 \in S_1 \iff (\{y\}, \{x\}, H_1, y \mapsto b) \\ (\{y\}, \{x\}, H_1, y \mapsto b) \\ (\{u\}, \{u\}, H_0, u \mapsto a) \\ (\{u\}, \emptyset, H_0, u \mapsto a) \\ (\{u\}, u \mapsto a)$ Step 12 of the alg. on slide 78 $(\{u\}, \emptyset, H_0, u \mapsto b)$ $\rho(\bullet) = \{\bullet - \bullet, \bullet - \bullet, \bullet - \bullet\}$ $(\emptyset, \emptyset, \emptyset, \emptyset)$ **凡** {a,b} pattern H_1 : • • • $(\{u\}, \emptyset, H_0, u \mapsto a)$ (S, \mathcal{D}, K) -triples for possible {a} {b} $(\emptyset, \emptyset, \emptyset, \emptyset)$ feasible iso-quadruples: {b,c} • $(\emptyset, \emptyset, \emptyset)$, (\emptyset, H_1, H_1) • $(\{x\}, \emptyset, x), (\{x\}, y, H_1)$ $(\{u\}, \emptyset, H_0, u \mapsto b)$ (0, 0, 0, 0){b} {c} • $(\{y\}, \emptyset, y), (\{y\}, x, H_1)$ • $(\{x, y\}, \emptyset, H_1)$ {c,d} а $(\{u\}, \emptyset, H_0, u \mapsto d)$ $(\emptyset, \emptyset, \emptyset, \emptyset)$ {d} {c} transaction b graph G: {c,e} С $(\{u\}, \emptyset, H_0, u \mapsto c)$ $\{u\}, \emptyset, H_0, u \mapsto e$ $(\emptyset, \emptyset, \emptyset, \emptyset)$ е PhD Course, Szeged, 2012 - © T.Horváth

universitätbor RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

 $(\{x\},\{y\},H_1,x\mapsto b)$

Frequent Connected Subgraph Mining

Example (cont'd)

and so on...

- **notice** that the algorithm could further be improved because there are redundant characteristics
 - because feasible iso-quadruples are processed
 - the number of redundant characteristics is polynomial in the combined size of the input and the set of previously generated frequent pattern
 - using some advanced data structure, redundant characteristics can be removed in time polynomial in the input

Summary

- efficient pattern mining is possible even for computationally hard matching operators
- the technique might be of some independent interest and useful to design efficient algorithms if straightforward dynamic programming requires exponential space
- the positive theoretical result of this lecture is not always practical
 - e.g., for k > 4 (or 5?), no practical algorithm is known for deciding whether a graph has tree-width at most k
 - for k < 4: fast algorithm [Arnborg, Corneil, Proskurowski, 1987]
 - chemical graphs of pharmacological compounds have mostly tree-width at most 3

open problem: Is it possible to mine frequent connected subgraphs in graphs of bounded tree-width with **polynomial delay**?

