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Frequent Connected Subgraph Mining

Frequent Connected Subgraph Mining

Outline
= motivation, problem definition, and a negative complexity result
= mining trees with the levelwise search algorithm

* mining bounded tree-width graphs
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Frequent Connected Subgraph Mining

Notions: Isomorphism and Subgraph Isomorphism

G, = (W1, E1), Go = (Va, Es): labeled graphs
» each vertex and edge is associated with some symbol of an alphabet
(1 is isomorphic to GG if there is a bijection ¢ : V7, — V5 preserving
 the edges in both directions
- i.e., {u,v} € Ey ifand only if {p(u), p(v)} € Es
* the vertex labels
— i.e., p(u) has the same label as « for all u € V;

+ the edge labels
- i.e., {¢(u),p(v)} has the same label as {u, v} for all {u,v} € E;

(=, is subgraph isomorphic to GG, if G5 has a subgraph isomorphic to G4

\
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Frequent Connected Subgraph Mining

Mining Frequent Connected Subgraphs

frequent connected subgraph mining problem:
Given a set D of labeled graphs and an integer ¢t > 0, list the set of
t-frequent connected subgraphs w.r.t. D
* t > 0 integer: frequency threshold

* t-frequent subgraph: subgraph isomorphic to at least ¢ graphs in D
instance of the theory extraction problem:

* D : set of labeled graphs
« L: set of all labeled connected graphs

* interestingness predicate qp: for a pattern H € L, qp(H) is true iff
H is subgraph isomorphic to at least ¢ graphs in D

— gp Is anti-monotone: any connected subgraph of a ¢-frequent
connected graph is also ¢-frequent

\
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Frequent Connected Subgraph Mining

Frequent Subgraph Mining: Motivation

Virtual screening in drug discovery:
select a limited number of candidate compounds from millions of database
molecules that are most likely to possess a desired biological activity

(

training molecules <

test molecules <

-4
<
=
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Frequent Connected Subgraph Mining

Virtual Screening in Drug Discovery

Molecules and their Molecular Graphs

molecules give rise to labeled undirected graphs

vertex label
H H
\ /

edge label
“double”
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Frequent Connected Subgraph Mining

Virtual Screening in Drug Discovery

approach [Deshpande, Kuramochi, Wale, & Karypis, 2005]:

1. compute the set {py,...,pr} of frequent connected subgraphs for the
molecular graphs of the training molecules

2. assign a binary colored (feature) vector v of length k£ to each training
molecule m with

ofi] = 1 if p; is a subgraph of the molecular graph of m
"~ |0 olw

(i=1,... k)

= each molecule is represented by a colored vertex of the k-dimensional
unit hypercube

- . active
— red: inactive
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Frequent Connected Subgraph Mining

Virtual Screening in Drug Discovery

approach [Deshpande, Kuramochi, Wale, & Karypis, 2005] (cont'd):

3. compute a hyperplane h in the k-dimensional space that separates the
green points from the red ones, as good as possible

« Support Vector Machines
[Boser, Guyon, & Vapnik, 1992; Cortes & Vapnik, 1995]:

— choose the hyperplane with maximum distance from nearest
data points

4. for each test molecule, compute the vector as defined in step 2 and pre-
dict its activity according to the halfspace defined by A it belongs to

« empirical experiments: good predictive performance

- rest of the lecture: how to perform step 17
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Frequent Connected Subgraph Mining

Enumeration Complexity

the size of the output (theory) can be exponential in the size of the input D

= the output cannot be computed in time polynomial in the size of D

enumeration complexities:
a set of S with N elements, say s,,..., Sy, are listed with

polynomial delay if the time before printing s,, the time between printing s,
and s;,, for every i=1,...,N-1, and the termination time after printing sy, is
bounded by a polynomial of the size of the input,

iIncremental polynomial time if s; is printed with polynomial delay, the
time between printing s; and s;,, for every i=1,...,N-1 (resp. the termination
time after printing s,) is bounded by a polynomial of the combined size of
the input and the set s,,..., S; (resp. S),

output polynomial time if S is printed in the combined size of the input
and the entire set S
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Frequent Connected Subgraph Mining

A Negative Complexity Result

Thm: The frequent connected subgraph mining problem cannot be solved in
output-polynomial time (unless P = NP).

Proof:

reduction: Hamiltonian path problem

- Hamiltonian path problem:
Given a graph G with n vertices, decide whether or not G has a
Hamiltonian path, i.e., a path containing each vertex of G exactly once

- NP-complete problem

10
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Frequent Connected Subgraph Mining

Proof of the Negative Complexity Result

o D= {Gl?Gg}, where
* (7, is an arbitrary unlabeled graph with n vertices
« (5 is an unlabeled path of length n — 1 (i.e., has n vertices)

e L[ : set of all unlabeled connected graphs

e ¢p: 2-frequency w.rt. D

= Th(L, D, qp) is the set of 2-frequent paths
« the size of Th(L, D, qp) is polynomial in the size of D (|Th(L, D, qp)| < n)
* |Th(L,D,qp)| = nif and only if G; has a Hamiltonian path

« cannot be computed in output polynomial time, as otherwise the NP-
complete Hamiltonian path problem could be decided in polynomial time

11
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Frequent Connected Subgraph Mining

Frequent Connected Subgraph Mining

Outline

= mining trees with the levelwise search algorithm

* mining bounded tree-width graphs

12
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Frequent Connected Subgraph Mining

A Generic Levelwise Search Graph Mining Algorithm

Input : database D of transaction graphs and integer ¢t > 0

Output: all frequent connected subgraphs

graph class of the transaction graphs

MAIN:

1: let Sy C G be the set of frequent graphs consisting of a single labeled vertex
2. for (1:=0; S;#£0;l:=1+1)do

Cie1 =841 :=10 H is a strong candidate

forall P € S; do
print P
forall H € p(P) N G satisfying (i) H € C;1 and (ii) p~ 1 (H) C S; do

add H to 05+ 
if SUPPORTCOUNT(H) > t then

add H to S;1,

add a new labeled edge to P with at least
one old vertex in all possible ways

SUPPORT COUNT(H, D, t):

1: counter := 0
2: forall G in D do

3 if H < GG then
4. counter := counter + 1
5: return counter
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Frequent Connected Subgraph Mining

Efficiency Conditions for the Generic Graph Mining Algorithm

Thm: Let G be a graph class satisfying

(i) G is closed under taking subgraphs (i.e., VG € @G, all subgraphs of G
belong to G),

(i) the membership problem in G (i.e., does G € G hold for any graph G) can
be decided in polynomial time, and

(i) for every H,G € G such that H is connected, it can be decided in polyno-
mial time whether H is subgraph isomorphic to G.

If the transaction graphs in D belong to G then the previous algorithm lists the
frequent connected subgraphs with polynomial delay.

14
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Frequent Connected Subgraph Mining

Efficiency Conditions for the Generic Graph Mining Algorithm

Proof (sketch):

» the cardinalities (and hence, the sizes) of the sets p(H) NG and p!(H)
in line 6 are bounded by a polynomial of the size of D,

 both sets can be computed in polynomial time,

« conditions (i) and (i) together imply that one can define a canonical
string representation for the graphs in G that can be computed in time
polynomial in the size of D.

— canonical string representation: unique modulo isomorphism (i.e.,
two graphs have the same canonical strings if and only if they are
iIsomorphic)

= using some advanced (e.qg., trie-based) data structure for the storage of
S; and the elements of (7., generated before H, conditions (i) and (ii) in
line 6 can be decided in time polynomial in the size of D
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Frequent Connected Subgraph Mining

Application: Frequent Subtree Mining in Forests

problem:

Given a set D of labeled forests and an integer t > 0, list all trees that are
subtrees of at least ¢ forests in D.

+ forest: set of vertex disjoint labeled free trees
» free tree: unordered, unrooted tree

16
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Frequent Connected Subgraph Mining

Frequent Subtree Mining in Forests

Thm: The frequent connected subgraph mining problem can be solved with
polynomial delay for forest transaction graphs.

proof:

each condition of the previous theorem holds, i.e.,
(i) forests are closed downward,
(i) it can be decided in polynomial time, whether a graph G is a forest,

(i) subtree isomorphism can be decided in polynomial time
= intime O(n?°) [Matula,1978]
= can further be improved by a log factor [Shamir &Tsur,1999]

17
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Frequent Connected Subgraph Mining

Subtree Isomorphism

T tree, I forest; decide, whether 7' is subgraph isomorphic to F':
decide for all trees 7" in F', whether T' is subgraph isomorphic to 7"

T and T" are trees; decide, whether 7" is subgraph isomorphic to 7”:
decide for some fixed vertex « in T and for all vertices v in 7”7, whether
there is a subgraph isomorphism from the tree 7 rooted at « to the tree
T’ rooted at v that maps u to v

» problem is reduced to subtree isomorphism between labeled, rooted,
unordered trees

* can be solved with a bottom-up (recursive) algorithm (next slide)

18
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Frequent Connected Subgraph Mining

Bottom-up Subtree Isomorphism algorithm for Rooted Trees

1. T,: tree T rooted at u; wuq,...,u,: children of uin T,
T!: tree 1" rooted at v; vq,...,v,: children of v in T,

2. decide (recursively) whether there is a subgraph isomorphism from the
subtree of T, rooted at u; to the subtree of 7 rooted at v; that maps u;
tov; foreveryi=1,...,mandj=1,...,n;
if so, mark the pair (¢, 7) if w and v have the same vertex label, and the
edges between u, u; and between v, v; have the same edge labels

3. return YES (i.e., T}, is subgraph isomorphic to 77) if the bipartite graph
({ury. .oy um b, {vr, ..oy ont, {{uwi, v5} : (4, 7) is marked })
has a (maximum) matching of size m

« maximum bipartite matching can be solved in polynomial time

19
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Frequent Connected Subgraph Mining

Summary

= mining frequent connected subgraphs in arbitrary transaction graphs is
computationally hard
- cannot be solved in output-polynomial time (unless P = NP)

= for forest transaction graphs, the problem can be solved with polynomial
delay

- obtained by using a generic levelwise search algorithm

- frequent patterns are not printed immediately after their generation

polynomial delay vs. incremental polynomial time

20
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Frequent Connected Subgraph Mining

Frequent Connected Subgraph Mining

Outline
= motivation, problem definition, and a negative complexity result
= mining trees with the levelwise search algorithm

= mining bounded tree-width graphs

21
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Frequent Connected Subgraph Mining

Positive and Negative Results So Far

frequent connected subgraph mining:
@ computationally intractable for arbitrary transaction graphs

cannot be solved in output-polynomial time (unless P = NP)

© can be solved efficiently for forest transaction graphs
with polynomial delay

Goal: Generalize the positive result on forests to a broader graph class!
What about graphs of bounded tree-width?

parameterized graph class (naturally) generalizing forests
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Frequent Connected Subgraph Mining

A Generic Levelwise Search Graph Mining Algorithm (recap)

Input : database D of transaction graphs and integer ¢t > 0

Output: all frequent connected subgraphs

graph class of the transaction graphs

MAIN:

1: let Sy C G be the set of frequent graphs consisting of a single labeled vertex
2. for (1:=0; S;#£0;l:=1+1)do

Cie1 =841 :=10 H is a strong candidate

forall P € S; do
print P
forall H € p(P) N G satisfying (i) H € C;1 and (ii) p~ 1 (H) C S; do

add H to 05+ 
if SUPPORTCOUNT(H) > t then

add H to S;1,

add a new labeled edge to P with at least
one old vertex in all possible ways

SUPPORT COUNT(H, D, t):

1: counter := 0
2: forall G in D do

3 if H < GG then
4. counter := counter + 1
5: return counter
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Frequent Connected Subgraph Mining

Efficiency Conditions (recap)

Thm: Let G be a graph class satisfying

(i) G is closed under taking subgraphs (i.e., VG € @G, all subgraphs of G
belong to G),

(i) the membership problem in G (i.e., does G € G hold for any graph G) can
be decided in polynomial time, and

(i) for every H,G € G such that H is connected, it can be decided in polyno-
mial time whether H is subgraph isomorphic to G.

If the transaction graphs in D belong to G then the previous algorithm lists the
frequent connected subgraphs with polynomial delay.

Problem:
@ subgraph isomorphism is NP-complete even for graphs of tree-width 2

© Condition (iii) can be relaxed!

24
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Frequent Connected Subgraph Mining

Problem Setting

Given
database D: finite set of labeled graphs of bounded tree-width
* will be defined
language L: set of all connected labeled graphs of bounded tree-width,

interestingness predicate ¢p: ¢ € L is “interesting” w.r.t. D if it is subgraph
iIsomorphic to at least ¢t graphs in D

* t > 0 integer: frequency threshold
compute the theory of D w.r.t. £ and gp, I.e.,
Th(L,D,qp) ={p € L: qp(p) = true}

e special case of the theory extraction problem

25
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Frequent Connected Subgraph Mining

Main Result

Thm [H. & Ramon, 2010]J:
the frequent connected subgraph mining problem can be solved in
Incremental polynomial time for graphs of bounded tree-width

significance of this result:

= efficient pattern mining is possible even for computationally hard pattern matching
operators

- subgraph isomorphism is NP-complete for bounded tree-width graphs
= first positive non-trivial result beyond trees

= positive result for a practically relevant graph class
- e.g., molecular graphs of most pharmacological compounds have tree-width < 3

26
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Frequent Connected Subgraph Mining

Example

NCI Chemical Dataset:
= 250251 compounds
tree-width #molecules

0 13  isolated vertices
1 21950 trees
2 221675  mostly outerplanar
3 6548
>4 65
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Frequent Connected Subgraph Mining

Outline for the Rest (Technical Part) of this Topic

= tree-width

= subgraph isomorphism for bounded tree-width graphs

= remarks and open problems

28
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Frequent Connected Subgraph Mining

Tree-width (Robertson & Seymour, 1986)

* tree decomposition of a graph G = (V, F): apair TD = (T, X), where

— T = (I, F) is an unordered tree,
— X = {bag(i) : i € I} is a family of subsets of V, called bags, s.t.
* Uierbag(i) =V,

~ for every {u,v} € E thereisan i € I with {u,v} C bag(i),

* foralli,j, k € I,if jisonthe pathfromito kin 7 then| bag(i) Nbag(k) C bag(y)

« tree-width of T'D: max; |bag(i)| — 1
* tree-width of G: minimum tree-width over any 17'D

» graphs of bounded tree-width: graphs with tree-width bounded by some
constant k

29
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Frequent Connected Subgraph Mining

Tree-width (Robertson & Seymour,1986)

= measure of the tree-likeness of graphs

- e.g., the tree-width of trees is 1 and the tree-width of cycles is 2

= useful tool in the design of algorithms because

- many computationally hard problems on graphs become polynomial
for graphs of bounded tree-width

- many practically relevant graph classes have small tree-width

e.g., k-outerplanar graphs have tree-width at most 3k-1

30
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Frequent Connected Subgraph Mining

Example

{an’an+1}
G has
{an’an+1’bn} E {anian+1icn}
. - 3n+1 vertices; 4n+1 edges
tree decomposition {a,,8,,8.,,)
of G with bags e . 2"+n simple cycles
{a,,a3,C5}
- 2-outerplanar graph
182:8,0} {a,,a,,a..,} .
L2 - tree-width: 2
{a1,8,,0,} {21,85,C1}
PhD Course, Szeged, 2012 - © T.Horvath " — 31
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Frequent Connected Subgraph Mining

Some Properties of Bounded Tree-width Graphs

© the class of bounded tree-width graphs is closed downward
- any subgraph of a graph of tree-width at most k has tree-width at most k

© membership problem can be decided in linear time

- for constant k, one can decide in linear time, whether a graph has tree-width
at most k, and if so, compute a tree-decomposition of tree-width at most k

[Bodlaender, 1996]

@ subgraph isomorphism remains NP-complete for graphs of bounded
tree-width
- NP-complete if the pattern is not k-connected or has more than O(k) vertices
of unbounded degree; o/w it can be decided in polynomial time
= [Gupta & Nishimura, 1996]

32
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Frequent Connected Subgraph Mining

Mining Bounded Tree-Width Graphs

= generic mining algoritm: candidate generation/test is not directly applicable

- because subgraph isomorphism is NP-complete
= polynomial delay: open question
What about incremental polynomial time?

= modify the generic levelwise search graph mining algorithm
- slide 34

- changes: print frequent patterns directly after their generation (slide 35)

33
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Frequent Connected Subgraph Mining

A Generic Levelwise Search Graph Mining Algorithm (recap)

Input : database D of transaction graphs and integer ¢t > 0

Output: all frequent connected subgraphs

graph class of the transaction graphs

MAIN:

1: let Sy C G be the set of frequent graphs consisting of a single labeled vertex
2. for (1:=0; S;#£0;l:=1+1)do

Cie1 =841 :=10 H is a strong candidate

forall P € S; do
print P
forall H € p(P) N G satisfying (i) H € C;1 and (ii) p~ 1 (H) C S; do

add H to 05+ 
if SUPPORTCOUNT(H) > t then

add H to S;1,

add a new labeled edge to P with at least
one old vertex in all possible ways

SUPPORT COUNT(H, D, t):

1: counter := 0
2: forall G in D do

3 if H < GG then
4. counter := counter + 1
5: return counter
PhD Course, Szeged, 2012 - © T.Horvath : __-/ 34
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Frequent Connected Subgraph Mining

Modified Levelwise Search Graph Mining Algorithm

Input : database D of transaction graphs and integer ¢t > 0
Output: all frequent connected subgraphs

MAIN:

1: let Sop C G be the set of frequent graphs consisting of a single labeled vertex
2: print Sy
3: for (1:=0; S;#0; 1:=1+1)do
Cig1 := Si41 :=10
forall P € S; do
forall H € p(P) N G satisfying (i) H ¢ C;, and (i) p~1(H) C S; do
add H to Cy44
if SUPPORTCOUNT(H) > ¢ then
print 7 and add it to S;;
add H to S,j_|_1

COWX®ANG A

SUPPORT COUNT(H, D, t):

1: counter :=0
2: forall G in D do
3. if H <Gthen

4: counter := counter + 1
5: return counter
PhD Course, Szeged, 2012 - © T.Horvath " ? 35
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Frequent Connected Subgraph Mining

Efficiency Conditions for the Modified Graph Mining Algorithm

Thm: Let G be a graph class satisfying
(i) G is closed under taking subgraphs,
(i) the membership problem in G can be decided in polynomial time,

(i*) for any strong candidate pattern A and transaction graph G, H < GG can
be decided in time polynomial in the combined size of G and the set of

frequent patterns generated before H, and
(iv) isomorphism for G can be decided in polynomial time.

If the transaction graphs in D belong to G then the previous algorithm lists the
frequent connected subgraphs in incremental polynomial time.

proof: exercise

36
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Frequent Connected Subgraph Mining

Application to Mining Bounded Tree-Width Graphs

Let G be the class of graphs of tree-width at most £ for some constant .

(1) G is closed under taking subgraphs.
(i) The membership problem in G can be decided in polynomial time.

— one can decide in linear time, whether a graph has tree-width at
most k& [Bodlaender, 1996]

(iv) Isomorphism between graphs of tree-width at most £ can be decided in
polynomial time [Bodlaender, 1990].

= to show that frequent connected subgraph mining in bounded tree-width
graphs can be done in incremental polynomial time, we need to prove

condition (iii*)

37
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Frequent Connected Subgraph Mining

Mining Bounded Tree-width Graphs

H': strong candidate pattern generated by levelwise search
G transaction graph
* both of tree-width at most &

Fr: H + set of all frequent connected subgraphs generated by the modified
levelwise search algorithm before H

Thm: Given H and & above, it can be decided in time poly(size((&), size(F)),
whether H is subgraph isomorphic to G

» poly(size((), size(Fy)): polynom of the combined size of G and the
set of frequent patterns computed before H

 incremental polynomial time

rest of this and next talk(s): proof sketch

38
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Frequent Connected Subgraph Mining

Main Idea of the Proof

to decide subgraph isomorphism from a strong candidate pattern H into a
transaction graph G, we can utilize the information computed earlier for the

subgraphs of H
« strong candidate pattern: each of its subgraphs is frequent
 only non-redundant information, certain set of tuples, is actually required
» number of non-redundant tuples is bounded by poly(size(G), size(Fy))
« we can identify a superset S of the set of non-redundant tuples such that

— the size of S is bounded by poly(size(G), size(Fy))
— each tuple in S can be computed in time poly(size(G), size(Fx))

39
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Frequent Connected Subgraph Mining

Preprocessing Step

compute a nice tree-decomposition 7'D((G) for every transaction graph G
* nice tree-decomposition: rooted tree with 3 different types of nodes

— leaf node: it has no children
— separator node z: has a single child 2z’ such that

bag(z) C bag(z')
— join node z: has two children z; and z5 such that
bag(z) = bag(z;) Ubag(zs)
» size of TD(G) is linear in the size of G

« can be computed in linear time for graphs of bounded tree-width

use T'D((G) for the entire mining process

40
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Frequent Connected Subgraph Mining

Nice Tree-Decomposition

join node

e

bag(z) = bag(v)ubag(w)

bag(v) < bag(u)

separator node TD(G)

41
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Frequent Connected Subgraph Mining

Iso-Quadruples

given pattern graph H, transaction graph G, and tree-decomposition T'D((G)
* iso-quadruple of H relative to a node z of TD(G): (5, D, K, 1) such that

- S C V(H) satistying |S| < k + 1,

— D is a subset of the set of connected components of the induced
subgraph H[V(H) \ S],

— K is the induced subgraph H[S UV (D)],
— 1 is an injective function mapping S to bag(z)

D
H
S K
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Frequent Connected Subgraph Mining

Iso-Quadruples

z-characteristic of H for a node z in TD(G):
iso-quadruple (S, D, K, ) of H relative to z such that there is a subgraph
isomorphism ¢ from K into G/ satisfying

* o(u) =1(u) forevery u € S, induced subgraph of G defined by the
union of the bags of z's descendants
* p(v) € bag(z) for every v € V(D) (z is also a descendant of itself)

Lemma: H is subgraph isomorphic to G if and only if there exists an
r-characteristic (S, D, H, ) for the root » of TD(G)

proof: exercise

= check whether an iso-quadruple relative to the root is a characteristic

« the number of iso-quadruples to be checked for the root is bounded by

O([vV(H)|*)
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Frequent Connected Subgraph Mining

Computing Characteristics

[MatousSek & Thomas, 1992; also Hajiaghayi & Nishimura, 2007]:
compute the set of z-characteristics for every node z in TD(G) with dynamic
programming:

- postorder traversal of TD(G)
straightforward for leaf nodes (next slide),

use only the characteristics of the child(ren) for separator and join nodes
(next slides)

notations: for pattern graph H, transaction graph G, both of bounded
tree-width, nice tree-decomposition TD(G), and node z in TD(G):

» ['(H,z) denotes the set of iso-quadruples of H relative to z

= [.,(H,z) denotes the set of z-characteristics of H

44
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Frequent Connected Subgraph Mining

Computing Characteristics: Leaf Nodes

Leaf Lemma: Let G and H be graphs of bounded treewidth and z be a leaf
node in TD(G). Then, for every (S,D, K,v) € I'(H, z)

(S,D,K,v) eT(H, z) —
D = () and v is a subgraph isomorphism from H|[S] to G[bag(z)]

proof: exercise

e D = () implies K = H|S]

45
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Frequent Connected Subgraph Mining

Computing Characteristics: Leaf Nodes

Y4
TD(G)
G[bag(z)]
G
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Frequent Connected Subgraph Mining

Computing Characteristics: Separator Nodes

Separator Lemma: Let H, GG be as in the previous case and z be a separator
node in T D(G) with (a single) child z’. Then for all (S, D, K,) € I'(H, z)
(S,D,K,) e T'eh(H,z) — IS, D',K' ') e I'a(H,2") such that
e S={veS:Y(v)ebag(z)},

e D': set of all connected components C of H[V(H) \ S’] such
that C' is a subgraph of (a connected component in) D,

e Y(v) =1 (v) forevery v € S.

Proof: see [Hajiaghayi & Nishimura, 2007]

47
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Frequent Connected Subgraph Mining

Computing Characteristics: Separator Nodes

Gy ™ G
G
-
o /(v) ebag(z) < veS
L Qp:w, OnS ba_g(%
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Frequent Connected Subgraph Mining

Computing Characteristics: Join Nodes

Join Lemma: Let H, G be as in the previous cases and z be a join node in
T D(G) with children z; and z5. Then for all (S,D, K,v) € I'(H, z)

(S,D,K,v) e T'eh(H, z) —
A(S1, D1, K1,v¢1) € Ten(H, z1) A 3(S2, Do, Ko, 102) € I'ep(H, 22) S.1.
o S;={veS:yw) ebag(z)}fori=1,2,

e the connected components of D is partitioned into D; and D-
— I.e., D; and D, are disjoint and D = Dy U D5

e Y;(v) =v(v)foreverywv e S; (i =1,2),
e ) preserves the labels and the edges

Proof: see [Hajiaghayi & Nishimura, 2007]
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Frequent Connected Subgraph Mining

Computing Characteristics: Join Nodes

/0N
/3N
/
.'Jlrl! . £
‘ 2, ( .l
__/. ij\ Cr -
fir= N\ %
';_ § ’ \
. / ; \\ b
"?;*. \\I- e < 3
)

' |_ e I3 b
‘
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Frequent Connected Subgraph Mining

Example

u
b
s pattern H I subgraph isomorphic to transaction graph G ?
C

\Y

= all vertices in H and G have the same label (not denoted)

= edge labels are denoted by colors (i.e., there are 3 edge labels)

51
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Frequent Connected Subgraph Mining

Example (cont‘d) — Nice Tree-Decomposition

{a,b}

a
b
[t
C
{c.d}
d. .e
{c}
{c.e}
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Frequent Connected Subgraph Mining

o )
Example - Characteristics o OEon
_ ({u ({v},0, v, — b)
Sttern H: YES, His Eg ({u}, {v}, H,u — b)
P U v subgraph isom. (7, ({v},{u}, H,v = b)
(S, D, K)-triples for to G! ({
possible iso-quadruples: 0)
. (0,0,0) (0,0,0,0) g
({u},@,u,un—)a) ,'U?’Ul—)b)
o (0,H, H) ({v},0,v,v — a) ’ ,v:v»—)c)
o ({u},0,u) v}, 0, H,u — b,v > ¢)
o ({u},v, H) v}, 0, Hyu — c,v +— b)
’ (@,0,0,0) (©,0,0,0)
o ({v},0,v) ({u}, 0, u,u s b) ({u},0,u,u s c) 0.0.0.0)
o ({v},u,H) ({v},0,v,v — b) ({v},0,v,v — ¢) ({u}, 0, u,u — c)
o ({u.v},0.H) B
(0,0,0,0) (0,0,0,0) (fv},0,v,v s d)
a ({u},0,u,u — d) ({u},0,u,u+— c)
({v},0,v,v — d) {c} ({v},0,v,v — c)
transaction b {c.e}
raph G: (0,0,0,0)
grap C ({u},0,u,u— c)
i
d' .e ({v}:@,v:v — e)
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Frequent Connected Subgraph Mining

Computing Characteristics

problem: the number of iso-quadruples for separator and join nodes can be
exponentially large

Thm: For graphs of bounded tree-width and bounded degree, the set of
z-characteristics can be computed in polynomial time for every
node z

- [Matousek & Thomas, 1992]

= Wwe cannot use this result

- no additional assumption besides bounded tree-width

54
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Frequent Connected Subgraph Mining

Equivalent Iso-Quadruples

e [, H,, G: connected graphs of bounded treewidth

e T'D(G): nice tree-decomposition of G computed in the preprocessing step
e 2: node in TD(G)

o {1 = (51,D1, Ky,¢1) € I'(Hy, 2); & = (S2, Do, Ka,42) € I'(Ha, 2)

Def.: &, is equivalent to & if there is an isomorphism = between K, and K>
such that

e 7 is a bijection between S; and S,
o 11(v) = o(m(v)) for every v € S

Notation: £, = &

55

\\

PhD Course, Szeged, 2012 - © T.Horvath '1
universitatbonn Fra un hOfe r

IIIIIIIIIIIIIIIIIII R — IAIS



Frequent Connected Subgraph Mining

Equivalent Iso-Quadruples

Prop. 1: Equivalence of iso-quadruples can be decided in polynomial time.

Proof: exercise

Prop. 2: If &1, & in the above definition are equivalent then
§1 € Uon(H1,2) <= & € Ten(H2, 2)

Proof: exercise

= it suffices to store only one representative z-characteristic for each equiva-
lence class of the set of z-characteristics

56
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Frequent Connected Subgraph Mining

Non-Redundant Iso-Quadruples

= given a strong candidate pattern H generated by levelwise search and a
node z in T'D(G), it is sufficient to check only those iso-quadruples of
['(H, z) for which there exists no equivalent z-characteristic for some fre-
quent pattern listed before H

e non-redundant iso-quadruples of H relative to z
e ' (H,2): set of non-redundant iso-quadruples of H relative to =

e '\ cn(H,2): set of non-redundant z-characteristics of H
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Frequent Connected Subgraph Mining

Non-Redundant Iso-Quadruples

Prop.: Let H be a strong candidate pattern, GG be a transaction graph, both of
bounded treewidth, z be a node in T'D((), and £ € I'(H, z). Then

Eelm(H,2) «— 3¢ € U Cnreh(P, z) such that &' = ¢
PeFy

— Fu:{H} U set of frequent patterns computed before i

Proof: exercise

58
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Frequent Connected Subgraph Mining

Non-Redundant Iso-Quadruples

Theorem

(i) The number of non-redundant iso-quadruples of H relative to 2 is bounded
by
O(|V(H)|**1).

— instead of computing 'y (H, z), we will efficently compute a superset
I't(H,z) D I'n(H, z) of cardinality bounded by O(|V (H)|*+1)

= we must test only for polynomially many iso-quadruples whether they
are characteristics

(i) It can be decided in time polynomial in the combined size of G and the set
of frequent patterns listed before H whether an iso-quadruple in I'1(H, z) is
a characteristic.

59
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Frequent Connected Subgraph Mining

Claim (i)

Lemma: Let H be a strong candidate pattern generated by levelwise search,
z be anode in TD(G), and & = (S,D, K,) € I'n(H, z). Then, for every
vertex v € V(H) \ V(K) it holds that

(i) the degree of v in H is at least 2 and

(i) H has no cycle containing v

D
H
K
S
Proof: (blackboard)
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Frequent Connected Subgraph Mining

Claim (i)

Lemma: Let H be a strong candidate pattern generated by levelwise search,
S be a subset of V(H) having at most & + 1 elements, and C4 be the
maximal subset of the set of connected components of H[V(H) \ S]) such
that for every C € C4, all vertices of C satisfy (i) and (ii) in the lemma on

the previous slide. Then

Cal <k .

Proof: (blackboard)

PhD Course, Szeged, 2012 - © T.Horvath 61

Fraunhofer

IAIS




Frequent Connected Subgraph Mining

Claim (i)

feasible iso-quadruples: for a strong candidate pattern H generated by level-
wise search and for a node z in T'D((G), an iso-quadruple £ = (S, D, K, ) €
['(H, z) is called feasible if it satisfies the previous two conditions, i.e.,

(i) the degree of v in H is at least 2 and
(i) H has no cycle containing v

foreveryv e V(H) \ V(K)

e set of feasible iso-quadruples in I'(H, z) is denoted by I't(H, z)

— lﬁnr(flr.,:) (_: J_wf(_!qu:)

62
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Frequent Connected Subgraph Mining

Claim (i)

Thm.: Let H be a strong candidate pattern generated by levelwise search and
let = be a node of T'D(G) for some transaction graph G. Then

Ti(H, )| < O(|V(H)[*™)

proof: How many different ¢ = (5, D, K, ) € T¥(H, z) can we have at most?
e S can be chosen in at most |V (H)|**! different ways,
e D can be chosen in at most 2/¢4! < 2* different ways (lemma on slide 61),
e there are at most (k + 1)! injective functions from H|[S] to G[bag(z)],

= we have
Ti(H,z)| < 2% (k+1)! - [V(H)"

from which the claim directly follows, as & is assumed to be a constant.

63
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Frequent Connected Subgraph Mining

Claim (ii): Algorithm Computing Feasible Characteristics

Input:

e connected strong pattern graph H generated by levelwise search and
transaction graph G, both of tree-width at most k£ for some constant £,

e a nice tree-decomposition T'D((G) of G with nodes associated with

U Ff,ch(in)

PeFu\{H}
for every node w in TD((), and
e anode zinTD(G)

Output: set I's 1 (H, z) of feasible z-characteristics

Algorithm: next slide

64
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Frequent Connected Subgraph Mining

Claim (ii): Algorithm FeasibleCharacteristics

1: Tien(H,z) =0 / next slide
2: I'y(H, z) := FEASIBLEISOQUADRUPLES(H,bag(z))
3: forall ¢ = (S, D, K,v) € I't(H, z) do // (1 is a subgraph isom. from H[S] to G[bag(z)])
4: if z is a leaf node then
5: if £ satisfies the condition of the Leaf Lemma then add & to I't o (H, 2)
6: elseif z is a separator node with child 2’
7 ['tcn(H, 2") := FEASIBLECHARACTERISTICS (H, G, TD(G), 2')
8 if 3¢/ € &(¢) and 3¢ € It (H, 2') such that ¢’ = £ then to be defined
9: add & to I'yen(H, 2)
10: else (z is a join node with children z; and z22)
11: It ch(H, z1) := FEASIBLECHARACTERISTICS (H, G, TD(G), 21)
12: Dich(H, z2) := FEASIBLECHARACTERISTICS (H, G, T D(G), z2)
13: if (3€1 € U TP z1)) A (352 € U Tien(h »?52)) such that £ = ®¢(&1,£2)
PeFg PeFg
14: then add £ to Ff‘ch(H, z)
15: return I'y o (H, 2)
join operator; will be defined
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Frequent Connected Subgraph Mining

|. Computing Feasible Iso-Quadruples (Line 2)

2: Tt(H,z):= FEASIBLEISOQUADRUPLES(H,bag(z))

Lemma: I';(H,z) can be computed in time O(|V (H)|**1])

Proof: By slides 62 and 63, the algorithm below is correct and computes
['i(H,z) intime O(|V (H)[F*1)).

Input: connected graph H and bag(z) of a node z in TD(G)
Output: I';(H, 2)

1: Y : =0

2: forall S C V(H) satisfying |S| < |bag(z)| do

3: let C be the set of connected components of H[V (H) \ S|
4: compute the subset C4 C C defined on slide 61

5: forall D' C C4 do
6
7

D:=C\D
; forall subgraph isomorphisms v : S — bag(z) from H|[S] to G[bag(z)] do
8: add (S, D,H[SUV(D)],¥)to Y
9: return Y
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Frequent Connected Subgraph Mining

Il. Leaf Nodes (Line 5)

5: if £ satisfies the condition of the Leaf Lemma then add ¢ to I's ¢, (H, 2)

condition of the Leaf Lemma for £ = (S, D, K, ¢):
D = () and v is a subgraph isomorphism from H|[S] to G[bag(z)]

Lemma: The condition of the Leaf Lemma can be decided in constant time.

Proof: v is already a required subgraph isomorphism

e see lines 7—8 on the previous slide
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Frequent Connected Subgraph Mining

lll. Separator Nodes (Lines 7-9)

// zis a separator node in T'D(G') with child 2’

7: Tien(H, z") := FEASIBLECHARACTERISTICS(H, G, TD(G), 2)
8: if 3¢’ € &(&) and I € T'ion(H, ') such that & = £ then
9: add ¢ to I'sch (H, 2)

let £ € I'y(H, 2) be of the form ¢ = (S, D, K, )

S(€): set of iso-quadruples (5", D', K', ") € I'(H, 2’) satisfying the conditions

of the Separator Lemma, i.e.,

(S.a) S={ves:y(v)ebag(z)},

(S.b) D' = {C : C'is a connected component of H[V(H) \ S’] and
C'is a subgraph of D},

(S.c) ¥(v) =1'(v) forevery v € S.

68
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Frequent Connected Subgraph Mining

lll. Separator Nodes (Lines 7-9)

Lemma: Suppose that I'scn (P, 2’) has been computed correctly by the alg. on
Slide 65 for every P € Fy. Then the alg. on Slide 65 computes I't o (H, z)
correctly in time polynomial in |V (H)].

Proof (sketch): (correctness)

Claim: G(§) CTI'y(H,Z2') forall £ € T(H, 2)
Proof (sketch): let ¢ € I's(H, z) with £ = (S, D, K, 1))

= K is asubgraph of K’ forall ¢’ = (5, D', K’',v") € &(¢) by (S.b)
(see previous slide)
= allv e V(H)\ V(K') satisfy the two conditions on slide 62

= ¢’ is feasible

= correctness follows together with Prop. 2 (Slide 56) and the Separator
lemma
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Frequent Connected Subgraph Mining

lll. Separator Nodes (Lines 7-9)

Proof (sketch) of the lemma on the previous slide: (efficiency)

1. compute &(&)

e G(¢) has at most (k + 1)! - |V(H)|**! elements and it can be com-
puted in time polynomial in |V (H)|

2. forall ¢ € &(&), check whether ¢ = ¢” for some " € T (H, 2')

o [Tien(H,2)| <|T4(H,z2")| = O(|V(H)|*1) by the theorem on Slide 63

e equivalence between iso-quadruples can be decided in polynomial
time (Prop. 1 on Slide 56)

= the condition above for ¢’ can be decided in polynomial time

70
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Frequent Connected Subgraph Mining

IV. Join Nodes (Lines 11-14)

/l zis a join node in T'D(G) with children z; and z2
11: Tien(H, 21) := FEASIBLECHARACTERISTICS (H, G, TD(G), z1)
12: T'ich(H, z2) := FEASIBLECHARACTERISTICS(H, G, T D((G), z2)

18: 36 € U Tien(Poz1) A 3o € U Tien(P, 2z2) suchthat £ = ©¢(&1,&2) then
PcFy PcFgy

14. add € to Ff}ch(H: z)

let f = (S? D, K, '{b) c Pf(H}Z) and f,u = (S@,D” KH’J,@;,) S Ff(H, Z?j) (% =1, 2)
// 1) is guaranteed a subgraph isom. from H|[S] to G|bag(z)| by slide 66

¢1 and & are join consistent with ¢ if they satisfy the following conditions in
the Join Lemma:

(J.a) S;i ={ve S:¢(v) €bag(z)} fori=1,2,
(J.b) the connected components of D are partitioned into D, and D-, and
(J.c) fori =1,2, ¥;(v) = ¢(v) for every v € S,.
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Frequent Connected Subgraph Mining

IV. Join Nodes (Lines 11-14): The Join Operator

let z be a join node with children z; and 25, and let

e {o = (S0, Do, Ko, 0) € I'(Ho, 20),

o {1 = (51,01, K1,¢1) € I(Hy,z1) and & = (S2, D2, Ko, ¢2) € I'(Hz, 22)
for some graphs Hy, H, and H,

e assumption (w.l.o.g.): Ky, K1, and K> are pairwise vertex disjoint

the join of £; and & w.r.t. &, denoted & (&, &2), iIsaquadruple € = (S, D, K, )
with

o S ={w,:ucyY;(S1)Uys(S2)} is a set of new vertices,
o D= Dl U Dg,

e K isthe graph ... (continued on the next slide)
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Frequent Connected Subgraph Mining

IV. Join Nodes (Lines 11-14): The Join Operator

e K is the graph obtained from the union of S and D by labeling all w,, € S
with the label of the corresponding vertex « and connecting

(i) wy, @) and wy, ) by an edge associated with the label of {u, v} for
all {u,v} € E(K;)suchthatu,v e S; (i =1,2),

(i) wy, ) and v by an edge associated with the label of {u,v} for all
{u,v} € E(K;)suchthatu € S; andv € V(D;) (i = 1,2), and

(ili) wy, ) and wy, () by an edge associated with the label of {u',v"}
for all {U,f.}‘U’,} € E(K{]) such that ’tf){}(uf) = ?,bl(U), ?,b[](’vf) = '{bg(’U) for
some u € S5y, v € .5s, and wl(u)}’@bg(v) Q’ wl(Sl) H@Q(SQ),

e ¢): S — X, is defined by ¢(w, ) = u for every w, € S.
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Frequent Connected Subgraph Mining

IV. Join Nodes (Lines 11-14): The Join Operator

Prop.: Let z be a join node with children z; and z,, andlet &; = (S;, D;, K;, ;) €
en(H;, z;) for some graph H; (¢ = 0,1, 2) such that z, = z, and Ky, K1,
and K, are pairwise vertex disjoint.

Then &g, (&1,&2) = (S, D, K, ) is uniquely defined and it is an element of
['(P, z) for some pattern P.

Proof (sketch):
e unigueness is straightforward
e any graph P satisfying K = P[V(K)] is appropriate
o |[S|<k+1
e since the ;’s are all injective, v is also injective
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Frequent Connected Subgraph Mining

IV. Join Nodes (Lines 11-14)

Lemma: Let z be a join node in T'D((G) with children z; and z,, and suppose
that T's o (P, ;) has been computed correctly by Alg. FEASIBLECHARAC-
TERISTICS forevery P € Fgandi: =1, 2.

Then Alg. FEASIBLECHARACTERISTICS computes T'ich(H, z) correctly in
time polynomial in the combined size of H and the set of frequent pat-
terns computed before H.

Proof (sketch): For the correctness, let ¢ = (S,D, K,v) € T'y(H,z). Then,
as v is a subgraph isomorphism from H|S| to G[bag(z)| by the alg. on
slide 66, we have

{ € Ff,Ch (H.. Z)
— d& e len(H, z;) fori = 1,2 such that &;,&,, and &
satisfy the conditions of the Join Lemma

— 3G e | Tien(Pz)fori=1,2with £ = @¢(&1, &)
PeFn
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Frequent Connected Subgraph Mining

IV. Join Nodes (Lines 11-14)

Proof (sketch) of the lemma on the previous slide: (efficiency)
1. the join operator can be computed in polynomial time

2. the number of pairs &1, & to be considered is bounded by
poly(size(H ), size(Fy))

e the last equivalence on the previous slides implies quadratic time
algorithm in size(Fg)
e in fact, it can be done in time linear in size(Fg)

3. equivalence of iso-quadruples can be decided in polynomial time
(Prop. 1 on Slide 56)
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Frequent Connected Subgraph Mining

Putting Together

Thm: The algorithm on the next two slides lists frequent connected subgraphs in
incremental polynomial time.

Proof: Using the previous results, it follows by induction on the depth of the tree-
decomposition of the transaction graph.
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Frequent Connected Subgraph Mining

The Mining Algorithm

Input: database DB of graphs of tree-width at most £ and integer ¢ > 0
Output:all ¢-frequent connected subgraphs

/I (preprocessing of the transaction graphs)
forall G in DB do
compute a nice tree-decomposition 7'D(G) of G
forall node z in TD(G) do X . := {(0,0,0,0)}
// (computing frequent subgraphs consisting of a single vertex)
So=0
forall graphs H consisting of a single labeled vertex do PROCESS(H, Sp) /I next slide
// (computing frequent subgraphs consisting of at least one edge)
for(l:=0; S;#0; l:=1+1)do
CH-I = SH—I — @
11: forall P € S; do
12: forall H € p(P) satisfying tree-width(H) < kA H ¢ C;.1 Ap~ ' (H) C S; do
13: add H to CH—l
14: PROCESS(H, Si+1) /I next slide

—h
W~~~k WwWwh —
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Frequent Connected Subgraph Mining

Function Process (Lines 7 and 14)

function PROCESS(H, S)

1: counter := 0
2. forall G in DB do

3: unmark G

4: r:=rootof TD(G)

5:  Ticn(H,r) = FEASIBLECHARACTERISTICS(H, G, TD(G),r) // (Slide 66)
6. if3(S,D,H,+) e I'(H,r)equivalentto some £ € X, UTsch(H, ) then

7: counter := counter + 1 /I (H is subgraph isomorphic to &)
8: mark G

9: if counter > ¢ then /[l (H is frequent)

10: print H andadd itto S
11: forall G in DB such that ¢ is marked do

12 forall node z iIn TD(G) do 2, = X, Ul ch(H, 2)
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Frequent Connected Subgraph Mining

Example
mining problem: a
list all 1-frequent connected subgraphs of the database b

consisting of the single transaction graph G:

= j.e., all subtrees

= all vertices in H and G have the same label d e
(not denoted)
» edge labels are denoted by colors
(i.e., there are 3 edge labels)
= see also the previous example
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Frequent Connected Subgraph Mining

Example (cont'd)

Steps 1 — 4 of the alg. on slide 78:
= compute nice tree-decomposition of G

= assign the empty iso-quadruple to each node
(0,0,0,0) {a,b}

{b}

{b} {c}

(0,0,0,0) L {c,d}
d e (0,0,0,0) 0,0,0,0)

=
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Frequent Connected Subgraph Mining

Example: Feasible Characteristics

Steps 6-7 of the alg.
on Slide 78

pattern Hy : e,

(S, D, K)-triples for possible
feasible iso-quadruples:

b ‘E@T@T@_}a (®3H03H0)
o ({u}?maHU)
a
transaction b
graph G: }
d. .e

S{) = {H()} =

(ma H'[h IIU? G))
({u},0, Ho,u > a)
({u},0,Ho,u — b)

0,0,0,0)

({u},0, Ho, u + a)

(,0,0,0)

({u},0, Ho,u

— b)

(0,0,0,0)

(0, Ho, Ho, 0)
({u},0, Hyp,u > b)
(9'} ®'} @1 9)

(ma H'[h HD? G))
({u},0, Ho,u > b)
({u},0, Ho,u = ¢
(0,0,0,0)

(0,Ho, Ho,0)
({u},0, Ho,u + ¢)
(@} ®'} @1 @)

(ma H'[h HD? G))
({u},0, Ho,u > c)

({u},0, Hy,u — d)

(0,0,0,0)
new el
({u},0, Ho,u = c)
({u},0,Ho,u — e)
Old / (wa ®a @,@)

({u},0, Ho, u — d)
0,0,0,0)

(0, Ho, Ho,0)
({u},0, Ho,u — c)
(@} ®'} @1 @)
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Frequent Connected Subgraph Mining

Example (cont'd)

Step 12 of the alg.
on slide 78
(0) = {o—e,0—0,0—0}

pattern H;: ’<_.y

(S, D, K)-triples for possible
feasible iso-quadruples:

o (3%, (0,H,, Hy)

o ({afsbe), ({x},y, Hh)
o b, ({y}, =, Hi)
o ({z,y},0, Hy)

d
transaction b
graph G:
C
d. .e

({z},{y}, Hi,z — b)
(y}.{z}, Hi,y = b)

(ma H01 HOa G))

Hi €51 <= ({u},0,Ho,urs a)

({u},0, Ho,u — b)
(G: (Da @: 9)

({m}aya Hl,ﬂ? = b)
(y},z, Hi,y — b)
(ma H'[h HD? @))
({u},@, Ho,u — b)
(0,0,0,0)

z,y},0,Hi,z — b,y > c)
z,y},0,Hi,x — ¢,y — b)

(0,Ho, Ho, 0)

{c.e}

({u},0,Hp,u > ¢)
(0,0,0,0)

({u},0, Hyp,u — c)
({u},0, Ho,u > €)
(0,0,0,0)
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Frequent Connected Subgraph Mining

Example (cont'd)

Step 12 of the alg.
on slide 21
o(0) = {o—e,0—0,0

o}

attern Hy: o—e
P > b g

(S, D, K)-triples for possible
feasible iso-quadruples:

o (0%, (0,Ho, Ho)

o t{ptbp), ({p} g, H2)
o tta-4-a), ({a},p, H2)
e ({p,q},0, H2)

Hy €5 «

(0, Ha, -,0)
({z},y, H1,z — b)
({y},z, Hi,y — b)
(0, Ho,u,0)

({u},0,Ho,u — a)
({u},@, Ho,u — b)
(0,0,0,0)

(0, Ha, H2,0)
({z},y, H1,z — b)
({'y},m, Hlay = b)
(ma HOa HOa G))
({u},0, Ho,u = b)
(©,0,0,0)

{p}>Qs HQap = C)
{Q}’_‘p? HQ?q H C)

({p}a q,Ha,p— C)
({g},p, H2,q9— ©)

(
(
({z,y},0,H1,z — b,y — c)
({z,y},0,H1,z — c,y — b)
(Q)a HO) HO) @)

({u},0, Hp,u — b)
({u},0,Ho,u > c)
(0,0,0,0)

(ma H01 HD? @))
({u},0, Ho,u > c)
(0,0,0,0)

({P}, q, Hg,‘p = C)
({Q}:p; HQ: qr— C)
({r},q, H2,p — d)
({q},p, H2,q — d)
({p,q},0,H2,p— ¢c,q — d)
({p,q},0,H2,p— d,q > c)

a ({u},0, Ho,u ~ d) (0, Ho, Ho, 0)
(G)?@:@?@) ({u},@, Ho,u — C)
_ ({u},0, Ho,u + d)
transaction b el (0,0,0,0)
graph G: ({p.q},0,Ha,p — c,q — €) ({p},q, H2,p — )
C ({p,q},0, H2,p— e,q = ¢ ({g},p, H2,q9 — ¢)
({u}ama H[],?L — C) (ma HD?HD?G)
¢ P ({’U.}, @), H(],u — E) ({u}a ma H[):u = C)
d e (0,0,0,0) (0,0,0,0)
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Frequent Connected Subgraph Mining

Example (cont'd)

and so on...

notice that the algorithm could further be improved because there are redundant
characteristics

» pecause feasible iso-quadruples are processed

the number of redundant characteristics is polynomial in the combined size of the
input and the set of previously generated frequent pattern

using some advanced data structure, redundant characteristics can be removed
In time polynomial in the input

85

\\

PhD Course, Szeged, 2012 - © T.Horvath "
universitatbonn F raun hOfe r

IIIIIIIIIIIIIIIIIII SWILHELMS-UNIVERSITHT IAIS



Frequent Connected Subgraph Mining

Summary

= efficient pattern mining is possible even for computationally hard matching
operators

= the technique might be of some independent interest and useful to design
efficient algorithms if straightforward dynamic programming requires
exponential space

» the positive theoretical result of this lecture is not always practical

- e.g., for k>4 (or 5?), no practical algorithm is known for deciding whether a
graph has tree-width at most k

- for k < 4: fast algorithm [Arnborg, Corneil, Proskurowski, 1987]
chemical graphs of pharmacological compounds have mostly tree-width at most 3

open problem: Is it possible to mine frequent connected subgraphs in graphs
of bounded tree-width with polynomial delay?
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