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Frequent Connected Subgraph Mining 

Outline 

 motivation, problem definition, and a negative complexity result  

 mining trees with the levelwise search algorithm 

 mining bounded tree-width graphs 
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Notions: Isomorphism and Subgraph Isomorphism 
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Mining Frequent Connected Subgraphs 



 

5 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

Virtual screening in drug discovery:  
select a limited number of candidate compounds from millions of database 
molecules that are most likely to possess a desired biological activity 

Frequent Subgraph Mining: Motivation 

... ... 

??? ??? ??? 

inactive inactive 

inactive inactive inactive 

active active 

active 

training molecules  

test molecules  
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Virtual Screening in Drug Discovery 

molecules give rise to labeled undirected graphs 

vertex label 
 

edge label 
“double” 

 
Molecules and their Molecular Graphs 
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Virtual Screening in Drug Discovery 
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Virtual Screening in Drug Discovery 
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Enumeration Complexity 

the size of the output (theory) can be exponential in the size of the input D 

  the output cannot be computed in time polynomial in the size of D  

enumeration complexities:  
a set of S with N elements, say s1,…, sN, are listed with  

 polynomial delay if the time before printing s1, the time between printing si 
and si+1 for every i=1,…,N-1, and the termination time after printing sN is 
bounded by a polynomial of the size of the input, 

 incremental polynomial time if s1 is printed with polynomial delay, the 
time between printing si and si+1 for every i=1,…,N-1 (resp. the termination 
time after printing sN) is bounded by a polynomial of the combined size of 
the input and the set s1,..., si (resp. S), 

 output polynomial time if S is printed in the combined size of the input 
and the entire set S  
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A Negative Complexity Result 

Thm:  The frequent connected subgraph mining problem cannot be solved in 
   output-polynomial time (unless P = NP). 

Proof:  

 reduction: Hamiltonian path problem 

- Hamiltonian path problem:  
 Given a graph G with n vertices, decide whether or not G has a  
 Hamiltonian path, i.e., a path containing each vertex of G exactly once 

- NP-complete problem    
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Proof of the Negative Complexity Result 
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Frequent Connected Subgraph Mining 

Outline 

 motivation, problem definition, and a negative complexity result  

 mining trees with the levelwise search algorithm 

 mining bounded tree-width graphs 
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A Generic Levelwise Search Graph Mining Algorithm 
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Efficiency Conditions for the Generic Graph Mining Algorithm 
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Efficiency Conditions for the Generic Graph Mining Algorithm 
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Application: Frequent Subtree Mining in Forests 
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Frequent Subtree Mining in Forests 

Thm: The frequent connected subgraph mining problem can be solved with 
  polynomial delay for forest transaction graphs. 

proof: 

 each condition of the previous theorem holds, i.e., 
  (i) forests are closed downward, 

  (ii)  it can be decided in polynomial time, whether a graph G is a forest, 

  (iii) subtree isomorphism can be decided in polynomial time 
 in time O(n2.5) [Matula,1978] 

 can further be improved by a log factor [Shamir &Tsur,1999]  



 

18 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

Subtree Isomorphism 
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Bottom-up Subtree Isomorphism algorithm for Rooted Trees 
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Summary 

 mining frequent connected subgraphs in arbitrary transaction graphs is 
computationally hard 

- cannot be solved in output-polynomial time (unless P = NP)  

 for forest transaction graphs, the problem can be solved with polynomial 
delay 

- obtained by using a generic levelwise search algorithm 

- frequent patterns are not printed immediately after their generation 

 polynomial delay vs. incremental polynomial time 
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Frequent Connected Subgraph Mining 

Outline 

 motivation, problem definition, and a negative complexity result  

 mining trees with the levelwise search algorithm 

 mining bounded tree-width graphs 
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Positive and Negative Results So Far 

frequent connected subgraph mining: 

 computationally intractable for arbitrary transaction graphs 

 cannot be solved in output-polynomial time (unless P = NP) 

 can be solved efficiently for forest transaction graphs 

 with polynomial delay 

Goal: Generalize the positive result on forests to a broader graph class! 

 What about graphs of bounded tree-width? 
 parameterized graph class (naturally) generalizing forests 
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A Generic Levelwise Search Graph Mining Algorithm (recap) 
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Efficiency Conditions (recap) 

Problem: 
 subgraph isomorphism is NP-complete  even for graphs of tree-width 2 

 Condition (iii) can be relaxed! 
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Problem Setting 
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Main Result 

Thm [H. & Ramon, 2010]:  
the frequent connected subgraph mining problem can be solved in 
incremental polynomial time for graphs of bounded tree-width 

significance of this result: 

 efficient pattern mining is possible even for computationally hard pattern matching 
operators 

- subgraph isomorphism is NP-complete for bounded tree-width graphs 

 first positive non-trivial result beyond trees 

 positive result for a practically relevant graph class 

- e.g., molecular graphs of most pharmacological compounds have tree-width ≤ 3 
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Example 

NCI Chemical Dataset:  
 250251 compounds 
  tree-width #molecules 
   0          13 isolated vertices 
   1    21950 trees 
   2  221675 mostly outerplanar 
   3      6548      
      ≥4          65      
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Outline for the Rest (Technical Part) of this Topic 

 tree-width 

 subgraph isomorphism for bounded tree-width graphs 

 remarks and open problems 
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Tree-width (Robertson & Seymour, 1986) 
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 measure of the tree-likeness of graphs 

- e.g., the tree-width of trees is 1 and the tree-width of cycles is 2 

 useful tool in the design of algorithms because 

- many computationally hard problems on graphs become polynomial 
for graphs of bounded tree-width 

- many practically relevant graph classes have small tree-width  

 e.g., k-outerplanar graphs have tree-width at most 3k-1 

Tree-width (Robertson & Seymour,1986) 
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Example 

G has 

 3n+1 vertices; 4n+1 edges 

 2n+n simple cycles 

 2-outerplanar graph 

 tree-width: 2 

a1 a3 a2 an+1 an 

b1 b2 bn 

c1 c2 cn 

{a1,a2,b1} {a1,a2,c1} 

{a1,a2,an+1} 

{a2,a3,an+1} 

{an,an+1} 

{a2,a3,b2} 

{a2,a3,c2} 

{an,an+1,bn} {an,an+1,cn} 

G 

tree decomposition 
of G with bags 
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 the class of bounded tree-width graphs is closed downward 
- any subgraph of a graph of tree-width at most k has tree-width at most k 

 membership problem can be decided in linear time 
- for constant k, one can decide in linear time, whether a graph has tree-width  

at most k, and if so, compute a tree-decomposition of tree-width at most k 
- [Bodlaender, 1996]  

 subgraph isomorphism remains NP-complete for graphs of bounded  
tree-width 

- NP-complete if the pattern is not k-connected or has more than O(k) vertices  
of unbounded degree; o/w it can be decided in polynomial time 
 [Gupta & Nishimura, 1996] 

Some Properties of Bounded Tree-width Graphs 
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 generic mining algoritm: candidate generation/test is not directly applicable 

- because subgraph isomorphism is NP-complete 

  polynomial delay: open question 

What about incremental polynomial time? 

 modify the generic levelwise search graph mining algorithm  

- slide 34 

- changes: print frequent patterns directly after their generation (slide 35) 

 

Mining Bounded Tree-Width Graphs 



 

34 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

A Generic Levelwise Search Graph Mining Algorithm (recap) 
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Modified Levelwise Search Graph Mining Algorithm 
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Efficiency Conditions for the Modified Graph Mining Algorithm 
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Application to Mining Bounded Tree-Width Graphs 



 

38 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

Mining Bounded Tree-width Graphs 
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Main Idea of the Proof 
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Preprocessing Step 
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Nice Tree-Decomposition 

 

 

 

 

  

join node 
 

separator node 

  

 

 

 

u 

v w 

z bag(z) = bag(v)∪bag(w) 

bag(v) ⊆ bag(u) 

TD(G) 
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Iso-Quadruples 
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Iso-Quadruples 

induced subgraph of G defined by the 
union of the bags of z’s descendants 
(z is also a descendant of itself) 
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Computing Characteristics 

[Matoušek & Thomas, 1992; also Hajiaghayi & Nishimura, 2007]: 
compute the set of z-characteristics for every node z in TD(G) with dynamic 
programming: 

- postorder traversal of TD(G) 

 straightforward for leaf nodes (next slide), 

 use only the characteristics of the child(ren) for separator and join nodes 
(next slides) 

notations: for pattern graph H, transaction graph G, both of bounded  
              tree-width, nice tree-decomposition TD(G), and  node z in TD(G):  

 Γ(H,z) denotes the set of iso-quadruples of H relative to z 

 Γch(H,z) denotes the set of z-characteristics of H 
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Computing Characteristics: Leaf Nodes 
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Computing Characteristics: Leaf Nodes 

 
 

  

 

  

 
 

 

 

 

 

S 

H   

K  

 

 

 
z  

 

G 
G[bag(z)] 

 

ψ 
TD(G) 
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Computing Characteristics: Separator Nodes 
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Computing Characteristics: Separator Nodes 
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Computing Characteristics: Join Nodes 
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Computing Characteristics: Join Nodes 
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Example 

Is pattern H subgraph isomorphic to transaction graph G ? 

 all vertices in H and G have the same label (not denoted) 

 edge labels are denoted by colors (i.e., there are 3 edge labels) 

 

 

 

 

 

a 

b 

c 

d e 

 

 

u 

v 
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Example (cont‘d) – Nice Tree-Decomposition 

 

 

 

 

 

 

a 

b 

c 

d e 

 

 

 

{a,b} 

 {b,c} 

  
{c,d} 
 

  

 {c,e} 

{a} {b} 

{b} {c} 

{d} {c} 
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Example – Characteristics 

 

 

 

 

 

a 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 

 

  

 
{c,e} 

{a} {b} 

{b} {c} 

{d} {c} 

  

u v pattern H: 

transaction 
graph G: 

YES, H is  
subgraph isom. 
to G! 
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Computing Characteristics 

problem: the number of iso-quadruples for separator and join nodes can be  
    exponentially large  

Thm: For graphs of bounded tree-width and bounded degree, the set of  
    z-characteristics can be computed in polynomial time for every  
     node z 

- [Matoušek & Thomas, 1992]  

 we cannot use this result  
- no additional assumption besides bounded tree-width 
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Equivalent Iso-Quadruples 
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Equivalent Iso-Quadruples 
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Non-Redundant Iso-Quadruples 
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Non-Redundant Iso-Quadruples 
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Non-Redundant Iso-Quadruples 
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Claim (i) 

 

 

  

 

  

 
 

 

 

 

 

S 

H 
  

 

 

K  

 v 

 
 

Proof: (blackboard) 
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Claim (i) 

 

 

  
 

  

 
 

 

 

 

 

S 

H 

 

 

 

 

 

  

Proof: (blackboard) 
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Claim (i) 
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Claim (i) 
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Claim (ii): Algorithm Computing Feasible Characteristics 
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Claim (ii): Algorithm FeasibleCharacteristics 

next slide 

join operator; will be defined 

to be defined 
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I. Computing Feasible Iso-Quadruples (Line 2) 
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II. Leaf Nodes (Line 5) 
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III. Separator Nodes (Lines 7-9) 
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III. Separator Nodes (Lines 7-9) 
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III. Separator Nodes (Lines 7-9) 
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IV. Join Nodes (Lines 11-14) 
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IV. Join Nodes (Lines 11-14): The Join Operator 
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IV. Join Nodes (Lines 11-14): The Join Operator 
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IV. Join Nodes (Lines 11-14): The Join Operator 
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IV. Join Nodes (Lines 11-14) 
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IV. Join Nodes (Lines 11-14) 
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Putting Together 

Thm: The algorithm on the next two slides lists frequent connected subgraphs in 
 incremental polynomial time. 

Proof: Using the previous results, it follows by induction on the depth of the tree-
decomposition of the transaction graph.   
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The Mining Algorithm 
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Function Process (Lines 7 and 14) 
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Example 

mining problem: 

list all 1-frequent connected subgraphs of the database  
consisting of the single transaction graph G: 

 i.e., all subtrees 
 all vertices in H and G have the same label  

(not denoted) 
 edge labels are denoted by colors  

(i.e., there are 3 edge labels) 
 see also the previous example 
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Example (cont‘d) 

 

 

 

 

 

 

a 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 
 

  

 {c,e} 

{a} {b} 

{b} {c} 

{d} {c} 

Steps 1 – 4 of the alg. on slide 78: 

 compute nice tree-decomposition of G 

 assign the empty iso-quadruple to each node 
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Example: Feasible Characteristics 

 

 

 

 

 

a 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 

 

  

 
{c,e} 

{a} {b} 

{b} {c} 

{d} {c} 
transaction 
graph G: 

Steps 6-7 of the alg. 
on Slide 78 

new 

old 
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Example (cont‘d) 

 

 

 

 

 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 

 

  

 
{c,e} 

{a} {b} 

{b} {c} 

{d} {c} 
transaction 
graph G: 

Step 12 of the alg.  
on slide 78 

ρ(  ) = {       ,       ,       }       

x y   

 

a 
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Example (cont‘d) 

 

 

 

 

 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 

 

  

 
{c,e} 

{a} {b} 

{b} {c} 

{d} {c} 

transaction 
graph G: 

Step 12 of the alg.  
on slide 21 

ρ(  ) = {       ,       ,       }       

p q   

 

a 
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Example (cont‘d) 

and so on… 

notice that the algorithm could further be improved because there are redundant 
 characteristics 

 because feasible iso-quadruples are processed 

 the number of redundant characteristics is polynomial in the combined size of the 
input and the set of previously generated frequent pattern 

 using some advanced data structure, redundant characteristics can be removed  
in time polynomial in the input 
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Summary 

 efficient pattern mining is possible even for computationally hard matching 
operators 

 the technique might be of some independent interest and useful to design 
efficient algorithms if straightforward dynamic programming requires 
exponential space 

 the positive theoretical result of this lecture is not always practical 
- e.g., for k > 4 (or 5?), no practical algorithm is known for deciding whether a 

graph has tree-width at most k 

- for k < 4: fast algorithm [Arnborg, Corneil, Proskurowski, 1987] 
- chemical graphs of pharmacological compounds have mostly tree-width at most 3 

open problem:  Is it possible to mine frequent connected subgraphs in graphs 
  of bounded tree-width with polynomial delay?  
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