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Frequent Connected Subgraph Mining 

Outline 

 motivation, problem definition, and a negative complexity result  

 mining trees with the levelwise search algorithm 

 mining bounded tree-width graphs 
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Notions: Isomorphism and Subgraph Isomorphism 
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Mining Frequent Connected Subgraphs 
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Virtual screening in drug discovery:  
select a limited number of candidate compounds from millions of database 
molecules that are most likely to possess a desired biological activity 

Frequent Subgraph Mining: Motivation 

... ... 

??? ??? ??? 

inactive inactive 

inactive inactive inactive 

active active 

active 

training molecules  

test molecules  
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Virtual Screening in Drug Discovery 

molecules give rise to labeled undirected graphs 

vertex label 
 

edge label 
“double” 

 
Molecules and their Molecular Graphs 
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Virtual Screening in Drug Discovery 
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Virtual Screening in Drug Discovery 
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Enumeration Complexity 

the size of the output (theory) can be exponential in the size of the input D 

  the output cannot be computed in time polynomial in the size of D  

enumeration complexities:  
a set of S with N elements, say s1,…, sN, are listed with  

 polynomial delay if the time before printing s1, the time between printing si 
and si+1 for every i=1,…,N-1, and the termination time after printing sN is 
bounded by a polynomial of the size of the input, 

 incremental polynomial time if s1 is printed with polynomial delay, the 
time between printing si and si+1 for every i=1,…,N-1 (resp. the termination 
time after printing sN) is bounded by a polynomial of the combined size of 
the input and the set s1,..., si (resp. S), 

 output polynomial time if S is printed in the combined size of the input 
and the entire set S  
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A Negative Complexity Result 

Thm:  The frequent connected subgraph mining problem cannot be solved in 
   output-polynomial time (unless P = NP). 

Proof:  

 reduction: Hamiltonian path problem 

- Hamiltonian path problem:  
 Given a graph G with n vertices, decide whether or not G has a  
 Hamiltonian path, i.e., a path containing each vertex of G exactly once 

- NP-complete problem    
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Proof of the Negative Complexity Result 
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Frequent Connected Subgraph Mining 

Outline 

 motivation, problem definition, and a negative complexity result  

 mining trees with the levelwise search algorithm 

 mining bounded tree-width graphs 
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A Generic Levelwise Search Graph Mining Algorithm 
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Efficiency Conditions for the Generic Graph Mining Algorithm 
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Efficiency Conditions for the Generic Graph Mining Algorithm 
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Application: Frequent Subtree Mining in Forests 
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Frequent Subtree Mining in Forests 

Thm: The frequent connected subgraph mining problem can be solved with 
  polynomial delay for forest transaction graphs. 

proof: 

 each condition of the previous theorem holds, i.e., 
  (i) forests are closed downward, 

  (ii)  it can be decided in polynomial time, whether a graph G is a forest, 

  (iii) subtree isomorphism can be decided in polynomial time 
 in time O(n2.5) [Matula,1978] 

 can further be improved by a log factor [Shamir &Tsur,1999]  
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Subtree Isomorphism 
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Bottom-up Subtree Isomorphism algorithm for Rooted Trees 
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Summary 

 mining frequent connected subgraphs in arbitrary transaction graphs is 
computationally hard 

- cannot be solved in output-polynomial time (unless P = NP)  

 for forest transaction graphs, the problem can be solved with polynomial 
delay 

- obtained by using a generic levelwise search algorithm 

- frequent patterns are not printed immediately after their generation 

 polynomial delay vs. incremental polynomial time 
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Frequent Connected Subgraph Mining 

Outline 

 motivation, problem definition, and a negative complexity result  

 mining trees with the levelwise search algorithm 

 mining bounded tree-width graphs 
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Positive and Negative Results So Far 

frequent connected subgraph mining: 

 computationally intractable for arbitrary transaction graphs 

 cannot be solved in output-polynomial time (unless P = NP) 

 can be solved efficiently for forest transaction graphs 

 with polynomial delay 

Goal: Generalize the positive result on forests to a broader graph class! 

 What about graphs of bounded tree-width? 
 parameterized graph class (naturally) generalizing forests 
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A Generic Levelwise Search Graph Mining Algorithm (recap) 
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Efficiency Conditions (recap) 

Problem: 
 subgraph isomorphism is NP-complete  even for graphs of tree-width 2 

 Condition (iii) can be relaxed! 
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Problem Setting 



 

26 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

Main Result 

Thm [H. & Ramon, 2010]:  
the frequent connected subgraph mining problem can be solved in 
incremental polynomial time for graphs of bounded tree-width 

significance of this result: 

 efficient pattern mining is possible even for computationally hard pattern matching 
operators 

- subgraph isomorphism is NP-complete for bounded tree-width graphs 

 first positive non-trivial result beyond trees 

 positive result for a practically relevant graph class 

- e.g., molecular graphs of most pharmacological compounds have tree-width ≤ 3 
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Example 

NCI Chemical Dataset:  
 250251 compounds 
  tree-width #molecules 
   0          13 isolated vertices 
   1    21950 trees 
   2  221675 mostly outerplanar 
   3      6548      
      ≥4          65      
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Outline for the Rest (Technical Part) of this Topic 

 tree-width 

 subgraph isomorphism for bounded tree-width graphs 

 remarks and open problems 
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Tree-width (Robertson & Seymour, 1986) 



 

30 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

 measure of the tree-likeness of graphs 

- e.g., the tree-width of trees is 1 and the tree-width of cycles is 2 

 useful tool in the design of algorithms because 

- many computationally hard problems on graphs become polynomial 
for graphs of bounded tree-width 

- many practically relevant graph classes have small tree-width  

 e.g., k-outerplanar graphs have tree-width at most 3k-1 

Tree-width (Robertson & Seymour,1986) 
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Example 

G has 

 3n+1 vertices; 4n+1 edges 

 2n+n simple cycles 

 2-outerplanar graph 

 tree-width: 2 

a1 a3 a2 an+1 an 

b1 b2 bn 

c1 c2 cn 

{a1,a2,b1} {a1,a2,c1} 

{a1,a2,an+1} 

{a2,a3,an+1} 

{an,an+1} 

{a2,a3,b2} 

{a2,a3,c2} 

{an,an+1,bn} {an,an+1,cn} 

G 

tree decomposition 
of G with bags 
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 the class of bounded tree-width graphs is closed downward 
- any subgraph of a graph of tree-width at most k has tree-width at most k 

 membership problem can be decided in linear time 
- for constant k, one can decide in linear time, whether a graph has tree-width  

at most k, and if so, compute a tree-decomposition of tree-width at most k 
- [Bodlaender, 1996]  

 subgraph isomorphism remains NP-complete for graphs of bounded  
tree-width 

- NP-complete if the pattern is not k-connected or has more than O(k) vertices  
of unbounded degree; o/w it can be decided in polynomial time 
 [Gupta & Nishimura, 1996] 

Some Properties of Bounded Tree-width Graphs 
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 generic mining algoritm: candidate generation/test is not directly applicable 

- because subgraph isomorphism is NP-complete 

  polynomial delay: open question 

What about incremental polynomial time? 

 modify the generic levelwise search graph mining algorithm  

- slide 34 

- changes: print frequent patterns directly after their generation (slide 35) 

 

Mining Bounded Tree-Width Graphs 
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A Generic Levelwise Search Graph Mining Algorithm (recap) 

 

 

 



 

35 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

Modified Levelwise Search Graph Mining Algorithm 
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Efficiency Conditions for the Modified Graph Mining Algorithm 
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Application to Mining Bounded Tree-Width Graphs 
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Mining Bounded Tree-width Graphs 
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Main Idea of the Proof 
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Preprocessing Step 
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Nice Tree-Decomposition 

 

 

 

 

  

join node 
 

separator node 

  

 

 

 

u 

v w 

z bag(z) = bag(v)∪bag(w) 

bag(v) ⊆ bag(u) 

TD(G) 
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Iso-Quadruples 
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Iso-Quadruples 

induced subgraph of G defined by the 
union of the bags of z’s descendants 
(z is also a descendant of itself) 
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Computing Characteristics 

[Matoušek & Thomas, 1992; also Hajiaghayi & Nishimura, 2007]: 
compute the set of z-characteristics for every node z in TD(G) with dynamic 
programming: 

- postorder traversal of TD(G) 

 straightforward for leaf nodes (next slide), 

 use only the characteristics of the child(ren) for separator and join nodes 
(next slides) 

notations: for pattern graph H, transaction graph G, both of bounded  
              tree-width, nice tree-decomposition TD(G), and  node z in TD(G):  

 Γ(H,z) denotes the set of iso-quadruples of H relative to z 

 Γch(H,z) denotes the set of z-characteristics of H 
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Computing Characteristics: Leaf Nodes 
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Computing Characteristics: Leaf Nodes 

 
 

  

 

  

 
 

 

 

 

 

S 

H   

K  

 

 

 
z  

 

G 
G[bag(z)] 

 

ψ 
TD(G) 
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Computing Characteristics: Separator Nodes 



 

48 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

Computing Characteristics: Separator Nodes 
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Computing Characteristics: Join Nodes 
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Computing Characteristics: Join Nodes 
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Example 

Is pattern H subgraph isomorphic to transaction graph G ? 

 all vertices in H and G have the same label (not denoted) 

 edge labels are denoted by colors (i.e., there are 3 edge labels) 

 

 

 

 

 

a 

b 

c 

d e 

 

 

u 

v 
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Example (cont‘d) – Nice Tree-Decomposition 

 

 

 

 

 

 

a 

b 

c 

d e 

 

 

 

{a,b} 

 {b,c} 

  
{c,d} 
 

  

 {c,e} 

{a} {b} 

{b} {c} 

{d} {c} 
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Example – Characteristics 

 

 

 

 

 

a 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 

 

  

 
{c,e} 

{a} {b} 

{b} {c} 

{d} {c} 

  

u v pattern H: 

transaction 
graph G: 

YES, H is  
subgraph isom. 
to G! 
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Computing Characteristics 

problem: the number of iso-quadruples for separator and join nodes can be  
    exponentially large  

Thm: For graphs of bounded tree-width and bounded degree, the set of  
    z-characteristics can be computed in polynomial time for every  
     node z 

- [Matoušek & Thomas, 1992]  

 we cannot use this result  
- no additional assumption besides bounded tree-width 



 

55 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

Equivalent Iso-Quadruples 
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Equivalent Iso-Quadruples 
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Non-Redundant Iso-Quadruples 
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Non-Redundant Iso-Quadruples 
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Non-Redundant Iso-Quadruples 
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Claim (i) 

 

 

  

 

  

 
 

 

 

 

 

S 
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 v 

 
 

Proof: (blackboard) 



 

61 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

Claim (i) 
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Proof: (blackboard) 
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Claim (i) 
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Claim (i) 
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Claim (ii): Algorithm Computing Feasible Characteristics 
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Claim (ii): Algorithm FeasibleCharacteristics 

next slide 

join operator; will be defined 

to be defined 
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I. Computing Feasible Iso-Quadruples (Line 2) 
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II. Leaf Nodes (Line 5) 
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III. Separator Nodes (Lines 7-9) 



 

69 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Frequent Connected Subgraph Mining 

III. Separator Nodes (Lines 7-9) 
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III. Separator Nodes (Lines 7-9) 
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IV. Join Nodes (Lines 11-14) 
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IV. Join Nodes (Lines 11-14): The Join Operator 
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IV. Join Nodes (Lines 11-14): The Join Operator 
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IV. Join Nodes (Lines 11-14): The Join Operator 
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IV. Join Nodes (Lines 11-14) 
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IV. Join Nodes (Lines 11-14) 
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Putting Together 

Thm: The algorithm on the next two slides lists frequent connected subgraphs in 
 incremental polynomial time. 

Proof: Using the previous results, it follows by induction on the depth of the tree-
decomposition of the transaction graph.   
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The Mining Algorithm 
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Function Process (Lines 7 and 14) 
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Example 

mining problem: 

list all 1-frequent connected subgraphs of the database  
consisting of the single transaction graph G: 

 i.e., all subtrees 
 all vertices in H and G have the same label  

(not denoted) 
 edge labels are denoted by colors  

(i.e., there are 3 edge labels) 
 see also the previous example 
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Example (cont‘d) 

 

 

 

 

 

 

a 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 
 

  

 {c,e} 

{a} {b} 

{b} {c} 

{d} {c} 

Steps 1 – 4 of the alg. on slide 78: 

 compute nice tree-decomposition of G 

 assign the empty iso-quadruple to each node 
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Example: Feasible Characteristics 

 

 

 

 

 

a 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 

 

  

 
{c,e} 

{a} {b} 

{b} {c} 

{d} {c} 
transaction 
graph G: 

Steps 6-7 of the alg. 
on Slide 78 

new 

old 
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Example (cont‘d) 

 

 

 

 

 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 

 

  

 
{c,e} 

{a} {b} 

{b} {c} 

{d} {c} 
transaction 
graph G: 

Step 12 of the alg.  
on slide 78 

ρ(  ) = {       ,       ,       }       

x y   

 

a 
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Example (cont‘d) 

 

 

 

 

 

b 

c 

d e 

 

 

 

{a,b} 

 
{b,c} 

  
{c,d} 

 

  

 
{c,e} 

{a} {b} 

{b} {c} 

{d} {c} 

transaction 
graph G: 

Step 12 of the alg.  
on slide 21 

ρ(  ) = {       ,       ,       }       

p q   

 

a 
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Example (cont‘d) 

and so on… 

notice that the algorithm could further be improved because there are redundant 
 characteristics 

 because feasible iso-quadruples are processed 

 the number of redundant characteristics is polynomial in the combined size of the 
input and the set of previously generated frequent pattern 

 using some advanced data structure, redundant characteristics can be removed  
in time polynomial in the input 
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Summary 

 efficient pattern mining is possible even for computationally hard matching 
operators 

 the technique might be of some independent interest and useful to design 
efficient algorithms if straightforward dynamic programming requires 
exponential space 

 the positive theoretical result of this lecture is not always practical 
- e.g., for k > 4 (or 5?), no practical algorithm is known for deciding whether a 

graph has tree-width at most k 

- for k < 4: fast algorithm [Arnborg, Corneil, Proskurowski, 1987] 
- chemical graphs of pharmacological compounds have mostly tree-width at most 3 

open problem:  Is it possible to mine frequent connected subgraphs in graphs 
  of bounded tree-width with polynomial delay?  
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