

EXTRACTING GEOMETRICAL FEATURES OF DISCRETE IMAGES FROM THEIR PROJECTIONS

TAMÁS S. TASI, PHD STUDENT DR. PÉTER BALÁZS, ASSISTANT PROFESSOR DEPARTMENT OF IMAGE PROCESSING AND COMPUTER GRAPHICS

2012.06.30. Conference of PhD Students in Computer Science

2

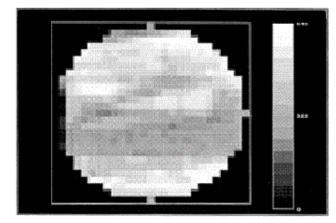
Outline

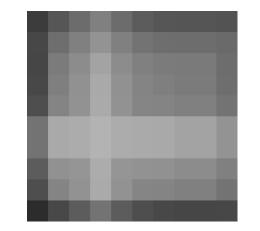
- Discrete tomography
- Geometrical properties of discrete sets
- Neural networks
- □ 3 investigated problems:
 - Determining connectedness and convexity from two projections in binary images
 - Perimeter estimation from two projections in binary images
 - Estimating the number of different intensities in discrete images from two projections

We assume, that the image only contains intensity values known beforehand:

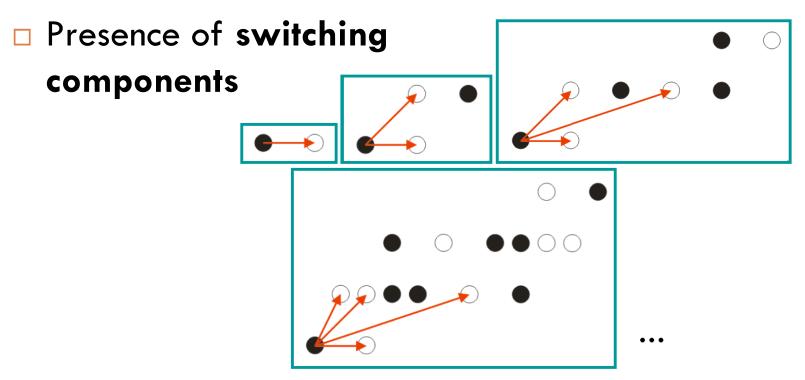
 $f:\mathbb{R}^2\to S$

In case S = {0,1}, then we are dealing with binary tomography



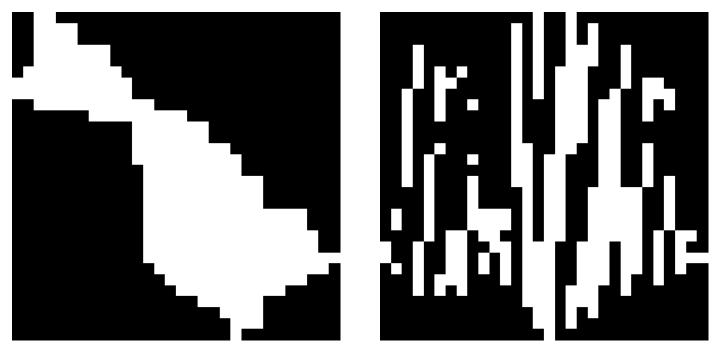


- **Small number** (<10) of projections are available
 - \Rightarrow the problem is usually underdetermined
 - \Rightarrow more than one possible solutions



We have to reduce the number of possible solutions:

- with the help of a model image, or
- with the aid of a priori geometrical/topological information

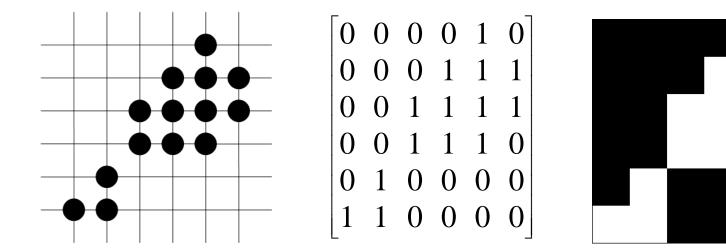


We have to reduce the number of possible solutions:

- with the help of a model image, or
- with the aid of a priori geometrical/topological information

Two projections of a discrete set

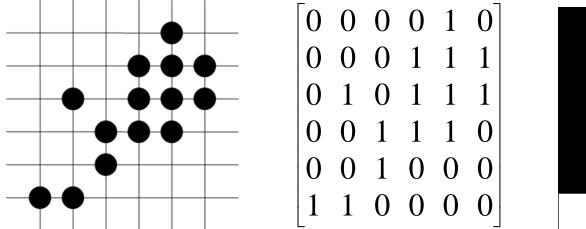
 \square Let $F_1 \subseteq \mathbb{Z}^2$ be a so-called discrete set

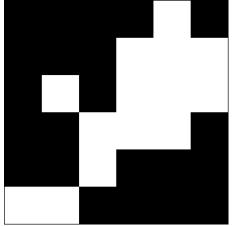


 $\mathcal{H}(F_1) = \mathbf{H}_1 = (1, 3, 4, 3, 1, 2)$ $\mathcal{V}(F_1) = \mathbf{V}_1 = (1, 2, 2, 3, 4, 2)$

Two projections of a discrete set

 \square Let $F_2 \subseteq \mathbb{Z}^2$ be another discrete set



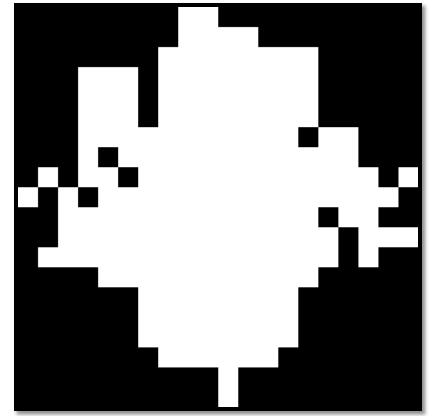


$$\mathcal{H}(F_2) = \mathbf{H}_2 = (1, 3, 4, 3, 1, 2)$$

 $\mathcal{V}(F_2) = \mathbf{V}_2 = (1, 2, 2, 3, 4, 2)$

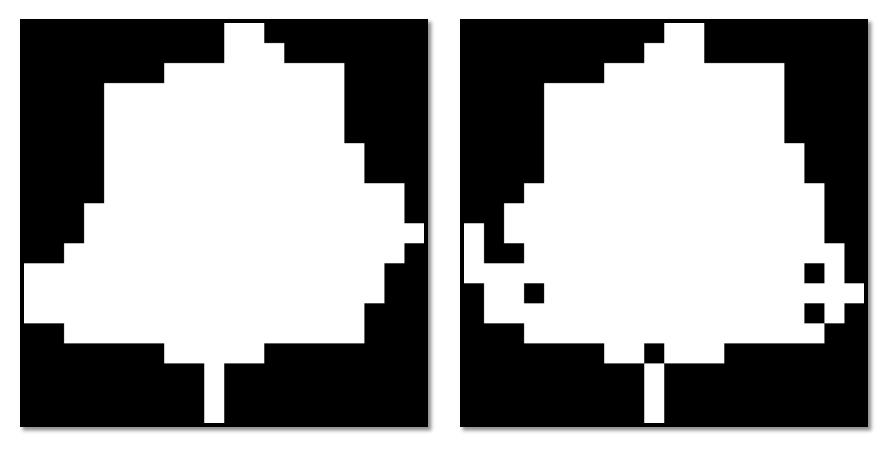
Properties of discrete sets

□ 4/8-connectedness



Properties of discrete sets

\square h-, v- and hv-convexity

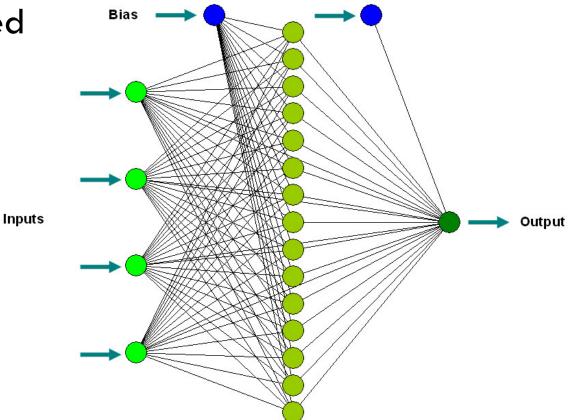


Properties of discrete sets

- Several reconstruction algorithms rely on the **prior** knowledge of these geometrical features
- Problems:
 - these are quite strict terms
 - the prior knowledge is often uncertain
 - which reconstruction method to choose is questionable
- Let's use data, which is available <u>before</u> the reconstruction process begins
 - \Rightarrow i.e. the **projections values**

Neural networks

- Inspired by the neural system of the human brain
- Learning algorithms that learn from a set of samples presented beforehand



Neural networks

Chosen implementations:

Bobby Anguelov's C++ realization

http://takinginitiative.net/category/artificial-intelligence/neural-networks/

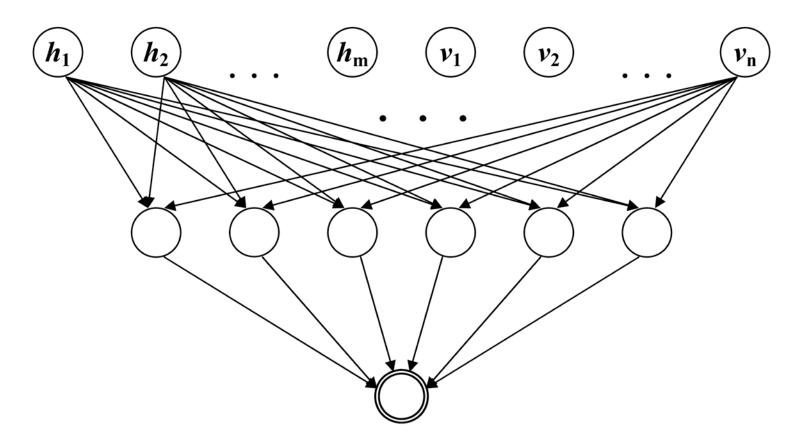
WEKA Data Mining Software – MLP

http://www.cs.waikato.ac.nz/ml/weka/index.html

- Common features of both:
 - backpropagation learning
 - momentum technique
 - feed-forward, 3-layer architecture
 - \blacksquare activation function g is a sigmoid

- Mostly for reconstruction purposes in discrete tomography
- Drawbacks:
 - one neuron often corresponds to one pixel(!)
 - ⇒ network size is close to being unmanageable
 - several million learning samples are needed
 - 10-20 projections from different directions are necessary to obtain results of sufficient quality
- Instead of actually reconstructing the image, we try to aid the reconstruction process

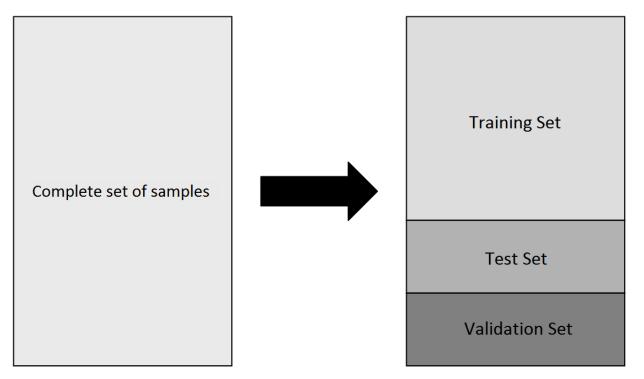
The I/O of the neural network in case of two orthogonal projections:



For the learning phase:

generate a huge dataset of samples

divide it to get a training-, a test- and a validation set



Modification of the weights of connections during the learning phase $w_{i,i} = w_{i,i} + \Delta w_{i,i}(t)$ $\Delta w_{i,i}(t) = \alpha a_i \Delta_i + \beta \Delta w_{i,i}(t-1)$ $\Delta_i = \mathbf{Err}_i g'(in_i)$ $W_{k,i} = W_{k,i} + \Delta W_{k,i}(t)$ $\Delta w_{k,i}(t) = \alpha a_k \Delta_i + \beta \Delta w_{k,i}(t-1)$ $\Delta_j = g'(in_j) \sum_i w_{j,i} \Delta_i$ $w_{k,j} = a_j = w_{j,i} = a_i$ a_k

- Parameters to set:
 - \blacksquare learning rate (lpha)
 - lacksquare momentum constant (eta)
 - number of hidden neurons
 - number of epochs
 - number of training- and test samples
 - advanced data partitioning methods to use
 - \square how to decrease α
 - etc.

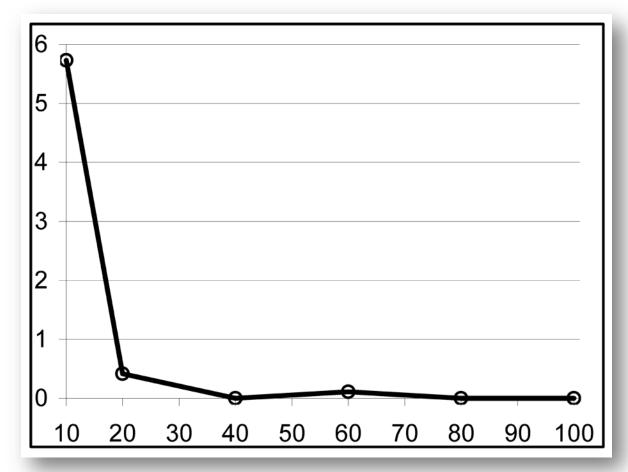
hv-convex 4-conn. sets vs. random binary images

2880-960-960 samples in each set

Size	Hidden neurons	TSA(%)	GSA(%)	VSA(%)	Err(%)
10	4	93.819	94.167	94.271	5.729
20	6	99.931	99.688	99.583	0.417
40	8	100.0	99.896	100.0	0.0
60	8	100.0	99.792	99.792	0.108
80	8	100.0	100.0	100.0	0.0
100	8	100.0	100.0	100.0	0.0

proved to be an easy task

Classification error depending on the size:

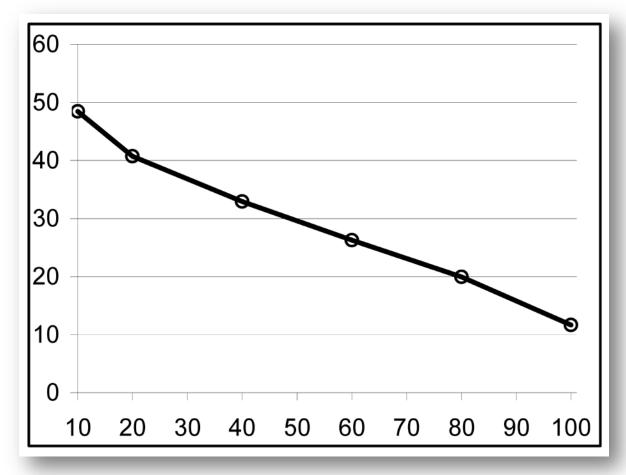


hv-convex 4-conn. sets vs. discrete sets up to 4% different from these

2880-960-960 samples in each set

Size	Epochs	Hidden neurons	α	VSA(%)	Err(%)
10	30000	30	10 ⁻³	51.5625	48.4375
10	40000	40	$10^{-3} \rightarrow \rightarrow 1.25 {\times} 10^{-4}$	51.1458	48.8542
20	30000	40	10 ⁻³	59.2708	40.7202
40	3000	120	10-4	67.0833	32.9167
60	2500	100	$10^{-4} \rightarrow 5 \times 10^{-5}$	73.7152	26.2848
80	2500	120	$10^{-4} \rightarrow 5 \times 10^{-5}$	80.0347	19.9653
80	2500	160	$10^{-4} \rightarrow 5 \times 10^{-5}$	79.9306	20.0694
100	2000	175	$5 \times 10^{-5} \rightarrow 10^{-5}$	88.3333	11.6667

Classification error depending on the size:

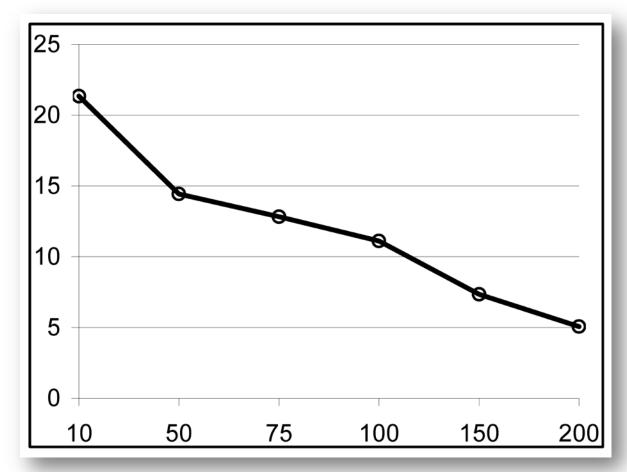


hv-convex 8-, but not 4-conn. sets vs. hv-convex 4conn. discrete sets

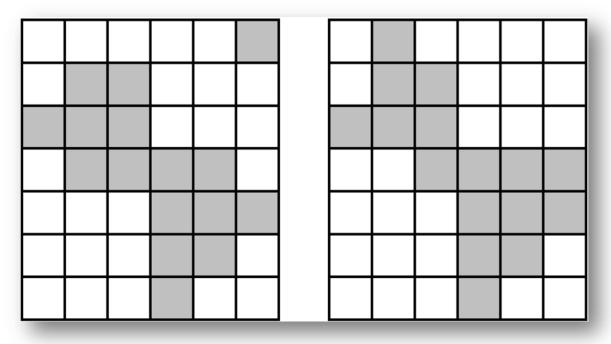
- □ 1800-600-600 samples in each set
- continuously growing training set

Size	Epochs	Hidden neurons	α	VSA(%)	Err(%)
10	50000	30	10-4	78.6667	21.3333
50	50000	120	$10^{-3} \rightarrow \rightarrow 10^{-6}$	85.5556	14.4444
100	10000	200	$10^{-3} \rightarrow \rightarrow 10^{-7}$	88.8889	11.1111
150	7500	250	$10^{-3} \rightarrow \rightarrow 10^{-7}$	92.6667	7.3333
200	3000	300	$10^{-3} \rightarrow \rightarrow 10^{-7}$	94.9444	5.0556

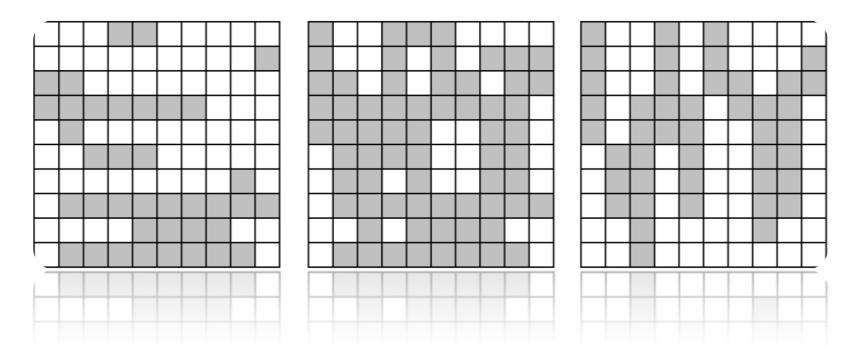
Classification error depending on the size :



- Recently algorithms have been developed to reconstruct discrete sets with minimal or predefined perimeter
- Uniqueness is not guaranteed



- Generated datasets:
 - h-convex discrete sets
 - "random" discrete sets created by merging h-convex és v-convex sets



- Goal: to determine the perimeter of the discrete set in case certain degree of uncertainty is allowed
- \Box perimeter of *h*-convex sets
 - 1500-300 samples (no validation set)
 - **α** = 0.001
 - **□** *β* = 0.3
 - number of hidden neurons grows with the size, from 20 (10×10) up to 80 (100×100)

□ perimeter of *h*-convex sets – error rates

Uncertainty	20×20	40×40	60×60	80×80	100×100
1%	89.67	87.07	84.40	83.93	82.87
2%	78.40	75.33	68.60	67.27	64.87
3%	67.27	62.00	55.33	52.20	50.00
4%	58.27	50.60	43.53	39.07	37.13
5%	48.33	40.53	32.93	29.80	26.47
6%	39.47	33.20	25.20	20.33	18.93
7%	32.13	26.27	18.00	13.60	10.60
8%	25.27	19.87	12.73	9.73	7.07
9%	19.47	15.00	8.60	6.27	4.13
10%	15.20	10.80	5.53	4.07	3.00
20%	0.40	0.47	0.00	0.00	0.00

□ perimeter of "random" sets

1500-300 samples (no validation set)

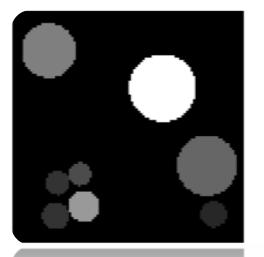
- **α** = 0.001
- **□** *β* = 0.3
- number of hidden neurons grows with the size, from 10 (10×10) up to 60 (100×100)

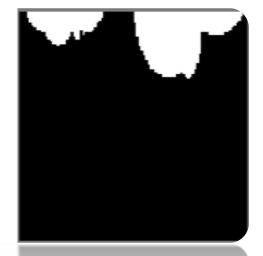
perimeter of "random" sets – error rates

Uncertainty	20×20	40×40	60×60	80×80	100×100
1%	86.33	85.07	81.80	81.20	76.20
2%	73.40	68.87	62.13	61.47	56.13
3%	62.40	53.73	47.40	42.80	39.53
4%	51.07	41.93	33.80	30.80	24.27
5%	41.60	30.87	23.73	19.67	14.60
6%	31.33	21.67	14.13	11.33	7.33
7%	24.00	14.93	9.33	6.20	3.87
8%	19.13	10.33	5.33	3.53	1.73
9%	13.73	7.07	3.87	2.27	0.60
10%	10.93	5.13	2.07	1.13	0.20
20%	0.47	0.07	0.00	0.00	0.00

- Task: determining the number of different intensities present in the discrete image
- □ Solutions:
 - histogram based techniques based on continuous reconstruction
 - semi-automatic methods
 - ••••
- Proposal: apply neural networks, let the input be the projections themselves
- Initially let us investigate images with certain a "configuration"

- configuration: discrete images containing n circles that possess
 - fix position and
 - fix size
- circles differ only in their intensity
- each circle is a homogeneous object





- every image contain 8 circles
- □ 10 diff. configurations were created
- □ for each configuration 3600-1200 training-, and test images were generated ⇒ obtain 2 projections
- images corresponding to a certain configuration differ in their circles' intensities only
 images corresponding to a certain configuration equidistant 3: 0.1 0.2 0.3
- background intensity: 0.0

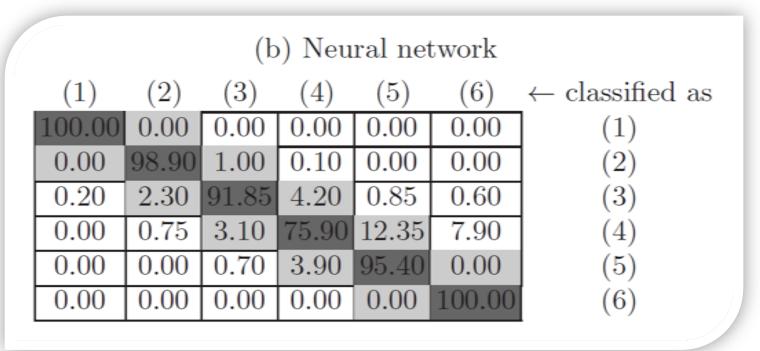
equidistant								
3:	0.1	0.2	0.3					
	0.1							
	0.1							
	0.1							
7:	0.1	0.2	0.3	0.4	0.5	0.6	0.7	
8:	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Average parameters of the neural networks used:

Noiseless								
#intensities	Learning rate	Momentum	Training tim	e Hidden neurons				
3	0.2	0.8	100	10.5				
4	0.24	0.78	190	16				
5	0.27	0.75	370	41				
6	0.238	0.8275	530	55.5				
		5% Noise	<u>}</u>					
#intensities	Learning rate	Momentum	Training tim	e Hidden neurons				
3	0.2	0.8	100	10				
4	0.3	0.8	200	20				
5	0.27	0.75	740	41				
6	0.2218	0.8275	133	54				

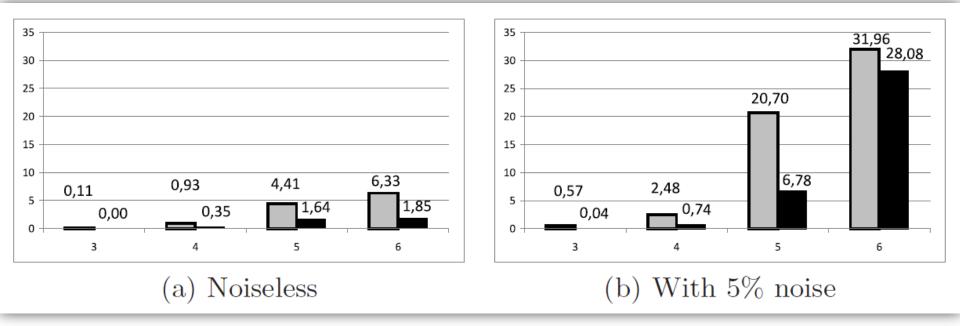
Average confusion matrix

- 10 different configurations and
- 6 different intensity levels have been investigated



3–6 different intensity levels

added uniform noise

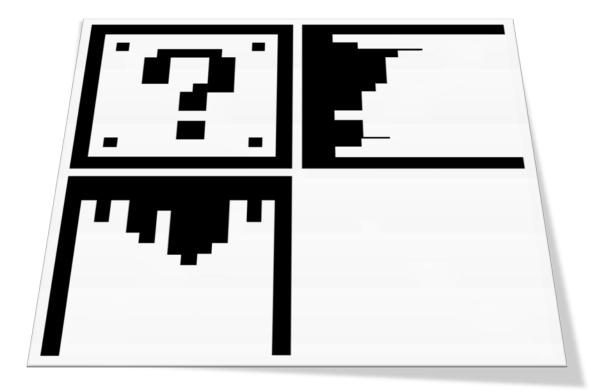


Remarks about neural networks

- Implementation should preferably contain:
 - momentum technique
 - advanced data partitioning methods
 - (pl. "windowing", growing subset, random shuffle)
 - automated decreasing of learning rate (WEKA)
- □ The momentum is not always optimal at ~0.9
- Longer learning time is not always better!

(e.g. the case of noisy projections)

Questions?



Acknowledgement

The project is supported by the European Union and co-financed by the European Social Fund.

The presentation is supported by the European Union and cofunded by the European Social Fund.

Project title: "Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged by ensuring the rising generation of excellent scientists".

Project number: TÁMOP-4.2.2/B-10/1-2010-2012