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Outline

 Discrete tomography
 Geometrical properties of discrete sets
 Neural networks
 3 investigated problems:

1) Determining connectedness and convexity from two 
projections in binary images

2) Perimeter estimation from two projections in binary 
images

3) Estimating the number of different intensities in discrete 
images from two projections



Discrete tomography

 We assume, that the image only contains intensity 
values known beforehand:

 In case S = {0,1}, then we are dealing with binary 
tomography

2:f S→



Discrete tomography

 Small number (<10) of projections are available
 the problem is usually underdetermined
 more than one possible solutions

 Presence of switching
components



Discrete tomography

 We have to reduce the number of possible solutions:
 with the help of a model image, or
 with the aid of a priori geometrical/topological 

information
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Two projections of a discrete set

 Let be a so-called discrete set2
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Two projections of a discrete set

 Let be another discrete set2
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Properties of discrete sets

 4/8-connectedness



Properties of discrete sets

 h-, v- and hv-convexity



Properties of discrete sets

 Several reconstruction algorithms rely on the prior 
knowledge of these geometrical features

 Problems:
 these are quite strict terms
 the prior knowledge is often uncertain
 which reconstruction method to choose is questionable

 Let’s use data, which is available before the 
reconstruction process begins
 i.e. the projections values



Neural networks

 Inspired by the neural system of the human brain
 Learning algorithms that learn from a set of 

samples presented
beforehand



Neural networks

 Chosen implementations:
 Bobby Anguelov’s C++ realization

http://takinginitiative.net/category/artificial-intelligence/neural-networks/

 WEKA Data Mining Software – MLP
http://www.cs.waikato.ac.nz/ml/weka/index.html

 Common features of both:
 backpropagation learning
 momentum technique
 feed-forward, 3-layer architecture
 activation function g is a sigmoid



Application of neural networks

 Mostly for reconstruction purposes in discrete 
tomography

 Drawbacks:
 one neuron often corresponds to one pixel(!)
 network size is close to being unmanageable

 several million learning samples are needed
 10-20 projections from different directions are 

necessary to obtain results of sufficient quality
 Instead of actually reconstructing the image, we try 

to aid the reconstruction process



Application of neural networks

 The I/O of the neural network in case of two 
orthogonal projections:



Application of neural networks

 For the learning phase:
 generate a huge dataset of samples
 divide it to get a training-, a test- and a validation set



( ), , ,k j k j k jw w w t= + ∆

Application of neural networks

 Modification of the weights of connections during 
the learning phase

( ), , ,j i j i j iw w w t= + ∆

( ) ( ), , 1j i j i j iw t a w tα β∆ = ∆ + ∆ −

( )i i ig in′∆ = Err

( ) ,j j j i i
i

g in w′∆ = ∆∑

( ) ( ), , 1k j k j k jw t a w tα β∆ = ∆ + ∆ −



Application of neural networks

 Parameters to set:
 learning rate ( α )

 momentum constant ( β )
 number of hidden neurons
 number of epochs
 number of training- and test samples
 advanced data partitioning methods to use

 how to decrease α
 etc.



1. Connectedness and convexity

 hv-convex 4-conn. sets vs. random binary images
 2880-960-960 samples in each set

 proved to be an easy task

Size Hidden neurons TSA(%) GSA(%) VSA(%) Err(%)

10 4 93.819 94.167 94.271 5.729

20 6 99.931 99.688 99.583 0.417

40 8 100.0 99.896 100.0 0.0

60 8 100.0 99.792 99.792 0.108

80 8 100.0 100.0 100.0 0.0

100 8 100.0 100.0 100.0 0.0



1. Connectedness and convexity

 Classification error depending on the size:



1. Connectedness and convexity

 hv-convex 4-conn. sets vs. discrete sets up to 4% 
different from these

 2880-960-960 samples in each set
Size Epochs Hidden neurons α VSA(%) Err(%)

10 30000 30 10-3 51.5625 48.4375

10 40000 40 10-3 → … → 1.25×10-4 51.1458 48.8542

20 30000 40 10-3 59.2708 40.7202

40 3000 120 10-4 67.0833 32.9167

60 2500 100 10-4 → 5×10-5 73.7152 26.2848

80 2500 120 10-4 → 5×10-5 80.0347 19.9653

80 2500 160 10-4 → 5×10-5 79.9306 20.0694

100 2000 175 5×10-5 → 10-5 88.3333 11.6667



1. Connectedness and convexity

 Classification error depending on the size:



1. Connectedness and convexity

 hv-convex 8-, but not 4-conn. sets vs. hv-convex 4-
conn. discrete sets

 1800-600-600 samples in each set
 continuously growing training set

Size Epochs Hidden neurons α VSA(%) Err(%)

10 50000 30 10-4 78.6667 21.3333

50 50000 120 10-3 → … → 10-6 85.5556 14.4444

100 10000 200 10-3 → … → 10-7 88.8889 11.1111

150 7500 250 10-3 → … → 10-7 92.6667 7.3333

200 3000 300 10-3 → … → 10-7 94.9444 5.0556



1. Connectedness and convexity

 Classification error depending on the size :



2. Estimation of perimeter

 Recently algorithms have been developed to 
reconstruct discrete sets with minimal or predefined 
perimeter

 Uniqueness is not guaranteed



2. Estimation of perimeter

 Generated datasets:
 h-convex discrete sets
 “random” discrete sets created by merging h-convex és

v-convex sets



2. Estimation of perimeter

 Goal: to determine the perimeter of the discrete set 
in case certain degree of uncertainty is allowed

 perimeter of h-convex sets
 1500-300 samples (no validation set)
 α = 0.001
 β = 0.3
 number of hidden neurons grows with the size, from

20 (10×10) up to 80 (100×100)



2. Estimation of perimeter

 perimeter of h-convex sets – error rates



2. Estimation of perimeter

 perimeter of “random” sets
 1500-300 samples (no validation set)
 α = 0.001
 β = 0.3
 number of hidden neurons grows with the size, from 10 

(10×10) up to 60 (100×100)



2. Estimation of perimeter

 perimeter of “random” sets – error rates



3. Estimation of the number of intensities

 Task: determining the number of different intensities
present in the discrete image

 Solutions:
 histogram based techniques based on continuous 

reconstruction
 semi-automatic methods
 …

 Proposal: apply neural networks, let the input be the 
projections themselves

 Initially let us investigate images with certain a 
“configuration”



3. Estimation of the number of intensities

 configuration: discrete images containing n circles 
that possess
 fix position and
 fix size

 circles differ only in their intensity
 each circle is a homogeneous object



3. Estimation of the number of intensities

 every image contain 8 circles
 10 diff. configurations were created
 for each configuration 3600-1200 training-, and 

test images were generated  obtain 2 projections
 images corresponding to a certain configuration 

differ in their circles’
intensities only

 background intensity: 0.0



3. Estimation of the number of intensities

 Average parameters of the neural networks used:



3. Estimation of the number of intensities

 Average confusion matrix
 10 different configurations and
 6 different intensity levels have been investigated



3. Estimation of the number of intensities

 3–6 different intensity levels
 added uniform noise



Remarks about neural networks

 Implementation should preferably contain:
 momentum technique
 advanced data partitioning methods

(pl. “windowing”, growing subset, random shuffle)
 automated decreasing of learning rate (WEKA)

 The momentum is not always optimal at ~0.9
 Longer learning time is not always better!

(e.g. the case of noisy projections)



Questions?
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