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Polarities of vector spaces

Let V = V (n,K ) be an n−dimensional K−vector space, K a field.

Let σ : K → K be an automorphism.

A σ−sesquilinear form on V is a map B : V × V → K such that

B(u + v ,w) = B(u,w) + B(v ,w)

B(u, v + w) = B(u, v) + B(u,w)

B(au, bv) = a B(u, v)bσ

for all u, v ,w ∈ V , all a, b ∈ K .

If σ = 1, the form is said to be linear.
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B is called non-degenerate if, B(u, v) = 0 for all v ∈ V implies
u = 0, and, B(u, v) = 0 for all u ∈ V implies v = 0.

A sesquilinear form B such that B(u, v) = 0 implies B(v , u) = 0
for all u, v ∈ V is called reflexive.
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A reflexive σ−sesquilinear form B is called:

Alternating: if σ = 1 and B(v , v) = 0 for all v ∈ V

Symmetric: if σ = 1 and B(u, v) = B(v , u) for all u, v ∈ V

Hermitian: if σ2 = 1, σ 6= 1 and B(u, v) = B(v , u)σ for all
u, v ∈ V

Note that if B is alternating then B(v , u) = −B(u, v), i.e. in
general B is antisymmetric.

If charK 6= 2 then the concepts of alternating form and
antisymmetric form are equivalent.

If charK = 2, each alternating form is also symmetric.
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Quadratic forms

If charK 6= 2 and B is a symmetric form the map

Q : V −→ K
v 7−→ B(v , v)

satisfies

Q(av) = a2Q(v)

Q(u + v) = Q(u) + 2B(u, v) + Q(v).

Q is called the quadratic form associated with B.

Also B(u, v) = 1
2 [Q(u + v)−Q(u)−Q(v)] is uniquely determined

by Q.

If charK = 2, the above does not apply.
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We define a quadratic form to be a function Q : V → K such that

Q(av) = a2Q(v)

and
B(u, v) = Q(u + v)− Q(u)− Q(v)

is a bilinear form.

Then B is uniquely determined by Q and is called the polar form
of Q.
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If charK = 2,

B(u, u) = Q(u + u) + Q(u) + Q(u) = 0

for all u ∈ V , so B must be alternating and, since charK = 2, B is
also symmetric.

Moreover:

- Q is not uniquely determined by B.

- there are symmetric forms that are not the polar form of any
quadratic form.

In our considerations, we assume that when B is symmetric it
arises as the polar form of a quadratic form.
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Let Q be a quadratic form on V with polar form B. Then Q is
called non-degenerate if B(u, v) = 0 = Q(u) for all v ∈ V implies
u = 0.
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The space (V ,B) is called symplectic, orthogonal or unitary
geometry according to whether B is a non-degenerate alternating,
symmetric or hermitian form on V .
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Polarities of projective spaces

A pair of vectors (u, v) is called orthogonal if B(u, v) = 0.

For any subspace X of V the set

X⊥ := {v ∈ V : B(u, v) = 0 for all u ∈ X}

is called the orthogonal complement of X .
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The projective geometry P(V ) is the set of all subspaces of V
ordered by set inclusion.

A polarity of P(V ) is a correlation π of order 2 and the pair
(P(V ), π) is called a polar geometry.

Any non-degenerate sesquilinear form on V defines a polarity of
P(V ):

⊥: P(V ) → P(V )
〈u〉 7→ 〈u〉⊥
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The space (P(V ),⊥) is called projective symplectic, orthogonal or
unitary geometry according to whether ⊥ arises from an
alternating, symmetric or hermitian non-degenerate bilinear form.

Birkhoff-von Neumann Theorem

If dimV ≥ 3, every polarity of P(V ) is symplectic, orthogonal or
unitary.
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Matrix of a bilinear form

If {v1, . . . , vn} is a basis for V , u =
∑

i aivi , v =
∑

i bivi and

B̂ = B(vi , vj), then

B(u, v) =
∑
i ,j

aiB(vi , vj)b̄j = atB̂bσ.

where a = (a1, . . . , an)t and bσ = (b1
σ, . . . , bn

σ)t .
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Witt index of a sesquilinear form

Definitions:

- A non-zero vector u is isotropic if B(u, u) = 0.

- A subspace X of V is totally isotropic if X ⊆ X⊥ i.e.
B(u, v) = 0 for all u, v ∈ X .

- A non-zero vector u is singular if Q(u) = 0 and a subspace X
is totally singular if Q(u) = 0 for all u ∈ X .

- A pair of vectors (u, v) such that u and v are isotropic and
B(u, v) = 1 is called a hyperbolic pair.
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A totally isotropic subspace is called maximal if it not properly
contained in a totally isotropic subspace.

Theorem
Any two maximal totally isotropic subspaces of (V ,B) have the
same dimension, and every totally isotropic subspace is contained
in one of maximal dimension.

This common dimension is called the Witt index of the sesquilinear
form B.

The maximal totally isotropic subspaces are called generators of
the polar space.
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Classical polar spaces

The set of all totally isotropic subspaces with respect to a
non-degenerate sesquilinear form B on V , is called a symplectic ,
orthogonal or unitary polar space according to whether B is
alternating, symmetric or hermitian.

Notation

B alternating : W(n − 1,K )
B symmetric : Q(n − 1,K )
B hermitian : H(n − 1,K )

The above polar spaces are called the classical polar spaces.
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Finite classical polar spaces

Let K = GF(q), q a prime power.

V = V (n, q) is a finite vector space over GF(q).

P(V ) = P(n, q) is a finite projective space over GF(q).

Then we have the finite classical polar spaces.
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Finite symplectic polar spaces

B a non-degenerate alternating form on V

Note that the points of W(n − 1,K ) are all the point of P(V ).

We can always decompose V as

V = W1©⊥W2©⊥ · · ·©⊥Wm,

that is a direct sum of mutually orthogonal subspaces where:

- Wi is a hyperbolic 2-space, i.e. Wi = 〈vi ,wi 〉,
B(vi , vi ) = 0 = B(wi ,wi ), B(vi ,wi ) = 1

We see that the Witt index of (V ,B) is m and we have just one
symplectic geometry in V = V (2m, q).
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Finite unitary polar spaces

B a non-degenerate hermitian form on V

V = V (n, q), n ≥ 2, contains singular vectors and we can
decompose V as

V = W1©⊥W2©⊥ · · ·©⊥Wm©⊥W ,

where:

- Wi is a hyperbolic 2-space

- W nonsingular and dimW ∈ {0, 1}

We see that the Witt index of (V ,B) is m and the hermitian
geometry (V ,B) is determined, up to isomorphisms, by m and W .

Alessandro Siciliano, USB 19/68



We have two different Hermitian polar spaces:

W = 0

H(2m − 1, q) : X1Y
q
1 + . . .+ XmY

q
m = 0

dimW = 1

H(2m, q) : X1Y
q
1 + . . .+ XmY

q
m + Zq+1 = 0
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Finite orthogonal polar spaces

B a non-degenerate symmetric form on V

V = V (n, q) contains singular vectors and we can decompose V as

V = W1©⊥W2©⊥ · · ·©⊥Wm©⊥W ,

where

- Wi is a hyperbolic 2-space

- W nonsingular and dimW ∈ {0, 1, 2}

We see that the Witt index of V is m and the orthogonal geometry
(V ,B) is determined, up to isomorphisms, by m and W .

Alessandro Siciliano, USB 21/68



We have three different orthogonal polar spaces:

Hyperbolic: W = 0

Q+(2m − 1, q) : X1Y1 + . . .+ XmYm = 0

Parabolic: dimW = 1

Q(2m, q) : X1Y1 + . . .+ XmYm + Z 2 = 0

Elliptic: dimW = 2

Q−(2m + 1) : X1Y1 + . . .+ XmYm + f (X ,Y ) = 0,

with f (X ,Y ) an irreducible homogeneous quadratic polynomial
over GF(q).
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The finite classical polar spaces are

W(2m − 1, q)

Q+(2m − 1, q), Q(2m, q), Q−(2m + 1, q)

H(2m − 1, q2), H(2m, q2)

Alessandro Siciliano, USB 23/68



Abstract polar space

A (abstract) polar space of rank m ≥ 2, consists of a set P of
points, together with a set of subsets of P, called subspaces, that
satisfy certain axioms :

(T1) Every subspace, together with its subspaces, is a
projective space of dimension at most m − 1.

(T2) The intersection of any family of subspaces is a
subspaces.

(T3) If U is a subspace of dimension m− 1 and P a point not
in U, then the union of the lines joining P to points of U is a
subspace of dimension m − 1 and U ∩W is a hyperplane in
both U and W .

(T4) There exist two disjoint subspaces of dimension m − 1.
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A polar space of rank two is called a generalized quadrangle.

Tits-Veldkamp Theorem

If P is finite and has rank ≥ 3, then P is classical (the rank being
the Witt index).

Hence, a finite polar space is either classical (of rank ≥ 3) or a
generalized quadrangle.
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A (finite) generalized quadrangle GQ of order (s, t) is an incidence
structure S = (P,B, I) in which P points and B lines are disjoint
(nonempty) sets and I ⊆ P × B is a symmetric point-line
incidence relation satisfying the following axioms:

(i) Each point is incident with 1 + t lines (t ≥ 1) and two distinct
points are incident with at most one line.

(ii) Each line is incident with 1 + s points (s ≥ 1) and two
distinct lines are incident with at most one point.

(iii) If x is a point and L is a line not incident with x , then there is
a unique pair (y ,M) ∈ P × B for which xIMIyIL.
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Ovoids of finite classical polar spaces

Let P denotes a finite classical polar space.

An ovoid of P is a set of points intersecting every generator in
exactly one point.

Ovoid numbers

Polar space Ovoid number

W(2m − 1, q) qm + 1

H(2m, q) q2m+1 + 1

H(2m − 1, q) q2m−1 + 1
Q−(2m + 1, q) qm+1 + 1

Q(2m, q) qm + 1

Q+(2m − 1, q) qm−1 + 1
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State of the art on existence and non-existence of ovoids

Symplectic polar spaces

W(3, q) q even: yes
q odd: no

W(2m − 1, q) m ≥ 3: no

Unitary polar spaces

H(2m, q2) m ≥ 1: no (Thas,1981)

H(3, q2) yes

H(5, 4) no (De Beule - Metsch, 2006)

H(2m − 1, q2) q = ph, p prime, p2m+1 > g(m, p): no

here g(m, p) =
(2m+p
2m−1

)2 − (2m+p−2
2m−1

)2
.
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Orthogonal polar spaces

Q−(2m + 1, q) m ≥ 2: no (Thas, 1981)

Q(4, q) yes

Q(6, q) q even: no
q = 3h: yes
q > 3, q prime: no

Q(2m, q) q even, m ≥ 4: no (Gunawardena - Moorhouse, 1997)

Q+(3, q) yes

Q+(5, q) yes

Q+(7, q) q = 2h: yes
q odd prime: yes
q = 3h: yes
q ≡ 2 mod 3: yes

Q+(2m − 1, 2) m ≥ 5:no (Kantor, 1982)

Q+(2m − 1, 3) m ≥ 5:no (Shult, 1989)

Q+(2m − 1, q) q = ph, pm−1 >
(2(m−1)+p

p−1
)
: no (Blokhuis - Moorhouse, 1995)
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A. Klein, 2001

H(2m − 1, q2), q = ph, p prime, has no ovoids if m > q3 − 1.

AS, 2008

Q+(2m − 1, q), m odd, has no ovoids when (m − 1)/2 > q3 + 1.

de Beule - Klein - Metsch - Storme, 2008

Q+(2m − 1, q), q = ph, p prime, has no ovoids if m > q2 + 1.
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Translation ovoids

Let P be a finite classical polar space.

An ovoid O of P is a translation ovoid with respect to a point
X ∈ O if there is a collineation group of P (called translation
group about X of O) fixing all totally isotropic lines through X
and acting regularly on points of the ovoid different from X .
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Collineation groups of the classical polar spaces

If (V1,B1) and (V2,B2) are geometries of the same type then an
isomorphism α : V1 → V2 is an isometry if

B2(uα, vα) = B1(u, v)

for all u, v ∈ V1.
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Symplectic groups

Let B be a non-degenerate alternating form on V .

An isometry of V is called symplectic transformation, and the
group of smplectic transformations is denoted by Sp(V ).

We write Sp(n,F ), Sp(n, q), etc., for the corresponding groups of
matrices.
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The kernel of the action of Sp(V ) on P(V ) is

Z (Sp(V )) = {±1V }

and we define the projective symplectic group

PSp(V ) := Sp(V )/Z (Sp(V )).

When we consider symplectic transformation in ΓL(V ) then we get
the (full) projective symplectic group

PΓSp(V ) := ΓSp(V )/Z (ΓSp(V )).

Alessandro Siciliano, USB 34/68



Unitary groups

Let B a non-degenerate hermitian form on V .

An isometry of V is called a unitary transformation. The set of all
unitary transformations of V form a subgroup GL(n, q) which is
called the unitary group on V and it is denoted by U(n, q).

The full unitary group ΓU(V ) consists of all α−semilinear
transformations τ of V that induces a collineation of P(V ) that
commutes with ⊥. That is,

B(uτ , v τ ) = aB(u, v)α

for some a ∈ F such that a = aq and all u, v ∈ V .

Alessandro Siciliano, USB 35/68



The general unitary group is GU(V ) = ΓU(V ) ∩GL(V )

The kernel of the action of GU(V ) on P(V ) is

Z (GU(V )) = {c · 1V : c ∈ F and cc̄ = 1}

and we define the projective general unitary group

PGU(V ) := GU(V )/Z (GU(V ))

and the (full) projective unitary group

PΓU(V ) := ΓU(V )/Z (ΓU(V )).
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Orthogonal groups

Let B a non-degenerate symmetric form on V with polar form Q.

An invertible linear transformation τ of V is said to be orthogonal
if Q(τv) = Q(v), for all v ∈ V .

The set of all orthogonal transformations of V form a subgroup
GL(n, q) which is called the orthogonal group on V and it is
denoted by O(n, q).

The full orthogonal group ΓO(V ) consists of all α−semilinear
transformations τ of V such that for some a ∈ K

Q(v τ ) = aQ(v)α

for all v ∈ V .
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The general ortogonal group is GO(V ) = ΓO(V ) ∩GL(V )

The kernel of this action is

Z (GO(n, q)) = {±1}

and we define the projective orthogonal group

PGO(n, q) := GO(n, q)/Z (GO(n, q)).

and the projective semilinear orthogonal group

PΓO(V ) := ΓO(V )/Z (ΓO(V )).
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We have different projective orthogonal groups associated with the
three different orthogonal spaces:

PGO−(2m, q), PGO(2m + 1, q), PGO+(2m + 2, q),

PΓO−(2m, q), PΓO(2m + 1, q), PΓO+(2m + 2, q),
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Translation ovoids

Let P be a finite classical polar space.

An ovoid O of P is a translation ovoid with respect to a point
X ∈ O if there is a collineation group of P (called translation
group about X of O) fixing all totally isotropic lines through X
and acting regularly on points of the ovoid different from X .

A translation ovoid is called semilinear if it has a translation group
containing non-linear collineations; it is called linear otherwise.
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Examples of translation ovoids

Symplectic polar space W(3, q) (q even)

the elliptic quadric Q−(3, q)

the Suzuki-Tits ovoid (q = 22h+1);

(here the translation group fixes all the tangent lines at X ∈ O).

Theorem (Glynn, 1984)

In W(3, q), q even, linear translation ovoids are either elliptic
quadrics or Suzuki-Tits ovoids.
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Orthogonal polar spaces

non-degenerate conics inside Q+(3, q);

ovoids of Q+(5, q) corresponding to semifield spreads;

ovoids of Q(4, q) corresponding to symplectic semifield
spreads.

Theorem (Cardinali - Lunardon - Polverino - Trombetti,
2002)

In Q(4, 2h) linear translation ovoids are elliptic quadrics.

Theorem (Lunardon - Polverino, 2004)

Q+(3, q), Q(4, q) and Q+(5, q) are the only finite orthogonal
spaces containing a linear translation ovoids.
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What about translation ovoids of unitary polar spaces?
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Translation ovoids in H(2m − 1, q2)

A non-isotropic line of PG(2m − 1, q2) which intersects
H(2m − 1, q2) in more then one point is called a hyperbolic line.

An ovoid O is called locally hermitian with respect to a point
X ∈ O if O is the union of q2n hyperbolic lines through X .

Bader - Trombetti, 2004

Every linear translation ovoid of H(3, q2) is locally hermitian.

Alessandro Siciliano, USB 44/68



The connections with translation ovoids of H(3, q2) and semifield
spreads are intertwined (via the Shult Embedding) with Shult sets
(E. Shult, 2005).
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Indicator sets

AG(2, q2) a finite Desarguesian affine plane

`∞ the line at infinity of AG(2, q2).

PG(2, q2) = AG(2, q2) ∪ `∞

A subset F of the point-set of AG(2, q2) is called a indicator set
if:

(i) |F| = q2

(ii) there exists a Baer subline H of `∞ such that any secant line
F meets `∞ in a point not in H.
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Shult sets

PG(2, q2) = AG(2, q2) ∪ `∞
H∗ a Baer pencil of lines whose center P is an affine point.

A subset S of the line-set of PG(2, q2) is called a Shult set if:

(i) |S| = q2

(ii) no line of S pass through P

(iii) every pair of distinct lines of S intersect at a point not in H∗.
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Under duality ∗ in PG(2, q2), any indicator set F w.r.t. H gives a
Shult set in π = PG(2, q2)∗.
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Shult embedding

Let S be a Shult set in π w.r.t H∗

- PG(3, q2) containing a Hermitian polar space H(3, q2)

- π ↪→ PG(3, q2) in such a way that H(3, q2) ∩ π = H∗.

Then
O(S) = {L⊥ ∩H(3, q2) : L ∈ S}

is a locally hermitian ovoid
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Examples of indicator sets

Classical examples

1. F is any affine line of AG(2, q2) with point at infinity not in
H (classical case)

2. F is any affine Baer subplane of AG(2, q2) whose set of
points at infinity is disjoint from H (semi-classical case)

Examples by Cossidente - Ebert - Marino - AS., 2006

3. FT = {(1, a,Tr(a)) : a ∈ GF(q2)}, q odd (Trace type)

4. FB = {(1, a, ap
f
) : a ∈ GF(q2)}, where q = p2e is odd, f |e

(Frobenius type)
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The above examples are all the known (linear) translation ovoids
up to now.

Theorem (Johnson, 2007)

The Trace type ovoid corresponds to a class of Kantor-Knuth
semifield flock spread; the Frobenius type ovoid corresponds to a
subclass of the semifields of Hughes- Kleinfeld.
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What about translation ovoids of H(2m − 1, q2), m ≥ 3?
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Let (e1, . . . , em, f1, . . . , fm) be a basis consisting of mutually
orthogonal hyperbolic pairs (ei , fi ), i = 1, . . . ,m, so that

H(2m − 1, q2) : X qY − XY q + XY′ − X′Y = 0;

here:

a := (a1, . . . , am−1)

a′ is the transpose of a

a := (aq1 , . . . , a
q
m−1)

Recall that the automorphism group of H(2m − 1, q2) is

PΓU(2m, q2) = PGU(2m, q2) o Aut(GF(q2)).
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Let O be a translation ovoid of H(2m − 1, q2) with translation
group G around P.
As PGU(2m − 1, q2) is transitive on points of H(2m − 1, q2) we
can assume P = 〈e1〉.

Lemma
Let E be the subgroup of PGU(2m, q2) fixing P, leaving invariant
all totally isotropic lines through P and acting regularly on
isotropic points not in P⊥. Then the generic element of E has the
following 2m × 2m−matrix form

1 −a c − ab′ b
0′ In b′ 0n
0 0 1 0
0′ 0n a′ In


where c ∈ GF(q).
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We represent E as

{[a,b, c] : a,b ∈ GF(q2)m−1, c ∈ GF(q)}

with

[a1,b1, c1] ∗ [a2,b2, c2] = [a1 + a2,b1 + b2, c1 + c2 + a2b
′
1 + a2b

′
1].

Then:

- K = {[0, 0, c] : c ∈ GF(q)} is an elementary abelian subgroup
of order q and it fixes every hyperbolic line of H(2m − 1, q2)
at P;

- E/K is an elementary abelian group of order q4(m−1).

- if g ∈ E fixes one hyperbolic line through P then g ∈ K .
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Let Aut(GF (q2)) = 〈ϕ〉 where

ϕ : GF(q2) −→ GF(q2)
x 7−→ xp

Then every ϕj , j = 1, . . . , 2h, induces the collineation

Φj : PG(2m − 1, q2) −→ PG(2m − 1, q2)

(X ,X,Y ,Y) 7−→ (Xϕj
,Xϕ

j
,Y ϕj

,Yϕj
);

here aϕ
j

= (ap
j

1 , . . . , a
pj

m−1).
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The action of Φj in PG(n, q2)

- Φj fixes P and preserves H(2m − 1, q2) setwise

- Fix(Φj) is the canonical subgeometry PG(2m − 1, pm)
generated by (e1, f1, . . . , em, fm) over GF(ps) for
s = GCD(j , 2h).

Theorem (King - AS, 2012)

If m > 2 then H(2m − 1, q2) has no semilinear translation ovoids.
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Representation of unitary spaces over GF(q)

Lemma (AS, 2007)

If O is a (linear) translation ovoid with respect to P of
H(2m − 1, q2), with translation group G, then K ≤ G and O is
locally hermitian.

This is a V.I.L. because...

Corollary

If m ≥ 3, then every translation ovoid of H(2m − 1, q2) is locally
hermitian.

...and we can use the Barlotti-Cofman representation of
PG(2m − 1, q2) into PG(4m − 1, q) with respect to a fixed
hyperplane.
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To see what H(2m − 1, q2) is in PG(4m − 1, q) we take the fixed
hyperplane to be P⊥.

Proposition (Lunardon, 2006; AS, 2012)

H(2m − 1, q2) is represented as a cone of PG(4m − 1, q)
projecting a hyperbolic quadric Q+(4m − 3, q) from a point.

Theorem (King - AS, 2012)

Every (linear) translation ovoid of H(2m − 1, q2) determines a
linear translation ovoid of Q+(4m − 3, q).
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Combining the previous theorem and the result of Lunardon and
Polverino on finite orthogonal polar spaces with linear translation
ovoids we get the following

Theorem (King - AS, 2012)

The only finite unitary polar space having translation ovoids is
H(3, q2).
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Semilinear translation ovoids of H(3, q2)

Let O be a translation ovoid of H(3, q2) with translation group G
around P.

Then |O| = q3 + 1 and G ≤ PΓU(4, q2) has order q3.

Examples

non-degenerate hermitian curves

infinite families of translation ovoids of H(3, q2) (CEMS,
2006)

All the exhibited translation ovoids are linear and thus locally
hermitian.
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E = {[a, b, c] : a, b ∈ GF(q2), c ∈ GF(q)}

[a1, b1, c1] ∗ [a2, b2, c2] = [a1 + a2, b1 + b2, c1 + c2 + a2b1 + a2b1].

Set φ = Φh. Then

- W := 〈E , φ〉 ≤ PΓU(4, q2)

- |W | = 2q5

- W fixes P, fixes every totally isotropic line through P and
acts transitively on points of H(3, q2) \ P⊥.
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Any subgroup of W acting regularly on points of H(3, q2) \ P⊥
(elation group around P) has order q5.

When q is odd, E is the unique Sylow p−subgroup of W .

Theorem
If q is odd, then every translation ovoid of H(3, q2) is linear and so
locally hermitian.

Alessandro Siciliano, USB 63/68



Translation ovoid of H(3, q2), q even

Some comment

- there are many (inequivalent) elation groups around P
(classified by R.L. Rostermundt, 2007)

- there are many subgroups of W of order q5.

- W contains elements that are not elations (φ for example)

- an elation group about P is a subgroup of W

- the translation group G of an ovoid is also a subgroup of W .

- it is not immediately clear that G is a subgroup of an elation
group about P.
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H(3, q2) contains a symplectic polar spaces W(3, q).

An i -tight set T of H(3, q2) is a set of points such that every
point in T is collinear with q2 + i points of T , while every point
not in T is collinear with i points of T .

Lemma
Every W(3, q) contained in H(3, q2) is a (q + 1)−tight set.

Proposition

Let O be any ovoid of H(3, q2) and T a symplectic subgeometry
contained in H(3, q2). Then O and T intersect in q + 1 points.
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Let q = 2h. We have

the derived group of W is W ′ = {[a, b, c] : a, b, c ∈ GF(q)}
W /W ′ is a vector space of dimension 2h + 1 over GF(2)

(Since every p−group is nilpotent and W is a 2-group, it
follows that) W ′ is a subgroup of the Frattini subgroup F(W )

Each maximal subgroup of W has order q5 and contains W ′

K ≤W ′.
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Lemma
If G ≤ PΓU(4, q2) is a translation group of an ovoid, then GW ′ is
a maximal subgroup of W and |G ∩W ′| = q.

Lemma
If O is semilinear then the previous lemma does not hold.
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Theorem (King - AS, 2012)

If q is even, then every translation ovoid of H(3, q2) is linear.

Corollary (King - AS, 2012)

Every translation ovoid of H(3, q2) is locally hermitian.
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