k-sets in **PG**(3,q) *of type* (*m*, *n*) *with respect to planes*

Vito Napolitano Department of Mathematics and Physics Seconda Università di NAPOLI • $\mathbf{P} = \mathbf{PG}(\mathbf{d}, \mathbf{q})$

• $1 \le h \le d-1$ $\mathcal{P}_h =$ the family of all

h-dimensional subspaces of ${f P}$

• $0 \le m_1 < \dots < m_s$ $K \subseteq P$ is of *class* $[m_1, \dots, m_s]_h$ if $|K \cap \Pi| \in \{m_1, \dots, m_s\}$ for all $\Pi \in \mathcal{P}_h$

m₁, ..., m_s are the *intersection numbers* of K

K is of **type** $(m_1, ..., m_s)_h$ if for every intersection number m_j there is a subspace $\Pi \in \mathcal{P}_h$ such that $|K \cap \Pi| = m_j$

k-sets in P via intersection numbers

- *CHARACTERIZATION PROBLEM* (B. Segre point of view in (finite) geometry)
- EXISTENCE PROBLEM (codes theory, strongly regular graphs)
- *CLASSIFICATION PROBLEM* (for small values of q)

A (q+1)-set of PG(2, q), q odd, of type $(0, 1, 2)_1$ is a (non-degenerate) conic. (B. Segre 1954)

A (q^2+1) -set of PG(3, q), q odd, of type (0, 1, 2)₁ is an elliptic quadric. (A. Barlotti 1955, Panella 1955) A k-set of **P** of type $(m, n)_{d-1}$ spanning **P** gives rise to a two weight [k, d+1] code with weigths k - m, k-n,

and

a k-set of P of type $(m, n)_{d-1}$ spanning P derives from a two weight [k, d+1] code with weigths k-m, k-n

Intersection with lines

K is of class $[0, 1, q+1]_1 \Leftrightarrow K$ is a subspace of **P** K is of type $(m)_1 \Leftrightarrow K$ is the empty set (m=0) or **P** (m=q+1)

K is of type $(0,1)_1 \Leftrightarrow K$ is a point of **P** There is no k-set of type $(0, q+1)_1$

Intersection with lines

 $d \ge 3$, K of type $(m, n)_1$ in P, S a *h*-dimensional subspace of P :

 $S \cap K$ is of type $(m, n)_1$ in PG(h, q)

k-sets in PG(2, q)

 $n \le q \qquad n \mid q$ K of type (0,n) \Rightarrow and (maximal arc) $k = q \ n - q + n$

A hyperoval is a maximal arc with n = 2.

If n > 2, for every pair $(n, q) = (2^a, 2^b), 0 < a < b$, there are maximal arcs (Denniston (1969); Thas (1974), (1980); Mathon (2002))

*"The most wanted research problem"**

Conjecture (J. A. Thas 1975): For q odd there is no maximal arc

The conjecture is true (Ball, Blokhuis, Mazzocca 1997 in Combinatorica)

* T. Penttila, G.F. Royle "Sets of type (m,n) in the affine and projective planes of order 9" (1995 in Designs Codes and Cryptography).

k-sets in PG(2, q)

K a k-set of type $(1, n) \Rightarrow q = p^{2h}$, $q = (n-1)^2$ and *K* is a Baer subplane or a *Hermitian arc.*

 $2 \le m \le n \le q+1$:

K a k-set of type $(m, m+s), s^2 \ge q$, $(m, m+s) = (m-1, m+s-1) = 1 \Longrightarrow q = s^2$ and $k = m(s^2 + s + 1)$ or $k = s^3 + s(s-1)(m-1) + m$

A k-set in PG(2, q^2) of type (m, m+q) with $k=m(q^2+q+1)$

The set of points of the union of m pairwise disjoint Baer subplanes $m < q^2-q+1$

k-sets in PG(2, q)

K a k-set of type (m, n) in PG(2, q) $(2 \le m < n \le q-1)$ $\downarrow \downarrow$ • $k^2 - k[1+(q+1)(n+m-1)]+mn(q+1)(q^2+1)=0$ • $n - m \mid q$ • $m q + n \le k \le (n-1)q + m$

Intersection with lines $(d \ge 3)$

A k-set of **P**, $d \ge 3$, of type $(0, n)_1$, $n \le q$, either is a point (n=1) or **P** less a hyperplane (n=q). (M. Tallini Scafati 1969)

A k-set of \mathbf{P} , $d \ge 3$, of type $(m, q+1)_1$ is \mathbf{P} less a point (m=q) or a hyperplane (m = 1).

Intersection with lines

 $d \ge 3$ $n \ge 2$, m > 0:

K is a *k*-set of type $(1, n)_1$ of $P \Rightarrow K$ is a hyperplane

Proof:

H = K∩S₃ is a k-set of type (1,n)₁ in PG(3, q)

Intersection with lines $(d \ge 3)$

 PG(3,q) has no set of type (1, n)₁ and n < q (PG(2,q) plays a special rôle (as in Tallini Scafati (1969))

P has no set of type (1, q)₁
 K is a k-set of type (m, q)₁ of P ⇒ K is P
 less a hyperplane

Intersection with lines (d = 3)

K a k-set of type $(m, n)_1$ in PG(3, q) $(2 \le m < n \le q-1)$ \downarrow

q is a odd square
k = [1 + (q²+1)(q + ε · q^{1/2}) ± q · q^{1/2}] /2 (ε = ± 1)
m = [q+1-q^{1/2} (1-ε)] /2
n = [q+1+q^{1/2} (1-ε)] /2

Intersection with lines $(d \ge 3)$

S a 3-dimensional subspace of P K of type $(m, n)_1$ in P

S \cap K is of type (m, n)₁ in PG(3, q) \Rightarrow

•
$$m = [q+1-q^{\frac{1}{2}}(1-\varepsilon)]/2$$

• $n = [q+1+q^{\frac{1}{2}}(1-\varepsilon)]/2$
• $k = [1 + (q^{d-1}+..+q+1)(q + \varepsilon \cdot q^{\frac{1}{2}}) \pm (q^{\frac{1}{2}})^{d}]/2$
($\varepsilon = \pm 1$)

Intersection with lines $(d \ge 3)$

Characterizations of Quadrics and Hermitian vareties as sets of class $[0, 1, n, q+1]_1$ with some extra regularity condition (e.g. at each point p the set of 1-secant lines is a subspace, on each point there is at least one n-line): quadratic sets and n-varieties.

Intersection with lines

K with set of line-intersection numbers $\mathscr{I} = \{0, 1, ..., s\}$ m = min $\mathscr{I} \setminus \{0\}$ and n = max $\mathscr{I} \setminus \{0\}$ b_i = # i-secant lines, i $\in \{0, 1, ..., s\}$ $\Theta_r = q^r + q^{r-1} + ... + q + 1$ Then

Intersection with lines $(d \ge 2)$

 $b_0 \ge [k2 - k(1 + (m + n - 1) \Theta_{r-1}) + mn \Theta_r \Theta_{r-1} / \Theta_1]/mn$

with equality iff K is of class $[0, m, n]_1$. moreover

 b_0 and the above ratio are both = 0 iff K is of type $(m, n)_1$

k-sets of type $(m, n)_h$ in **P**

A k-set of type $(m, n)_h$, $h \le d-2$ is of type $(r, s)_i$ for every $i \in \{h+1, ..., d-1\}$

K a k-set of type $(m, n)_{d-1} \Rightarrow n - m \mid q^{d-1}$ [Tallini Scafati 1969]

K a q^{t} -set $(m, n)_{d-1}$ is either a point or P less a *hyperplane* [L. Berardi – T. Masini On sets of type $(m,n)_{r-1}$ in PG(r,q) Discrete Math 2009]

- Hyperbolic quadrics,
- (q²+1)-caps
- non- singular Hermitian varieties,
- subgeometries
- sets of points on m pairwise skew lines
- any subset of the ovoidal partition of PG(3, q)
- a subgeometry **G** union a family of pairwise skew lines external to **G**

(n-m=q)

J.A. Thas (1973):

The only sets in P of type (1, n) w.r. to hyperplanes are the lines or the ovoids of PG(3, q).

The proof uses an algebraic argument.

Such result has been proved in a more general setting and in a geometric way:

N. Durante, V.N., D. Olanda (2002): (S = a 3-dimensional locally projective planar space of order q)

 $K \subseteq S$ and meeting every plane in either 1 or n (n > 1) points is a line (with q + 1points) or a set of $q^2 + 1$ points no three of which are collinear.

N. Durante, D. Olanda (2006): (S = a 3-dimensional locally projective planar space of order q)

A set K of points of S meeting every plane in either 2 or n (n > 2) points is a pair of skew lines (both of size q + 1)

O. Ferri (1980): *K cap of type* (*m*, *n*)₂ *in PG*(3, *q*)

K is an ovoid (m=1) or q=2 m = 0 and K is **PG**(3, 2) less a plane

k-sets of class $[3, n]_2$ in PG(3, q)

The union of three pairwise skew lines in PG(3, q),

A plane in PG(3, 2)

PG(3, 2)

PG(3, 2) embedded in **PG(3, 4)**

• $q > 2 \implies (n-3) \mid q \text{ (i.e. } n \leq q+3)$

• either n = q + 3 or $s \le 3$ for each s-line

- V.N. D. Olanda (2012): n = q+3
- If K contains no line then q = 3 or 4.

• If
$$q = 4$$
 then $K = PG(3, 2)$.

• If q =3 then k = 12 o k = 15 and K is one of the following three Examples:

 $K_{2} (k = 15)$ A (1 1 2 1), B(1 0 0 0), C (0 1 0 0), D (0 0 1 0), E (0 0 0 1), F (0 0 1 2), G (1 1 1 1), H (1 1 1 2), I (1 0 2 0), L (1 2 2 0), M (0 1 2 2), N (0 1 1 0), O(1 0 2 2), P(1 2 1 1), Q(1 2 1 2)

K₁ (k = 12) A (1 0 0 0), B(0 1 0 0), C (0 1 1 1), D (0 0 1 0), E (0 1 0 1), F (0 0 0 1), G (1 0 0 1), H (1 1 0 1), I (1 0 2 0), L (1 2 2 0), M (1 0 2 1), N (0 1 1 0)

k-sets of type $(3, 6)_2$ in PG(3, 3)

A (1 0 0 0), B(0 1 1 0), C (0 1 0 0), D (0 0 1 0), E (0 0 0 1), F (1 1 2 1), G (1 1 1 1), H (1 0 1 2), I (1 1 1 2), L (1 2 2 0), M (0 1 2 2), N (1 1 2 2), O(0 1 2 1), P(1 0 1 1), Q(1, 0, 2, 0)

 $K_3 (k = 15)$

k-sets of type $(3, 6)_2$ in PG(3, 3)

- K₁: [12, 4, 9]₃-code with second weight 9 ("subcode" of the ternary extended Golay code)
- K₂ and K₃: two different [15, 4, 6]₃-codes with second weight 12

 $K_1 K_2$ and K_3 : an exhaustive research obtained byadapting a program in MAGMA contained in[S. Marcugini, F. Pambianco, Minimal 1-saturatingsets in $PG(2, q), q \leq 16$, Austral. J. Combin. 28 (2003),161-169]

V.N. - D. Olanda (2012): n = q+3

If K contains a line then K is the set of the points of the union of three skew lines.

n < *q*+3:

 there is a 3-line L s.t. all planes on L are h- plane : q = 8, n = 7 = q/2 +3 and k=39.

• on each 3-line there is at least one 3plane :

either

there is a n-plane with a point on no 2line and $q=2^t$, $n=2^s+3$, $2 \le s \le t-1$

0ľ

 $(q+1)n-4q \leq k \leq qn-3q+3$

$m \le 3 \implies n \le m + q \text{ and } k \ge m(q+1)$

$m \leq 3 \Rightarrow m \leq q+1$

 K_1 be the only 12-set of type $(3, 6)_2$ in PG(3, 3)

L external line to K_1 : $\Omega = K_1 \cup L$ is a 16-set of type $(4, 7)_2$ in PG(3, 3): [16, 4, 9]₃ code with second weight 12

Planes:
$$m = q + 1$$
 $k = q^2 + q + 1 < m(q+1)$
 $m \le q \Rightarrow k \ge m(q+1)$

Theorem (V.N. 20??)

A k-set K in PG(3,q) of type $(q+1, n)_2$, $m \le q+1$ is a plane or $k \ge (q+1)^2$ and at least one external line exists. If $k = (q+1)^2$ and K contains at least $q - q^{\frac{1}{2}}$ pairwise skew lines then either

K is the set of points of q+1 pairwise skew lines or $q = s^2$ and *K* is the set of points of PG(3,s) union the points of $s^2 - s$ pairwise skew lines.

 $\Omega = K_1 \cup L$ the 16-set of type (4, 7)₂ in PG(3, 3):

4 = 3 + 1 = q + 1 and $16 = m(q+1) \Rightarrow$ an external line M to exists Ω

 $\Omega \cup M$ is a 20-set of type $(5, 8)_2$ in PG(3, 3)[20, 4, 12]₃ code with second weight 15

Theorem

Let K be a set of points of PG(3, q) of type $(m, n)_2$ with $m \le q$ and k = m(q+1). If $s \ge m$ for every s-line with $s \ge 3$ then either K is the set of points of m pairwise skew lines, or $q=(m-1)^2$ and K is the subgeometry PG(3, m-1) or m = q = 3and K is one of the sets K_1 and K_2 .

Theorem

A k-set K in PG(3,q) of type $(m, n)_2$ $m \le q$ is and k = m(q+1). If contains at least $q - q^{\frac{1}{2}} - 1$ pairwise skew lines then either K is the set of points of m pairwise skew lines or m = q = s^2 and K is the set of points of PG(3,s) union the points of $s^2 - s - 1$ pairwise skew lines.

A non-singular Hermitian variety H(3, q²) in PG(3, q²) is of type $(1, q+1, q^2+1)_1$ and $(q^3+1, q^3+q^2+1)_2$

L. Berardi – T. Masini On sets of type $(m,n)_{r-1}$ in PG(r,q) Discrete Math 2009:

A k-set of type $(m,n)_2$ in PG(3, q²) is of *Hermitian type* if $k = q^3+q^2+q+1$, $m = q^3+1$, $n = q^3+q^2+1$

Theorem (Berardi-Masini 2009) $A (q^3+q^2+q+1)$ -set of type $(m, n)_2$ in $PG(3, q^2)$ is of Hermitian type.

J. Schillewaert-J.A.Thas *Characterizations of hermitian varieties by intersection numbers* Designs Codes and Cryptography (2008):

Theorem (BSchillewaert-J.Thas 2008) A k-set of types $(1, q+1, q^2+1)_1$ and $(q^3+1, q^3+q^2+1)_2$ in $PG(3, q^2)$ is a Hermitian variety $H(3, q^2)$

Moreover, they characterize $H(d, q^2)$ with respect planes and solids for any dimension $d \ge 4$

(First solve the case d = 4, then study $K \cap S$ and $K \cap T$ with S, T a 3-space and a 4-space of \mathbf{P} respectively)

Theorem (V.N.20??) Let K be a m(q+1)-set of PG(3, q), of types $(1, s+1, q+1)_1$ and $(m, n)_2$, $1 \le s \le q-1$, then $q = s^2$ and K is a Hermitian variety $H(3, q^2)$