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Configurations in the projective plane

Notations

Let G be a finite group, n = |G |.
Let K be a field of characteristic p such that p = 0 or p > n.

We work in the projective plane PG (2,K ) over K , that is,

points are homogeous triples (x , y , z) with x , y , z ∈ K , and

lines are given by homogenous linear equations aX + bY + cZ = 0
with a, b, c ∈ K .

Two objects are projectively equivalent if one can be transformed into
the other by a projective linear transformation.

The principe of duality says that the role of points and lines of a
projective plane can be interchanged.
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Configurations in the projective plane

Sylvester-Gallai configurations

Sylvester-Gallai theorem

Let X be a finite set of points in the real projective plane without
2-secants. Then X is contained in a line.

Proof. See the Book.

Definition: Sylvester-Gallai configurations

A finite set of points without 2-secants is called a Sylvester-Gallai
configuration.

Example: The Hesse configuration

Let ε be a cubic root of unity in K .

(0, 1,−1), (1, 0,−1), (1,−1, 0),

(0, 1,−ε), (1, 0,−ε2), (1,−ε, 0),

(0, 1,−ε2), (1, 0,−ε), (1,−ε2, 0).
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Configurations in the projective plane

3-nets and dual 3-nets

Definition: 3-nets (as abstract incidence structures)

A 3-net consists of a set P of points, three nonempty sets L1,L2,L3 of
lines and an incidence relation I ⊂ P × L such that

two lines from different classes are incident with a unique points, and,

two lines from the same class are not incident with a common point.

Example: 3 line pencils.

Definition: Dual 3-nets (as abstract incidence structures)

A dual 3-net consists of three nonempty sets P1,P2,P3 of points, a set L
of lines and an incidence relation I ⊂ P × L such that

two points from different classes are connected by a unique line, and,

two points from the same class are not connected by a line.

Terminology: The sets Pi are called fibers or components.
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Configurations in the projective plane

Algebraization of (dual) 3-nets

For any (abstract) 3-net |P1| = |P2| = |P3| holds.

In case of a finite dual net, this number is the order.

Let Q be a set with |Q| = |P1| = |P2| = |P3| and let

αi : Q → Pi
be a bijection.

For any x , y ∈ Q there is a unique z ∈ Q such that the points

α1(x), α2(y), α3(z)

are collinear.

We define the binary operation x ∗ y = z on Q.

Notice that 2 values of {x , y , z} determine the third.
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Configurations in the projective plane

Quasigroups and projective realizations

Definition: Quasigroups

Let Q be a set with a binary operation x ∗ y . (Q, ∗) is a quasigroup if for
any a, b, c , d ∈ Q, the equations

a ∗ x = b, y ∗ c = d

have unique solutions in x , y .

Groups are precisely the associative quasigroups.

Definition: Projective realization of quasigroups

Let (Q, ∗) be a quasigroup. We say that the maps

α, β, γ : Q → PG (2,K )

realize Q on the projective plane if the points α(x), β(y), γ(z) lie on a line
if and only if x ∗ y = z .

The sets α(Q), β(Q), γ(Q) are fibers of an embedded dual 3-net.
7 / 21



Configurations in the projective plane

Motivation and previous results

1 In this talk, we are interested in the projective realizations of finite
groups.

2 Groups are treatable because the corresponding net has a rich subnet
structure.

3 S. Yuzvinsky (Compos. Math. 2004) conjectured that only abelian
groups can be realized.

4 Yuzvinsky also gave many existence and non-existence results over the
base field C.

5 J. Stipins (Arxiv, 2005) showed that the nonassociative quasigroup of
order 5 can be realized.

6 G. Urzúa (Adv. Geom. 2010) classified the realizable quasigroups of
order 6 and realized the quaternion group of order 8.

7 Blokhuis, Korchmáros and Mazzocca (JCT-A, 2012) described the
situation when one fiber is contained in a line.
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Examples of dual 3-nets

Subnets and subgroups

Let G be a group and let

Λ1 = α1(G ), Λ2 = α2(G ), Λ3 = α3(G )

be a projective realization of G .

Let H be a proper subgroup of G .

Then, for any a ∈ G \ H,

∆1 = α1(G ), ∆a
2 = α2(Ha), ∆a

3 = α3(Ha)

is a projective realization of H.

Description of the geometric structure by inductive argument

Assume that the geometric structure of all realizations of H are known.

H has several realizations sharing a fiber.

Deduce global information. (???)
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Examples of dual 3-nets

Dual 3-nets of “line type”

Definition: Dual 3-nets of “line type”

We say that a dual 3-net of PG (2,C) is of line type if each fiber is
contained in a line. If the lines have no point in common then the dual
3-net is called of triangular type.

Remark. As (C,+) has no finite subgroups, the first type is not interesting
for us.
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Examples of dual 3-nets

The abelian group structure on the cubic curve

Theorem

Let Γ be a nonsingular cubic curve. Then, we can define an abelian group
(Γ,+) in the following way.

Remark. If 0 is an inflexion point of Γ then the points A,B,C ∈ Γ are
collinear if and only if A + B + C = 0.

11 / 21



Examples of dual 3-nets

Dual 3-net realizations of “algebraic type”

Let Γ be a nonsingular cubic curve, O an inflexion point and H a (finite)
subgroup of (Γ,+). Then the cosets H + a, H + b, H − a− b form a dual
3-net:

Definition: Algebraic dual 3-nets

We say that a dual 3-net of PG (2,C) is of algebraic type if all points are
contained in a cubic curve.

Remark. Line type is also algebraic.
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Examples of dual 3-nets

Dual 3-nets of “tetrahedron type”

Definition: Dual 3-nets of “line type”

We say that a dual 3-net of PG (2,C) is of tetrahedron type if it is
contained in the following configuration of six lines.

Proposition (KNP 2011)

Tetrahedron type dual 3-nets correspond to dihedral groups.
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Projective realization of finite groups

The main result

Main Theorem (Korchmáros, Nagy, Pace 2012)

Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 in the projective plane
PG (2,C) which realizes a group G . Then one of the following holds.

(I) G is either cyclic or the direct product of two cyclic groups, and
(Λ1,Λ2,Λ3) is algebraic.

(II) G is dihedral and (Λ1,Λ2,Λ3) is of tetrahedron type.

(III) G is the quaternion group of order 8.

(IV) G has order 12 and is isomorphic to Alt4.

(V) G has order 24 and is isomorphic to Sym4.

(VI) G has order 60 and is isomorphic to Alt5.

Remark. Computer calculations show that Alt4 has no projective
realization. This implies that the cases (IV)-(VI) cannot actually occur.
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Projective realization of finite groups

Step 1: The cyclic case

Proposition (Yuzvinsky, KNP)

Any dual 3-net realizing a cyclic group is of algebraic type.

The proof uses the theorem of Lamé from algebraic geometry.

Proposition (Yuzvinsky)

If an abelian group G contains an element of order ≥ 10 then every
dual 3-net realizing G is algebraic.

No dual 3-net realizes an elementary abelian group of order 2h with
h ≥ 3.

Proposition (Blokhuis, Korchmáros, Mazzocca)

If the fiber Λ1 is contained in a line then Λ2 ∪ Λ3 is contained in a conic.
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Projective realization of finite groups

Step 2: The cyclic normal subgroup case

Proposition

Let G be a finite group containing a normal subgroup H of order
n ≥ 3.

Assume that G can be realized by a dual 3-net (Λ1,Λ2,Λ3) and that
every dual 3-subnet of (Λ1,Λ2,Λ3) realizing H as a subgroup of G is
triangular.

Then H is cyclic and (Λ1,Λ2,Λ3) is either triangular or of tetrahedron
type.
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Projective realization of finite groups

Step 3: Central homologies preserving the fibers

Proposition

Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 realizing a group G .

If every point in Λ1 is the center of an involutory homology which
preserves Λ1 while interchanges Λ2 with Λ3,

then either Λ1 is contained in a line, or n = 9.

In the latter case, (Λ1,Λ2,Λ3) lies on a non-singular cubic Γ whose
inflection points are the points in Λ1.
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Projective realization of finite groups

Step 4: Central homologies preserving the fibers

Proposition

Let G be a group containing a proper abelian subgroup H of order n ≥ 5.
Assume that a dual 3-net (Λ1,Λ2,Λ3) realizes G such that all its dual
3-subnets (Γj

1, Γ2, Γ
j
3) realizing H as a subgroup of G are algebraic.

Let Γj be the cubic through the points of (Γj
1, Γ2, Γ

j
3). If (Λ1,Λ2,Λ3) is not

algebraic then Λ2 contains three collinear points and one of the following
holds:

(i) Λ2 is contained in a line.

(ii) n = 5 and there is an involutory homology with center in Λ2 which
preserves every Γj and interchanges Λ1 and Λ3.

(iii) n = 6 and there are three involutory homologies with center in Λ2

which preserves every Γj and interchanges Λ1 and Λ3.

(iv) n = 9 and Λ2 consists of the nine common inflection points of Γj .
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Dual 4-nets

Dual k-nets in projective planes

Proposition (KNP, 2013)

Every dual 3-net has a constant cross-ratio κ. Moreover,
κn(n−1) = (κ− 1)n(n−1) = 1 holds.

Theorem (Stipins, Yuzvinsky, KNP)

If p = 0 or p > 3ϕ(n(n−1)) then κ2 − κ+ 1 = 0. In particular, in this case
no dual k-nets exist for k > 4.

Further results:

Description of the geometry of k-nets (k ≥ 4) with a fiber contained
in a line.

Example of dual (q + 1)-net in PG (2, qs), s ≥ 3. [Idea due to
Lunardon.]
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Open problems

Open questions

1 Projective realizations over (algebraically closed) fields of small
characteristic.

2 Projective realization of infinite classes of non-associative quasigroups.

3 Dual 4-nets in projective planes.

4 The geometric description of the realization of Q8.
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Open problems

THANK YOU FOR YOUR ATTENTION!
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