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Abstract

Basic facts about regular polygons, and the notion of regularity, are
well known since the beginning of 70's of last century. Starting
with the theorem about a spatial regular pentagon being planar
(Van der Waerden, 1970), a whole theory has been built up, mainly
in the n-dimensional Euclidean space. Total regularity implies a
nice behaviour of the k-gon, depending on the parity of k . Via
di�erent models and techniques, similar theorems on properties and
classi�cations were discovered, then rediscovered independently.
The very elementary geometric question wether a regular
(n + 1)-gon spans the n-dimensional space, and under what
conditions, drew the attention of geometers again and again during
last four decades. The same theorems were discovered several times
independently, in di�erent interpretations.
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Abstract

In an early article, Gabor Korchmaros used geometric
transformations to solve the problem completely in
three-dimensional spaces. The method is of absolute character, so
the result is valid not only in Eucliden space but in absolute
geometry, as well. Our e�orts for generalizing these results for
higher dimensional spaces, lead to some results, already known,
however the transformation technics would help us to understand
and retrieve the deeper geometric relations.
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Grünbaum

Branko Grünbaum published a general survey on polygons,
dedicated to Leonard M. Blumenthal, in 1975. (Polygons. "The
Geometry of Metric and Linear Spaces", L. M. Kelly, ed. Lecture
Notes in Mathematics Number 490, pp. 147 - 184.
Springer-Verlag, Berlin-Heidelberg-New York 1975.)
Its third section deals with 'Equilateral polygons', not restricted to
be planar. His remark on the kind of regularity, is very honest and
gives a realistic evaluation of di�erent e�orts:

Actually, we are concerned with a number of distinct
topics, depending on the kind of regularity we wish to
consider. Most of the notions we shall discuss were
discovered several times, the authors usually not being
aware of the relevabt work of the others.
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Auric (1911)

De�nition

An n-gon P is called regular provided it is equilateral and isogonal.
I.e. all edges of P have the same length and the angles between
adjacent edges are all equal.

Statement

Each regular pentagon is planar.
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Valiron (1911)

Statement

Skew regular n-gons exist for each odd n > 5.

Remark

Existence of skew regular n-gons for even n ≥ 4 is obvious.

conjecture

If the oriented dihedral angles at each edge are equal then the
regular n-gon is planar (E 3).

Generalisation

The generalisation of the conjecture above for all dimension and a
proof was given by Coxeter (1974), independently.
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Regular polygons of crown type

Figure: Regular polygon of crown type, n is even
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Arnold (1957)

Question

For which n does there exist a spatial n-gon with all its sides of the
same length a and all angles of the same magnitude α?

Answer

Partly answered by A.P. Garber � V.I. Garvackij � V.J.
Jarmolenko (1962).

Answer; Grünbaum (1975), Proposition 8.

For each α with 0 < α < αk = (k−2)π
k

there exist equilateral skew
n-gons isogonal with angle α for each even n ≥ k ≥ 4.
For each 0 < α < αk there exist equilateral skew n-gons isogonal
with angle α for each odd n ≥ max{k , 7}.
There exist no skew equilateral and isogonal pentagons.
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Regular pentagons

Independent reapparence in 1970.
Problem arose by interest of organic chemists.

Theorem. (van der Waerden [1970])

A spatial pentagon ABCDE in which all sides equal a and all angles
equal α is planar.

Several other proofs

Lüssi � Trost (1970)

Irminger (1970)

Dunitz � Waser (1972)

van der Waerden (1972)

Smakal (1972)

Kárteszi (1973)

Bottema (1973)
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O. Bottema (1973) on regular pentagons

Theorem

The necessary and su�cient condition for the existence of a skew
equilateral pentagon that spans E4 and is isogonal with angle α is

pi

5
< α <

3π

5
.

For α = pi
5
we have the regular pentagram (planar),

for α = 3π
5

we have the regular pentagon (planar).
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The point of the proof of van der Waerden

Lemma

If four points ABCD of the 5 points of the regular pentagon
ABCDE are not in a plane then there exists a re�ection τ in an axis
(halfturn)leaving E �xed and interchanging A with D, and B with
C .

B
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Figure: Lemma for Pentagons
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The point of the proof of van der Waerden [2]

There are 3 cases
1 All 5 points are in a plane.
2 4 out of the 5 vertices (say ABCD) are in a plane, however, E

is not in that plane.
3 No 4 out of the 5 vertices are in one plane.

B

C

D

E

A

τ

σ

t

s

Figure: Theorem for Pentagons

A B C D E
τ : ↓ ↓ ↓ ↓ ↓

A E D D B
σ : ↓ ↓ ↓ ↓ ↓

B C D E A
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The point of the proof of van der Waerden [3]

Completing the proof

So that % = σ ◦ τ generates a cyclic permutation(
A B C D E
B C D E A

)
.

The symmetry % �xes the center of mass S of the pentagon.

Product of halfturns around t and s has a �xed point.

So % is neither a skrew motion nor a translation.

Axes s and t have a point of intersection.

% is a rotation around an axis m perpendicular to both s and t
at their point of intersection S .

Korchmáros Gábor and Kozma József SZTE Bolyai Intézet, Geometria TanszékRegular polygons revisited



Regular polygons in r -dimensional Euclidean spaces [1]

Notion of regularity of n-gons

A set of (di�errent) points {P1,P2, . . . ,Pn} we shall call a regular
n-gon if

d(P1,P1+k) = d(Pi ,Pi+k) for 1 ≤ k ≤ n − 1, i = 1, 2, . . . , n,

where the indices are taken mod n.

Notation

Points of E r will be considered vectors of components r , and
denoted as follows. A point P will be identi�ed with vector

p = (p1, . . . , pr ).

On special choice of the the origin

Since the regularity is de�ned by distances of vertices, and a
translation dos not changes these distances, we can translate our
polygon such that its baricenter b gets into the origin.Korchmáros Gábor and Kozma József SZTE Bolyai Intézet, Geometria TanszékRegular polygons revisited



Regular polygons in r -dimensional Euclidean spaces [2]

Lemma on extensions of symmetries of a regular polygon

Regularity conditions provide us with speci�c symmetries of our
regular polygon. Furthermore, these symmetries can be extended to
symmetries of the space Er itself.

Lemma

There is an isometric mapping ϕ of Er onto itself, such that for the
set of the vertices V = [v1, v2, . . . , vn] of a regular polygon
ϕ(vi) = v

i+1
mod n.

Proof

Regular polygon of vertices [v1, v2, . . . , vn], by de�nition, ful�ll all
conditions

d(vi, vj) = d(vi+m, vj+m)

for all 1 ≤ i < j ≤ n, where i +m = i ′ mod n. So for m = 1 we
have a mapping
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Regular polygons in r -dimensional Euclidean spaces [3]

cont. proof

f : V→ V; v1 7→ v2, v2 7→ v3, . . . , vn 7→ v1.

such that each pair of vertices is mapped onto a pair of vertices of
the same distance. In the sense of De�nition 12.2. of [1] mapping f
is a congruent (or isometric) mappinga of V onto V.
However, Property IV. of [1] says that Any congruence between any
two subsets of En [the n-dimensional Euclidean space] can be
extended to a motionb, so it applies to our mapping f , and we can
extend it to an isometry ϕ of Er.

aL.M. Blumenthal, Theory and Applications of Distance Geometry, 35 p.
bL.M. Blumenthal, Theory and Applications of Distance Geometry, 93 p.
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Regular polygons in r -dimensional Euclidean spaces

Now we have a special isometry ϕ of Er which is a symmetry
of V: ϕ performs a cyclic move of the polygon, sending each
vertex to the next one (in the cyclic order of the vertices).

Lemma

If V = [v1, v2, . . . , vn] is a set of vertices of a regular polygon, and
ϕ is an isometry of Er such that ϕ is a symmetry of V, then with
appropriate chose of the origin 0 of Er, ϕ �xes it.
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Representation of ϕ in matrix form

ϕ �xes the origin, so this mapping is a linear isometry of Er. It is
well known that by a proper choice of the basis for Er, the r × r
matrix F of ϕ has the canonical form

F =



±1
1 0

. . .

1
Θ1

0
. . .

Θk


, (1)
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Representation of ϕ in matrix form [2]

where the �rst entry is −1 if the isometry is indirect, furthermore
Θi (for i = 1, . . . , k) are the matrices of rotations of a
2-dimensional subspace through angle ϑi :

Θi =

(
cosϑi − sinϑi

sinϑi cosϑi

)
.

So that r = 2k +m where k ,m are integers with 0 ≤ k ≤ r/2,
0 ≤ m ≤ r , and the number of 1-s is m if ϕ is direct (the �rst entry
is +1) and the number of 1-s is m − 1 if ϕ is an indirect isometry
(the �rst entry is −1).
This matrix representation shows that Er is direct sum of pairwise
orthogonal subspaces, each one is of dimension 1 or 2 and �xed by
ϕ.
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Classi�cation via structure of F

Some basic properties of V can be obtained by analysing its
symmetries.
Case 1 m ≥ 1.

F 2 =



1

1 0
. . .

1
cos 2ϑ1 − sin 2ϑ1
sin 2ϑ1 cos 2ϑ1

. . .

0 cos 2ϑk − sin 2ϑk

sin 2ϑk cos 2ϑk


.
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Classi�cation via structure of F; Case 1

In this case at least one of these ϕ-invariant subspaces has
dimension 1, i.e. number m of (±1)-s is greater or equal to 1, then
ϕ2 has the form
The 1-dimensional subspace Z1 generated by vector
e1 = (1, 0, . . . , 0), is �xed pointwise at ϕ2 since it has two �xed
points: e1 and 0.
As for any vertex vi (1 ≤ i ≤ n) of the polygon

Vi = {(ϕ2)
s
(vi)|s ∈ N} =

=

{
{vi+2, vi+4, . . . , vi−1, vi+1, vi+3, vi−2, vi} = V if n is odd

{vi+2, vi+4, . . . , vi−2, vi}, i.e. every second vertex if n is even,

in case of vi ∈ Z1 for some i , all vertices, or half of them are the
same point, belonging to Z1. We excluded this degenerated case at
the beginning, so we we can suppose that the polygon has no
vertex in Z1.
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Classi�cation via structure of F; Case 1

Now we observe how the set Vi of vertices is situated in space Er.

Lemma

Set Vi of vertices above, is in an a�ne subspace of dimension less
than r , orthogonal to the 1-dimensional subspace Z1.

Proof

It is enough to prove the statement for set V1, generated by vertex
v1, since Vi is generated by each element from
Any vector vi can be expressed in the form

vi = ui + ui
⊥, ui ∈ Z1, ui

⊥ ∈ Z1
⊥,

where Z1
⊥ is the orthogonal complementer subspace of Z1.
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Classi�cation via structure of F; Case 1; cont. proof

Let we start from the equation

v1 − u1 = u1
⊥.

The inner product with u1 gives

u1(v1 − u1) = u1u1
⊥ = 0,

consequently
u1v1 = (u1)

2.

However, by the orthogonality of ϕ, the same is true for (ϕ2)j (for
any j), so

(ϕ2)j(u1)(ϕ
2)j(v1) =

(
(ϕ2)j(u1)

)2
.

Furthermore, (ϕ2)j �xes u1 as a vector in Z1, while sends v1 into
v1+2j:

u1v1+2j = (u1)
2 for all j .

We arrived at the conclusion that all vertices v1+2j have the same
orthogonal component along Z1, i.e. all these vertices are in the
same a�ne subspace v1 + Z1

⊥, orthogonal to Z1.
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Conclusions [1]

The lemma above says that in this case the polygon is

either in a lower dimension a�ne subspace of Er (when n is
odd),

or the vertices with index of the same parity are in a lower
dimension a�ne subspace of Er (when n is even), orthogonal
to the same 1-dimensional subspace.

In the case of odd n, the baricenter of the polygon is in the same
(r − 1)-dimensional a�ne subspace as all vertices of the polygon,
so 0 is in that a�ne subspace, and the polygon is in an
(r − 1)-dimensional linear subspace as well.
If the dimension r of Er is odd, then m is an odd number as well,
so all the above results apply.
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Conclusions [2]

Theorem

In an odd dimensional space Er any regular polygon with vertices of
odd number, is in a lower dimensional a�ne subspace. If the
number of vertices is even then the vertices with even (resp. odd)
indices are contained in a proper subspace of Er. Then, either all
vertices lie in the same proper subspace or the polygon is of crown
type.
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Conclusions [3]

Repeating for the 1-dimensional subspaces Z2, . . . ,Zm, obtain that
Vi is in the intersection of m a�ne subspaces, each is of dimension
(r − 1). We can add this to the previous theorem.

Theorem

If ϕ has m di�erent 1-dimensional invariant subspaces, then the
polygon is in an (r −m)-dimensional linear subspace, orthogonal to
an m-dimensional subspace of Er when n is odd, or the vertices
with indices of the same parity are in an (r −m)-dimensional a�ne
subspace, orthogonal to an m-dimensional subspace of Er when n is
even.
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Classi�cation via structure of F; Case 2

Case 2: m = 0. In this case dimension r of Er is even.
Let vertex P of our regular n-gon has coordinate vector
p = (p1, p2, . . . , pr ), with respect to our coordinate system. So for
p and the matrix form F of the isometry ϕ the following equation
holds: Ftpt =

cosϑ1 sinϑ1
− sinϑ1 cosϑ1 0

cosϑ2i sinϑ2i
− sinϑ2i cosϑ2i

0 cosϑr/2 sinϑr/2

− sinϑr/2 cosϑr/2





p1
p2
...

p2i−1
p2i
...

pr−1
pr


.
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Classi�cation via structure of F; Case 2; cont.

Then the consecutive vertices P, ϕ(P), ϕ2(P), . . . , ϕr−1(P) are
contained in a proper subspace of Er if and only if the vectors

pt,Ftpt, (Ft)2pt, . . . , (Ft)r−1pt

are linearly dependent. Such a linear dependence comes true
whenever p2i−1 = p2i = 0 for at least one i with 0 ≤ i ≤ r/2− 1,
since each vector, according to the previous matrix product, has the
form (p′

1
, p′

2
, . . . , p′

2i2
, p2i−1, 0, 0, . . . , pr−1, pr ). I.e. all these vectors

are in an (r − 2)-dimensional subspace. From now on we exclude
this particular case.
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Non-generated regular polygons [1]

Now we are ready to derive a necessary and su�cient condition for
a regular polygon being non-degenerated in an even dimensional
Euclidean space.
Let us group the coordinates of point P by two to get a complex
representation of it in the following form

τ1 = p1 + ip2, τ2 = p3 + ip4, . . . , τr/2 = pr−1 + ipr .

This is given by a bijective map

c : Er(∼= Rr)→ Cr/2 : (p1, p2, . . . , pr−1, pr ) 7→ (p1+ip2, . . . , pr−1+ipr ),

which is an isomorphism between the two vector spaces.
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Non-generated regular polygons [2]

Then consider the (r/2)× (r/2) complex diagonal matrix

FC =


cosϑ1 + i sinϑ1 0

. . .

0 cosϑr/2 + i sinϑr/2



It is clear that FC =

 τ1
...

τr/2



=

 (cosϑ1p1 − sinϑ1p2) + i(sinϑ1p1 + cosϑ1p2)
...

(cosϑr/2pr−1 − sinϑr/2pr ) + i(sinϑr/2pr−1 + cosϑr/2pr )

 ,
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Non-generated regular polygons [3]

Fk
C

 τ1
...

τr/2

 =


cos kϑ1 + i sin kϑ1 0

. . .

0 cos kϑr/2 + i sin kϑr/2


 p1 + ip2

...
pr−1 + ipr



=

 (cos kϑ1p1 − sin kϑ1p2) + i(sin kϑ1p1 + cos kϑ1p2)
...

(cos kϑr/2pr−1 − sin kϑr/2pr ) + i(sin kϑr/2pr−1 + cos kϑ1pr )

 ,

for 1 ≤ k ≤ r/2.
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Non-generated regular polygons [4]

and that

Fk
C

 τ1
...

τr/2

 =


cos kϑ1 + i sin kϑ1 0

. . .

0 cos kϑr/2 + i sin kϑr/2


 p1 + ip2

...
pr−1 + ipr

 =

 (cos kϑ1p1 − sin kϑ1p2) + i(sin kϑ1p1 + cos kϑ1p2)
...

(cos kϑr/2pr−1 − sin kϑr/2pr ) + i(sin kϑr/2pr−1 + cos kϑ1pr )

 ,

for 1 ≤ k ≤ r/2.
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Non-generated regular polygons [5]

If we introduce the notation ζkj = cos kϑj + i sin kϑj with
j = 1, . . . , r/2, then the previous equation takes the form

Fk
C

 τ1
...

τr/2

 =

 ζk
1
τ1
...

ζk
r/2τr/2

 (0 ≤ k ≤ r/2− 1).
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Non-generated regular polygons [5]

Rephrasing linear dependence

Now, the linear dependence of the vectors, corresponding the �rst
(r/2) consecutive vertices of the polygon and the linear dependence
of the r/2 vectors on the right hand side of the above equation is
equivalent, and can be rephrased as the linear dependence of the
row vectors of the matrix

G =


τ1 τ2 . . . τr/2
ζ1τ1 ζ2τ2 . . . ζr/2τr/2
ζ2
1
τ1 ζ2

2
τ2 . . . ζ2

r/2τr/2
...

...
. . .

...

ζ
r/2
1
τ1 ζ

r/2
2
τ2 . . . ζ

r/2
r/2τr/2

 .
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Criteria

Since we have excluded the case p2i−1 = p2i = 0 (i = 1, . . . , r/2),
we have τi 6= 0, so

det(G ) = τ1τ2 . . . τr/2

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
ζ1 ζ2 . . . ζr/2
ζ2
1

ζ2
2

. . . ζ2
r/2

...
...

. . .
...

ζ
r/2
1

ζ
r/2
2

. . . ζ
r/2
r/2

∣∣∣∣∣∣∣∣∣∣∣∣
.

From the classical result on Vandermonde determinant, we have:

Conclusion

G has maximum rank if and only if the complex numbers ζj are
pairwise distinct. I.e. the angles ϑj are pairwise distinct mod 2π.

The n-gon P = P0P1 · · ·Pn−1 is either degenerate or of crown type
for r odd, while it is non-degenerate, apart a few exceptions, for r
even.
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