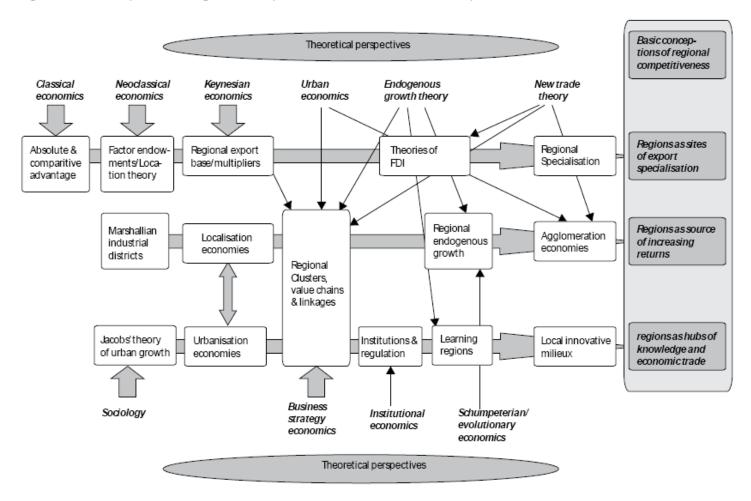
Related variety, economic networks and regional economic growth in Europe

Frank van Oort

Szeged, 25 May 2013



Economic networks and regional competitiveness in Europe

- 1. The regional competitiveness debate
- 2. The EU-cohesion policy debate
- 3. A new revealed competition measure
- 4. Case-studies
- 5. Network determinants and benchmarks
- 6. Conclusions and implications (competitiveness)
- 7. Related variety and regional economic growth in Europe

The regional competitiveness debate

Figure 1.2: Conceptions of regional competitiveness in theoretical disciplines

Adapted from Martin (2005), p. 14.

The regional competitiveness debate

Porter (1995,2000)

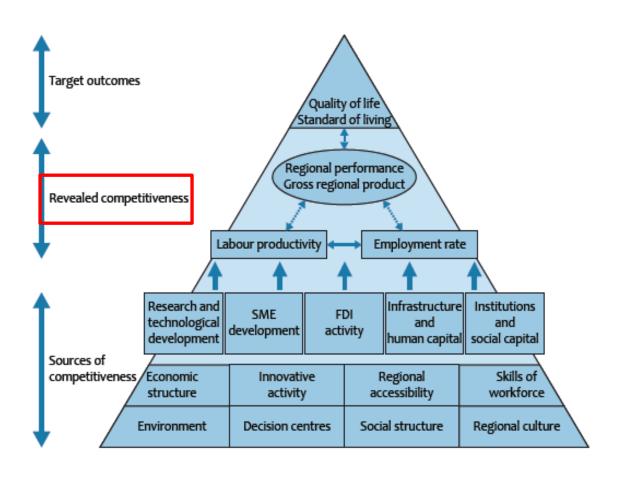
Krugman (1996)

Storper (1997)

Glaeser (2001)

Camagni (2002)

Lengyel (2004)


Kitson et al (2004)

Gardiner (2004)

Bristow (2005)

Borras & Tsagdis (2008)

European Union (2010)

Competitiveness and benchmarking

Ranking of regions according to:

- Typical factors that are assumed to have an effect on the competitiveness of regions
- Compare all possible regions

Problems:

- What is competitiveness?
- What regions do you compare and why them?
- Regions are presented as independent points is this absence of spatial effects conform a measure for competitiveness?
- How should the different factors be evaluated (weighted)?

The regional competitiveness debate

- 1. Who are your competitors?
- 2. What are the locational, network and industrial characteristics of these?
- 3. What is your position concerning these characteristics?
- 4. When (implicitly) causal, what is good to invest in?

- For now applied to trade, later also for FDI and knowledge networks
- Explicitly test for causality, trade-offs and complementarities of various networks in relation to growth

- The EU Single Market; BRIICS countries; NAFTA; ICT technological advances; The Internet; growth in multinationals; out-sourcing and offshoring; EU expansion
- Slow *inter*-national convergence, increasing *intra*-national *inter*-regional divergence
- Formation of global regionalism: EC NAFTA South and East Asia
- Increasing role of cities global cities: place-based development and smart specialization

- People-based "versus" place-based development strategies
 (Barca et al 2012), Worldbank (2009), Barca (2009)
- Importance of the World Bank argument is that it shows that it is not simply institutions that matter for growth – but also geography
- 'Home market' effects and agglomeration are necessary for growth (Collier 1996; Venables 2010)
- Regulatory reform alone will not solve the problems but also 'correct' geography is required

Smart specialization strategies of EU-regions:

- Local specializations
- Entrepreneurship
- Related variety
- Positions in networks
- Network effects of investments
- (New) cohesion policy?

Smart specialization strategies of EU-regions:

- Local specializations
- Entrepreneurship
- Related variety
- Positions in networks
- Network effects of investments
- (New) cohesion policy?

A new revealed competition measure

ESI: Export Similarity Index (Finger and Kreinin, 1979)

Similarity in the export structure of two regions in a specific market (Balassza):

$$ESI_{ik,j} = \sum_{g} \min(ES_{gij}, ES_{gkj})$$

$$ESI_{ik,j} = 1 - \frac{1}{2} \sum_{g} \left| ES_{gij} - ES_{gkj} \right|$$

- BI (A,j)=share industry j in export region A / share industry j in export EU
- More recent proposed measures: Coefficient of Conformity (CC), Index of Trade competition (ITC)

Drawbacks of the existing measures:

- 1. Symmetry: small and big regions face the same level of competition
- 2. Specialization: specialized regions do not compete with diversified regions
- 3. Dynamics: increasing size of regions does not affect their competition when shares remain constant (consequence of 1)
- 4. No treatment of multiple markets within sectors

A new revealed competition measure

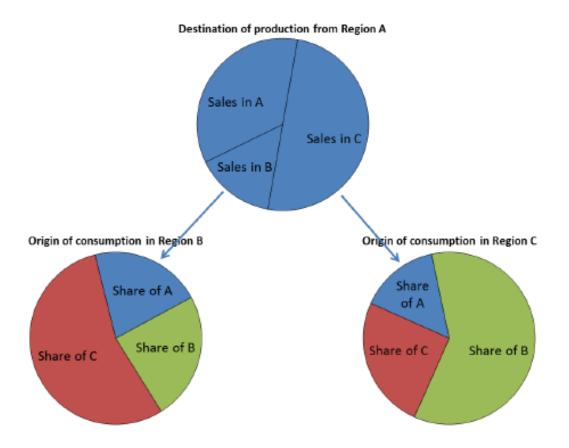


Figure 5.1: Example of revealed competition.

Region A receives strong competition from region B because region B holds a strong position on market C, which is an important export market for region A. Region A does not receive strong competition from region C. Even though region C holds a strong position on market B, region A only exports a small amount to region B.

A new revealed competition measure

Revealed competition is

the sum of the market shares (M) of region A's competitors weighted with the importance of the different markets (E) for region A.

RC: Revealed competition that region *i* faces from region *k*

$$RC_{ik} = \sum_{j} E_{ij}M_{jk}$$

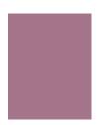
$$T_{ii} \qquad T$$

$$E_{ij} = \frac{T_{ij}}{P_i}, M_{jk} = \frac{T_{jk}}{D_k}$$

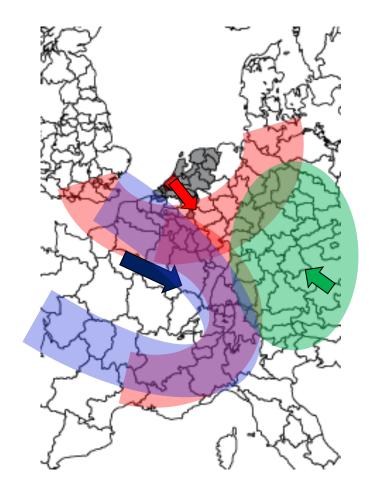
MD: the share of competition a region gives to all other regions

$$MD_{k} = \frac{\sum_{i} RC_{ik}}{\#i}$$

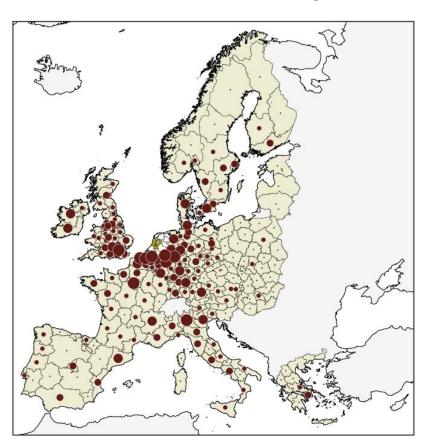
Trade network Data

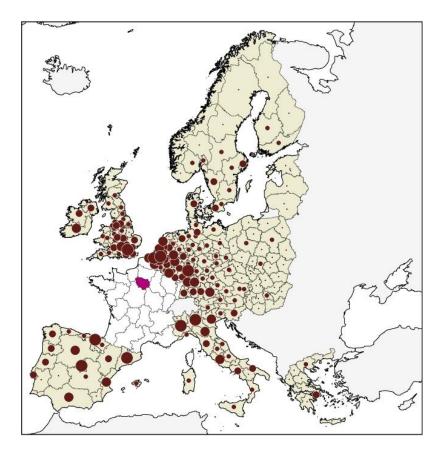

Multiregional supply and Use Tables for Europe 2000, dimensions: 17 industries, 60 products, 256 nuts2 regions, 20 other groups of nations

Multiregional IO Table with trade relations: $((256+20)x(60+5))^2=321.843.600$


Actual relations: 169.728.071

		Industries		goods	goods		Hhd		Total
								nt	
		Region	Other	Region_	Other	Region_	Other		
		X	regions	X	regions	X	regions		
Industry	Region X								T1
	Other_regions								
Goods	Region X								T2
	Other_regions								
Factors	Region X								Т3
	Other_regions								
Governm									T4
ent									
Total		T1		T2		Т3		T4	


Amsterdam main exports Paris main exports Vienna Main exports



Amsterdam and Paris have the most overlap in export markets

Trade: Exports of Amsterdam and Paris

Agglomerations & short distance

Table 5.1: Top 30 of regions which are seen as important competitor by many other regions.

1		Agriculture	Low-tech manufacturing	Medium-tech manufacturing	High-tech manufacturing	Services sector - total	Marketing and Financial Services	Other Marketing Services
	Paris - FR	Rotterdam - NL	Milan - IT	Milan - IT	Dublin - IE	Paris - FR	Luxembourg - LU	S.E.Ireland – IE
2	Milan - IT	Danish mainland - DK	Paris - FR	Paris - FR	Paris - FR	Luxembourg - LU	Paris - FR	Milan- IT
3	Dublin - IE	Andalucía - ES	Stuttgart - DE	Stuttgart - DE	Helsinki - FI	Inner London - UK	Inner London - UK	Inner London – UK
4	Dusseldorf - DE	Eindhoven - NL	Emilia Romagna - IT	Dusseldorf - DE	Milan - IT	Dublin - IE	Dublin - IE	Luxembourg – LU
5	Stuttgart - DE	Milan - IT	Dusseldorf - DE	Munich - DE	Lyon - FR	Outer London - UK	Outer London - UK	Frankfurt – DE
6	Munich - DE	Amsterdam - NL	Veneto - IT	Dublin - IE	Stuttgart - DE	Copenhagen - DK	Stockholm - SE	Brussels – BE
7	Frankfurt - DE	Gelderland - NL	Munich - DE	Lyon - FR	Göteborg - SE	Stockholm - SE	Brussels - BE	Paris – FR
8	Lyon - FR	Paris - FR	Dublin - IE	Arnsberg - DE	Dusseldorf - DE	Rotterdam - NL	Oxfordshire - UK	Amsterdam – NL
9	Veneto - IT	Aquitaine - FR	Danish mainland - DK	Frankfurt - DE	Munich - DE	Amsterdam - NL	Frankfurt - DE	Rotterdam – NL
10	Koln - DE	Barcelona - ES	Eindhoven - NL	Veneto - IT	Border Midlands - IE	Frankfurt - DE	Rotterdam - NL	Lazio – IT
11	Barcelona - ES	Champagne - FR	Barcelona - ES	Koln - DE	Lansi Suomi - FI	Danish mainland - DK	Amsterdam - NL	Düsseldorf – DE
12	Inner London - UK	Veneto - IT	Lyon - FR	Barcelona - ES	Inner London - UK	Oxfordshire - UK	Surrey/Sussex - UK	Wien – AT
13	Arnsberg - DE	Pays de la Loire - FR	Piemonte - IT	Karlsruhe - DE	Frankfurt - DE	Dusseldorf – DE	Dusseldorf - DE	Helsinki – FI
14	Emilia Romagna - IT	Castilla y Leon - ES	Helsinki - FI	Piemonte - IT	Veneto – IT	Brussels - BE	Helsinki - FI	Stockholm – SE
15	Danish mainland - DK	Lyon - FR	Frankfurt - DE	Antwerp - BE	Upsalla - SE	Surrey/Sussex - UK	West Midlands - UK	Outer London – UK
16	Rotterdam - NL	Bretagne - FR	Koln - DE	Emilia Romagna - IT	Stockholm - SE	Helsinki – FI	Madrid - ES	Copenhagen – DE
17	Piemonte - IT	Limburg - NL	Arnsberg - DE	Freiburg - DE	Koln – DE	Milan - IT	Milan - IT	Veneto – IT
18	Eindhoven - NL	Emilia Romagna - IT	Antwerp - BE	Nord Pas Calais - FR	Oxfordshire - UK	Munich - DE	Manchester - UK	Antwerp – BE
19	Antwerp - BE	Overijssel - NL	Rotterdam - NL	Madrid - ES	Arnsberg - DE	Madrid - ES	Munich - DE	Piemonte – IT
20	Karlsruhe - DE	Castilla Mancha - ES	Karlsruhe - DE	Eindhoven - NL	Outer London - UK	Oslo - NO	Utrecht - NL	Utrecht – NL
21	Helsinki - FI	Friesland - NL	Toscana - IT	Detmold - DE	Eindhoven - NL	Eindhoven - NL	Wien – AT	Eindhoven – NL
22	Madrid - ES	Dublin - IE	Nord Pas Calais - FR	Tubingen - DE	Piemonte - IT	West Midlands – UK	Copenhagen - DK	Vest for Stor. – DK
23	Outer London - UK	Piemonte - IT	Lazio – IT	Mittelfranken - DE	Karlsruhe - DE	Manchester -UK	Eindhoven - NL	Munich – DE
24	Amsterdam - NL	Nord Pas Calais - FR	Copenhagen - DK	Rheinhes. Pfalz - DE	Rotterdam - NL	Wien - AT	Barcelona - ES	Campania – IT
25	Copenhagen - DK	Provence Alpes - FR	Amsterdam - NL	Weser Ems - DE	S./W.Scotland - UK	Athens - GR	Stuttgart - DE	Toscane – IT
26	Stockholm - SE	Valencia - ES	Göteborg - SE	Danish mainland - DK	Malmö - SE	Barcelona - ES	Gloucestershire - UK	Puglia - IT
27	Lazio - IT	Centre - FR	Madrid - ES	Basque country - ES	Gloucestershire - UK	Utrecht - NL	Danish mainland - DK	Sicilia – IT
28	Göteborg - SE	Weser Ems - DE	Oberosterreich - AT	Braunschweig - DE	West Midlands - UK	Koln - DE	Antwerp - BE	Niederosterreich – AT
29	Nord Pas Calais - FR	Bourgogne - FR	East Flanders - BE	Schwaben - DE	Nord Pas Calais - FR	Stuttgart - DE	Bedfordshire - UK	Emilia Romagna – IT
30	Toscana - IT	Galicia - ES	Pays de la Loire - FR	Göteborg - SE	East Scotland - UK	Lyon - FR	Gelderland - NL	Gelderland – NL

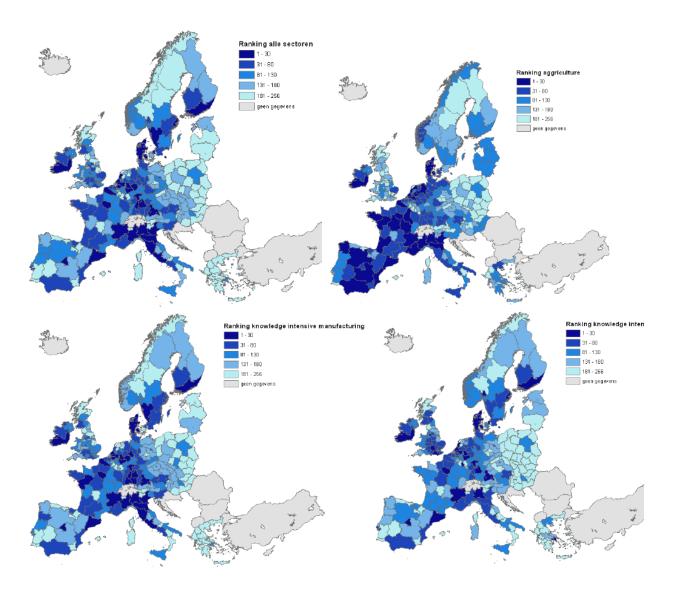
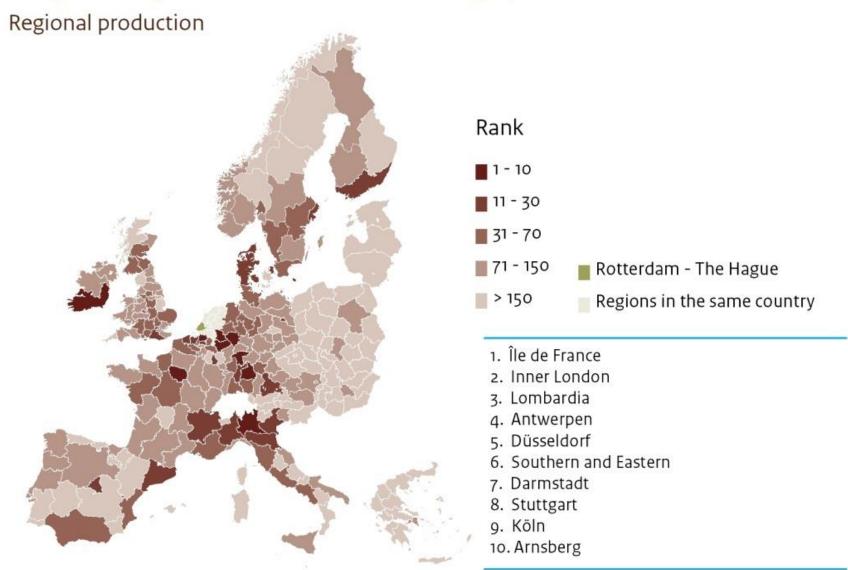
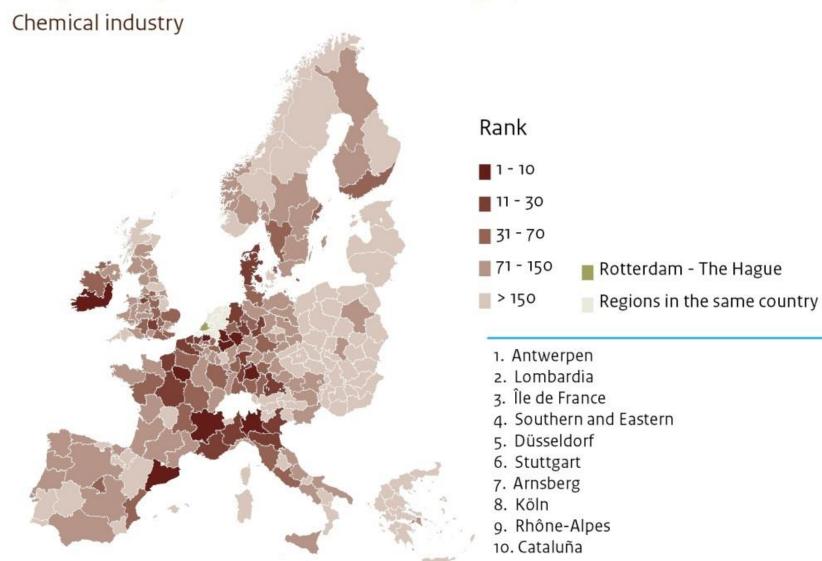
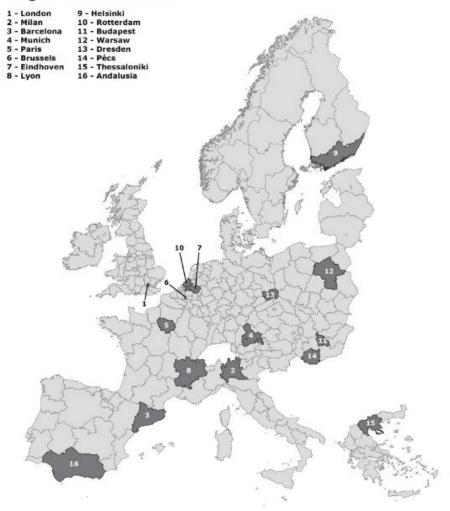




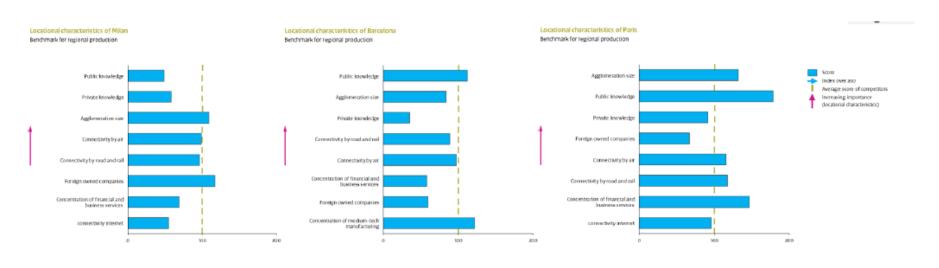
Figure 5.2: Ranking of competitive position of each region in Europe.

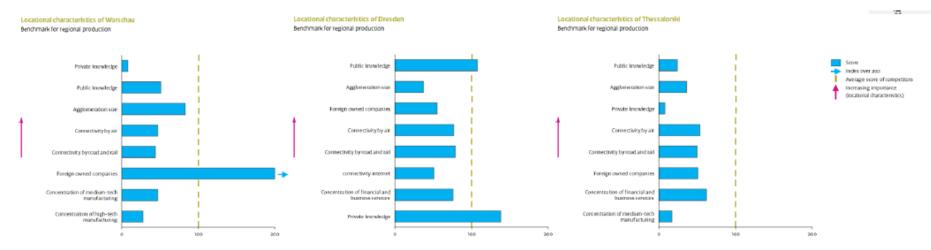
European competitors of Rotterdam - The Hague, 2000



European competitors of Rotterdam - The Hague, 2000

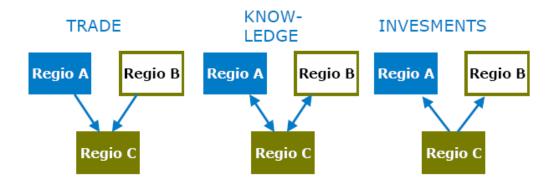
Case-studies


Regional case studies



Network determinants and benchmarks

Innovation	Region Size
R&D business (Eurostat)	Population (Eurostat)
number of patents per inhabitant (Eurostat)	Active population (Eurostat)
R&D public (Eurostat)	Population density (Eurostat)
Ranking university (The 2008 QS university ranking 600)	Infrastructure
percentage company access broadband internet (Eurostat)	accessibility by air index (Espon)
	accessibility by road & rail index (Espon)
Supply chain Specialization in:	Specialization (location quotients) in:
agriculture	Agriculture
knowledge intensive manufacturing	knowledge intensive manufacturing
knowledge intensive manufacturing - high tech	knowledge intensive manufacturing - high tech
knowledge intensive manufacturing - medium high tech	knowledge intensive manufacturing - medium high tech
knowledge intensive manufacturing - medium low tech	knowledge intensive manufacturing - medium low tech
knowledge intensive financial services	knowledge intensive financial services
knowledge intensive services	knowledge intensive services
financial & business services	financial & business services
Input openness in:	Labour market
agriculture	percentage employment 55+ (Eurostat)
knowledge intensive manufacturing	Participation - percentage employment women (Eurostat)
knowledge intensive manufacturing - high tech	percentage unemployment* (Eurostat)
knowledge intensive manufacturing - medium high tech	percentage long term unemployment* (Eurostat)
knowledge intensive manufacturing - medium low tech	
knowledge intensive financial services	Regional specialization
knowledge intensive services	Product specialization
financial & business services	Supply chain specialization
* The inverse of the indicator was taken.	


Network determinants and benchmarks

Conclusions and implications

- 1. A new measure for revealed competitiveness
- 2. Valuable input for EU-cohesion policy
- 3. Valuable input for regions (smart specialization)
- 4. Work in progress: knowledge networks and FDI-networks

- 5. Work in progress: spatial econometric estimation of growth equations (stochastic frontier analysis) with 3 network and proximity matrices in W-definitions
- 6. Other networks than knowledge are probably more determining for regional development than knowledge networks
- 7. Evolutionary economic geography links to elated research fields

Related variety, unrelated variety and regional economic growth in a cross-section of European regions

Frank van Oort

Szeged, 25 May 2013

Related variety on a European scale: beyond the agglomeration ambiguity?

- Burgeoning agglomeration discussion starting with Glaeser (1992) finds no conclusive answers
- This is shown in by now three meta-studies: Melo et al. (2009), De Groot et al. (2009) and Beaudry & Schiffaurova (2009)
- Conflicting empirical outcomes: measurement issues and/or conceptual weakness?
- Related variety has been proposed as a new conceptual theme potentially pulling agglomeration beyond this ambiguity
- Embedded in Evolutionary Economic Geography
- Until now especially regional studies on country level, starting with Frenken cs.
 (2007); little evidence on a pan-European scale. Same processes and conclusions?
- Place-based development strategies and medium-sized cities in Europe

Hypotheses

Hypothesis 1: Regions with a sector structure of <u>related variety</u> experience an increased rate of product innovation, which leads to higher <u>employment</u> on the short run and to both higher employment and higher productivity in the long run

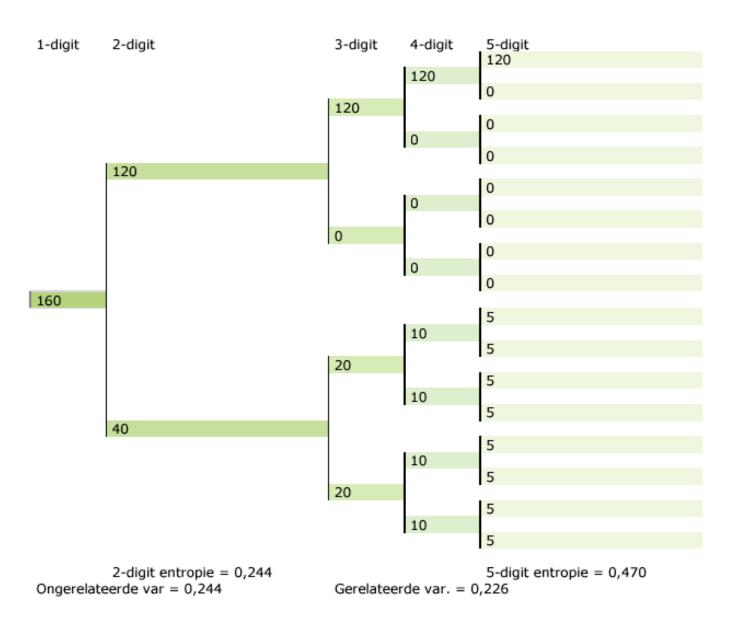
Hypothesis 2: Regions with a sector structure of <u>unrelated variety</u> experience less job losses from asymmetric shocks which leads to <u>lower unemployment</u>, more so in the long run than in the short run

Hypothesis 3: Regions with a sector structure of <u>specialization</u> experience an increased rate of process innovation and reduced production costs which leads to higher <u>productivity</u>, more so in the short run than in the long run. To the extent that process innovation is labor saving, it will lead to lower employment in both the short and long run.

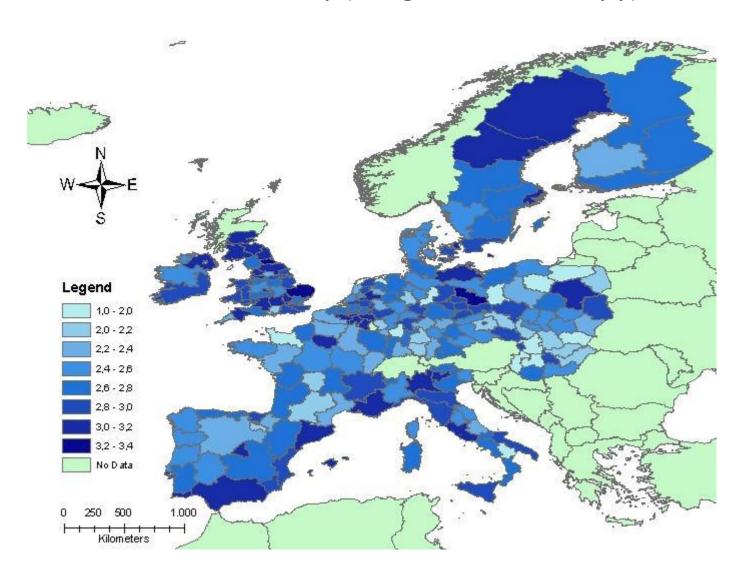
Hypotheses (simplified for testing)

Hypothesis 1: In the short run employment growth is positively related to related variety, negatively related to specialization

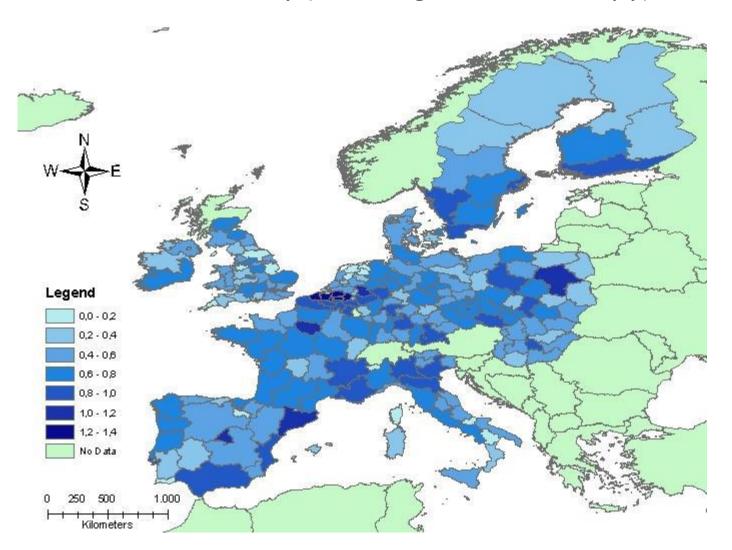
Hypothesis 2: *In the short run labor productivity growth is positively related to specialization*

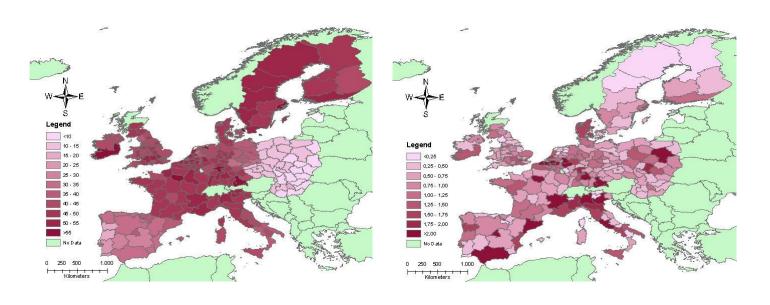

Hypothesis 3: *In the short run unemployment growth is negatively related to unrelated variety*

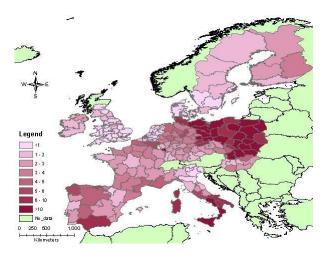
Dogaru et al (2011, 2013): employment growth, productivity growth, oldversus new Europe – spatial heterogeneity, spatial correlation (size, objective-1).


Data

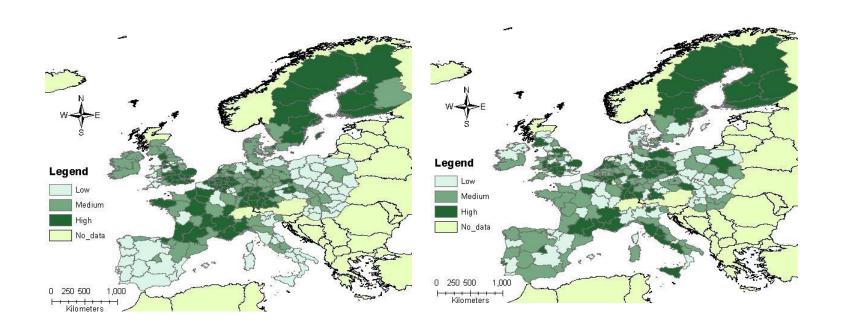
- 1. Variety and specialization measures: AMADEUS-dataset (Bureau van Dijk), firm-level (n=9,837,479) for the period 1999-2009, aggregation to NUTS2-level and framed in CE sectoral employment data.
- 2. NUTS2-regions in: Belgium, Danmark, Finland, France, Ireland, Italy, Portugal, The Netherlands, Spain, Sweden, United Kingdom, and new member states: Czech Republic, Hungary, Poland, Slowakia.
- 3. Productivity (growth), Employment (growth), wages: Cambridge Econometrics, 2 periods.
- 4. Unemployment (growth) and control variables: EUROSTSAT and Netherlands Environmental Assessment Agency (PBL), Dogaru et al (2013).
- 5. Present controls: initial levels, population density, human capital (education), investments, R&D, wages, accesssibility/market potential, new member state, spatial regimes
- 6. Explain growth from level beginning period (cross-sectional)
- 7. Spatial dependence and spatial heterogeneity


(Un)related variety


Unrelated variety (1 digit sector entropy)



Related variety (Δ 2-4 digit sector entropy)



Controls (prod., empl., unempl. 2000)

Controls (private R&D, public R&D 2000)

Employment growth models (hypothesis: related variety +, specialization-)

Table 2a: Employment Growth

Table Lat Linple / inclie						
		(1) OLS Model) Model	(3) Spatial N	
Explanatory Variables	023101	ouci	with Po		with Po	
(Constant)	0,300	0,216	0,303	0,189	0,312	0,164
Employment 2000	-0,025	0,013	-0,028	0,011	-0,027	0,010
Private R&D	-0,005	0,006	-0,003	0,005	0,000	0,005
Public R&D	-0,006	0,006	-0,003	0,005	0,000	0,005
Openness Economy	0,052	0,017	0,048	0,015	0,032	0,013
Market Potential	-0,092	0,021	-0,069	0,018	-0,047	0,016
Education	0,024	0,015	0,020	0,013	0,012	0,011
Population Density	0,005	0,006	0,005	0,005	0,005	0,005
Wages	0,043	0,011	0,030	0,010	0,017	0,009
Related Variety	0,078	0,040	0,088	0,035	0,084	0,030
Unrelated Variety	0,035	0,015	0,029	0,013	0,024	0,011
Specialization	-0,368	0,120	-0,274	0,105	-0,194	0,091
W_Employment Growth			0,950	0,035	0,919	0,041
Summary Statistics:						
N	20	5	20!	5	20!	5
R^2	0,26	55	0,29	91	0,402	
BP (heteroskedasticity)			42,002	0,000	45,915	0,000
LR (spatial lag)			37,583	0,000	80,966	0,000
LM (spatial error)			48,364	0,000	2,484	0,115

Employment growth models (hypothesis: related variety +, specialization-)

Table 2c: Employment Growth (regimes)

	(1)	Regime (Objective	1	(2) Regime Top 75 University				(3) R	(3) Regime Capital Region			
Explanatory Variables	Obj 1		No Obj1		Top Uni	Top University		op rsity	Capital		No Capital		
(Constant)	0,637	0,244	0,093	0,281	0,519	0,215	0,687	0,426	0,706	0,212	-0,146	0,536	
Employment 2000	-0,020	0,012	-0,028	0,017	-0,032	0,011	0,018	0,030	-0,038	0,011	0,030	0,046	
Private R&D	-0,004	0,006	0,000	0,008	-0,001	0,005	-0,008	0,011	0,000	0,005	-0,010	0,025	
Public R&D	0,006	0,005	-0,040	0,011	-0,001	0,005	0,004	0,014	0,002	0,005	-0,017	0,017	
Openness Economy	0,021	0,023	0,030	0,018	0,032	0,015	0,000	0,042	0,024	0,014	0,065	0,063	
Market Potential	-0,049	0,023	-0,076	0,025	-0,049	0,017	-0,065	0,038	-0,050	0,017	-0,043	0,060	
Education	0,003	0,014	0,040	0,019	0,015	0,011	-0,084	0,058	0,010	0,011	0,035	0,070	
Population Density	0,007	0,006	0,008	0,008	0,009	0,005	-0,005	0,010	0,008	0,005	-0,019	0,021	
Wages	-0,010	0,012	0,065	0,014	0,019	0,010	-0,004	0,023	0,014	0,009	0,008	0,033	
Related Variety	0,062	0,036	0,186	0,056	0,096	0,035	0,069	0,071	0,108	0,033	-0,069	0,120	
Unrelated Variety	0,026	0,013	0,000	0,020	0,033	0,013	0,002	0,022	0,018	0,011	0,068	0,084	
Specialization	-0,103	0,165	-0,137	0,114	-0,202	0,101	0,184	0,293	-0,244	0,096	-0,217	0,370	
W_Employment Growth	0,865	0,059			0,920	0,041			0,924	0,039			
Summary Statistics:													
N		20)5			20)5			20)5		
R^2		0,5	27			0,4	37			0,4	47		
Chow-Wald		40,2	0,000			13,2	0,355			18,6	0,100		
BP (heteroskedasticity)		18,958	0,000			12,812	0,000			3,565	0,059		
LR (spatial lag)		65,9	0,000			79,6	0,000			83,4	0,000		
LM (spatial error)		0,457	0,499			2,072	0,150			1,042	0,307		

See notes below table 1. Coefficients that differ significantly with an alpha of 0,05 are boxed.

Productivity growth models (hypothesis: specialization +)

Table 3a: Productivity Growth

(1) (2) (3)											
	OLS M		(2) Spatial N		Spatial Mod	lel with					
Explanatory Variables	OLS IV	iouei	with Po		Power						
(Constant)	0,463	0,167	0,048	0,140	-0,036	0,121					
Productivity 2000	-0,223	0,018	-0,168	0,015	-0,092	0,014					
Private R&D	0,024	0,005	0,017	0,004	0,007	0,004					
Public R&D	-0,006	0,005	-0,005	0,004	-0,001	0,004					
Openness Economy	-0,032	0,016	-0,025	0,013	-0,022	0,011					
Market Potential	0,079	0,018	0,075	0,015	0,055	0,013					
Education	0,066	0,012	0,054	0,010	0,030	0,009					
Population Density	-0,003	0,005	-0,004	0,004	-0,004	0,004					
Wages	0,007	0,014	0,008	0,012	0,004	0,010					
Related Variety	-0,028	0,021	-0,026	0,018	-0,018	0,015					
Unrelated Variety	0,005	0,013	0,004	0,011	0,000	0,009					
Specialization	0,560	0,103	0,414	0,086	0,268	0,074					
W_Productivity Growth			0,960	0,027	0,899	0,043					
Summary Statistics:											
N	20	5	205	5	205						
R^2	0,7	59	0,78	31	0,837						
BP (heteroskedasticity)			55,010	0,000	78,453	0,000					
LR (spatial lag)			57,061	0,000	113,714	0,000					
LM (spatial error)			39,490	0,000	0,051	0,821					

See the notes below table 1.

Productivity growth models (hypothesis: specialization +)

Table 3c: Productivity Growth (other regimes)

	(1)	Regime	Objective	2 1	(2) Re	(2) Regime Top 75 University				(3) Regime Capital Region			
Explanatory Variables	No Obj 1		Obj1			No Top University		versity	No Capital		Сар	Capital	
(Constant)	0,033	0,190	0,232	0,191	-0,024	0,139	-1,071	0,302	-0,230	0,123	-1,156	0,392	
Productivity 2000	-0,127	0,027	0,017	0,029	-0,098	0,016	0,103	0,075	-0,102	0,013	-0,153	0,058	
Private R&D	0,003	0,005	0,022	0,006	0,015	0,004	-0,019	0,009	0,010	0,003	-0,029	0,025	
Public R&D	0,003	0,004	-0,020	0,009	0,000	0,004	-0,010	0,011	-0,004	0,003	0,035	0,012	
Openness Economy	-0,047	0,020	-0,020	0,014	-0,040	0,012	-0,021	0,034	-0,041	0,010	0,035	0,036	
Market Potential	0,051	0,019	0,086	0,019	0,044	0,013	0,065	0,029	0,048	0,012	0,120	0,033	
Education	0,050	0,011	-0,010	0,015	0,024	0,009	-0,022	0,044	0,026	0,008	0,099	0,050	
Population Density	-0,002	0,005	-0,019	0,006	-0,005	0,004	-0,011	0,008	-0,002	0,004	-0,037	0,013	
Wages	0,009	0,010	-0,096	0,027	-0,006	0,011	0,011	0,018	0,009	0,009	0,026	0,049	
Related Variety	-0,020	0,016	-0,007	0,027	-0,028	0,016	-0,015	0,034	-0,025	0,014	-0,095	0,079	
Unrelated Variety	-0,009	0,010	0,042	0,015	-0,010	0,010	0,017	0,017	-0,010	0,008	0,094	0,071	
Specialization	0,268	0,146	0,156	0,088	0,153	0,077	0,334	0,296	0,188	0,068	0,965	0,260	
W_Productivity Growth	0,937	0,032			0,895	0,044			0,890	0,043			
Summary Statistics:													
N		2	05			20	05			20)5		
R^2		0,	861			0,8	864			0,8	87		
Chow-Wald		49,6	0,000			39,3	0,000			85,8	0,000		
BP (heteroskedasticity)		5,520	0,019			0,270	0,603			0,033	0,857		
LR (spatial lag)		129,3	0,000			115,5	0,000			127,6	0,000		
LM (spatial error)		2,885	0,089			0,222	0,638			0,742	0,389		

See notes below table 1. Coefficients that differ significantly with an alpha of 0,05 are boxed.

Unemployment growth models (hypothesis: unrelated variety -)

Table 4a: Unemployment Growth

Table 4a. Offeniploymen	-					
	(1) OLS	Model	(2) Sp		(3) Spatial	
Explanatory Variables			Model Powe		with Pov	ver 2
	1,289	1,069	1,536	0,847	1,393	0,788
(Constant)			•		•	
Unemployment 2003	-0,561	0,034	-0,453	0,027	-0,371	0,030
Private R&D	-0,105	0,035	-0,076	0,028	-0,053	0,026
Public R&D	-0,032	0,033	0,008	0,026	0,008	0,025
Openness Economy	0,500	0,099	0,517	0,078	0,428	0,073
Market Potential	-0,592	0,114	-0,430	0,090	-0,324	0,086
Education	-0,064	0,081	-0,129	0,064	-0,118	0,060
Population Density	0,083	0,033	0,042	0,026	0,034	0,025
Wages	0,225	0,065	0,124	0,052	0,078	0,049
Related Variety	0,138	0,137	0,206	0,109	0,191	0,102
Unrelated Variety	0,134	0,084	0,051	0,067	-0,006	0,063
Specialization	-4,238	0,666	-3,101	0,528	-2,305	0,501
W_Unemployment Growth			0,961	0,027	0,758	0,058
Summary Statistics:					•	
N	20	5	20	5	205	
R^2	0,7	17	0,76	56	0,814	4
BP (heteroskedasticity)			24,087	0,012	23,267	0,016
LR (spatial lag)			77,163	0,000	101,389	0,000
LM (spatial error)			21,683	0,000	1,992	0,158
See the notes below table	1					

See the notes below table 1.

Unemployment growth models (hypothesis: unrelated variety -)

Table 4c: Unemployment Growth (other regimes)

	(1) F	Regime	Objective	e 1	(2) Re	(2) Regime Top 75 University				(3) Regime Capital Region			
Explanatory Variables	No Obj 1		Ob	Obj1		No Top University		Top University		No Capital		Capital	
(Constant)	-0,142	1,212	0,613	1,253	0,546	0,876	4,793	2,063	2,517	0,840	-1,119	2,120	
Unemployment 2003	-0,346	0,038	-0,410	0,058	-0,382	0,030	-0,286	0,073	-0,385	0,029	-0,072	0,103	
Private R&D	-0,040	0,033	-0,058	0,044	-0,078	0,028	-0,024	0,062	-0,047	0,025	0,494	0,138	
Public R&D	0,014	0,026	-0,038	0,065	0,015	0,027	0,061	0,075	0,031	0,024	-0,124	0,090	
Openness Economy	-0,080	0,123	0,586	0,117	0,497	0,078	-0,116	0,222	0,413	0,071	1,039	0,282	
Market Potential	-0,089	0,121	-0,377	0,138	-0,293	0,093	-0,315	0,176	-0,367	0,090	-0,564	0,257	
Education	-0,051	0,076	-0,086	0,104	-0,116	0,059	-0,337	0,314	-0,164	0,058	-0,426	0,346	
Population Density	-0,006	0,031	0,089	0,045	0,055	0,028	0,006	0,054	0,012	0,027	0,259	0,094	
Wages	-0,038	0,067	0,178	0,082	0,132	0,052	-0,238	0,123	0,027	0,048	0,447	0,171	
Related Variety	0,228	0,127	0,047	0,189	0,159	0,110	0,469	0,276	0,229	0,101	-0,476	0,480	
Unrelated Variety	0,055	0,078	-0,012	0,108	-0,036	0,071	0,132	0,126	0,003	0,059	0,936	0,440	
Specialization	0,105	0,933	-2,606	0,628	-2,232	0,536	1,183	1,544	-2,953	0,502	-3,224	1,928	
W_Unemployment Growth	0,714	0,063	,		0,784	0,058			0,767	0,056			
Summary Statistics:													
N		2	05			20)5			20)5		
R^2		0,	840			0,8	32			0,8	44		
Chow-Wald		30,1	0,003			24,7	0,016			40,6	0,000		
BP (heteroskedasticity)		0,243	0,622			2,099	0,147			0,016	0,899		
LR (spatial lag)		86,1	0,000			108,7	0,000			107,3	0,000		
LM (spatial error)		0,026	0,872			1,005	0,316			5,239	0,022		

See notes below table 1. Coefficients that differ significantly with an alpha of 0,05 are boxed.

Conclusions and further research

- 1. First estimations in growth models with related variety in a European context. Important for EU (cohesion and conpetitiveness) policies.
- 2. Hypotheses employment and productivity growth confirmed (related variety hypothesis is more universal), but unemployment growth rejected testing for robustnes needed!
- 3. Period dependence (resilience!). Fixed effects, panel model
- 4. The measurement issues in meta-studies remain in our complementarity approach more robustness tetst needed by estimation strategies that capture spatial dpenedence and sptial heterogeneity, in EU even more so than in countries
- 5. Work in progress: panel estimation, **network positions** (trade, FDI, knowledge) in flows as proximities
- 6. Work in progress: continuous space modeling (Duranton & Overman 2005) to avaid MAUP and conceptual base: aggloomeration forces are microeconomic in character
- 7. Work in progress: causality issues (variety <-> agglomeration)