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Outline

• Photolysis in a collimated beam
• Photolysis of NDMA
• Treatment of MTBE by UV/H 2O2

• Solar degradation of 1,4-dioxane

N-Nitrosodimethylamine (NDMA)

• Widely distributed in the human environment.
• Found in outdoor air, surface waters, preserved 

meat, cosmetics, detergents and pesticides.
• Found in groundwater at levels as high as 10 ppb.
• Potent carcinogen and mutagen.
• On USEPA National Priorities List.
• Not currently easily removed.

• does not air strip
• does not biodegrade
• does not adsorb to activated carbon
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AOT Treatment of NDMA

• UV-based Advanced Oxidation Technologies are 
very effective in treating NDMA.
• NDMA undergoes direct photolysis at 

wavelengths <350 nm.
• UV/H2O2 treatment, which involves generation of 

••••OH radicals, can also be used. 
• High concentrations ratios of H 2O2 to NDMA are 

required.
• Stefan, M. I. and J. R. Bolton, 2002. “UV Direct Photolysis of N-

Nitrosodimethylamine (NDMA): Kinetic and Product Study.”, Helv. 
Chim. Acta, 85, 1416-1426.

Previous Work

• Several studies on UV direct photolysis of N-
nitrosoamines were reported in the 1970-1980 
literature, both in aqueous solution and in the 
gas phase.

• A strong pH dependence was found for the 
photolysis of NDMA.

• Dimethylamine and nitrite were found as major 
products.

• No intermediate time profiles, TOC or nitrogen 
balances were reported.

• Very little work on UV/H 2O2 treatment of NDMA.
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Methyl- tert-butyl Ether (MTBE)
• Fuel oxygenate used as an octane enhancer of 

reformulated gasoline; largely manufactured in the USA.
• High solubility in water; detected in ground and st orm 

water as the second most frequent contaminant (afte r 
CHCl3).

• Carcinogen in animals; potential human carcinogen.
• Not currently regulated as a drinking water contami nant.
• Low odor (45 ppb) and taste (39 ppb) detection 

thresholds.
• Drinking water advisory limit of 20 - 40 ppb MTBE, 

recently issued by USEPA.
• Cater, S. R., M. I. Stefan, J. R. Bolton and A. Safarzadeh-Amiri, 2000 

“UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters” 

Environ. Sci. Technol. 34, 659-662.
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MTBE Remediation
• Traditional Technologies:

• Air-stripping - can achieve 99% removal of MTBE 
from water if large air to water ratios are used bu t is 
only a mass transfer.

• Adsorption on granulated activated carbon - low 
affinity; effective at low concentrations, but a 
high cost of carbon replacement at high 
concentrations.

• Aerobic biodegradation - difficult to apply to large 
volumes of MTBE-contaminated water or to ppm-ppb  
levels. 

• Advanced Oxidation Technologies:
• UV/H2O2, UV/O3 and O3/H2O2 processes.

Kinetic Model
• Assume rate can be estimated from initial 

conditions.
• Rate of removal of MTBE is

Rate = k2[•OH] ss[MTBE]

• The steady-state •OH concentration is

where G is the photon flux output from the UV lamp, 
χχχχ is the fraction absorbed in the solution, ΦΦΦΦ is the 
quantum yield of generation of •OH radicals from 
H2O2 photolysis and V is the solution volume (L).
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k1 = 5.8 x 10-3 s-1
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Homogeneous Solar 
Photodegradation 

of Contaminants in Water

• Based on the UV-Vis Fentons process with 
ferrioxalate as the absorber

• Ferrioxalate absorbs out to 500 nm
• Bolton, J. R., M. Ravel, S. R. Cater and A. Safarzadeh-Amiri, 

1996. “Homogeneous solar photodegradation of contaminants in 
water”, Proceedings of the ASME International Solar Energy 
Conference, San Antonio, TX, 31 March - 3 April, 1996, 
American Society of Mechanical Engineers, United Engineering 
Center, 345 East 47th St., New York, NY 10017, pp 53-60. 
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• Patented process developed by Calgon Carbon 
Corporation about 1994

• For Waters of high UV Absorbance, high COD or 
high pollutant concentration

• Involves addition of ferrioxalate

Fe(C2O4)3
2-

which absorbs light over a wide range of 
wavelengths (including part of the visible) to 
generate hydroxyl radicals

Rayox ® -A
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• Efficient use of lamp output due to absorption of 
ferrioxalate over the UV and visible range.

• High reactivity of complexed ferrous ion with 
hydrogen peroxide.

• High quantum yield of Fe(II) formation means a 
very high quantum yield for generation of 
hydroxyl radicals.

• Photolysis of Fe(III)-organic intermediate 
complexes enhances the treatment effectiveness.

Why is Rayox ®-A So Efficient?

Solar Detoxification
• Most research in solar photocatalytic 

decontamination has dealt with 
heterogeneous catalysts, such as titanium 
dioxide (TiO 2).

• TiO2 disadvantages include:
• low quantum yield for .OH production (ca. 

5%) 
• potential for fouling 
• only absorbs 3% of the solar spectrum 
• mass transfer limitation on rates

Calgon Carbon’s Solaqua ® Sunlight 
Decontamination Process

• homogeneous process

• involves an absorber (ferrioxalate) that 
absorbs solar radiation out to 500 nm

• the reaction mechanism involves the 
generation of hydroxyl radicals with a 
quantum yield of about unity 

• 18% of the solar spectrum is absorbed
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Hyperlinks >>>>

Chemical Structures
CH3

N
CH3

N
O

O

CH3CH3

CH3

CH3

O

O

N-nitrosodimethylamine (NDMA): C2H6N2O
- rocket fuel contaminant
- formation in drinking water: 
monochloramine is a precursor to 
NDMA formation during chlorination

Methyl tert-butyl ether (MTBE): C5H12O

1,4-Dioxane: C4H8O2

Chemical Structures > estimation of 
oxidation and mineralization products
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What do you think are 
the products of mineralization?

CO2, H2O, NO3
-, NO2

- (NH4
+)

CO2, H2O
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Chemical Structures > estimation of 
oxidation and mineralization products
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Which intermediary oxidation products 
may be formed?

MTBE ���� Intermediary Oxidation 
Products ���� Mineralization
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