CivE 729 Lecture 3 UV-Based Advanced Oxidation Technologies: Chemistry

Prof. James R. Bolton and Prof. Thomas Oppenlaender

Outline

- Photolysis in a collimated beam
- Photolysis of NDMA
- Treatment of MTBE by UV/H₂O₂
- Solar degradation of 1,4-dioxane

N-Nitrosodimethylamine (NDMA)

- Widely distributed in the human environment.
- Found in outdoor air, surface waters, preserved meat, cosmetics, detergents and pesticides.
- Found in groundwater at levels as high as 10 ppb.
- Potent carcinogen and mutagen.
- On USEPA National Priorities List.
- Not currently easily removed.
 - does not air strip
 - does not biodegrade
 - does not adsorb to activated carbon

AOT Treatment of NDMA

- UV-based Advanced Oxidation Technologies are very effective in treating NDMA.
 - NDMA undergoes direct photolysis at wavelengths <350 nm.
 - UV/H₂O₂ treatment, which involves generation of •OH radicals, can also be used.
 - High concentrations ratios of H₂O₂ to NDMA are required.
- Stefan, M. I. and J. R. Bolton, 2002. "UV Direct Photolysis of N-Nitrosodimethylamine (NDMA): Kinetic and Product Study.", *Helv. Chim. Acta*, 85, 1416-1426.

Previous Work

- Several studies on UV direct photolysis of Nnitrosoamines were reported in the 1970-1980 literature, both in aqueous solution and in the gas phase.
- A strong pH dependence was found for the photolysis of NDMA.
- Dimethylamine and nitrite were found as major products.
- No intermediate time profiles, TOC or nitrogen balances were reported.
- Very little work on UV/H₂O₂ treatment of NDMA.

Methyl-tert-butyl Ether (MTBE)

- Fuel oxygenate used as an octane enhancer of reformulated gasoline; largely manufactured in the USA.
- High solubility in water; detected in ground and storm water as the second most frequent contaminant (after CHCl₃).
- Carcinogen in animals; potential human carcinogen.
- Not currently regulated as a drinking water contaminant.
- Low odor (45 ppb) and taste (39 ppb) detection thresholds.
- Drinking water advisory limit of 20 40 ppb MTBE, recently issued by USEPA.
 Cater, S. R., M. I. Stefan, J. R. Bolton and A. Safarzadeh-Amiri, 2000
- Cater, S. R., M. I. Stefan, J. R. Bolton and A. Safarzadeh-Amiri, 2000 "UV/H₂O₂ treatment of methyl tert-butyl ether in contaminated waters" Environ. Sci. Technol. 34, 659-662.

MTBE Remediation

- Traditional Technologies:
 - Air-stripping can achieve 99% removal of MTBE from water if large air to water ratios are used but is only a mass transfer.
 - Adsorption on granulated activated carbon low affinity; effective at low concentrations, but a high cost of carbon replacement at high concentrations.
 - Aerobic biodegradation difficult to apply to large volumes of MTBE-contaminated water or to ppm-ppb levels.
- Advanced Oxidation Technologies:
 - + UV/H₂O₂, UV/O₃ and O₃/H₂O₂ processes.

Homogeneous Solar Photodegradation of Contaminants in Water

- Based on the UV-Vis Fentons process with ferrioxalate as the absorber
- · Ferrioxalate absorbs out to 500 nm
- Bolton, J. R., M. Ravel, S. R. Cater and A. Safarzadeh-Amiri, 1996. "Homogeneous solar photodegradation of contaminants in water", Proceedings of the ASME International Solar Energy Conference, San Antonio, TX, 31 March - 3 April, 1996, American Society of Mechanical Engineers, United Engineering Center, 345 East 47th St., New York, NY 10017, pp 53-60.

Rayox[®] - A

- Patented process developed by Calgon Carbon Corporation about 1994
- For Waters of high UV Absorbance, high COD or high pollutant concentration
 - Involves addition of ferrioxalate

Fe(C₂O₄)₃²⁻

which absorbs light over a wide range of wavelengths (including part of the visible) to generate hydroxyl radicals

Why is Rayox[®]-A So Efficient?

- Efficient use of lamp output due to absorption of ferrioxalate over the UV and visible range.
- High reactivity of complexed ferrous ion with hydrogen peroxide.
- High quantum yield of Fe(II) formation means a very high quantum yield for generation of hydroxyl radicals.
- Photolysis of Fe(III)-organic intermediate complexes enhances the treatment effectiveness.

Solar Detoxification

- Most research in solar photocatalytic decontamination has dealt with heterogeneous catalysts, such as titanium dioxide (TiO₂).
- TiO₂ disadvantages include:
 - low quantum yield for OH production (ca. 5%)
 - · potential for fouling
 - only absorbs 3% of the solar spectrum
 - · mass transfer limitation on rates

Calgon Carbon's Solaqua[®] Sunlight Decontamination Process

- homogeneous process
- involves an absorber (ferrioxalate) that absorbs solar radiation out to 500 nm
- the reaction mechanism involves the generation of hydroxyl radicals with a quantum yield of about unity
- 18% of the solar spectrum is absorbed

Prof. Dr. Thomas Oppenländer, HFU Germany

