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Learning in Logic

Learning in Logic - Inductive Generalization of Clauses

observations:

A: The result of heating this bit of iron to 419 °C was that it melted.
B: The result of heating that bit of iron to 419 °C was that it melted.

induction: The result of heating any bit of iron to 419 °C was that it melted.

observations expressed in first-order logic:

A: Bitofiron(bity) A Heated(bit,419) — Melted(bitq)
B: Bitofiron(bity) A Heated(bits,419) — Melted(bits)

induction: Vux(Bitofiron(z) A Heated(x,419) — Melted(x))

as clause: Vzr(—Bitofiron(x) V —Heated(x,419) Vv Melted(x))
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Learning in Logic

Learning in Logic

* inductive generalization of first-order clauses
1. preliminaries
2. generalization of words (terms and literals)

3. generalization of clauses
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Learning in Logic

First-Order Logic — Syntax (Alphabet)

e a set of constants a.b. ...
e a set of variables u, v, w,x,y. ...
e a set of function symbols f.g.. ..

e cach function symbol is associated with a natural number (its arity)

e constants can be considered as function symbols of arity 0
e a non-empty set of predicate symbols P, (). ...

e cach predicate symbol is associated with a natural number (its arity)
e connectives: -, N\, V., —., <
e quantifiers: V. 3

e punctuation symbols: (', *)", and *.’
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Learning in Logic

First-Order Logic — Syntax (Terms)

e set of terms over an alphabet is the smallest set satisfying

1. any constant is a term
2. any variable is a term

3. if f is an n-ary function symbol and ¢4, ..., t,, are terms then f(ty.....%,)
iIs a term

e examples:

®

®

o g(x2, 21, f(f(f(a))))

N\
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Learning in Logic

First-Order Logic — Syntax (Formulas)

e set of formulas over an alphabet is the smallest set satisfying
1. if P is an n-ary predicate symbol and ty,...,¢,, are terms then
P(tq....,t,) is a formula, called atom
2. if ¢ is a formula then —¢ is a formula

3. if ¢ and v are formulas then (¢ A ), (0 V), (¢ — 1), (¢ < 1)) are
formulas

4. if ¢ is a formula and x is a variable then JdJx¢ and Vx¢ are formulas

e examples:

o (a)
e S (S is a 0-ary predicate symbol)

o (VoidroR(ws, 1) NVYyQ(y))

N\
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Learning in Logic

First-Order Logic — Syntax (First-Order Language)

e The first-order language given by an alphabet is the set of all formulas
which can be constructed from the symbols of the alphabet.

e further notions:

— the scope of YV (respectively dx) in Va¢ (respectively Jdxo) is ¢

— the bound occurrence of a variable x in a formula is an occurrence
of x immediately following a quantifier, or an occurrence of x within
the scope of a quantifier that is immediately followed by x

— an occurrence of a variable i1s free if it is not bound

— a closed formula is a formula which does not contain any free oc-
currences of variables

— a ground term (respectively a ground formula) is a term (resp.
a formula) which does not contain any variables

~N
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Learning in Logic

First-Order Logic — Semantics (Pre-Interpretation)

e pre-interpretation .J of a first-order language L consists of the following:

— A non-empty set D, called the domain of the pre-interpretation.
— Each constant in L is assigned an element of D.
— Bach n-ary function f in L is assigned a function Jy : D" — D.
e Let .J be a pre-interpretation with domain D of a first-order language L.

A variable assignment V' with respect to L is a mapping from the set
of variables in L to the domain D of .J.

— notation: V(z/d) denotes the variable assignment which maps the
variable  to d € D, and maps the other variables according to V/

\
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Learning in Logic

First-Order Logic — Semantics (Term Assignment)

e Let J be a pre-interpretation with domain D of a first-order language
L. and let V' be a variable assignment with respect to L. The term
assignment with respect to .J and V' of the terms in L is the following
mapping from the set of terms in L to the domain D:

— FEach constant is mapped to an element in D by .J.
— Each variable is mapped to an element in D by V.

— If dq.....d,, are the elements of the domain to which the terms

t1,...,t, are mapped, respectively, then the term f(t;....,%,) is

mapped to Jg(dy,....d,), where Jy¢ is the function assigned to f

by .J. |

N\
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Learning in Logic

First-Order Logic — Semantics (Interpretation, Truth Value)

e An interpretation [ of a first-order language L consists of the following:

— A pre-interpretation .J, with some domain D, of L. [ is said to be
based on .J.

— Each n-ary predicate symbol P in L is assigned a function /p map-

ping D™ to {T, F'}.

e Let [ be an interpretation, based on the pre-interpretation .J with domain
D, of the first-order language L, and let V' be a variable assignment with
respect to L. Let Z be the term assignment with respect to .J and V.
Then a formula ¢ in L has a truth value under [/ and V as follows:
(next slide ...)

10
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Learning in Logic

First-Order Logic — Semantics (Interpretation, Truth Value)

(i) If ¢ is the atom P(t1,....t,). and d; € D is assigned to t; by Z (i =
1,...,n), then the truth value of ¢ under I and V' is Ip(dy,....d,).

(ii) If ¢ is the formula of the form —, (¥ A x), (¥ V x), (¥ — x), (¥ < Y)
then the truth value of ¢ under I and V' is determined by the truth value
of the corresponding propositional formula obtained by taking the truth
values of ) and y.

(iii) If ¢ is the formula of the form dzi), then ¢ has the truth value 7" under
I and V if there exists an element d € D for which ¢ has truth value 7T’
under I and V(x/d); otherwise it has the truth value F.

(iv) If ¢ is the formula of the form Vi), then ¢ has the truth value 7" under [
and V' if for all d € D, ) has truth value 1" under I and V (x/d); otherwise
it has the truth value F'.

11
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Learning in Logic

First-Order Logic — Semantics (Model, Implication)

e Let ¢ be a closed formula in a first-order language L, and I an interpretation
of L. Then ¢ is said to be true under I if its truth value under 7 is T'. I is then
said to satisfy ¢. Similarly, ¢ is said to be false under [ if its truth value under
I'is F. I is then said to falsify ¢.

e Let ¢ be a closed formula in a first-order language L, and I an interpretation
of L. Then I is a model of ¢ if I satisfies ¢.

e Let > be a set of closed formulas in a first-order language L, and I an inter-
pretation of L. Then I is a model of X if I is a model of all formulas in 3.

e Let X be a set of closed formulas and ¢ a closed formula in a first-order lan-
guage L. Then ¢ is a logical consequence of >, or X logically implies ¢,
denoted X = ¢, if every model of X is also a model of ¢.

12
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Learning in Logic

Clauses
e a literal is an atom or the negation of an atom; a positive literal 1s an
atom and a negative literal is the negation of an atom

e a clause is a closed formula of the form
Vay .. Vo, (A V...VA, VB V...V~-B,)

where the A;’s and B;’s are positive literals.

— all variables are quantified

— usually will be considered as the set {A;....,A,,.~By.....,~B,}

Thm (Schmidt-Schauss, 1988): The problem whether C' = D, where

C' and D are arbitrary clauses, is undecidable.

13
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Learning in Logic

Substitutions

e a substitution # is a finite set of the form

for some n > 0. where the x;’s are distinct variables and the t;’s are terms.

— # 1s a ground substitution if all the #;’s are ground

— 0 is the identity substitution if § = ()

e an expression is either a term, a literal, or a conjunction or disjunction
of literals; a word is a term or a literal

14
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Learning in Logic

Substitutions

o Let 6 ={x/t,...,x,/t,} be a substitution and E an expression. Then
E#, the instance of E by 6, is the expression obtained from E by simul-
taneously replacing each occurrence of x; by t; (1 <i < n).

— 1if Ef 1s ground. then E6 is called a ground instance

example:
E = Py, f(x))
0 = {x/a,y/g9(g(x))}
E0 = P(g(g(x)), f(a))
o Srese AR o universitétg! % FraunhOfer

IIIIIIIIIIIIIIIIIII R — IAIS



Learning in Logic

Substitutions

o Let 8 ={x1/s1,...,2,,/8n} and o = {y1/t1,...,y,/t,} be substitutions.
The composition of # and o, denoted f#o, is the substitution obtained
from

{4171/(510): ce :417-7?1/(57?&0): yl/tl: cees y'n-/tn}
by deleting all x;/(s;o) for which 2; = s,0, and any y;/t; for which y; €
{Il ’ Im,}

example:
0 = {2/f(y).z/u.y/u)

o = {y/bu/z)}
bo = {x/f(b),z/zy/zy/bu/z} \{z/z,y/b} = {x/f(b),y/z u/z}

16

PhD Course, Szeged, 2012 - © T.Horvath " ___-'/
universitétgn % Fra un hOfe r

IIIIIIIIIIIIIIIIIII R — IAIS



Learning in Logic

Substitutions

o Let F be an expression and 6 = {x1/y1,...,2,/y,} be a substitution.
Then # is a renaming substitution for E if each x; occurs in £ and
Y1, ...,Yn are pairwise distinct variables such that each y; is either equal

)

to some 2; in ¢, or y; does not occur in E.

example: for F = f(a,x,y,2) and 6 = {x/xy,z/x}, we have Ff =
f(a’: 1, Y, 117)

e Let £ and F' be expressions. Then E and F' are alphabetical variants if
there are renaming substitutions # and o such that £ = F6 and F = Eo.

example: £ = P(x)V Q(x.y) and F' = P(y) V Q(y, z) are alphabetical
variants because F{x/y,y/z} = F and F{y/x,z/y} = FE

Prop. Let E and F' be expressions and # and o substitutions such that
Ff = F and Fo = E. Then E and F' are alphabetical variants.

proof: exercise

17
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Learning in Logic

Learning in Logic

* inductive generalization of first-order clauses
1. preliminaries
2. generalization of words (terms and literals)

3. generalization of clauses

18
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Learning in Logic

Generalization of Words: Notions

e word: term or literal

e W, is more general than W, (W, < W) if there exists a substitution 6 such
that W10 = Wo

example: P(z,z, f(9(y))) < P(I(3),1(3), f(g(x)))
because P(x,z, f(g(y)))0 = P(I(3),1(3), f(g(x))) for 6 = {z/I(3),y/x}

19
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Learning in Logic

Generalization of Words: Notions

e < is a quasi-order (or preorder) on the set of words,
* |.e., < is reflexive and transitive

® W1WW2ifW1§WQandWQSW1

Prop.: W; «~ W5 iff Wy and W5 are alphabetical variants

proof: exercise

20
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Learning in Logic

Inductive Generalization of Words

¢ generalization of words: a word W is a generalization of a set K of words
iff w <ViorallVek

¢ least general generalization (LGG) of words: a word W is a least general
generalization of a set K of words iff

« W is a generalization of K and
« W' < W for any generalization W'’ of

= if W7 and W5 are any two LGGs of K then W; «~ W,

21
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Learning in Logic

Inductive Generalization of Words

example:

K={P(f(a,9(y)),z,9(y)), P(h(a,g(x)),z,g9(x))}

e generalization of K: P(x,vy, 2)

o LGG of K: P(z,y,9(2))

22
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Learning in Logic

Inductive Generalization of Words

e two words are compatible iff they are both terms or have the same predicate
symbol and sign

Theorem (Plotkin, 1970): Every non-empty, finite set K of words has a least
general generalization if and only if any two words in K are compatible.

proof: The compatibility condition is necessary. For the other direction, we
give an algorithm (next slide) and show that this algorithm computes the
LGG for any two compatible words.

23
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Learning in Logic

Inductive Generalization of Words

Def. We say that a term t is in the /-th place in a word W iff:

e t=Wand I =<> or

c W =op(t,...,tm), I is asequence < iq,...,1, > Of positive
integers, i1 < m, and tis inthe < io,...,4, >-th place in t;,.

example: x is in the < 3,2 >-th place in P(a,b, g(y,x))

24
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Learning in Logic

The Algorithm

input: two compatible words W, and W5
output: LGG of W, and W,

1. Vii=W,and e; =0 (i = 1,2)

2. Try to find terms t;,%5 such that they have the same place in Vi, V5,
respectively, t1 # to, and either they begin with different function
symbols or at least one of them is a variable.

3. If there are no such ¢, %5 then return V;. In this case. V; is an LGG
of {Wy, Whl, Vi = V5, and Vie;, =W, (1 = 1,2).

4. Choose a variable x distinct from any in V; or V5 and wherever
and to occur in the same place in V| and V5. respectively, replace
each by .

5. €, :={a/t;}e; (1 =1,2)
6. go to 2
PhD Course, Szeged, 2012 - © T.Horvath " ___-'/ 25
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Learning in Logic

Example

example: Wy = P(f(a,9(y)),z,9(y)), W2 = P(h(a, g(z)),z, g(x))

e initially: Vi = P(f(a,9(y)),z,9(y)), Vo = P(h(a,g9(z)),z,9(x)), €1 = 2 =0

e wetaket; =y, to =z inplace < 1,2,1 > (step 3) and z as the new variable
(step 4) and get after step 4:

Vi = P(f(a,9(2)),2,9(2)), Va = P(h(a, 9(2)), %, 9(2))

and after step 5: ¢ = {z/y}, e2 = {2/x}

(contd on the next slide ...)

26
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Learning in Logic

Example (Cont'd)
e next we take t; = f(a,g(z)), to = h(a,g(z)) in place < 1 > (step 3) and u as
the new variable (step 4) and get after step 4:
Vi =Pu,x,9(2)) = Vs
and after step 5:

e1 = {u/f(a,9(2))ter = {u/f(a,9(y), 2/y}
e2 = {u/h(a,g(z))}e2 = {u/h(a,g(), 2/}

e the algorithm halts and returns P(u, x, g(z)) as the LGG

27
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Learning in Logic

Proof of Plotkin’s Theorem

Let K ={Wq,..., W, } be a finite set of compatible words.

4 !

e If n =1 then the theorem is trivial.
e For n > 1 the following proposition holds:
Prop. 1 LGG(K) = LGG({W, LGG({W5, ..., LGGH{W,_1+,W,})...})})

)

proof: exercise

= to prove the theorem. it is sufficient to show that the previous algorithm
works

28
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Learning in Logic

Proof of Plotkin’s Theorem - Definitions and Notions

Def.: two terms ¢, and ¢, are replacable in V; and V5, respectively, if they fulfill
the conditions of step 2 of the algorithm, i.e.,

o tl#tz

« either they begin with different function symbols or at least one of
them is a variable

Def.: the difference of two words V; and V5 are defined by

diff(V1,V2) = [{I : the termsin V; and V5 in place I are replacable}|

Notation: V/ and V; denote the result of replacing t; and ¢ in V; and V5,
respectively, by a new variable in the way described in step 4 of the algo-
rithm

29
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Learning in Logic

Main Steps of the Proof of Plotkin‘s Theorem

(i) every time a pair of replaceable terms is replaced the difference drops
(by Lemma 3)

(il) the difference will eventually become zero and when it does we must have
V1 = V5 and the algorithm will then halt (by (i) and Lemma 3)

(ii) V! <V; because V/{xz/t;} =V, (i = 1,2) (by Lemma 4)

= when the algorithm terminates, we must have Ve, = W; (i = 1, 2)
= the output is a generalization of {1V, W5}

(iv) every generalization of {W;, W5} is more general than the output
(oy Lemma 5)

30
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Learning in Logic

Lemma 2

Lemma 2: If V; and V5 are distinct compatible words, then there are ¢, in
Vi, Vs, respectively, which are replaceable in them.

proof: by induction on words on V;

e trivially holds, if one of V;, V4 is a constant or a variable, or if they begin with
different function symbols

o if Vi =(tl,... t1)and Vo = o(t3,...,t2), then there exists an i with ¢} # ¢

= applying the induction hypothesis to ¢}, t#, there are u, u, which are
replaceable in t},t%, respectively

= as t!,t? are in the same place in V;,V; (i.e., < i >), respectively,
u1,uo are replaceable in Vi, V5

31

PhD Course, Szeged, 2012 - © T.Horvath " ?
universititbonn % F raun hOfe r
IIIIIIIIIIIIIIIIIII T — 1AIS



Learning in Logic

Lemma 3

Lemma 3: if V; and V5 are distinct compatible words, then
diff(V{, V) < diff(Vy, Va)
proof: by induction on words on V}

case 1: if one of Vi, V5 is a constant or a variable, then t; = V4., t5 = V5, and
Vi=VJ]=ux so

0 = diff(V/, V) < diff(V;, Va) = 1

case 2: next slide ...

32
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Learning in Logic

Proof of Lemma 3 (cont’'d)

case 2: if V; = f(v1,...,v,) @and Vo = g(uq, ..., u,) With f # g then
case2.1: if t; = V; (: = 1,2), then 0 = diff(V{,VJ) < diff(V1,Vs) by
Lemma 2;
case 2.2: otherwise

min(m,n)

diff(V/,VJ) = 1+ Z diff (v

mm(m,n)

< 1+ Y diff(v;,u;) / by the induction hyp.
=1

—  diff(V, V&)

case 3: if V, = f(vy,...,v,) and Vo = f(uq,...,u,) then the proof is similar ...

33
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Learning in Logic

Lemma 4

Lemma 4: V/{xz/t;} =V (1 =1,2)

proof: erxercise

34
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Learning in Logic

Lemma>b

Lemma 5: if V; and V5 are distinct compatible words and Vo, =V, (1 = 1, 2).

then there are o/, o), such that Vol =V (i =1,2)

proof: denote by f;(uy,us,t1,t2) the result of applying the operation in step 4
of the algorithm to wuq,us on u; (7 = 1,2), and let

o; = {yl/uf oY Jult (i =1,2)
vl = filul,udty ta) (i=1,2:5=1,...,m)
of = {yi /v,y /oMY (i =1,2)

e by Lemma 4: 0, = ocl{x/t;} (1 =1,2).

35
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Learning in Logic

Proof of Lemma 5 (cont’'d)

we show by induction on V' that:
If V, V1, V5 are such that Vo, =V, (i = 1,2) then Vo, = V! (i = 1, 2).
case 1: If V is a constant, then V = V; = V5, and the result is trivial.

case 2: If V is a variable y then:

case2.1: Ify #y,fori =1,...,m,theny =V =V; = V5, and the claim
IS trivial.

case 2.2: If y =y, for some j, then Vo, = fi(Vi, Va,t1,t2) = V/

'Z‘; .

case 3: Suppose V = p(uy,...,u,) thenif V! = p(wt, ..., w?),

Vo = op(uiol,...,uyo;)
= o(wt,...,w) (induction hypothesis)
— Vi’
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Learning in Logic

Learning in Logic

* inductive generalization of first-order clauses
1.
2. generalization of clauses

3. example

37
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Learning in Logic

Generalization of Clauses

e C. D: first-order clauses

e (' is more general than D (C' < D) if there exists a substitution 8 such that
CoC D

example:

{P($1, CL‘Q), P(CEQ, .’}33), P(.’L‘g, &',‘4), P($4, $1)} S {P(CLI, CLQ), .P(G;Q? a,l)}

because

{P(x1,x2), P(x2,x3), P(x3,24), P(x4,21)}0 C {P(a1,as), P(as,a1)}

for
6= {331/6117332/&2,2173/&1,374/662}
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Learning in Logic

Generalization of Clauses

propetrties:
e < is a quasi-order (or preorder) on the set of clauses
— i.e., < is reflexive and transitive

o CH~DifC<Dand D <C(C

BUT! C -~ D does not imply that they are alphabetical variants
proof: exercise
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Learning in Logic

Subsumption vs. Implication

let C, D be clauses
« <issound,i.e.,C < D impliesC = D
— Why? (exercise)
- <isincomplete, i.e., C' = D does not imply C < D
example: for C = {P(f(z)),~P(x)} and D = {P(f(f(x))),~P(z)} we
have that C = D, but C £ D
« the problem of deciding if C' = D is undecidable
* the problem of deciding if C < D is NP-complete

proof: exercise

40
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Learning in Logic

Subsumption vs. Implication

Thm. (Gottlob, 1987): For any first-order clauses C' and D, if C' is not self-
resolving and D is not tautological then C' = D implies (and is thus
equivalentto) C < D.

Proof: omitted

41
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Learning in Logic

Least General Generalization of Clauses
e generalization of clause: aclause C'is a generalization of a set K of clauses
iff C < Dforall D e

¢ least general generalization (LGG) of clauses: a clause C'is a least gen-
eral generalization of a set K of clauses iff

« ('is a generalization of K and
« C' < C for any generalization C’ of

= If C7 and C5 are any two LGGs of £ then C; « C5

42

PhD Course, Szeged, 2012 - © T.Horvath " __-'/
—
um\,ersitatb'onj ~ Fraunhofer

IIIIIIIIIIIIIIIIIII SWILHELMS-UNIVERSITHT IAIS



Learning in Logic

Least General Generalization of Clauses

example:
« C1 = {-Bitofiron(bit;), ~Heated(bit;,419), Melted(bit; )}
. O, = {-Bitofiron(bit.), —Heated(bit,419), Melted(bit,)}
« generalization of £ = {C;, Cs}: {-Bitofiron(x), —Heated(y,419), Melted(z) }
« LGG of K: {—Bitofiron(x), ~Heated(x,419), Melted(x) }

43
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Learning in Logic

Least General Generalization of Clauses

Def. Let S = {C,,...,C),,} be a set of clauses. A set K = {Ly,...,L,} of
compatible literals is a selection from S if and only if L; € C; for every
1=1,...,n.

Thm. (Plotkin, 1970)

(i) Every finite set S of clauses has a non-empty LGG if and only if S
has a selection.
(i) If C; and C5 are two clauses with at least one selection, then the
following algorithm computes an LGG of C; and Cs.
proof:

() exercise
(i) we first give an algorithm and then show that it is correct

44
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Learning in Logic

Proof of (ii): The Algorithm

input: 5 = {C,C,} with selections {L},L?} (I = 1,...,n), where L] € C;
(j = 1,2). Suppose that L; = (£)Fi(ty,,...,t, ), where ()P, is either
P, or —=P,.

(i) Let f; be a function symbol with arity k; for [ = 1,...,n and let P be a
predicate symbol with arity n. Let M; be the literal

P(fi(t] 1, stp, 1)seoos fu(tlps sty ) G=1,2

U

(ii) Compute the LGG M of the words {M;, M-}.

(iii) Suppose M is of the form P(f1(ui 1, %k, 1)s s frn(Wims Uk, n));
then return the clause

C = {(j:)Pl(ul,la R 3uk31,l)7 R (:}:)Pn(u]-?n’ T "ukn’l)}

45
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Learning in Logic

Example

Cy = {grandfather(abraham, jacob), - father(abraham,isaac), ~parent(isaac, jacob)}
Cy = {grandfather(kohath, miriam), — father(kohath, amram), —parent(amram, miriam)},

selections:

(grandfather(abraham, jacob), grandfather(kohath, miriam)),
(= father(abraham,isaac), —~ father(kohath, amram)),
(—parent(isaac, jacob), ~parent(amram, miriam)

step (i) words:

M, = P(fi(abraham, jacob), fo(abraham,isaac), f3(isaac, jacob)),
My = P( fi(kohath, miriam), fo(kohath, amram), fs(amram, miriam))

step (ii) LGG of M, and M5:
M = P(fi(z,y), f2(z,2), f3(2,9))
step (iii) LGG of C; and C5:
{grandfather(x,y), ~father(x, z), ~parent(z,y)}

46
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Learning in Logic

Lemma A

Lemma A Let £ = {W,...,W,} be a set of words with LGG W and with
substitutions Wu; = W, fori =1,...,n.

1. Iftisatermin W thentis an LGG of {tuq,...,tun}.
2. If x,y are variables in W and zu; = yu; fori =1,...,nthen z = y.

proof: omitted (trivial)
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Learning in Logic

Proof of (ii) on Slide 44
proof of (ii):
by Plotkin’s theorem for words: there are v, and v such that

Mvy = M, and Muvs = Mo

= (v = UL%QC_{ and Cvo =
=1

U L7 € Cs
[ =1

[

= (' is a generalization of C; and C,

48
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Learning in Logic

Proof of (ii) on Slide 46

e we show that C'is an LGG, i.e., E < C for all generalizations £ of C; and (5

* by construction and by Lemma A: L; = (£)P;(u14,...,ux, ;) € C
isan LGG of {L;, L7} foralli=1,...,n

1

e let £ = {M,y,...,M,,} be a generalization of C; and C,, and let a1, as be
substitutions such that Fa; € C; and Eay C (9

= (Mpai1, Myas) = (L,, L?) is a selection forevery p=1,...,m
= M, < L,y, where L, € C is the corresponding LGG of {L,, L;}

= there is a substitution 3, such that M,3, = L,

= we need to show that |J §, is a substitution
p=1

= implies that £ ( U 6p) C C,i.e.,, E < ( as desired
p=1

49
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Learning in Logic

Proof of (ii) on Slide 46

U B, exists if and only if for all variable z and for all M, , M, € E

p=1
with p; # po it holds that 3, = z(3,,
M, € E ~ means that Ao = B
(k=1,2)
03]
Bpr
1 _ 2
Ci3 L, 7 LGG({L,,,L> }) = Ly €C 7 > Ly € O

o z3, isatermin L, (k=1,2)
= xf,, Isan LGG of {z8,, v1, 20,12} = {rai,zax} (kK =1,2) //by Lemma A

= zf3,, and z(3,, are alphabetical variants

50
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Learning in Logic

Proof of (ii) on Slide 46

e let 21, x5 be variables having the same place in 23,,, x3,,, respectively
e we know that x3,,v1 = z8,,v1 = xay and zf,,va = xfp, 12 = Tao
= 111 = T, and x1vs = xo1s
= T = To // by Lemma A.2

= xﬂpl — xﬁpz

= | B, exists, i.e., it is a substitution

p=1
e this is what we wanted to prove (see Slide 49) Q.E.D.
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Learning in Logic

Reduced Clauses

e if two clauses are equivalent then they are not necessarily alphabetical vari-
ants

example: Cy = {P(x,y)}, Cy = {P(u,v), P(u,z)}

e both C; < C5 and Cy < (Cq hold

= any two LGGs of a set of clauses are equivalent to each other, but need not
be alphabetical variants

Def.: aliteral L € C'is redundant iff C < C'\ {L}

e P(u,v) in Cy above is redundant because C5 < {P(u, z)}

Def.: a clause is reduced iff it is not equivalent to any proper subset of itself

e (1 above is a reduced clause

52
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Learning in Logic

Clause Reduction

Thm (Plotkin, 1970)

(i) If ¢ «~ D, and C and D are reduced, then they are alphabetical
variants.

(i) For a clause C, the algorithm on the next slide outputs a reduced
clause E such that C' -~ FE.

53
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Learning in Logic

Clause Reduction Algorithm

algorithm:

input: clause C
output: reduced clause E such that C' -~ E

1. E:=C

2. Find a literal L € E and a substitution ¢ such that Fo C E \ {L}.
If there is no such L, return E.

3. F:= FEo and go to 2

PhD Course, Szeged, 2012 - © T.Horvath >4
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Learning in Logic

Example

let C ={P(u,v), P(u,2)}
1. £E:=C ={P(u,v),P(u,z2)}
2. L =P(u,v) and o = {v/z} satisfy

Eo = {P(u,v),P(u,z)H{v/z}
— {P(uv Z)}
E\{L}

3. E:=Fo={P(u,v), Pu,z) {v/z} = {P(v, 2)}

N

2. no new literal can be selected, return { P(v, z)}

55
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Learning in Logic

Proof of the Theorem on Slide 53

proof of (i)
« as C' «~ D, there are pand v suchthat Cu C D and Dv C C
= Cuv C C and Dvuy C D
= since C are D reduced, Cuv = C and Dvy = D

= by Lemma B (next slide), uv and vu are renaming substitutions

= 1 and v are renaming substitutions

= C and D are alphabetical variants ]
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Learning in Logic

Lemma B

Lemma B For any clause C, if Cu = C then C and Cu are alphabetic variants.
proof: we regard C' as a set of literals ordered by <
o C'=Cu" foreveryn >0
= VL € C, thereisan 0 < kr, < |C| so that Lu*t « LuFr+iforalli > 0
= thereisan 0 < N < |C|suchthatVL € C, Luy" « LpyN*t foralli >0
= as Cu = C,forall L € C, thereis an M € C such that Mu" = L
= L=Mp" ~ MpN*t!t = Lpu
= 1 maps variables to variables
e (' and C'u have the same number of variables because C' = Cu

= 1 maps distinct variables of C to distinct variables of C'u

= (' and C'u are alphabetic variants ]
PhD Course, Szeged, 2012 - © T.Horvath " — 57
universitétgr‘ % FraunhOfer

IIIIIIIIIIIIIIIIIII R — IAIS



Learning in Logic

Proof of (ii) in the Theorem on Slide 53

proof of (ii):

* the algorithm terminates after at most |C| iterations

* there is always a n so that Cu C E-

— stage 1: =1
— if such a u exists before stage 2: uo will be one after stage 2

= when the algorithm halts: Cyu C Fand E C C,i.e.,C ~ E
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Learning in Logic

Proof of (ii) in the Theorem on Slide 53 (cont’d)

proof of (ii): (previous slide: C' and the output E are equivalent)

« suppose F is not reduced at termination
= JF' C Esothat E' - E
= Jo such that Eo C E’

= pick L ¢ F\ E';we have Ec C E'C E\{L}

= contradicts that the algorithm has terminated ]
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Learning in Logic

Putting All Together

» Every finite set S of clauses has a non-empty reduced LGG which is
unique up to variable renaming if and only if S has a selection.

- Foraset S ={C,...,C} of clauses, the LGG of S can be computed by
LGG(S) = LGG({C1, LGG({Cx, ..., LGG({C-1,Ck}) .. - })})
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Learning in Logic

Learning in Logic

=  notions and notations

= inductive generalization of first-order clauses
1. generalization of words (terms and literals)
2. generalization of clauses

3. example
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Learning in Logic

Application Example: Relation Extraction from Texts

Problem: Automatic extraction of semantic relations between entities
from natural language texts.

Example:

Training Data: Fraunhofer was a German optician.
Schrddinger was an Austrian - Irish physicist.
Planck was a German physicist.

Heisenberg was a celebrated German physicist and
Nobel laureate.

Learning: definition of the unknown target predicate Is_Physicist( X, Y)
Prediction: Einstein was a German theoretical physicist.
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Learning in Logic

Data Preprocessing

sentences 2> dependency trees

» |abeled rooted directed trees representing grammatical dependencies
among the words in a sentence

= capture a low-level syntactic structure of sentences
» Dijective map between words in a sentence and nodes in the tree
»= generated by the Stanford Parser

* nodes defining the same entity are merged into a single node

- e.g., Ludwig Wittgenstein - Ludwig_Wittgenstein
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Learning in Logic

Example: Unary Target Relation

Fraunhofer was a German Heisenberg was a celebrated German Brecht was a German poet, playwright,
optician. physicist and Nobel laureate. and theatre director.

was was was

Y Y Y
Fraunhofer optician Heisenberg physicist Brecht poet

Y
é Y Y Y \ / A Y
German
celebrated and laureate German playwright and director

Y Y Y
German Nobel theater

unknown target relation: Is_Physicist (unary)
POS: { Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg) }
NEG: { Is_Physicist(Brecht) }
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Learning in Logic

Example — Generalization of Dependency Trees

Fraunhofer was a German Heisenberg was a celebrated German
optician. physicist and Nobel laureate.

optcian physicist
Y
é y \ A
German
celebrated and laureate

Y

German Nobel

POS: { Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg)}
We want to generalize these two structures!

Consider them as ground clauses and use Plotkin‘s LGG algorithm!
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Learning in Logic

Dependency Trees as Relational Structures

= |abeled trees are considered as relational structures
- unique constant for each vertex
- unary and binary predicates only

- ground

» training examples: m-tuples of vertices of the dependency trees

- P: m-ary target relation to be learned
POS: set of instances (m-tuples) of the target relation P
NEG: set of non-instances (m-tuples) of the target relation P

- ground atoms of the target predicate P
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Learning in Logic

Example - Dependency Trees as Ground Clauses

Fraunhofer was a German
optician.

was

comes from
semantic hierarchy

Iil Y (e.g., Wordnet)
Fraunhofer optician

Y
German

{-was(a; 1), ~Fraunhofer(a; ), —optician(a; 3), —-physicist(a; 3), ~a(a; 4), ~German(a; 5),
_'R(Cbljl.), aljg), _lR((}/l’]_? al}g), _'R(aljgg, 31?4), _'R(aljg, &1:5), iS_thSiCiSt(al?g)}

or equivalently

was(a; 1 )AFraunhofer(a; o) Aoptician(a; 3)Aphysicist(a; s)Aa(a4)ANGerman(a; 5)A

/\R(Qljl, alrz) N\ R(algl, 61,3) N\ R(a/ljg, a1’4) A R(a/ljg, a1,5) — iS_thSiCiSt(alag)
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Learning in Logic

Example - Dependency Trees as Ground Clauses

Heisenberg was a celebrated German
physicist and Nobel laureate.

was

A

I Heisenberg I

physicist

Y
celebrated

1

German

and

laureate

Nobel

{—was(as, 1), "Heisenberg(az ), -physicist(as 3), —a(asz.4), ~celebrated(as 5),

ﬂGerman(agﬁ), _land(a,gj), ﬂlaureate(&ggg), _INObel(aQ’g),

_'R(GQ,la GQ,z), _'R(GQJ: a2,3), —'R(&2,3, a2,4), —'R(a2,3, &2=5), _'R(GQ,B) a2:7), _'R(GQ,Sa Gz,s),

_'R(G,Q’5, 0.',2,6), _'R(G,ng, ngg), iS_thSiCiSt(agjg)}
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Learning in Logic

Example - LGG of the Two Ground Clauses

the two structures correspond to labeled directed trees

= LGG: direct product of labeled trees

» introduce a product vertex for each pair (u,v) of constants

= each such product vertex corresponds to a new variable x, , in the LGG

= add an edge from (u,,v,) to (u,,v,) in the product iff there is an edge from u, to u,
and there is an edge from v, to v,
= add the literal —=R(xy, v,y X(u,v,)) t0 the LGG
= color” the product vertex (u,v) by the unary predicate Q iff u and v are both colored
by Q
= add the literal -Q(x, ) to the LGG

69
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Learning in Logic

Example - LGG of the Two Ground Clauses

Heisenberg was physicist a celebrated German and laureate Nobel
O« O xT »O ?—»O CT) 4)—»@
Xo X, X, X3 X4 Xs X X5 Xg
Fraunhofer O O O O O O O O O
v physicist

optician ©— O O o= O Q O O Q
q O e e O ® O O e
German O« O O O O O OGerman © O O
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Learning in Logic

Example - LGG Reduction

Heisenberg  was phlls;cist :: celebrated Gerlman a;d laureate  Nobel
Remove allredundant edges!

_ “ /'O 7 upp i |//p!|/p °

., Edgee s tedundant iff there is 2~
~lomomarphism.from-the graph-into.the.
fained by removing e~ \

AN
| bk
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Learning in Logic

Example - LGG Reduction

Heisenberg was physicist a celebrated German and laureate Nobel

O« O xT »O ?—vo CT) 4)—»0

Fraunhofer

was

\
optician ©—

Y

a ©

German O«
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Example - LGG Reduction

peseroers vz J}@rpa}tft@ﬁnm@pm@@np ting
" thee @mc*eﬂptpgesmedmt@d by
> {Fraunhofer, Heisenberg)

Xo

Fraunhofer I
was

@) @)
L. v
optician ©— O O @)
) 4
a O O O O
German O« German © O @)

=
=
=
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=
T
—
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Learning in Logic

Example — The Reduced LGG as Graph Pattern

Fraunhofer was a German Heisenberg was a celebrated German

optician.

was

I Fraunhofer I

Y

optician

:

German

physicist and Nobel laureate.

was

I Heisenberg I

A

physicist

Y

:

celebrated

y

German

target relation: Is_Physicist (unary)

and

laureate

Nobel

was y

f Y
X physicist y 4
A
German

the pattern
representing the concept
generated by POS

POS: { Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg) }

PhD Course, Szeged, 2012 - © T.Horvath

universitétbonnl

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

74

\

Z Fraunhofer

IAIS



Learning in Logic

Example - The Reduced Pattern as First-Order Clause

VXV X 10V X 11V X0V X022V X 30V X1 (Is_Physicist(Xo)A
—was(Xig) A =physicist(Xso) A —ma(Xsp) A
A= R(Xo, X10) N “R(X10, X20) A 7 R(X20, X30) A
A—German(X41) A “R(X11, Xo2) A "R(Xa2, X41))
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Learning in Logic

Example (cont'd)

was

SUPEIEED |

Einstein was a German theoretical physicist.

______________

L

the pattern representing the concept generated by
{Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg)}

physicist
v l
German theoretical
N

Is_Physicist(Einstein)

PhD Course, Szeged, 2012 - © T.Horvath
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Learning in Logic

Example (cont'd)

Brecht was a German poet, playwright, and theatre director.

WAS |F--——---- e e e e m———— = - +»| was
N
:_ _X _______________ Brecht Ir——> poet [«
physicist --—-'v-—--><—---—:r ---------------- -i--" --—I
, A S |
e I N L]
ST VT % German playwright and director
l A
| German | i
ar-————-- T |

________________________________ theater

the pattern representing the concept generated by

{Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg)} NOT Is_Physicist(Brecht)
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Learning in Logic

Summary

LGG is a natural notion for the generalization of first-order clauses with
respect to subsumption

computing the LGG of clauses is reduced to computing the LGG of words
a reduced non-empty LGG, if it exists, is unique up to variable renaming

problems with the LGG

- the size of the reduced LGG can grow exponentially with the number of
clauses

- as subsumption is NP-complete, deciding whether the LGG generalizes
(l.e., subsumes) a clause is NP-complete
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Learning in Logic

Outline

= complexity of learning function-free definite Horn clauses

* bottom-up induction of clauses
* therelative least general generalization (RLGG)
= ageneric algorithm

= on the length of the reduced RLGG

* top-down induction of clauses

= the FOIL algorithm
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Learning in Logic

Horn Clauses

Def. A Horn clause is a clause containing at most one positive literal;
a definite Horn clause is a clause containing precisely one positive literal.

« the Horn clause {=L4,...,—~L;} is denoted by
— Lqy,..., L
« the definite Horn clause {Lq,—L1,...,~Lx} is denoted by
Lo < Ly,..., L

database theory: function-free Horn clauses, i.e., terms are either variables
or constants

* referred to as conjunctive queries
 having no positive literal: Boolean conjunctive queries

80
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Learning in Logic

Finding a Consistent Clause

the consistent hypothesis finding problem:
Given two sets {C4,...,Cx} and {D,..., D;} of function-free definite
Horn clauses, decide whether there exists a Horn clause H such that

e H<(C;foralli=1,... kand
« HLD;forallj=1,...,1
observations:

 such an H exists iff LGG({C1,...,Cx}) £ D forallj=1,...,1

* if H exists and the positive literals in the C;’s are pairwise compati-
ble, then H must be definite and function-free

81
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Learning in Logic

Finding a Consistent Clause

Theorem (Kietz, 1993)
The consistent hypothesis finding problem is NP-hard.

Proof: see Appendix of the lecture slides

remarks

* the problem is a decision problem
— i.e., we do not want to output H if it exists

 the negative result does not imply that the problem is in NP
— it is an open problem, whether it belongs to PSPACE
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Learning in Logic

Learning Function-Free Definite Horn Clauses

= bottom-up induction of clauses
* therelative least general generalization (RLGG)
= ageneric algorithm

= on the length of the reduced RLGG

* top-down induction of clauses

= the FOIL algorithm
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Learning in Logic

Learning Non-Recursive Definite Horn Clauses

vocabulary:

« target (or intensional) predicate P
« background (or extensional) predicates Ry,...,RywithP € {Rq,..., R;}
e constants a1,...,a,

non-recursive definite Horn clause (conjunctive query):

P(-- )« Ri(-)y...,Ri (-)
—— N ~ v
head body (background atoms)

* function-free (i.e., arguments are variables or constants)

background knowledge 5:
set of ground atoms of the background predicates (extensional database)
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Learning in Logic

Learning Non-Recursive Definite Horn Clauses

e let A be a ground P-atom and C be a non-recursive definite Horn clause

Def.: C implies A wrt. B if there is a substitution ¢ such that

head(C')0 = A and B0 € B for every literal B € body(C')

e C'U{B} is alogic program

e this case: subsumption = implication (Gottlob, 87)
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Learning in Logic

Example

O =P(X,Y) « R(X,Z),R(Z,Y)
« A= P(a,c)

« B={R(a,b), R(b,c), R(c,a)}

C implies A with respect to B
— for the substitution § = {X/a,Y/c, Z/b}
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Learning in Logic

Finding Consistent Clauses wrt. Background Knowledge

Given background knowledge B and disjoint sets E+ and £~ of ground
P-atoms,

find a non-recursive definite Horn clause C such that

(1) C implies all positive examples with respect to B

(7¢) C does not imply any of the negative examples with respect to B,

if such a clause exists, and print ‘no’ otherwise.

e clauses satisfying (i) and (ii) are consitent with £ and £~ with respect
to B
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Learning in Logic

Relative Least General Generalization

Prop.: For background knowledge B and disjoint sets E* and E~ of ground
P-atoms, there exists a non-recursive definite Horn clause C' consistent
with £1 and E~ with respect to B if and only if

LGG({A + B: Ae EtY))

does not imply any of the negative examples with respect to B.
Proof: exercise

Def.: LGG({A < B : A € E*}) is the relative least general generalization of
E* wrt. B

— notation: RLGGz(ET) =LGG({A+ B: A€ ET})
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Learning in Logic

Problem Reformulation: Notions

instance space X:

set of all ground P-atoms

concept: Cjp represented by a non-recursive definite Horn clause C wrt. B
Cp={A e X: Cimplies Awrt. B}

= (CgC X
concept class Cj:

set of all such concepts

=>CB§2X
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Learning in Logic

Reformulation of the Problem on Slide 87

Given background knowledge B and disjoint sets £+ and £~ of ground
P-atoms, (i.e., BT, E~ C X),

find a non-recursive definite Horn clause C such that
(i) ET C Cpand
(11) E—NCgr =10,

if such a clause exists, and print ‘no’ otherwise.

— one of the basic problems of Inductive Logic Programming
(Muggleton and De Raedt, 94)
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Learning in Logic

Reformulation of the Problem on Slide 87

instance space X (+e B, — € E)

background knowledge B

consistent concept ¢ (it has a non-recursive definite Horn clause representation)

.goal: PRINT such a clause representing c if it exists wrt. B
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Learning in Logic

Reformulation of the Problem on Slide 87

Thm.: Cz is closed under nonempty intersection

Proof: omitted

= ifcy,...,cp. €Cgand ¢y N ... N ¢, # 0 then there is a non-recursive definite
Horn clause C suchthate; N...Necp = Cp

= the intersection of all concepts containing £+ (the concept generated by
ET wrt. B) is also a concept in Cs

= a non-recursive definite Horn clause consistent with £+ and E— wrt. B
exists if and only if £~ and the concept generated by E* wrt. B are
disjoint
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Learning in Logic

Reformulation of the Problem on Slide 87

Thm.: The concept generated by E+ wrt. B is equal to the set of ground
P-atoms implied by RLGGz(E™) wrt. B

Proof: omitted
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Learning in Logic

Example

vocabulary: target predicate P/2, background predicate R/2, constants a, b, c
background knowledge: B = {R(a,b), R(b,a), R(c,b)}
positive examples: Et = {P(a,b), P(b,¢)}

negative examples: £~ = {P(b,a)}

= previous theorem: a consistent clause exists if and only if £~ is disjoint with
the set of ground P-atoms implied by RLGGz(E™) wrt. B
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Learning in Logic

Example

RLGG3(E™)
= LGG(P(a,b) < R(a,b),R(b,a), R(c,b), P(b,c) < R(a,b), R(b,a), R(c,b))
= P(X,Y) <+ R(Y,X),R(X,Z),R(Z,X), R(a,b),R(b,a),R(c,d)

A >

background?nowledge B

* B can be removed, as the clause is evaluated wrt. 5

= C:P(X,Y)« R(Y,X),R(X,Z),R(Z,X)
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Learning in Logic

Example

« it follows from the theory that
C:P(X,Y)+ R(Y,X),R(X,Z),R(Z, X)
implies both positive examples P(a,b) and P(b, c) wrt.
B ={R(a,b),R(b,a), R(c,b)}

« C also implies the negative example P(b,a) wrt. B

= there is no consistent non-recursive definite Horn clause
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Learning in Logic

Bottom-Up Induction of First-Order Clauses

Input: B, ET, £~

Output: a set H of non-recursive definite Horn clauses such that all positive
examples is implied by at least one clause in H wrt. 5 and no negative example
is implied by one of the clauses in H wrt. B

1: H=10

2: while ET £ () do
3: find a maximal subset £ C ET such that RLLGz(E) implies no negative example wrt. B
4: add RLLGg(F)to H
5: Et=FEt\E
6: end while

7

. return H
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Learning in Logic

Bottom-Up Induction of First-Order Clauses

Prop.: the previous algorithm is correct and always terminates if EY N E~ = ()

Proof: exercise

Problem 1: it is NP-complete to decide the condition in Step 3

Problem 2: the algorithm does not necessarily find the smallest number of
consistent clauses (i.e., no guarantee for the minimality of |H|)

Problem 3: the size (number of literals) of the RLGG computed in step 3 is
exponential in |E|
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Learning in Logic

Problem 3: The Length of the Reduced RLGG

Thm.: There exists a background knowledge B with n constants, and a set S
of ground unary P-atoms such that the size of any consistent clause is
exponential in n.

Proof (sketch):

e let B be the background knowledge over a single binary background pred-
icate R with n constants, consisting of directed cycles K1, ..., K; of dif-
ferent prime lengths 2.3, ..., p;, where [ is as large as possible

 the remaining vertices are isolated
e select constants a4, ..., a;, one from each cycle, and let

« Bt ={P(a1),...,P(a;_1)} and
* BT ={P(w)}

99
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Learning in Logic

Problem 3: The Length of the Reduced RLGG

Thm.: There exists a background knowledge B with n constants, and a set S
of ground unary P-atoms such that the size of any consistent clause is
exponential in n.

Proof (sketch):

e let B be the background knowledge over a single binary background pred-
icate R with n constants, consisting of directed cycles K1, ..., K; of dif-
ferent prime lengths 2.3, ..., p;, where [ is as large as possible

 the remaining vertices are isolated
e select constants a4, ..., a;, one from each cycle, and let

« Bt ={P(a1),...,P(a;_1)} and
* BT ={P(w)}
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Learning in Logic

Problem 3: The Length of the Reduced RLGG

Proof (sketch) cont’d:
e the body of the reduced RLGG of E* wrt. B is a directed cycle of length

2"»-'10!—1

[
where p; is the largest prime number with >~ p; <n
=1

e no strictly smaller clause equivalent to the RLGG exists (why?)

e Using some basic results from number theory, we have that

2 DIt _ 99(v/nlogn)
]
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Learning in Logic

Summary

consistent hypothesis finding problem: computationally intractable

bottom-up induction: using the relative LGG, it iteratively generalizes the
current clauses as long as it is consistent with the negative examples

- system based on this approach: Golem [Muggleton and Feng, 1993]

- problems with this approach:

(1) the size of the reduced LGG can grow exponentially with the number of positive
examples

(2) as subsumption is NP-complete, deciding whether the LGG implies an example wrt. to
the background knowledge is NP-complete
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Learning in Logic

Outline

= complexity of learning function-free definite Horn clauses

= bottom-up induction of clauses
= therelative least general generalization (RLGG)
= ageneric algorithm

= on thelength of the reduced RLGG

= top-down induction of clauses

= the FOIL algorithm
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Learning in Logic

FOIL: First-Order Inductive Learner

= Quinlan (1990-1993)

= combines the divide-and-conquer method designed for propositional
TDIDT (top-down induction of decision trees) systems with the covering
method developed for disjunctive logical expressions

- Information-based heuristics in the divide-and-conquer method

* hypothesis space is searched top-down in a heuristic fashion, looking for
maximally general rules consistent with the negative examples

© usually fast running times, no parameters, easy to use
® may miss good solutions

= implementations:
FOIL 6 (Quinlan; publicly available), mFoll (Dzeroski), Grendel (Cohen)
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Learning in Logic

1. The Divide-and-Conquer Method

Hunt et al. (1966), Quinlan (1979,1986), Breiman et al. (1984) Cestnik et al.
(1987)

the method below yields a decision tree

1. if all training objects belong to a single class, the tree is a leaf labelled with
that class

2. otherwise

1. select atest based on one attribute

2. divide the training set into subsets, each corresponding to one of the possible
(mutually exclusive) outcomes of the test, and

3. apply the same procedure to each subset
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Learning in Logic

2. The Covering Method

Michalski (1989), Michalski et al. (1986)
target class is represented by a disjunctive logical expression
1. find a conjunction of conditions that is satisfied by some objects in the
target class, but no objects from another class

2. append this conjunction as one disjunct of the logical expression being
developed

3. remove all objects that satisfy this conjunction and, if there are still some
remaining objects of the target class, repeat this procedure
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Learning in Logic

FOIL: The Outer Loop

Input : disjoint sets £ and E~ of ground P-atoms (P is the target predicate)
and background knowledge B (set of ground background atoms)
Output: set of non-recursive definite Horn clauses consistent with
ETand E~ wrt. B

1: H=1
2: while E* # () do

3:  find a maximally general Horn clause C covering part of E* and
no element of £~ wrt. B

4: FEt =FET\{A: Aisimplied by C wrt. B}
5. addCto H
6: return
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Learning in Logic

FOIL: How to Perform Step 3? (The Inner Loop of FOIL)

Input : disjoint sets £~ and £~ of ground P-atoms (P is the target predicate)
and background knowledge B (set of ground background atoms)

Output: maximally general non-recursive definite Horn clause C' consistent
with £~ wrt. B

1. C = P(Xq,...,Xp) // P is the target predicate of arity &
2. TP =ET, TP = B~
3:1=1

4: while 7 # () do
5:  find a literal L; to add the right-hand side of C // specialization of C
6

produce new training set 7, , (resp. 7 ) based on those tuples in 7"
(resp. Tie) that satisfy L;; if L, introduces new variables, each such
tuple may give rise to several tuples in T, (resp. 7. ,) // see Slide 110
7. 1=1+1
8: return C

108

\

PhD Course, Szeged, 2012 - © T.Horvath A
universitétgr‘ % Fra un hOfe r

IIIIIIIIIIIIIIIIIII R — IAIS



Learning in Logic

Inner Loop of FOIL: Which Literals Are Considered in Step 5?

. IetCZP(leth) {—Llj...}Li_l
« then L; is a literal satisfying

— L; must contain at least one variable appearing in C

— L; has either a background predicate or is of the form X; = X, or
X; # X, where X; and X, are both existing variables in C

remarks:
« FOIL: negated literals can also be added to the body

« FOIL allows recursive clauses as well (i.e., literals of the target predicate
P can also be added to the clause)

« we omit the discussion of these more general features; for more details,
see Quinlan’s original paper

J.R. Quinlan: Learning Logical Definitions from Relations. Machine Learning, 5, 239-266, 1990.
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Learning in Logic

Inner Loop of FOIL: Which Literal Is Selected in Steps 5-6?

suppose C' = Ly < Ly,...,L;—; has k; variables X;,..., Xy, and L; has [;
new variables Y7,...,Y} (i.e., which do not appear in C)

property: T.° and T~ consist of k;-tuples of constants
« atuple (c1, .. .?cki) is in ¥ (resp. in T;°) iff there is a substitution
0 = {Xl/cl ., Xk, [ek. } satistying Lof € ET (resp. Lof € E7)
and {Ll ..... L;_ 1}9 CB

calculation: 7.7, and T;7, consist of (k; + [;)-tuples of constants

» atuple (c1,...,Ch;, Chit1s---sChyte;) i8I0 T2 (resp. in T ;) iff
(c1,...,cx,)isin T,Z (resp. in T°) and

Li{Xl/Cla JUILl in:./cki;a Yl /Cﬁ.ﬂi-i—l: R Yﬁ.ﬁi+f.;/ck?-j_+£§,} € B
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Learning in Logic

Inner Loop of FOIL: Which Literal Is Selected in Step 5-6?

notations:
: n® = |78
+ ng = |T7|
* ”il = Tﬁ—ll

8 __ e
* Ny = T,a:+1|

e 7Y = [{(cr,. .o 0k,) €T 0 3(C1y s Chyy Chy1s -5 Chygty) € Ti 1 Y|

[

remarks:

« if I, =0 (i.e., L, has no new variable) then nf,; < nf and nZ ; < nf

(3

+ if I; > 0 it can happen that n{, ; > n{ and/or nZ, , > nf
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Learning in Logic

Inner Loop of FOIL: Which Literal Is Selected in Step 5-6?

n® : .
given T° U T°, we need I(C;) = —log, (n@ jr-ne) bits to signal that a
tuple is positive o

?’1@
ifweadd L; to C;, for T2, UT, |, we need I(Ci11) = — log, ( R )

Mit1 ‘H’Lgi— 1
bits to signal that a tuple is positive

weighted information gain:

WIG(Ci11,C;) = nd® x (I(C;) — I(Ciz1))

Step 5: Select the literal with the highest weighted information gain!
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Learning in Logic

FOIL: Example

vocabulary:
target predicate: d/2 (for daughter)
background predicates: p/2 (for parent), f/1 (for female)
constants: m (for mary), a (for ann), e (for eve),t (for tom),: (for ian)

background knowledge: B = {p(a,m),p(a,t),p(t,e),p(t, i), f(a), f(m), f(e)}
positive examples: E+ = {d(m,a),d(e,t)}

negative examples: £~ = {d(t,a),d(e,a)}

Learn a set of rules consistent with the examples wrt. B!
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Learning in Logic

FOIL: Example

e (= 01: d(Xl,XQ) —

= Ty = E* = {d(m,a),d(e,t)}
= nie = 2
= TP = E~ ={d(t,a),d(e,a)}
= nle =2

= I(Cy) = —logy(2/4) = 1

= literals for L: p(X1, X1), p(X2, X2),p(X1, X2), p(X2, X1),p(X1, Y1),
p(Y1, X1),p(X2,Y1),p(Y1, X2), f(X1), f(X2), X1 = X2, X5 # X

114
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Learning in Logic

FOIL: Example
« consider e.d. L = p(Xz, Y]), l.e., Cy - d(Xl,XQ) — p(XQ, Yl)

= T3 = {(m,a,m), (m,a,t), (e, t,e),(et,i)}

= ny =4
= T2@ = {(t,a,m),(t,a,t),(e,a,m), (e,a,t)}
= n29 =4

= I(C2) = —logy(4/8) =1

= n?@=2

= |WIG(C:,Cy) =2-(1-1)=0
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Learning in Logic

FOIL: Example
* literal maXimiZing WIG: L = f(Xl), l.e., Cs - d(Xl,Xg) — f(Xl)

= TZ@ — {(maa’)a (eat)}

=>n§9:2

J
~N
O

|
/_A_\
o
&
N~

= I(Cs) = —log,(2/3) = 0.58

= n?@=2

= [WIG(C,,C1) =2 (1 —0.58) = 0.84
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Learning in Logic

FOIL: Next Iteration of the Inner Loop

02 : d(Xl,Xg) \u f(Xl)

literal maXimiZing WIG: Lo = p(ng Xl), i.e., 03 : d(Xl, XQ) — f(Xl),p(Xg, Xl)
7" = {(m,a), (e, 1)}

ng =2

Ty =

S _
ny =

I T

U

I(Cs) = —logy(2/2) =0

D _
nq =

4

U

WIG(C3,Cy) = 2 (0.58 — 0) = 1.16
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FOIL: Next Iteration of the Inner Loop

- since 7§’ = (), we finish the inner loop and return

C: d(Xl,XQ) — f(Xl),p(XQ,Xl)

» since this clause covers all positve examples, we finish the outer loop as
well and return the set of clauses:

{d(X1, X2) < f(X1),p(X2, X1)}
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Summary

Bottom-up induction: using the relative LGG, it iteratively generalizes the
current clauses as long as it is consistent with the negative examples
- system based on this approach: Golem [Muggleton and Feng, 1993]
- problems with this approach:

(1) the size of the reduced LGG can grow exponentially with the number of positive
examples

(2) as subsumption is NP-complete, deciding whether the LGG implies an example wrt. to
the background knowledge is NP-complete

Top-down induction: iteratively specializes the current clauses by extending
It with a literal as long as it is consistent with the negative examples

- system based on this approach: FOIL [Quinlan, 1990] and its variants
- problems with this approach: same as (2) above

- the approach can be extended to learning recursive Horn clauses, as well as to
allowing negated literals in the clause* body
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Appendix: Proof of Kietz’s Theorem

proof: reduction from the conjunctive normal form satisfiability (CNF-SAT)
problem

* V ={v,...,v,} is a set of Boolean variables

— a CNF over V is a conjunction of (propositional) clauses
— a (propositional) clause is a disjunction of (propositional) literals

— a (propositional) literal is either a variable or the negation of a
variable from V

 CNF-SAT problem: given a CNF F' over V, decide whether there
exists a truth assignment of V' that satisfies all clauses in F

— NP-complete
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Reduction Lemma

CNF-SAT instance: pair (V, F), where V = {vy,...,v,} is a set of Boolean
variablesand F =c; A ... A¢,, isa CNF over V

Lemma The CNF-SAT instance (V, F') is satisfiable if and only if there exists a
Horn clause consistent with the sets £+ and E~ = {D} of function-free
definite Horn clauses defined as follows:

e let P,..., P, beunary (i.e., arity 1) predicate symbols
o lety: {vy,...,vn,w1,...,—vn} — {P1,..., P2, } be abijective function

e Y(v;)) = Pyand ¢(—w;) = P,y foralli=1,...,n
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Reduction Lemma (cont’'d)

o 7 ={C;:1<i<n}where

Ci: T(a;)) <+ R(ai,b;),Pi(b;),...,Pi—1(bi), Pix1(b;i), ..., Pan(b;),
R(CI@;, Ci)a Pl(ci)a SR Pn+i—1(c’i)a Pn-i-i-l—l(ci): ) PQn(Ci)

e D={T(d)} U{=R(d,e;),~P;(ej): v (P;) & c;,1<i<2n,1<j<m}

remarks:
e the size of ET is bounded by a polynomial of n (i.e., size of V)

e the size of E~ = {D} is bounded by a polynomial of the size of F’

= polynomial reduction
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Reduction Lemma: Example

o |V = {‘Ul,’Ug}
o F'= v Ay
o [T = {Cy, Cy} with

Ci: T(a1) <« R(ai,b1),Pa(b1), P3(b1), Ps(b1), R(ai,c1), Pi(c1), Pa(c1), Pa(cr)
Cy: T(a2) < R(ag,b2),Pi(b2), P3(b2), Ps(b2), R(az,cz2), Pi(c2), Pa(c2), P3(c2)

e £~ ={D} with

D: T(d) <+ R(d,e), Pale1), Ps(e1), Pi(er), R(d,ez), Pi(e2), Pa(e2), Ps(e2)
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Proof of the Reduction Lemma: ,,IF” Direction

e suppose there exists a Horn clause consistent with the examples
= the LGG H of the positive examples must also be consistent

= H must be of the form

T(X) < R(X,Yl),Pl(Yl),...,Pgn(yl),
R(X,Y3), P1(Y2),..., P, (Y2),

R(X,Yon), P1(Yon), ..., Pop(Yan),

where for every k = 1,...,2", exactly one of P;(Yx) and P, .;(Y%) is only
presentin H forall: =1,...,nandforevery 1 < k; < ky <27,

(% R(Xa Yk1)aP1(Yk1)= " '7P2R(Yk‘1)) a (<_ R(Xaykg)vpl(ykz)? . 'aP?n(Ykg))
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Proof of the Reduction Lemma: ,,IF” Direction

e as H does not subsumes the negative example D, thereisa k, 1 < k < 27,
such that the subclause

H' = T(X) . R(X, Yk),Pl(Yk), .. .,Pgn(Yk)
of H does not subsume D

= for every j = 1,...,m, there is no substitution § = {X/d, Y} /e;} satisfying

HOCD
= for every j = 1,...,m, H' contains at least one literal —P;(Y}) such that
’Lb(P@) € Cj
= {Y(P;) : ~P;(Yx) € H'} is a partial truth assignment for V' satisfying all
clauses in F
PhD Course, Szeged, 2012 - © T.Horvath " == 125
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Proof of the Reduction Lemma: ,,ONLY IF” Direction

e suppose (V, F) is satisfiable; let x € {0,1}™ be a satisfying assignment of F
and L be the set of literals true in x

= either v; or —w; is in L, but not both

e define the clause H by

H={T(X)YU{=R(X,Y),~P(Y): %(P) € L,1 <i < 2n}

= H < C forevery C € ET, i.e., H is a generalization of the set of positive
examples

e we need to show that H £ D
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Proof of the Reduction Lemma : ,,ONLY IF” Direction

e suppose for contradiction that H < D

= there exists 0 = {X/d,Y/e;} such that

HO C{T(d)} U{—-R(d,e;j),~Pi(e;) : v(F;) & cj,1 <i<2n}

= H contains only = F;(Y') such that ¥/(F;) € L but ¥(F;) & ¢,

= contradicts the assumption that L satisfies all clauses in '
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