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Proof of Plotkin‘s Theorem – Definitions and Notions 
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Main Steps of the Proof of Plotkin‘s Theorem 
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Proof of Lemma 3 (cont‘d) 
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 inductive generalization of first-order clauses 
1.   generalization of words (terms and literals) 

2.   generalization of clauses 

3. example 
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Clause Reduction Algorithm 
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Proof of the Theorem on Slide 53 
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Proof of (ii)  in the Theorem on Slide 53 
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Proof of (ii)  in the Theorem on Slide 53 (cont‘d) 
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   notions and notations 

   inductive generalization of first-order clauses 
1.   generalization of words (terms and literals) 

2.   generalization of clauses 

3. example 
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definition of the unknown target predicate Is_Physicist( X , Y ) Learning: 

Application Example: Relation Extraction from Texts 

Prediction: Einstein was a German theoretical physicist. 

Training Data: Fraunhofer was a German optician. 
Schrödinger was an Austrian - Irish physicist. 
Planck was a German physicist. 
Heisenberg  was a celebrated German physicist and  
Nobel laureate.  

Problem: Automatic extraction of semantic relations between entities  
from natural language texts. 

Example: 
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Data Preprocessing 

sentences  dependency trees 

 labeled rooted directed trees representing grammatical dependencies 
among the words in a sentence 

 capture a low-level syntactic structure of sentences 

 bijective map between words in a sentence and nodes in the tree 

 generated by the Stanford Parser 

 nodes defining the same entity are merged into a single node 

- e.g., Ludwig Wittgenstein  Ludwig_Wittgenstein 
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Example: Unary Target Relation 

Heisenberg was a celebrated German 
physicist and Nobel laureate. 

Fraunhofer was a German 
optician. 

unknown target relation: Is_Physicist  (unary) 
POS: { Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg) } 
NEG: { Is_Physicist(Brecht) } 

Brecht was a German poet, playwright,  
and theatre director. 
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Example – Generalization of Dependency Trees 

Heisenberg was a celebrated German 
physicist and Nobel laureate. 

Fraunhofer was a German 
optician. 

POS: { Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg)} 

We want to generalize these two structures! 

Consider them as ground clauses and use Plotkin‘s LGG algorithm! 
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Dependency Trees as Relational Structures 

 labeled trees are considered as relational structures 

- unique constant for each vertex 

- unary and binary predicates only 

- ground 

 training examples: m-tuples of vertices of the dependency trees 

- P: m-ary target relation to be learned  
 POS: set of instances (m-tuples) of the target relation P 
 NEG: set of non-instances (m-tuples) of the target relation P 

- ground atoms of the target predicate P  
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Example - Dependency Trees as Ground Clauses 

Fraunhofer was a German 
optician. 

comes from  
semantic hierarchy 

(e.g., Wordnet) 
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Example - Dependency Trees as Ground Clauses 

Heisenberg was a celebrated German 
physicist and Nobel laureate. 
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Example – LGG of the Two Ground Clauses 

the two structures correspond to labeled directed trees 

 LGG: direct product of labeled trees 

 introduce a product vertex for each pair (u,v) of constants 

 each such product vertex corresponds to a new variable x(u,v) in the LGG 

 add an edge from (u1,v1) to (u2,v2) in the product iff there is an edge from u1 to u2 
and there is an edge from v1 to v2 

 add the literal ¬R(x(u1,v1), x(u2,v2)) to the LGG 

 „color“ the product vertex (u,v) by the unary predicate Q iff u and v are both colored 
by Q 

 add the literal ¬Q(x(u,v)) to the LGG 
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Example – LGG of the Two Ground Clauses  

Fraunhofer 

was 

optician 

a 

German 

Heisenberg was physicist a celebrated German and laureate Nobel 

X1 X2 X3 X4 X5 X6 X7 

was 

physicist 

a 

German 

X0 X8 
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Example – LGG Reduction 

Fraunhofer 

was 

optician 

a 

German 

Heisenberg was physicist a celebrated German and laureate Nobel 

X1 X2 X3 X4 X5 X6 X7 

was 

physicist 

a 

German 

X0 X8 
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Example – LGG Reduction 

Fraunhofer 

was 

optician 

a 

German 

Heisenberg was physicist a celebrated German and laureate Nobel 

X1 X2 X3 X4 X5 X6 X7 

was 

physicist 

a 

German 

X0 X8 
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Example – LGG Reduction 

Fraunhofer 

was 

optician 

a 

German 

Heisenberg was physicist a celebrated German and laureate Nobel 

X1 X2 X3 X4 X5 X6 X7 

was 

physicist 

a 

German 

X0 X8 
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Example – The Reduced LGG as Graph Pattern 

Heisenberg was a celebrated German 
physicist and Nobel laureate. 

Fraunhofer was a German 
optician. 

target relation: Is_Physicist  (unary) 

POS: { Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg) } 

 x 

the pattern  
representing the concept  

generated by POS 

y 

z 

German 
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Example – The Reduced Pattern as First-Order Clause 
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Example (cont‘d) 

the pattern representing the  concept generated by  
{Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg)} 

Einstein was a German theoretical physicist. 

Is_Physicist(Einstein) 

 x 

y 

z 

German 
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Example (cont‘d) 

the pattern representing the  concept generated by  
{Is_Physicist(Fraunhofer), Is_Physicist(Heisenberg)} NOT Is_Physicist(Brecht) 

Brecht was a German poet, playwright, and theatre director. 

X  X 

Y 

Z 

German 

X 
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Summary 

 LGG is a natural notion for the generalization of first-order clauses with 
respect to subsumption 

 computing the LGG of clauses is reduced to computing the LGG of words 

 a reduced non-empty LGG, if it exists, is unique up to variable renaming 

 problems with the LGG   

- the size of the reduced LGG can grow exponentially with the number of 
clauses 

- as subsumption is NP-complete, deciding whether the LGG generalizes 
(i.e., subsumes) a clause is NP-complete 
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Outline 

 complexity of learning function-free definite Horn clauses 

 bottom-up induction of clauses  

 the relative least general generalization (RLGG) 

 a generic algorithm  

 on the length of the reduced RLGG  

 top-down induction of clauses 

 the FOIL algorithm 
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Horn Clauses 
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Finding a Consistent Clause 
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Finding a Consistent Clause 
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Learning Function-Free Definite Horn Clauses 

 complexity of learning function-free definite Horn clauses 

 bottom-up induction of clauses  

 the relative least general generalization (RLGG) 

 a generic algorithm  

 on the length of the reduced RLGG  

 top-down induction of clauses 

 the FOIL algorithm 
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Learning Non-Recursive Definite Horn Clauses 
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Learning Non-Recursive Definite Horn Clauses 
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Example 
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Finding Consistent Clauses wrt. Background Knowledge 
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Relative Least General Generalization 
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Problem Reformulation: Notions 
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Reformulation of the Problem on Slide 87 
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Bottom-Up Induction of First-Order Clauses 
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Bottom-Up Induction of First-Order Clauses 
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Problem 3: The Length of the Reduced RLGG 
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Problem 3: The Length of the Reduced RLGG 
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Summary 

 consistent hypothesis finding problem: computationally intractable 

 bottom-up induction: using the relative LGG, it iteratively generalizes the  
 current clauses as long as it is consistent with the negative examples 

- system based on this approach: Golem [Muggleton and Feng, 1993] 
- problems with this approach:   

(1) the size of the reduced LGG can grow exponentially with the number of positive 
examples 

(2) as subsumption is NP-complete, deciding whether the LGG implies an example wrt. to 
the background knowledge is NP-complete 
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Outline 

 complexity of learning function-free definite Horn clauses 

 bottom-up induction of clauses  

 the relative least general generalization (RLGG) 

 a generic algorithm  

 on the length of the reduced RLGG  

 top-down induction of clauses 

 the FOIL algorithm 
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FOIL: First-Order Inductive Learner  

 Quinlan (1990-1993) 

 combines the divide-and-conquer method designed for propositional  
TDIDT (top-down induction of decision trees) systems with the covering 
method developed for disjunctive logical expressions  

- information-based heuristics in the divide-and-conquer method 

 hypothesis space is searched top-down in a heuristic fashion, looking for 
maximally general rules consistent with the negative examples 

 usually fast running times, no parameters, easy to use 

 may miss good solutions 

 implementations:  
 FOIL 6 (Quinlan; publicly available), mFoil (Dzeroski), Grendel (Cohen) 
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1. The Divide-and-Conquer Method 

 Hunt et al. (1966), Quinlan (1979,1986), Breiman et al. (1984) Cestnik et al. 
(1987) 

 the method below yields a decision tree 

1. if all training objects belong to a single class, the tree is a leaf labelled with 
that class 

2. otherwise 
1. select a test based on one attribute 
2. divide the training set into subsets, each corresponding to one of the possible 

(mutually exclusive) outcomes of the test, and 
3. apply the same procedure to each subset 
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2. The Covering Method 

 Michalski (1989), Michalski et al. (1986) 

 target class is represented by a disjunctive logical expression 

1. find a conjunction of conditions that is satisfied by some objects in the 
target class, but no objects from another class 

2. append this conjunction as one disjunct of the logical expression being 
developed 

3. remove all objects that satisfy this conjunction and, if there are still some 
remaining objects of the target class, repeat this procedure 
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FOIL: The Outer Loop 
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FOIL: How to Perform Step 3? (The Inner Loop of FOIL) 
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Inner Loop of FOIL: Which Literals Are Considered in Step 5?  
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Inner Loop of FOIL: Which Literal Is Selected in Steps 5-6?  
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Inner Loop of FOIL: Which Literal Is Selected in Step 5-6?  
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Inner Loop of FOIL: Which Literal Is Selected in Step 5-6?  
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FOIL: Example 
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FOIL: Example 
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FOIL: Next Iteration of the Inner Loop  
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FOIL: Next Iteration of the Inner Loop  
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Summary 

 Bottom-up induction: using the relative LGG, it iteratively generalizes the  
 current clauses as long as it is consistent with the negative examples 

- system based on this approach: Golem [Muggleton and Feng, 1993] 
- problems with this approach:   

(1) the size of the reduced LGG can grow exponentially with the number of positive 
examples 

(2) as subsumption is NP-complete, deciding whether the LGG implies an example wrt. to 
the background knowledge is NP-complete 

 Top-down induction: iteratively specializes the current clauses by extending  
 it with a literal as long as it is consistent with the negative examples 

- system based on this approach: FOIL [Quinlan, 1990] and its variants 
- problems with this approach:  same as (2) above 
- the approach can be extended to learning recursive Horn clauses, as well as to 

allowing negated literals in the clause‘ body 
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Appendix: Proof of Kietz‘s Theorem 



 

121 

 

PhD Course, Szeged, 2012 - © T.Horváth  

Learning in Logic   

Reduction Lemma 
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Reduction Lemma (cont‘d) 
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Reduction Lemma: Example 
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Proof of the Reduction Lemma:  „IF“ Direction 
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Proof of the Reduction Lemma:  „IF“ Direction 
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Proof of the Reduction Lemma:  „ONLY IF“ Direction 
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Proof of the Reduction Lemma :  „ONLY IF“ Direction 
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