

Tutorials on Recurrent Neural Networks and Signature Verification

Muhammad Imran Malik Marcus Liwicki

- Thank you for coming!
- You will hear more about:
 - Neural networks, RNNs
 - Recent architectures (LSTM)
 - Signature verification
 - Forensic Handwriting Examiners (FHEs) work
 - Computational Approaches
 - Comparison between Human and FHEs
- Everything available online:
 - http://www.dfki.uni-kl.de/~liwicki/2013-Szeged.zip

Recurrent Neural Networks 10:00-13:00 (Marcus)

- > 10:00 Introduction
- > 10:15 RNN and LSTM
 - Motivation
 - History
 - Recurrent Neural Network training
 - The most powerful RNN: Long Short-Term Memory Networks (LSTM)

> 12:00 Do-It-Yourself

- Toolkits, how to apply them, how to use them for your research.

Friday afternoon session – Forensic Handwriting Examination Perspective 14:30-18:00

> 14:30 FHE in general (Marcus)

- How forensic experts make comparisons (similarities versus differences, subjectivity)
- Natural variation, Line quality, Quality versus quantity etc.
- What forensic experts need from the document analysis community
- What the document analysis community needs to understand about our work
- Existing systems and system problems
- Conclusion scales, Bayesian framework
- Strength of evidence

> 15:30 Tools for FHE

- Existing forensic systems: FISH, WANDA, CEDAR-FOX, FBIsystem
- Searching a database of threatening letters
- > 16:00 Signatures: Simulation & Disguise Hands-on session (Imran)
 - Defining signature verification (FHEs-perspective)
 - Problems with signatures (in depth)
 - Showing some example cases
 - Proficiency tests, problems for FDEs
 - Expert results on La Trobe test 2002 & 2006
- Hands on Session real Case Work

Saturday morning session – Automated Signature Verification 10:00-13:00

> 10:00 History of automatic SV (Imran)

- Defining signature verification (PR-perspective)
- Modes of performing verification (online vs. offline)
- Related work, State-of-the-Art, Evaluation

> 11:00 Current Offline and Online SV Systems (Imran)

- Data processing, Features
- Combined online and offline features
- Feature subset selection
- Classification Methods
- Recent efforts (uniting the perspectives of PR-researchers and FHEs)

> 12:00 Comparison between Man and Machine (Imran)

- Highlighting machine potential to assist humans
- > 12:30 Plenary Discussion (everyone)
- > 13:00 Concluding remarks

Intro of Marcus Liwicki

- 2001-2004 Berlin Master of CS
- > 2004-2007 Bern Dr. and PhD (Horst Bunke)
- > 2008- Researcher, lecturer at DFKI (Andreas Dengel)
- 2009-2010 JSPS research fellow at Kyushu University (Seiichi Uchida)
- > 2011 finished habilitation current title: Privatdozent
- > HWR, Knowledge Management, Forensics, Neural Nets, HCI, IUI
- More than 90 publications including one book, three book chapters and 15 journal papers
- ➤ Third-party funds > 2 Mio € (6 Mio € in progress)
 - EU, DFG, BMBF, BMWi, Federal Funding, Industry, ...
- Research Group 4+3 PhD, 7 others (>35 supervised in past)

Recurrent and BLSTM Neural Networks

Dr. Marcus Eichenberger-Liwicki DFKI, Germany University of Fribourg, Switzerland Marcus.Liwicki@dfki.de

Bebop

A Bebop vagy bop a jazz-zene egyik stílusa, ami gyors tempójáról és virtuóz hangszeres improvizációiról ismert.

Neural Networks

Goal: make computers intelligent Idea: simulate neural behavior on PC

Marcus Liwicki: Applications of recurrent and BLSTM neural networks

Slide 11

Image Analysis

- Detection (e.g., disease)

Applications: Recognize Patterns

- Recognition (e.g., objects)
- Identification (e.g., persons)
- Data Mining
 - Classification
 - Change and Deviation Detection
 - Knowledge Discovery
- > Prognosis
 - Ozone prognosis
 - Weather Forecast
 - Stock market prediction

➤ Games, …

- 1. Motivation
- 2. Multi-Layer Perceptrons (MLP) and their Limits
- 3. Recurrent Neural Networks (RNN)
- 4. Long Short-Term Memories (LSTM)
- 5. Bidirectional LSTM
- 6. Related Architectures
- 7. Summary

Object image

Multi-Layer Perceptrons for Object Recognition

Multi-Layer Perceptron Networks

Feature vector (at timestamp *t*) x_1^t, \dots, x_n^t

> Perceptrons in the individual layers - Aggregation function $a^{t} = \sum w_{i} x_{i}^{t}$

Activation function (squashing f.)

$$b_h^t = h(a^t)$$

Multi-Layer Perceptron Networks

For every hidden layer:

$$b_{h}^{t} = h(\sum w_{h'h}b_{h'}^{t})$$

- Output depends on the weights
- Training of weights by using the backpropagation algorithm
 - Set of training samples with ground truth
 - Apply the network on training samples
 - Propagate error of desired outputs back
 - Update the weights into the opposite direction of the error gradient

 $((x_1^1, \dots, x_n^1), \dots, (x_1^T, \dots, x_n^T)) \rightarrow (y^1, \dots, y^U) | U \leq T$

Idea: add backward-connections to keep an internal state

Limits of MLP

Up to now: static input/output operation

 $x_1, \ldots, x_n \rightarrow y$

- Human brain is capable of memorizing
- Needed for solving many problems
 - Sequence recognition
 - Navigation through a labyrinth
 - Video analysis

Recurrent Neural Networks (RNNs)

- Recurrent connections are added in order to keep information of previous time stamps in the network
- > Novel equation for the activation:

$$a^{t} = \sum w_{i} x_{i}^{t} + \sum w_{h} b_{h}^{t-1}$$

- Context information is used
- How to train those networks …?

Training of RNNs – Backpropagation Through Time

Sample Applications

- Sign language recognition¹
 - 10 patterns, one person
- RNN with 1 hidden layer
 - 93 inputs
 - 150 hidden neurons
- Final recognition rate is 96%
- Already in 1991
 - Main problem: computational power (4 days for training)
- Later: 98% in real-time²

 ¹ Kouichi Murakami and Hitomi Taguchi. Gesture Recognition using Recurrent Neural Networks, 1991
² Thad Starner, Joshua Weaver, and Alex Pentland. Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based Video, 1998 – Hidden Markov Model (HMM), 40 words in real-time, head-camera

Marcus Liwicki: Applications of recurrent and BLSTM neural networks

Slide 21

T. Ziemke. Remembering how to behave: Recurrent neural networks for adaptive robot behavior. Book Chapter 1999

Marcus Liwicki: Applications of recurrent and BLSTM neural networks

Optimal Navigation in a Fixed Environment

- Adaptive Robot Behavior
 - Start anywhere and find target zone
 - Infrared proximity sensors + sensor for passing zone border (side must be remembered)
 - Rewards: fast, no wall, in target zone
- RNNs get about twice the points compared to MLP
 - Used fastest way after a maximum of 3 wall sights
- Remark: genetic algorithm used
 - 100 individuals, 5,000 generations
 - 1% mutation rate (bit encoding for weights)

- 1. 2-sequence problem
 - Class 1: 1, a_1 , a_2 , a_3 , a_4 , ..., a_{T-1}
 - Class 2: -1, a_1 , a_2 , a_3 , a_4 , ..., a_{T-1}
- 2. Parity problem
 - Is the number of 1 in a given Sequence (length T) even or odd?
- 3. Tomita grammars (7 exist, but 3 only considered)

T:length of sequence; a_i : any value from the interval [-

1,1,1 M. Tomita. Dynamic construction of finite automata from examples using hill-climbing, 1982

Two Big Guys in the Field of RNNs

Yoshua: Training RNNs with BPTT is difficult¹

Jürgen: Learning RNNs for your problems is trivial²

Both: Gradient Descent is difficult but LSTM is good³

Yoshua Bengio, PhD 1991 Jürgen Schmidhuber, PhD 1991 Canada Research Chair in Head of one of the world's top Statistical Learning 10 AI labs, i.e., IDSIA in Algorithms Switzerland

- ¹ Y. Bengio, P. Simard, and P. Frasconi. Learning Long-Term Dependencies with Gradient Descent is Difficult, IEEE Transactions on Neural Networks, VOL. 5, NO. 2, MARCH 1994
- ² S. Hochreiter, J. Schmidhuber. LSTM can Solve Hard Long Time Lag Problems, NIPS'9, 1997
- ³ S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. IEEE Press, 2001.

Experiments by Y. Bengio

- Algorithms for solving problems: 2-sequence and parity
- Standard BPTT
- Simulated annealing
 - Initial distribution in the weight space
 - Generate new points randomly based on temperature C
 - Always keep the best neuron(s) and reduce C after every few steps
- Multi-grid random search (similar to simulated annealing)
 - Only use new points when error is reduced
- > Pseudo-Newton optimization
- Time-weighted pseudo-Newton optimization
- Discrete error propagation

2-Sequence Problem

- Class 1: 1, a_1 , a_2 , a_3 , a_4 , ..., a_{T-1}
- Class 2: -1, a_1 , a_2 , a_3 , a_4 , ..., a_{T-1}
- multi-grid random search
- simulated annealing

Parity problem

- Class 1 example: 1, 0, 0, 1, 1
- Class 2 example: 1, 1, 0, 0, 1, 1
- multi-grid random search
- simulated annealing

Two architectures

Random search in the weight space

Initialize weights randomly in [-100,100]

- Inputs are -1 (for 0) and 1 (for 1), Targets are 1 or 0
- 1. Fully connected net

Repeat until success

- 1 input, one output
- n hidden units
- 2. Same as 1. but
 - n=10
 - Each hidden unit only recurrently connected with itself and output
- Search stopped when training error below 0.1
- Trivial Task: can be solved quickly by random search

Experiments

Problem	Best algorithm		RS, Architecture 1		RS, Architecture 2	
	Best error	Trials	Best error	Trials	Best error	Trials
2-seq	Multi-grid random search		n=1			
	0.06	6,400	<0.001	1,247	<0.001	718
Parity	Simulated annealing		n=1			
	0	810,000	0	2,906	0	2,797
Tomita	Other methods		n=1,3,2 (for G 1, 2, 4)			
G 1	0	23,000	0	182	0	288
G 2	0	77,000	0	1,511	0	17,953
G 4	0	46,000	0	13,833	0	35,610

100 training sequences (50 per class), 100 test sequences, T = 500-600 (harder)

Example of a Non-Trivial Task

- Adding Problem (slightly modified)
 - Sequence elements are pairs (a_i, b_i)
 - Values of b_i is 0 or 1
 - Aim: sum up over all pairs where b_i is 1
 - Example 1: (0.2, 0), (0.5, 0), (0.3, 1), (0.6, 0), (-0.9, 1), ... (-0.3, 0)
- Sequence generation
 - Only two samples contain pairs where b_i is 1
 - First one x_1 is in first ten pairs
 - Second one x_2 is anywhere else in first half of the sequence
 - Target result is: 0.5 + $(x_1+x_2)/2$, error should be less than 0.04
- Unable to solve with known RNN learning algorithms within reasonable time

Recurrent Neural Networks (RNN)

- Recurrent connections are added in order to keep information of previous time stamps in the network
- Novel equation for activation:

$$a^{t} = \sum w_{i} x_{i}^{t} + \sum w_{h} b_{h}^{t-1}$$

Can be written in matrix form

$$A^{t} = W_{i} \cdot X^{t} + W_{h} \cdot B^{t-1}$$

Context information is used, however: impossible to store precise information over long durations

➤ Usual RNN forget information after a short period of time $A^{t} = W_{i} \cdot X^{t} + W_{h} \cdot B^{t-1} = W_{i} \cdot X^{t} + W_{h} \cdot h(W_{i} \cdot X^{t-1} + W_{h} \cdot B^{t-2})$

> Example: Outputs Neuron During Hidden Laver 7 timestamps Information Inputs vanished 5 Time 1 2 3 7

➤ Usual RNN forget information after a short period of time $A^{t} = W_{i} \cdot X^{t} + W_{h} \cdot B^{t-1} = W_{i} \cdot X^{t} + W_{h} \cdot h(W_{i} \cdot X^{t-1} + W_{h} \cdot B^{t-2})$

$$\Rightarrow A^{t} = f(X^{t}, W_{h}X^{t-1}, W_{h}^{2}X^{t-2}, \dots, W_{h}^{t}X^{1})$$

> Example: Outputs Neuron During Hidden Laver 7 timestamps Information Inputs vanished 5 Time 1 2 3 7

Core Idea: New Memory Cell Instead of Perceptron

Marcus Liwicki: Applications of recurrent and BLSTM neural networks

Slide 34

 $a_{i}^{t} = W_{a,i} \cdot X^{t} + W_{h,i} \cdot B^{t-1} + W_{c,i}S^{t-1}$

Forget Gate

Memory cell

 $a_{\theta}^{t} = W_{h,\theta} \cdot X^{t} + W_{h,\theta} \cdot B^{t-1} + W_{c,\theta} S^{t-1}$ Cell State

Input Gate (single cell)

$$a_{c}^{t} = W_{a,c} \cdot X^{t} + W_{h,c} \cdot B^{t-1}$$
$$s_{c}^{t} = \sigma(a_{i}^{t})g(a_{c}^{t}) + \sigma(a_{\theta}^{t})s_{c}^{t-1}$$

 \blacktriangleright Assume σ is close to 0 or 1

No Vanishing Gradient

> Output Gate
$$a_{\omega}^{t} = W_{a,\omega} \cdot X^{t} + W_{h,\omega} \cdot B^{t-1} + W_{c,\omega} S_{c}^{t}$$

Output

$$b_c^t = \sigma(a_\omega^t)h(s_c^t)$$

➢ Neuron now Outputs O : open (σ =1) : closed ($\sigma=0$) Hidden O Layer Inputs Time 1 2 6 7 З 5 KM_@ Marcus Liwicki: Applications of recurrent and BLSTM neural networks Slide 36
Marcus Liwicki: Applications of recurrent and BLSTM neural networks

Slide 37

LSTM Applications

- > Adding Problem
- Architecture
 - 3 layers (2 input, 1 output, 2 LSTM)
 - -g and h are sigmoid
- Training
 - Random sequences used
 - Stopped when error was below 0.01 for the last 2,000 sequences

Results (average of 10 trials)

- Test set: 2,560 sequences

	T=100	T=500	T=1,000
# training iterations	74,000	209,000	853,000
# of (error > 0.01)	1	0	1

- First attempts in 1989¹
 - RNNs for a note-by-note composition
 - Mozer: "While the local contours made sense, the pieces were not musically coherent, lacking thematic structure and having minimal phrase structure and rhytmic organization
- LSTM in 2002²
 - 13 melody notes, 12 chord notes (25 inputs)

Music: Blues Improvisation

- Bebop music
 - 12 bar blues
 - 8 notes per bar (no shorter than 1/8th notes)
- Experiment 1
 - Only chords were presented
 - Training sequence length 96
 - Test input: initially 3 bars and then the output of the net is used
 - Network could perfectly learn the chords after 15 minutes on a 1GHz Pentium

Music: Blues Improvisation

Marcus Liwicki: Applications of recurrent and BLSTM neural networks

Slide 40

- Several relevant, but more difficult problems exist
 - Complete sequence recognition
 - Sequence to sequence matching
- Applications
 - Speech recognition
 - Handwriting recognition
 - Protein localization
- Often the context from later is also interesting¹
 - Long or short ([a] or [a:])
 - Idea: Delayed output but how long?
 - Better idea: use context from whole sequence

¹ Mike Schuster and Kuldip K. Paliwal, Bidirectional Recurrent Neural Networks, IEEE TSP, 1997

Trained with backpropagation through time (forward path through all time stamps for each hidden layer sequentially)

TIMIT database

- Texas Instruments and Massachusetts Institute of Technology
- 3,696 training phonemes
- 1,344 testing phonemes
- Speaker independent
- Experiments with several comparable architectures
 - 26 input units (MFCC features)
 - 61 output units (one for each phoneme)
 - All networks had roughly the same number of weights (100,000)
 - Examples: BLSTM 93, LSTM 140, BRNN 185, RNN 275

¹ Alex Graves, Jürgen Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other neural network architectures, Neural Networks, 2005

Epochs
I
17
20.1
170
15
34
139
15
15
120
990
835
_
_
_

Retraining is done by increasing the target delay after each 5 epochs

Closer Look into the Behaviour

Kinge Management

Target

Slide 45

¹ Trias Thireou, Martin Reczko. Bidirectional Long Short-Term Memory Networks for Predicting the Subcellular Localization of Eukaryotic Proteins

Support Human Experts Processing lots of Data

- Task: Localize Proteins
 - Given a sequence of N-Terminal Residues (T=70)
 - Classify the type of novel protein (3 classes)
- > Architecture
 - 3 outputs
 - 1 input
 - 3 LSTM in forward and 2 LSTM in backward layer
- Result:
 - MLP: 90.0 %
 - BRNN: 91.3 %
 - BLSTM: 93.3 %

- I will now present you the last few missing ingredients to build a powerful sequence-to-sequence matching, especially for handwriting and speech recognition
- > Input: raw features, raw pixel data, or raw point-sequence
- Output machine-readable transcription

- Easy to use
- Based on LSTM

- Segmentation is needed
- Information of previous and next frames is not available
- Idea: introduce a way of connected temporal classification

- Connected Temporal Classification (CTC)
- > Example for speech:

Connected Temporal Classification

- Additional blank label (b green)
- Allows application to whole sequences
- Output with normalized likelihood for each word

- Training: objective function is smoothed and recalculated after each iteration (details in references)
- > Testing: similar to Viterbi-algorithm

Beginning (a) (random) 10 iterations (error aroud (b) predictions) **Final** (c)(nearly no error) output error

Overall System

Handwriting Recognition Experiments

Experiments

- 1. 63.86% with Hidden Markov Model (HMM)
- 2. 81.05% with BLSTM (100 cells) and CTC
- 3. 86 % after combination of several classifiers

- BLSTM are discriminative
- BLSTM allow correlated input features
- Internal states are continuous and multivariate, because they are defined by the vector of activations of the hidden units
- The output is a sequence of labels without duration information
- BLSTM is in principle able to access context from the entire input sequence

Going Into Multiple Dimensions

- If input size is fixed, MLP can be applied, but what if size is unknown?
- Face recognition

Idea: Sliding window in multiple directions

- Concrete idea (like DAG-RNN):
 - Each neuron receives external input and its own activation from one step back along all dimensions
 - Can be applied to any dimensional sequences (img 2D, video 3D)

Ensure that each previous' step output is already calculated

Note: Boundaries have to be omitted

N-dimensional backpropagation through time

- Each neuron receives external input and its own activation from one step back along all dimensions
- Can be applied to any dimensional sequences (2D image, 3D movie, 4D with time, 6D for robot control)
- Idea: Use 2^D hidden layers

- Does the complexity explode?
- \succ 2^d seems to be quite large
- However
 - Number of weights has more influence
 - Several calculations can be shared
- Furthermore
 - Reduce the size of the hidden layers with increasing dimensionality
 - It has been found that for speech recognition the number of weights was reduced to half and MDRNN gave still better results
- Main scaling concern is the size of the data, i.e., the length of the sequence

Combining idea with BLSTM

- Introduce 2^d selfconnections, i.e., 2^d forget gates, each connected along one dimension
- However, only one input gate (connected to all dimensions)
- Also, only one output gate, FORGET GATE since only the cell state is considered

Overall system

MDLSTM layers and feed-forward layers		1 neuron, 4x50 input, sum of 2D-data		Output 121 x CTC
4x3=>12-dim vector	1	4 hidden layers, 50 neurons, 1x1x20 input		MDLSTM 4 x 50 ce ll s
		10 neurons, 4x10 input	-	Feedforward 20 x <i>tanh</i>
large at top	12	4 hidden layers, 10 neurons, 2x4x6 input	2 4	MDLSTM 4 x 10 ce ll s
159,369 weights	1000	6 neurons, 4x2 input	200 See	Feedforward 6 x tanh
1D at top by		4 hidden layers, 2 neurons - activations	3 3 4	MDLSTM 4 x 2 cells
summing up		Marting rec	ognition	Input

ICDAR 2007 Arabic handwriting recognition contest

		SET f			SET S	
SYSTEM	top 1	top 5	top 10	top 1	top 5	top 10
CACI-3	14.28	29.88	37.91	10.68	21.74	30.20
CACI-2	15.79	21.34	22.33	14.24	19.39	20.53
CEDAR	59.01	78.76	83.70	41.32	61.98	69.87
MITRE	61.70	81.61	85.69	49.91	70.50	76.48
UOB-ENST-1	79.10	87.69	90.21	64.97	78.39	82.20
PARIS V	80.18	91.09	92.98	64.38	78.12	82.13
ICRA	81.47	90.07	92.15	72.22	82.84	86.27
UOB-ENST-2	81.65	90.81	92.35	69.61	83.79	85.89
UOB-ENST-4	81.81	88.71	90.40	70.57	79.85	83.34
UOB-ENST-3	81.93	91.20	92.76	69.93	84.11	87.03
SIEMENS-1	82.77	92.37	93.92	68.09	81.70	85.19
MIE	83.34	91.67	93.48	68.40	80.93	83.73
SIEMENS-2	87.22	94.05	95.42	73.94	85.44	88.18
MDLSTM	91.43	96.12	96.75	78.83	88.00	91.05

A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural networks. In Advances in Neural Information Processing Systems 21, 2009.

System	Word Accuracy	Time/Image
CTC	81.06%	$371.61\ ms$
Arab-Reader HMM	76.66%	$2583.64\ ms$
Multi-Stream HMM	74.51%	$143{,}269.81\ ms$

4 Summarized results from the offline Arabic handwriting recognition competition

Volker Märgner, Haikal El Abed, "ICDAR 2009 Arabic Handwriting Recognition Competition," Document Analysis and Recognition, International Conference on, pp. 1383-1387, 2009 10th International Conference on Document Analysis and Recognition, 2009

System	Word Accuracy
CTC	93.17%
HMM+MLP Combination	83.17%
Non-Symmetric HMM	76.34%
Summarized results from the	offline (French) handw

recognition competition

Grosicki, E.; El Abed, H.; , "ICDAR 2009 Handwriting Recognition Competition," *Document Analysis and Recognition, 2009. ICDAR* '09. 10th International Conference on , vol., no., pp.1398-1402, 26-29 July 2009

- It is open source and for free
- > sourceforge.net/projects/rnnl/
- Examples are online (Arabic recognition)
- ➤ More later!

Other Application

- Associative memory
- Encoding/decoding information
- Real-Time learning

- Neural networks simulate human neurons to
 - Recognize symbols (MLP)
 - Recognize sequential information (RNN)
 - Store precise information over long durations (LSTM)
 - Access information of complete sequence (BLSTM)
 - Map sequences of different length (CTC)
 - Process multi-dimensional sequences (MDLSTM)
- During the years they became more powerful
 - Better architectures and algorithms
 - Faster hardware
- Diverse application areas

Do-It-Yourself – Toolkits and how to apply them

http://www.ecmlab.de/jannlab http://pybrain.org/ sourceforge.net/projects/rnnl/

Marcus Liwicki: Applications of recurrent and BLSTM neural networks

Slide 72

JANNLab

- Written by Sebastian Otte, Master Student supervised by me
- Currently still in beta-stadium
- Will soon be available at: http://ecm.mi.hs-rm.de/jannlab
- http://code.google.com/p/touch-and-write/source/
 - There is a version available
 - /touchandwrite-pr-toolbox/src/main/java/de/dfki/touchandwrite/rnn/
 - Added during the revision dd084b5218f3
 - Can be easily downloaded and used for testing
- I will now go through a test case
 - The code will be available for download

- import ...Net;
- > import ...core.CellType;
- import ...data.Sample;
- import ...data.SampleSet;
- import ...data.SampleTools;
- > import ...generator.LSTMGenerator;
- import ...generator.MLPGenerator;
- > import ...generator.NetCoreGenerator;
- > import ...io.Serializer;
- import ...learning.GradientDescent;
- import ...learning.LearningTask;
- > import ...learning.tools.TrainerTools;

Marcus Liwicki: Applications of recurrent and BLSTM neural networks

Random rnd = new Random(System.currentTimeMillis());

First, define the single layers with Macro classes: NetCoreGenerator gen = new NetCoreGenerator(); int input = MLPGenerator.inputLayer(gen, 2); int hidden = LSTMGenerator.lstmLayer(

gen, 2, // number of blocks. CellType.SIGMOID, // gates activation. CellType.TANH, // netinput activation (g). CellType.TANH, // state activation (h). true // peepholes?);

int output = MLPGenerator.outputLayer(gen, 1, CellType.TANH);

Next, connect them fully: gen.weightedLinkLayer(input, hidden); gen.weightedLinkLayer(hidden, hidden); gen.weightedLinkLayer(hidden, output);

Net net = gen.generate(); System.out.println(net);

Load the data sets

SampleSet trainset = SampleTools.readCSV("experiments/adding/trainset_50_10000.c sv"); int trainlength = trainset.maxSequenceLength(); SampleSet testset = SampleTools. readCSV("experiments/adding/testset_50_5000.csv"); int testlength = testset.maxSequenceLength(); Sstem.out.println("trainset samples : " + trainset.size()); System.out.println("trainset max.seqlength : " + trainlength); System.out.println("testset samples : " + testset.size()); System.out.println("testset max.seqlength : " + testlength); System.out.println();

Initialize

net.rebuffer(Math.max(trainlength, testlength));
net.initializeWeights(rnd);

Marcus Liwicki: Applications of recurrent and BLSTM neural networks

Slide 78

Generate a Gradient Trainer and fill it with the parameters GradientDescent trainer = new GradientDescent(); trainer.setNet(net); trainer.setRnd(rnd); trainer.setTrainset(trainset); trainer.setValidationset(testset); trainer.setTask(LearningTask.CLASSIFICATION); trainer.setTargetError(0.0); trainer.setLearningRate(0.001); trainer.setMomentum(0.9); trainer.setEpochs(30); trainer.setValidationInterval(2); trainer.setValidationAbort(5);

Train

trainer.train();

Save

Serializer.write(net, "experiments/adding/net_50.gz");

Marcus Liwicki: Applications of recurrent and BLSTM neural networks

> Test

```
double thres = 0.04:
int ok = 0;
for (Sample s : testset) {
  net.reset();
  double err = TrainerTools.performForward(net, s,
    LearningTask.CLASSIFICATION);
  if (err < thres) {
    ok++;}}
double ratio = 0.0;
if (ok > 0) {
  ratio = 100.0 * ((double)ok) / ((double)testset.size());}
System.out.println("testset result: " + ratio + "%.");
```


Marcus Liwicki: Applications of recurrent and BLSTM neural networks

- Pybrain
 - Based on python
 - http://pybrain.org/
 - Nice tutorials at: <u>http://pybrain.org/docs/</u>
- ➢ RNNLib
 - Based on C++
 - sourceforge.net/projects/rnnl/
 - A bit of a hack to make it running, but it is quite fast

Last Slide

Thank You!

Dr. Marcus Eichenberger-Liwicki

TU Kaiserslautern & DFKI, Germany Marcus.Liwicki@dfki.de

Marcus Liwicki: LSTM for handwriting recognition