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The random conductance model

Consider the d dimensional integer lattice Z
d with edge set Ed

(nearest neighbor).
Let {µe}e∈Ed

= ω be random nonnegative weights (conductances)
on the edges.
Define µx =

∑

xy∈Ed
µxy , and consider random walk with

transition probabilities:

Pω(x , y) = P(x , y) =
µxy

µx

,

whenever µx 6= 0. This is random walk in random environment
(RWRE).
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Typical assumption: The environment is shift-invariant, or more
generally symmetric, i.e., {µe}e∈Ed

is invariant under graph
automorphisms of Z

d .



Question:
Does RWRE behave similarly to simple random walk on Z

d? What
is the limit behavior?
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However, in “decent” models almost sure and averaged behaviour
are usually similar after scaling.
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That is, consider continuous time random walk X = {Xt , t ≥ 0}
on Z

d in the random environment started from 0, with transition
probabilities Pω(x , y) and exponential waiting times with mean
1/µx . Let

X
(ǫ)
t := ǫXt/ǫ2 .

Does X (ǫ) := {X (ǫ)
t , t ≥ 0} converge to BM in the Skorokhod

space DT? In what sense?
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Quenched or annealed invariance principle. Convergence for almost

every environment or in averaged sense.



Definitions

F a bounded continuous function on DT , Σ a constant matrix, W

standard Brownian motion.

(i) The Quenched Functional CLT (QFCLT) holds for X if for
every T > 0 and every bounded continuous function F on DT we
have EωF (X (ǫ)) → EBMF (ΣW ) as ǫ → 0, with P-probability 1.

(ii) The Averaged (or Annealed) Functional CLT (AFCLT) holds
for X if for every T > 0 and every bounded continuous function F

on DT we have E EωF (X (ǫ)) → EBMF (ΣW ).
This is the same as standard weak convergence with respect to the
probability measure E Pω.



Observe that Σ has to be σ times the identity for some constant σ,
by invariance.

Lemma: QFCLT ⇒ AFCLT.

General question: Does AFCLT imply QFCLT?



Andres-Barlow-Deuschel-Hambly: If the µe are i.i.d., and
P(µe > 0) > pc , then the QFCLT holds.
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P(µe > 0) > pc , then the QFCLT holds.

De Masi-Ferrari-Goldstein-Wick: If E µe < ∞ holds for an ergodic
symmetric stationary environment the AFCLT holds.

Question: How about QFCLT? Open.



Our main result

Theorem (Barlow-Burdzy-T.)

There exists a symmetric, stationary and ergodic environment such
that for a subsequence ǫn → 0
(a) the AFCLT holds for X (ǫn) with limit W ,
but
(b) the QFCLT does not hold for X (ǫn) with limit ΣW for any Σ.

Furthermore, the environment {µe}e∈Ed
satisfies

E(µp
e ∨ µ−p

e ) < ∞ for any p < 1.
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Remark: with slightly weaker condition on the moments we have
the full AFCLT (not just for a subsequence).



Results when QFCLT holds

For symmetric, ergodic environments:

Biskup: If d=2, E(µ−1
e ∨ µe) < ∞ then QFCLT holds with σ 6= 0.

Andres-Deuschel-Slowik: If d ≥ 2, E µp
e < ∞ and E µ−q

e < ∞ with
p−1 + q−1 < 2/d , then the QFCLT holds.
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The construction

We do it for d = 2.
Fix sequences an and bn.
Choose

bn

an

≈ 1√
n

and
an ≪ an+1.

For n = 1, 2, . . ., we will define obstacles of level n, that is, sets of
edges with nonunit conductance.
The union of obstacles of level n will be called Dn.



The shape of one obstacle is:

n

20bn

2b

Blue edges have very low conductance ηn. The red line represents
edges with very high conductance Kn.

ηn := b
−(1+1/n)
n , Kn ≈ bn



At level n, we tile the plane with tiles containing obstacles as
follows.

an



At level n, we tile the plane with tiles containing obstacles as
follows.

an

Then shift it randomly, to make the environment symmetric.



Do similarly for level n + 1, with bigger “tiles” that are unions of
tiles from level n. Redefine edge conductances if necessary.

The resulting random conductance is µe .

If only ∪n
m=1Dm is taken, we call the conductance µn

e .



QFCLT does not hold

From now on T = 1.
What is the probability that 0 is in the green box for one of the
tiles? It is a bn

4 × bn

4 box, whose center is at distance bn/8 from
the blue part.



Hence, there are infinitely many n’s almost surely such that 0 is
contained in a green box .

Moreover, the same is true if we also require that no Dm intersects
the bn-neighborhood of the green box, m > n.

nb /4 2bn



For a 2-dimensional process Z = (Z 1,Z 2), define the event

F (Z ) =
{

|Z 2
s | < 3/4, |Z 1

s | ≤ 2, 0 ≤ s ≤ 1,Z 1
1 > 1

}

.

The support theorem implies that PBM(F (W )) > 0.
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However, for ǫn := 1/bn, we have P(F (X (ǫn))) < cb
−1/n
n whenever

0 is in a green box for level n.

This happens for infinitely many n’s almost surely, hence the
QFCLT fails.



AFCLT holds

As before, ǫn = 1/bn.
Recall: the environment {µn

e} is the union of the first n levels of

obstacles.
For {µn

e} QFCLT is known (Barlow-Deuschel), since µn
e and µ−n

e

are bounded away from 0.
By periodicity of {µn

e}, we can compute effective resistances in
boxes, and choose ηn and Kn of the orders mentioned, and so that
the limit is indeed

∑

= I .
This is where the choice of “red” conductances becomes important.



So choosing an and bn ≈ an/
√

n large enough, RW in {µn−1
e } is

1/n close to BM.
We can couple RW in {µe} with RW in {µn−1

e } until the first time
we hit an obstacle in ∪m≥nDm.
The probability of hitting such an obstacle can be bounded using
b2
n/a

2
n ≈ 1/n, by a geometric argument as before.



Thank you, András!
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