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Association Rule Mining

Association Rules: Example

market basket transactions:

analysis of purchase "basket" data (items purchased together) in a
department store

TID Items

Bread, Milk Examples of Association Rules:

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

{Diaper} — {Beer}
{Milk, Bread} — {Eggs,Coke}
{Beer, Bread} — {Milk}

g Bl W] N =

Implication means co-occurrence, not causality!
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Association Rule Mining

Association Rules: Example

discovery of interesting relations between binary attributes, called items,
In large databases

example of an association rule extracted from supermarket sales:
“Customers who buy milk and diaper also tend to buy beer.”

- only rules with support and confidence above
some minimal thresholds are extracted

TID Items
support: proportion of customers who :
bought the three items among 1 Bread, Milk
all customers 2 Bread, Diaper, Beer, Eggs
confidence: proportion of customers who 3 Milk, Diaper, Beer, Coke
bought beer among the - .
customers who bought milk 4 Bread, Milk, Diaper, Beer
and diaper 5 Bread, Milk, Diaper, Coke
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Association Rule Mining

Application Example

market basket analysis
marketing plan
advertising strategies
catalog design

store layout
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Association Rule Mining

Notions and Notations

e I ={0,...,1,}: setofitems TID  Items
1 Bread, Milk
- itemset: collection of one or more items 2 Bread, Diaper, Beer, Eggs
‘ . o 3 Milk, Diaper, Beer, Coke
 k-itemset: itemset of cardinality & 1 Bread, Milk, Diaper, Beer
_ , 5 Bread, Milk, Diaper, Beer
* transaction: itemset

transaction database D: multiset of transactions

— each transaction is associated with an identifier, called TID

5
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Association Rule Mining

Notions and Notations

support set D[ X] of an itemset X:

TID tems
DIX]|={T:TeDand X CT} 1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
— multiset of sets 3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
support : fraction of transactions that con- |5 Bread, Milk, Diaper, Coke

tain an itemset, i.e., for X C I
example:

support({Milk, Bread, Diaper}) = 2

support(X) = %

frequent itemset: itemset with support
greater than or equal to a threshold
minsup
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Association Rule Mining

Association Rules

= association rule

- Iimplication expression of the form X — Y, where X and Y are disjoint non-
empty itemsets

- example: {Milk, Diaper} — {Bread}

= rule evaluation metrics
- support (s): fraction of transactions that contain both X and Y

- confidence (c): fraction of transactions that contain both X and Y relative
to the transactions that contain X

TID  Items example: R = {M:ilk, Diaper} — {Bread}

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs |D[{Milk, Bread, Diaper}]| 2

3 Milk, Diaper, Beer, Coke s(h) = |D| "5

4 Bread, Milk, Diaper, Beer |D[{Milk, Bread, Diaper}]| 2

5 Bread, Milk, Diaper, Coke o(R) = |D[{Milk, Diaper}]| "3
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Association Rule Mining

Mining Association Rules

Given
* a transaction database D over a set I of items,
« minimum support threshold min_sup, and
* minimum confidence threshold min_con f

find all association rules X — Y satisfying

s(X =Y)>min_sup and ¢(X —Y) > min_conf
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Association Rule Mining

Brute-Force Approach

1. list all possible association rules
2. compute the support and confidence for each rule

3. prune rules that fail the min_sup and min_conf thresholds

computationally prohibitive

= total number of possible association rules is exponential in the cardinality of
the set of all items

= exponential delay in worst case

9
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Association Rule Mining

Upper Bound on the Number of Association Rules

letd = |I
= total number of (non-empty) itemsets is 2¢ — 1

= total number of possible association rules is 3¢ — 29+1 41

w10
B

Proof: exercise

==
T

(3]
T

e.g., 602 rules ford =6

Number of rules

]
T
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Association Rule Mining

Observations about the problem (l)

confidence support confidence support

|D[aq]|/|D[a]|  |D[aq]|/|D| a—q ID[aq]|/|D[a]| [Dlaq]|/[D|
?7? v /\ v v

|D[abd]|/|D[ab]| |D[abg]|/|D| | ab—4 a—>bq |  |D[abq]|/|D[a]| |D[abq]|/|D]

confidence can both rise or fall, while support can only fall as rules get longer
= support can be used for pruning
support depends only on set of items, not on exact rule

= do not search in space of rules, but in space of itemsets
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Association Rule Mining

Mining Association Rules

two-step approach:

1.frequent itemset generation

— generate all itemsets whose support > min_sup

2.rule generation

— generate association rules of confidence > min_conf from each frequent
itemset X by binary partitioning of X

12
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Association Rule Mining

Step 1: Frequent Itemset Mining — Problem Definition

Given
* a transaction database D over a set I of items and
* an integer frequency thresholdt > 0 (i.e., t = [min_sup - |D||)

find all itemsets X C [ satisfying

IDIX][ =t

— X isreferred to as frequent (or t-frequent) itemset

13
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Association Rule Mining

Remark on the Problem Setting

the transaction database D can be regarded as a
* 0/1 (or Boolean) matrix,

» set system over I, where each element (i.e., transaction) is associated
with its multiplicity in D (i.e., number of occurrences)

« vertices of the |I|-dimensional unit hypercube where each vertex is asso-
ciated with the corresponding multiplicity

 hypergraph over the vertex set I such that each edge is associated with
its multiplicity

* bipartite graph (V1, Vo, F) such that V; = I, V5 is the set of transactions,
and there is an edge {u,v} (v € V7 and v € V5) if and only if u is an
element of transaction corresponding to v

14
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Association Rule Mining

Frequent Itemset Mining (recap)

-  brute-force approach:

- each itemset in the power set of 7 is a candidate frequent itemset
- count the support of each candidate by scanning the database
- match each transaction against every candidate
= complexity ~ O(NMw) = expensive since M = 29-1 (d = |7])
- N: number of transactions

- M: number of candidate itemsets
- w: maximum cardinality of the transactions

15
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Association Rule Mining

Frequent Itemset Mining Strategies

reduce the number of candidates (M)

- complete search: M=2d-1
- use pruning techniques to reduce M

reduce the number of transactions (N)

- reduce size of N as the number of transactions increases
- use a subset of the N transactions by sampling

reduce the number of comparisons (NM)

- use efficient data structures to store the candidates or transactions
- no need to match every candidate against every transaction

16

\

PhD Course, Szeged, 2013 - © T.Horvath )
/
universitétbonnl % F raun hOfe r

IIIIIIIIIIIIIIIIIII -WILHELMS-UNIVERSITAT IAIS



Association Rule Mining

Frequent Itemset MiningStrategies

Apriori principle:
- if an itemset is frequent then all of its subsets must also be frequent

l.e., support set is anti-monotone with respect to the subset relation

VX,Y(X CY = D[X] 2 D[Y))

17
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ciation Rule Mining

Utilization of the Apriori Principle
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Association Rule Mining

Utilization of the Apriori Principle

ltem Count - items (1-itemsets)
Bread 4
Milk 4 N ltemset Count
gger 2 {Bread,Milk} 3 . pairs (2-itemsets)
japer {Bread,Beer} 2
{Bread’Diaper} 3 (nO need to generate
{Milk,Beer} 2 candidates involving
{Milk,Diaper} 3 Coke or Eggs)
{Beer,Diaper} 3
. t= 3 (frequency threshold) \
if every subset is considered: Itemset Count
{Bread,Milk,Diaper} 3

6 6 6 —
Ci+ "G+ 7 =41 triplets (3-itemsets)

with support-based pruning:

6+6+1=13
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Association Rule Mining

The Apriori Algorithm

Input : 0/1 matrix D with column set I and integer frequency threshold ¢ > 0
Output: set of ¢-frequent itemsets

1: Cy =1

2. 1:=1

3: while C; # () do

4:  Fi:={X €C; :|DX]| >t} // candidate counting
5. print F;

6: C;11 := CANDIDATEGENERATION(F;)

7 =1+ 1

8. endwhile

- [Agrawal, Mannila, Srikant, Toivonen, & Verkamo, 1996]

levelwise (breadth-first) search algorithm

20
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Association Rule Mining

Gaining Efficiency I: Generation of Candidates

Approach:

« generate new candidates by combining current frequent itemsets by uti-
lizing that all (k — 1)-itemsets of a frequent k-itemset are also frequent

 define a total order on I and consider an itemset as an ordered sequence

CANDIDATEGENERATION:

Input : set F, of frequent k-itemsets
Output: set C;..; of candidate (k + 1)-itemsets

1: Ck-l—l = '[B
2: for all X,Y € F;. such that they differ only in their last elements

3: make a (k + 1)-element set Z by concatenating the common (k — 1)-prefix with the two
differing elements according to the order

4: if all k-subsets of Z are in F, then add Z to C 44
5: return Cy 4,

21
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Association Rule Mining

Example

candidate generation:

Fs = Awow,wz, vwr, uwy, vwx }

Cy = Awvwz,uwzy}\ {vwzry}

Apriori Algorithm for frequency threshold 2

J S
[

database
E: z: Z: jie} Tid ltems
{ab, ac, ae, be, be, ce} 10 a, c, d
{ac, be, be, ce} 20 b, c, e
{bce} 30 a, b, c,e
{bce} 40 b, e

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Association Rule Mining

Complexity of the Apriori Algorithm

remarks on the frequent itemset mining problem
« enumeration problem
« size of the problem is defined by the size of the input database D
* size of the output can be exponentially large in the size of the input

- e.g., for D ={I} withI = {1,...,n} and frequency threshold 1, the
number of frequent itemsets is exponential in n

= hopeless to compute the set of frequent itemsets in time polynomial
In the input parameter

= the size of the output is also taken into account in the analyses of
the time and space complexity

23
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Association Rule Mining

Enumeration Complexities

the size of the output (theory) can be exponential in the size of the input D

= the output cannot be computed in time polynomial in the size of D

enumeration complexities:
a set of S with N elements, say s,,..., Sy, are listed with

polynomial delay if the time before printing s,, the time between printing s,
and s;,, for every i=1,...,N-1, and the termination time after printing sy, is
bounded by a polynomial of the size of the input,

iIncremental polynomial time if s; is printed with polynomial delay, the
time between printing s; and s;,, for every i=1,...,N-1 (resp. the termination
time after printing s,) is bounded by a polynomial of the combined size of
the input and the set s,,..., S; (resp. S),

output polynomial time if S is printed in the combined size of the input
and the entire set S

24
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Association Rule Mining

Correctness and Complexity of the Apriori Algorithm

Proposition:

(1) The Apriori algorithm correctly and irredundantly enumerates all frequent
itemsets.

(i) The Apriori algorithm enumerates the set of frequent itemsets in incre-
mental polynomial time.

Proof: exercise

25
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Association Rule Mining

Gaining Efficiency Il: Candidate Counting

Why is counting supports of candidates a problem?
= the total number of candidates can be very huge

= One transaction may contain many candidates

Method:
» store candidate itemsets in a hash-tree

- leaf nodes of hash-tree contain lists of itemsets and their support

- Interior nodes contain hash tables

= use subset function to find all the candidates contained in a transaction

26
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Association Rule Mining

Hash Tree - Construction

searching for an itemset iy,i,,...,iq, .-l
= start at the root

= atlevel d: apply the hash function h to I

Insertion of an itemset

= search for the corresponding leaf node, and insert the itemset into
that leaf

= |f an overflow occurs:
- transform the leaf node into an internal node

- distribute the entries to the new leaf nodes according to the
hash function

27

PhD Course, Szeged, 2013 - © T.Horvath ; ___—/
—
sty  Fraunhofer

IIIIIIIIIIIIIIIIIII -WILHELMS-UNIVERSITAT IAIS



Association Rule Mining

Hash Tree Construction - Example

candidate 3-itemsets:

{1,4,5}, {1,2,4}, {4,5,7}, {1,2,5}, {4,5,8}, {1,5,9}, {1,3,6}, {2,3,4}, {5,6,7},
{3,4,5}, {3,5,6}, {3,5,7}, {6,8,9}, 3,6,7}, {3,6,8}

hash function: h(k) = k mod 3

split nodes with more than 3 elements if possible

hash function

h(k) W(k) =0

h(k) = 2

{3,4,5} {3,556} {3,6,7}
| {1,4,5} {1,3,6} {3.5.7} {3.6.8)
for items 1,2,...,9: | {6,8,9)

1,4,7 3,6,9
4, 0, {1,2,4y {1,2,5} {1,599
/l\ {457 {4,58)

2,5,8

28
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Association Rule Mining

Hash Tree - Subset Function for Counting

search all candidate k-itemsets contained in a transaction T = (t,t,,...,t,)

= atthe root:
- determine the hash values for each item t;,t,,....t ., INT
- continue the search in the resulting child nodes
= atan internal node at level d (reached after hashing of item t)):

- determine the hash values and continue the search for each item
t with j > 1 and ] <= n—k+d

» ataleaf node:

- check whether the itemsets in the leaf node are contained in
transaction T

29
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Association Rule Mining

Subset Function for Counting - Example

Hash Function

12356

transaction

1+[2356 2+ 356
1,4,7 3,6,9 12+ | 356
25,8 \ 3+ 56
13+ |56 —
234
15+ 16 567
145 136 .
345 356 367
357 368
I
124||| 125][|L159 689
457l 458
match transaction against 9 out of 15 candidates!
_——./ 30
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Association Rule Mining

Mining Association Rules

two-step approach:

1.frequent itemset generation v’

— generate all itemsets whose support > minsup

2.rule generation

— generate association rules of confidence > minconf from each frequent
itemset X by binary partitioning of X

31
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Association Rule Mining

Observations about the Problem (II)

What happens when we create rules from a frequent itemset?

c=|D[abc]|/|D[ab]| s=|D[abc]|/|D| abl—>c
IV =

c=|D[abc]|/|D[a]]  s=|D[abc]|/|D| a—bc

= the more items we put in the conclusion, the smaller the confidence
= search top-down breadth-first from smallest conclusions, prune
= confidence can be expressed in terms of support

= No DB accesses necessary when all supports of frequent itemsets
are known!

32
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Association Rule Mining

Rule Generation

GENERATERULES:

Input : frequent k-itemset 1., family H,,, C 2' of m-itemset consequents
Output: all association rules [, \ X — X of confidence at least min_con f
such that | X|=m + 1

1. if kK > m+ 1 then

2. H,,r1 = CANDIDATEGENERATION(H,,) // same function as in Apriori
3. forall h,,, 1 € H,,. 1 dO

4 ¢ = support(lx)/support(li \ hmr1)

5 if ¢ > min_conf then

6: print rule (I \ Amy1) = hmaa

7 else

8 delete h,, 41 from H,, 11

9:  GENERATERULES(lg, Himt1)

33
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Association Rule Mining

Example
D: C; 1 2 3 4 5 6 7 8 9
s 5 5 6 2 2 1 1 2 2
resd E 2 3 Rule Generation:
126 Cy, 12 13 23 12: H, = {{1}.{21}
1235 ss 4 4 4 c(1—>2)=s(12)/s(1)=4/5=0.8
1238 F: 12 13 23 c(2—1)=s(12)/s(2)=4/5=0.8
C,: 123 13:H, = {{1}{3}}
139 s 3 c(1—3)=s(13)/s(1)=4/5=0.8
239 F,: 123 c(3—1)=s(13)/s(3)=4/6=0.66
278 23:H; ={{2}.{3}}
c(2—3)=s(23)/s(2)=4/5=0.8
45 Result: c(3—2)=5(23)/s(3)=4/6=0.66
=2 123: H, = {1}.{2}.{3}}
2—1 c(12—3)=5(123)/5(12)=3/4=0.75
min_conf = 0.8 153 c(13—2)=s(123)/s(13)=3/4=0.75
min_sup = 3/8 23 c(23—1)=s(123)/s(23)=3/4=0.75
H,= &
PhD Course, Szeged, 2013 - © T.Horvath . = 34
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Association Rule Mining

Performance

evaluation on synthetic data (100.000 transactions based on 1000 items,
with frequent set sizes distributed around 4 items and transaction size
distributed around 10 items. D size 4.4 MB on an IBM RS6000 534H)

Minimum Support (%): 2.0 15 1.0 0.75 05
Run time (secs) 3.8 48 11.2 174 19.3

= [Agrawal et.al 96] found linear scaleup (slope 1) for transaction sets of
up to 10 Million transactions (up to 838 MB of data)

= This is due to sparsity of data: in the worst case, all itemsets can be
frequent, causing exponential behavior.

35
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Association Rule Mining

Summary of the Apriori Algorithm

1. find all itemsets with sufficient support (called “frequent” or “large” itemsets):
= search top-down from one-element itemsets

= breadth-first search, generate candidates of length k from those of
length k-1

= prune all sets that do not reach min support

2. for each frequent itemset from step 1, build all rules and return those with
sufficient confidence

= search top-down from one-element to longer conclusions

= Dbreadth-first search, generate conclusions of length k from those of
length k-1

= prune all rules that do not reach min confidence

36
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Association Rule Mining

Frequent Itemset Mining — Some Issues

1. Aprioriis not suited for generating long frequent itemsets (e.g., of
length 100)

- we need alternative algorithms enabling the discovery of long patterns

2. it would be useful to know in advance the cardinality of the family of
frequent itemsets

- complexity of counting frequent itemsets

3. length of frequent itemsets

- complexity of deciding the existence of a frequent itemset of a given length

37
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Association Rule Mining

Bottleneck of the Apriori Algorithm

Observation:

to discover a frequent itemset of size k, one needs to generate at least
2k-2 candidate itemsets

- e.g., if k=100 then about 10%° itemsets

- hopeless to find long frequent itemsets

How can we avoid this bottleneck of Apriori?

» use depth-first search

38
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Association Rule Mining

Mining Frequent Itemsets Without Candidate Generation

idea: grow long itemsets from short ones using local frequent items

example:
suppose abc is a freqguent itemset
1. get all transactions in the database D containing abc
D[abc]
2. letd be alocal frequent item in D[abc]

= abcd is a frequent itemset in D

39
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Association Rule Mining

Depth-First Search Frequent Itemset Mining Algorithm

DFS LISTING:

Input : transaction database D, itemset F, and frequency threshold ¢ > 0
Output: {F' D F : F'\ F is t-frequent in D}

1. print

2: remove all infrequent items from D

3: define a linear (total) order < on the items in D
4

5

. forall items 2 in D such that: ¢ F' do
let D; = {proj(T,i) : T € D satisfying i € T}, where

poi(T) = i € i < 7}
6: DFS_LISTING(F U {i},D;)

initial call: DFS_LISTING((), D)

40
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Association Rule Mining

Depth-First Frequent Itemset Mining Algorithm

Prop.: the previous algorithm correctly and irredundantly enumerates all
frequent itemsets with polynomial delay

= correct: sound and complete
= sound: all itemsets outputted are frequent and
= complete: all frequent itemsets are generated
Proof: exercise

How to store projected databases?

41
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Association Rule Mining

Frequent Pattern Trees (FP-Trees)

[Han, Pei, Yin, & Mao, 2004]
FP-tree consists of

1. anitem-prefix tree with nodes consisting of

- item-name: name of the item represented by the node,

- count: number of transactions represented by the portion of the path
reaching the node,
- node-link:  links to the next node in the item-prefix tree having the same item

name (or null if there is no such node)
2. afrequent item header table with entries consisting of
- item-name,
- head of node link:  points to the first node in the item-prefix tree having the
item name

Provides a compact representation of transaction databases!

42
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Association Rule Mining

Example of an FP-Tree

-Header Table

-Iltem head
- foe—

- Co—— |

- a

-b\
m

-

 »

C

:q:\\

q:2

i
A
f:4 c:l
% b:l
3 g:1

m:2

b

Y

e

m:
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Association Rule Mining

Algorithm: FP-Tree Construction

Input : transaction database D and frequency threshold ¢
Output: frequent-pattern tree 7' of D w.r.t. ¢

1: compute the set I’ of frequent items and their support
2: sort I’ in support descending order

3: create the root of an FP-tree T" with label null

4: forall transaction X € D do

5

select the frequent items in X and sort them according to the order of I’;
let the sorted frequent-item list in X be [p|P], where

- p is the first element and

- P is the remaining list

6: INSERTTREE([p|P],T)

44
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Association Rule Mining

Function InsertTree

INSERTTREE([p|P],T):

1: if 7" has a child N such that N.item-name = p.item-name then
2 ++ /N .count

3: else

4: create a new child N of T

5.  N.name := p.item-name

6: N.count =1

7:  N.node link = NULL

8: set the node-link of the last element in the node_link chainof pto NV
9: if P is nonempty then

10:  INSERTTREE(P, N)

45
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Association Rule Mining

Example (FP-tree) {3

VAN
f, a,c,d,g,i,m,q Header Table

f:4 c:1
a,b,c,f,I,mo Item head /

b,f,h,j,O,W 'f./

b,c,k,s,q

|| WIDN|PF

b:1

. c0——
s A c:3]
a,f,c,e, l,g,mn . b

. m\

frequency threshold t = 3
. q.\

I’ = {f.4,c:4,a:3,b:3,m:3,q:3}

a:3 g:1

TID Ordered Items |

1 f,c,a,m,q

f,c,a,b,m
f, b
c,b,q
f,c,a,m,q

gl bl wWIN

m:1
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Association Rule Mining

Benefits of FP-trees

completeness

- preserve complete information for frequent pattern mining

- never break a long pattern of any transaction

- compactness

reduce irrelevant info
infrequent items are removed
items in frequency descending order
- the more frequently occurring, the more likely to be shared
never larger than the original database
- node-links and the count field not counted!

empirically justified
Connect-4 (dataset): 67,557 transactions with 43 items/transaction; t = 33779
size of the input database: 2,219,609; size of the FP-tree 13,449
= compression ratio = 165.04

47
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Association Rule Mining

Properties of FP-trees

1. completeness:
Given a transaction database D and a frequency threshold t, the
complete set of frequent item projections of transactions in the
database can be derived from the FP-tree of D.

2. compactness:

Given a transaction database D and a frequency threshold t, then,
without considering the root,

- the size of D’s FP-tree is bounded by
Yrep [freq(T)|

= freq(T) = { xeT: xis frequent }
- and the height of DB’s FP-tree is bounded by
maxrpf [freq(T)| }
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Association Rule Mining

FP-Growth vs. Apriori: Scalability With the Support Threshold

Data set T25120D 10K

100 -
90 -
80 -
70 A
60 - \
50 + \
40 A \

30 A \
20 - TS
10 A TS

—¢— D1 FP-growth runtime
— 3 — D1 Apriori runtime

Run time(sec.)

1,5 2
upport threshold(%)

N— - ¢
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Association Rule Mining

Summary of the FP-Growth Algorithm

depth-first frequent itemset mining algorithm:

- decompose both the mining task and D according to the frequent patterns
obtained so far

- leads to focused search of smaller databases

other factors

- no candidate generation, no candidate test
- compressed database: FP-tree structure
- no repeated scan of entire database

- basic operations: counting and FP-tree building
no pattern search and pattern matching

winner of FIMI 2003 (Frequent Itemset Mining Implementations)
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Association Rule Mining

Frequent Itemset Mining — Some Issues

1. Aprioriis not suited for generating long frequent itemsets (e.g., of
length 100)

- an alternative algorithm not excluding the discovery of long patterns v/

2. it would be useful to know in advance the cardinality of the family of
frequent itemsets

- complexity of counting frequent itemsets

3. length of the itemsets

- complexity of deciding the existence of a frequent itemset of a given length

51

PhD Course, Szeged, 2013 - © T.Horvath ; __—"/
universitétgﬂ % Fra un hOfer

IAIS

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx



Association Rule Mining

Counting Frequent ltemsets

Thm.: Given a transaction database D and an integer frequency threshold t,
the problem of finding the number of t-frequent itemsets is #P-hard.

= #P: class of functions f such that there is a nondeterministic
polynomial-time Turing machine M with the property that f(x) is the
number of accepting computation paths of M on input X

- L. Valiant, 1979

= some functions in #P are at least as difficult to compute as some
NP-complete problems are to decide

- e.g., #3CNF

= Unless P=NP, frequent itemsets cannot be counted in polynomial time!
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Association Rule Mining

Proof

reduction from the #SAT for monotone 2CNF formulas

- #SAT: number of satisfying assignments

- monotone 2CNF formulas: CNF in which every clause has at most two literals
and every literal is positive (i.e., unnegated)

- #P-hard problem [Valiant, 1979]

53

\

PhD Course, Szeged, 2013 - © T.Horvath )
/
universitétbonnl % F raun hOfe r

IIIIIIIIIIIIIIIIIII -WILHELMS-UNIVERSITAT IAIS



Association Rule Mining

Proof (cont'd)

* let f be a monotone 2CNF formula with m clauses and n variables

— Say, r1,...,Tp

— see also the next slide for an example

» construct an m x n binary matrix (i.e., transaction database) D with

- 0 if z; is present in the i-th clause
711 olw

= an assignment falsifies f if and only if the set of items corresponding to
the variables with value 1 forms a 1-frequent itemset (i.e., abs. freq. t = 1)

= number of 1-frequent sets = 2" —number of the satisfying assignments of f

g.e.d.

54

\

PhD Course, Szeged, 2013 - © T.Horvath )
universitétgr‘ % F raun hOfe r

RRRRRRRRRRRRRRRRRRR S — IAIS



Association Rule Mining

Construction in the Proof: Example

r1 T2 I3 T4

f=(@x1 V) A(zaVas)A(x1Vey = r1Vxg 0 0 1 1
&,"2\/$3 1 0 0 1
Ll?l\/.fC4 0 1 1 0

for frequency threshold ¢ = 1:

« {x3} is t-frequent because it occurs in 2(> t = 1) lines (transactions)
= variable assignment (0,0, 1,0) corresponding to {x3} falsifies f

« falsifying assignments: {x1, x2, x3, 4, T124, ToX3, T3Ty }

= number of satisfying assignments: 2 — 7 =9
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Association Rule Mining

Frequent Itemset Mining — Some Issues

1. Aprioriis not suited for generating long frequent itemsets (e.g., of
length 100)

- an alternative algorithm not excluding the discovery of long patterns v/

2. it would be useful to know in advance the cardinality of the family of
frequent itemsets

- complexity of counting frequent itemsets v’

3. length of frequent itemsets

- complexity of deciding the existence of a frequent itemset of a given length
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Association Rule Mining

Frequent Itemsets of Given Length

Thm.: Given a transaction database D, an integer frequency threshold ¢t > 0,

and an integer k£ > 0, the problem of deciding if there is a t-frequent itemset
consisting of at least k items is NP-complete.

Proof:
1. the problem is in NP: trivial
2. NP-hardness: reduction from the Balanced Bipartite Clique problem

- (V1, V5, E): bipartite graph; a balanced bipartite clique of size k is a
complete bipartite cliue with k& vertices from each of V; and V5

 the problem: given a bipartite graph GG and a positive integer &,
decide whether G has a balanced bipartite clique of size k

— NP-complete (Garey & Johnson, 1979)
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Association Rule Mining

Proof of NP-Hardness (cont'd)

reduction from the Balanced Bipartite Clique problem:
 let G = (V1, Vs, ) be a bipartite graph with |V} | = ny and |V5| = ns

 construct an n; x ny 0/1 matrix D (i.e., transaction database) with

i {1 if vertex i is connected with vertex j
1, —

0 o/w

= ( has a balanced bipartite clique of size k if and only if D has a k-frequent
set of cardinality at least &

g.e.d.
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Association Rule Mining

Summary

= FP-Growth algorithm: no candidate generation
© polynomial delay listing
© in contrast to Apriori: able to generate long frequent itemsets

= sometimes it would be useful to know in advance the number of frequent
itemsets, but

@  counting the number of frequent itemsets is computationally intractable

= ... and/or the length of frequent itemsets, but

® deciding the existence of a frequent itemset of a given length is computationally
intractable

59
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Association Rule Mining

Condensed Representations of Frequent Itemsets

1. maximal frequent itemsets
= the Pincer Search algorithm
. (Lin & Kedem, 2002)

= the Dualize and Advance Algorithm

. (Gunopulos, Khardon, Mannila, Saluja, Toivonen, & Sharma, 2003)

= complexity of mining maximal frequent itemsets
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Association Rule Mining Ill

Finding the Positive Border: One-Way Searches

= pottom-up search (e.g., Apriori):

good performance, if all elements in the positive border are expected to be short

= top-down search

good performance, if all elements in the positive border are expected to be long

= if some elements in the border are long and some are short, then both are
Inefficient

® Problem: deciding if there is a frequent itemset with at least k attributes is
NP-complete

- see Slides 57-58
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Association Rule Mining Ill

Finding the Positive Border with Bidirectional Search

Pincer-Search [Lin & Kedem, 1998, 2002].

= computes the positive border (i.e., maximal frequent itemsets)

- represents the set of frequent itemsets

- can be exponentially smaller than the set of frequent itemsets

* bidirectional search (i.e., both bottom-up and top-down)

- bottom-up: go up one level in each pass (similar to Apriori)

- top-down: can go down many levels in one pass

» during the search it prunes by the properties:

Property 1: if an itemset is infrequent, all its supersets must be infrequent

Property 2: if an itemset is frequent, all its subsets must be frequent
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ciation Rule Mining Ill

Asso

Example

Transactions
1: abcde
2. ac

3: ab
4: abcd

freq. threshold: 2

frequent:

infrequent:

>
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Association Rule Mining Ill

Maximal Frequent Candidate Set (MFCS)

At some point of the algorithm, let
FREQUENT: set of known frequent itemsets

INFREQUENT: set of known infrequent itemsets

MFS: set of known maximal frequent itemsets

MFCS (auxiliary data structure): set of all candidate maximal itemsets satisfying

FREQUENT C [J{2%: X € MFSUMFCS}

INFREQUENT n (|[J{2% : X e MFSUMFCS}) =0

« not known to be frequent at this state of the algorithm
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Association Rule Mining

The Pincer-Search Algorithm

Input : transaction database over I = {1,2,...,n} and frequency threshold
Output: set of all maximal frequent itemsets

1: k:=1,Cr:={{i} :i e [}

2: MFCS := {I}; MFS := ()

3: while C;. # () do

4: read database and count supports for C;, and MFCS

5. remove frequent itemsets from MFCS and add them to MFS

6: Lp:={X €Cy: (i) X isfrequentand X ¢ P(MFS) or /I P(MFS) = Usemes 2
(i) 3X’ € Ci. s.t. X, X' are joinable, X, X’ € P(MFS), and #M € MFS with X, X’ C M}

S :={X € Cy : X isinfrequent}

if S, # () then MFCS = MFCS-gen(MFCS. S;.) // updates MFCS; Slides 66—67

: Ci4+1 = CANDIDATEGENERATION(L}) // Apriori; Slide 21
10: if any frequent itemset in C;. has been removed in line 6 then

11: call the recovery procedure to recover missing candidates to Cr. /I Slides 68—-69

12 call the new pruning procedure to prune candidates in Cy.. // Slide 70

13: k:=k+1
14: return MFS
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Association Rule Mining

Updating MFCS: Algorithm MFCS-gen (Line 8 in Slide 65)

Input : old MFCS and family S;. of infrequent sets found in pass &
Output: new MFCS

1: forall itemsets S € S, do
forall itemsets M € MFCS do
if S C M then
remove M from MFCS
forall items e € S do
if M \ {e} is not a subset of any itemset in MFCS then
add the itemset M \ {e} to MFCS

return MFCS

@ N 9 a K @D
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Association Rule Mining

Algorithm MFCS-gen (Line 8 on Slide 65)

example:
 old MFCS = {abcdef}
* infrequent sets: S, = {af,cf}
1. af C abedef
= MFCS = MFCS \ {abcdef} U {bcdef, abcde} = {abcde, bede f}

2. cf C bedef

= MFCS = MFCS \ {bcdef} U {bdef} /I bede C abede
= {abede, bdef}

Lemma: Algorithm MFCS-gen correctly updates MFCS.

Proof: exercise
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Association Rule Mining

Candidate Generation in Pincer-Search

same candidate generation procedure as in Apriori
problem:

some of the needed itemsets could be missing from the preliminary
candidate set

example: suppose MFS is empty
abcde € MFCS is frequent = abcde is deleted from MFCS and added to MFS
L, = {abc,abd,abe,acd,ace,ade,bcd,bce,bde,bdf,bef,cde,def }

are removed by Pincer-Search in Line 6

set of new candidates is empty, although it should be { bdef } !
Missing candidates must be recovered! (Lines 10-11)

68
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Association Rule Mining

The Recovery Procedure (Lines 10-11 on Slide 65)

Input: - current MFS

— L computed in Line 6

— Cr41 Obtained by Apriori candidate generation from Ly in Line 9
Output: a complete set C;., of candidate (k£ + 1)-itemsets

1. forall itemsets X € £, do

2:  forall itemsets M € MFS do

3 if the first £ — 1 items in X are also in M then

4 // suppose M|[j] = X[k — 1]

5: /I M|j]: j-th item of M w.r.t. linear order on the items

6 forall: = j +1to |M| do

7 Crs1 = Cre1 U{{X[1], X[2],..., X[k — 1], X[k], M[i]}}
8: return Cj

69
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Association Rule Mining

Pruning (Line 12 on Slide 65)

Apriori: Check if all k-subsets of a candidate itemset X in Cp,; are in L, !
Pincer-Search: Check if X is a subset of an itemset in the current MFCS!

* One fewer loop!

new pruning procedure:

Input : current MFCS and C;..; after candidate generation and the recovery proc.
Output: final candidate set Cy4

1. forall itemsets X € Ci,, do

2: ifthere exists no Y € MFCS such that X C Y then
3: delete X from Cj.4

4: return Cp

70
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Association Rule Mining

Pincer-Search Algorithm: Example

dataset: D = {abcde, ac, ab, abed}, (absolute) frequency threshold: ¢t = 2

MFCS = {abcde}, MFS = ()
k=1:

- C1 ={a,b,c,d, e}
— |Dla]| =4, |D[b]| = |D[c]| =3, |D[d]| =2, |Dle]| =1; |Dlabede]| =1  //line 4

— MFCS = {abede} and MFS = () //'line 5

— L1 ={a,b,c,d} and S; = {e} // because MFS = (); lines 6—7

— MFCS-gen = MFCS = {abcd} // line 8
k= 2:

— Cy = {ab, ac, ad, be, bd, cd} // because MFS = (; lines 9—12

— |Dlabl| = |Dlac]| = 3, |Dlad]| = |Dlbc]| = |D[bd]| = |Dled]| = 2;  [Dlabed]| = 2
—MFCS = 0 and MFS = {abed}

—Lo=0 and Sy =10 // because ab, ac, ad, be, bd, cd C abed

return MFS = {abcd} because C; =
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Association Rule Mining

Pincer Search Algorithm

Thm: The Pincer-Search algorithm correctly generates the family of maximal
frequent itemsets.

Proof: omitted

Performance evaluation:

= experiments with large datasets of various properties
- Lin & Kedem, 2002

= outperforms Apriori
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Association Rule Mining

Pincer-Search Algorithm: A Remark

Line 6 of the algorithm on slide 65: the original paper requires only condition (i)

= See D.I. Lin and Z.M. Kedem: Pincer-Search: An Efficient Algorithm for Discovering the Maximum Frequent Set.
IEEE Transactions on Knowledge and Data Engineering, 14(3):553-566, 2002.

= however, there is a remark in Case 4 of Lemma 2 in the paper above:
If frequent k-itemsets X and X" are joinable, both are subsets of MFS, but
there is no single element of MFS containing X and X, then their join must
also be recovered

- this is what we ensure with condition (ii) in Line 6

- Itis an interesting question, whether the algorithm remains complete if only condition

(1) is used
- adding condition (ii) to Line 6 does not change the worst-case complexity of the
algorithm
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Association Rule Mining

Condensed Representations of Frequent Itemsets |

maximal frequent itemsets

= the Dualize and Advance Algorithm

. (Gunopulos, Khardon, Mannila, Saluja, Toivonen, & Sharma, 2003)

= complexity of mining maximal frequent itemsets
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Association Rule Mining

Hypergraph Transversals

hypergraph 4 = (V, E):
« V' finite set of vertices
« £ C 2V \ {0}: setof (hyper)edges of H

— ordinary undirected graphs are special hypergraphs

some notions:
« H is simple (or Sperner): none of its edges is contained by any other edge
 transversal of H: subset of V that intersects all edges of H
« minimal transversal: does not contain properly any other transversal

— Tr(H): collection of all minimal transversals of H (also a hypergraph)
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Association Rule Mining

Hypergraph Transversals

Problem: Given a hypergraph H, compute Tr(H).
» listing problem
» can be solved in incremental subexponential time

— subexponential; k©(logk)
— (Fredman & Khachiyan, 1996)

» open problem whether it can be solved in incremental polynomial time
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Association Rule Mining

Hypergraph Transversals: Example

hypergraph H = (V, E):
« V={a,b,c,d}
« E ={abc,d}
« H is simple
« transversals of /: {ad, bd, cd, abd, acd, bed, abed}

- minimal transversals of H: Tr(H) = {ad, bd, cd}

77
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Association Rule Mining

Borders of Theories and Hypergraph Transversals

notions: for a family F of frequent itemsets, let
* cl(F)={Y :Y C X forsome X € F} // downward closure of F
- cl(F): family of frequent itemsets represented by F
« BdT(cl(F)): family of maximal frequent itemsets in cl(F)
— positive border of cl(F)
« Bd~(cl(F)) ={X C I: X isinfrequent and 2* \ {X} C cl(F)}

- i.e., X is infrequent and all proper subsets of X are in cl(F)
— negative border of cl(F)

« H(F)={I\ X : X € Bd*(cl(F))}

= [r(H(F)) is also a hypergraph on I

78
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Association Rule Mining

Borders of Theories and Hypergraph Transversals

Thm.: Let S be a family of frequent itemsets. Then Tr(H(S)) = Bd= (cl(S))
« folklore; see, e.g., (Mannila & Toivonen, 1997)
Proof:

Step 1. We first show that X C I is a transversal of H(S) < X & cl(S)

X C I is atransversal of H(S)
< foreveryY € H(S): XNY #0)
+ forevery Z € Bd"(cl(S8)): XN(I\Z) #0
« forevery Z € Bd™(cl(S)): X € Z

— X ¢ cl(S5)
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Association Rule Mining

Borders of Theories and Hypergraph Transversals

Proof (cont’d) :

Step 1.: X C [isatransversal of H(S) «<— X & cl(S) /I prev. slide
Step 2.:
Tr(H(S)) = {X:Xisaminimaltransversal of H(S)}

= {X : X is a minimal set such that X ¢ cl(S)} //step 1
= {X:X¢dcl(S)andY ecl(S) forevery Y C X}
= Bd (cl(S))

g.e.d.
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Association Rule Mining

Borders of Theories and Hypergraph Transversals

Example: ABCD

« I ={a,b,ec,dy //7/ \\

ABC ABDu ACD  BCD

« S = {abc, abd} W\

« ¢l(S) = {abc, abd, ab, ac, ad, be,bd, a, b, ¢, d, 0} | W\*NW
E A B C D E
N

— Bd™(cl(S)) = {abc, abd}
- H(S) ={d,c}

— Tr(H(S)) = {cd}

— Bd=(cl(S)) = {cd}

Bd~(cl(8S)) can be computed without using 2/ \ cl(S), which is usually large!
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Association Rule Mining

Dualize and Advance Algorithm
idea:
* let M be the set of all maximal frequent itemsets and S C M

= any maximal frequent itemset X € M \ § cannot be a subset of any
itemsetin &

= forallY e S: XN(I\Y)#0
= X Is a transversal of the hypergraph formed by the complements of the
setsinS // step 1 of the prev. theorem

1. find a minimal transversal of the above hypergraph that is frequent
2. extend it to a maximal frequent itemset

= if all minimal transversals are infrequent then all maximal frequent item-
sets have been generated
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Association Rule Mining

The Dualize and Advance Algorithm

Input : transaction database D over set I of items and a frequency threshold
Output: set of all maximal frequent itemsets

1:

1:=1; 8 := @, 31 = {I}

2: generate a minimal transversal X of S; /I 'use some listing subroutine
3: if no minimal transversal has been generated then return S; IS, =M
4: if X is frequent then
5. forallie I\ X do /I lines 5-6: extend X to a maximal frequent itemset
6: if X U{i} is frequent then X := X U {i}
7: Sip1 =8 U{X}
8: Sy ={I\Y:Y €S}
9 1i=1+1
10: endif
11: goto 2
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Association Rule Mining

Dualize and Advance Algorithm

Lemma: For any iteration i of the algorithm, if S; C M then at least one of the elements

of Tr(S;) is frequent.
Proof: suppose S; C M

= there exists a frequent itemset X such that X ¢ cl(S;)

= there exists a minimal frequent itemset X’ C X such that X* ¢ cl(S;) and all
proper subsets of X’ are in cl(S;)

~ X' e Bd (cl(S)))

= X'e Tr(H(S;)) // as Bd™ (cl(S;)) = Tr(H(S)))

= X' € Tr(S;) // because S; C M

g.e.d.
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Association Rule Mining

Dualize and Advance Algorithm

Thm.: The Dualize and Advance algorithm is correct.
Proof:
soundness: Automatic by lines 5-7 of the algorithm.

completeness: By construction, S; C M for all i. The proof then follows from the
previous lemma.
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Association Rule Mining

Condensed Representations of Frequent Itemsets |

maximal frequent itemsets
= the Pincer Search algorithm v
- (Lin & Kedem, 2002)

= the Dualize and Advance Algorithm v

- (Gunopulos, Khardon, Mannila, Saluja, Toivonen, & Sharma, 2003)

= complexity of mining maximal frequent itemsets
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Association Rule Mining

On the Complexity of Mining Maximal Frequent Itemsets

Theorem (Boros, Gurvich, Khachiyan, & Makino, 2002): Let

D be a transactional database over a set I of items with |I| = n,
* t € N be an absolute frequency threshold, and
* § C M be a family of maximal frequent itemsets of D.

Then it is NP-hard to decide if S # M.

Corollary: If P £ NP then maximal frequent itemsets cannot be generated in
output polynomial time.
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Association Rule Mining

On the Complexity of Mining Maximal Frequent Itemsets

Proof: reduction from the NP-complete independent vertex set problem

independent vertex set problem: Givena graph G = (V, F) and a pos-
itive integer t, decide if G contains an independent vertex set of size

at least ¢.

— independent vertex set: V' C V such that no two vertices of V'
are connected by an edge

reduction: for G and ¢, construct a binary matrix (transaction database)
D with |V| columns as follows:

—Vu € V: add 1 row to D with 0 for the column corresponding to u;
1 for all other columns

- Y{u,v} € E: add t — 2 identical rows to D with 0 for the columns
corresponding to v and v; 1 for all other columns
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Association Rule Mining

On the Complexity of Mining Maximal Frequent Itemsets

Proof (contd): V{u,v} € E: Cy, =V \ {u,v} is maximal ¢-frequent in D
e letS ={Cyuy : {u,v} € E}
* the theorem follows from the claim below
Claim: S # M <= G has an independent set V' of size |V'| > t.
Proof of the claim:
(=)3C e M\ S

—> (' cannot be contained by a row introduced for an edge
— V/ =V \ Cis an independent set and |V'| > ¢

(<) let V' be an independent set of size ¢
— V \ V' is frequent and it cannot be the subset of any member in S
— S# M g.e.d.
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Association Rule Mining

On the Complexity of Mining Maximal Frequent Itemsets

Proof of the Corollary: suppose there exists an output-polynomial time al-
gorithm 2 generating all maximal frequent itemsets

= 3 a polynomial ¥(-,-) s.t. VD over n items and V¢t € N, 2 generates the
family M of all maximal frequent itemsets in time ¢ (size(D), | M|)

= for any graph G and integer ¢t > 0, 2l could be used to decide the inde-
pendent vertex set problem in polynomial time as follows:
1. construct D and S for G and t as in the proof of the theorem
2. run 2 on D with frequency threshold ¢
() if A terminates in time ¢ (size(D), |S|) with output M then just

check whether § = M // claim on the prev. slide
(B) if 2 does not terminate in time (size(D), |S|) then G has an
independent vertex set of size ¢ g.e.d.
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Association Rule Mining

Maximal Frequent Itemsets: Summary

maximal interesting sentences
» positive border of the family of frequent itemsets
= compact representation of frequent itemsets

* Pincer search: bidirectional search
- one level up, possibly many levels down
- good performance in practice

= Dualize and Advance algorithm
- based on minimal hypergraph transversals
- works in incremental subexponential time

@ listing maximal frequent itemsets is computationally intractable

= What about other compact representations of frequent itemsets?
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Association Rule Mining

Condensed Representations of Frequent Itemsets Il

closed frequent itemsets
= notions and basic properties

= relative cardinalities of maximal frequent, closed frequent, and
frequent itemsets

= adivide-and-conquer closed frequent itemset mining algorithm

. (folklore; see, e.g., Gély, 2005)
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Association Rule Mining

Closed Frequent Itemsets: Notions

« [: setof items; D : transaction database over I

— each transaction in D has a unique identifier (tid)
— T set of all tids
e it : 20 2T
it(X): set of tids of the transactions that contain X as a subset, i.e.,
it(X) = () it(x)
reX
e t5:27 2!
ti(Y): set of all items common to all the transactions with tids in Y, i.e.,

ti(Y) = () ti(y)

yey
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Association Rule Mining

Closed Frequent Itemsets: Notions

c: 2! — 2l is defined by ¢ : X ~ ti(it(X)) for every itemset X

Prop: cis a closure operator, i.e., for every itemsets X and Y it satisfies

- X C¢(X) (extensivity)
— if X CY then ¢(X) C ¢(Y) (monotonicity)
— ¢(c(X)) = ¢(X) (idempotency)

Proof: exercise
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Association Rule Mining

Closed Frequent Itemsets: Notions

c: 2! — 2l is defined by ¢ : X + ti(it(X)) for every itemset X
Def.: An itemset X is

— closed: if ¢(X) = X and
— closed frequent if it is closed and frequent

C: family of closed frequent itemsets

Properties:
— X isclosed if and only if |D[Y]| < |D[X]| forevery Y O X

— all maximal frequent itemsets are closed
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Association Rule Mining

Closed Itemsets

Example: let
« I ={a,b,c,d, e},
.« T =1{1,2,3,4,5,6},
* D{(1,abde), (2,bce), (3, abde), (4, abce), (5, abcde), (6, bed) }

— ae 1S not closed because

clae) = ti(it(ae)) = ti(it(a) Nit(e)) = ti(1345 N 12345) = ti(1345)
= ti(1) Nti(3) Nti(4) Nti(5) = abde N abde N abce N abede
= abe

— abe is closed because c(abe) = ti(it(abe)) = ti(1345) = abe
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Association Rule Mining

Closed Frequent Itemsets: Property |

Prop.: for every itemset X, D[X]| = D[c(X)]

* i.e., the support of X is equal to the support of the smallest closed
itemset containing X

Proof: exercise

Corollary: closed frequent itemsets provide a complete representation of fre-
quent itemsets

- complete: support of a frequent itemset can be derived from that of
its closure
— this property does not hold for maximal frequent itemsets

algorithm on next slide: generates frequent itemsets with support from closed
frequent itemsets without database access
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Association Rule Mining

Closed Frequent Itemsets: Property |

Input : C: family of closed frequent itemsets
Output: F: family of frequent itemsets

1: let £ = 0 and F; be the empty list for every i > 0
2: forall closed frequent itemset C' € C do
3:  append C'to Fic

4. itk < |C|then k = |C]

5:for (i =k;i > 1;i=i—1)do

6: forall itemset C € F; in the order of the elements in F; do
7 forall (i — 1)-subsets S of C' do

8 if S ¢ F,_, then

9: S.support = C.support

10: append S to F;_;

11: return |J F;
i=1,....k
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Association Rule Mining

Example

database D = {(1,abde), (2, bce), (3, abde), (4, abce), (5,abcde), (6, bed) }
frequency threshold: ¢ =4

closed frequent itemsets: {abe, be, bd, be, b}
..7:3 = [abei], ..FQ = [bci, bdi, beg], .7'—1 = [b@]
i = 3: for F3 = [abey]| we get
Fo = FoDabsDaey /] for abey

= [bCé, bdé, beg, abg, CLBé]

1 = 21 for Fo = [bCé, bdg, beg, a,bé, aei] we get

Fi1 = F & [Cg] // for bC&
© [d4] /1 for bdy
S [6&] // for beé
Q¥ [ag] // for abé

return [abeé, bCé, bdé, b€§, abé, aey, b@, Cq, dé, €5, aé}
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Association Rule Mining

Condensed Representations of Frequent Itemsets Il

closed frequent itemsets
v

= relative cardinalities of maximal frequent, closed frequent, and
frequent itemsets

= adivide-and-conquer closed frequent itemset mining algorithm

. (folklore; see, e.g., Gély, 2005)
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ciation Rule Mining

Frequent vs. Closed vs. Maximal Itemsets: Example

Transactions

fr

o I~ (N
—i

#frequent:
#maximal:

#closed:
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Association Rule Mining

Closed Frequent Itemsets: Property Il
Thm. (Boros, Gurvich, Khachiyan, & Makino, 2002):

(i) |F| can be exponentially larger than |C| and
(i) |C| can be exponentially larger than | M|

= closed frequent itemsets: compact representation of frequent itemsets

maximal
frequent itemsets (M)
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Association Rule Mining

Frequent vs. Closed Freq. vs. Maximal Freq. Itemsets

Thm.: | 7| can be exponentially larger than |C| and
IC| can be exponentially larger than | M|

Proof: p p p p p
~ N ~

0.0 T...1T 1.1 T...1 1.1 _ .
t 5 ; : S : k-t x k- p binary matrix

O...0O7T...17 1.1 T...1T 1.1

1100101 1117 * k x k blocks

- 1 : : : « each block of size t x p
1..10...01...1 T..1 1.1

t{1.:.11.:.10.:.0 1111 L M=k
1.i.11.i.1o.i.om1.i.11.i.1 2. |C|=2F -1
{ LSRN B OO B IO g 10,0 B |F> 270> (%)p
t SRR 1100 g.e.d.
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Association Rule Mining

Condensed Representations of Frequent Itemsets Il

closed frequent itemsets
= notions and basic properties v

= relative cardinalities of maximal frequent, closed frequent, and
frequent itemsets v

= adivide-and-conquer closed frequent itemset mining algorithm

. (folklore; see, e.g., Gély, 2005)
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Association Rule Mining

Computing Closed Frequent Itemsets with DF-Search

Problem: Given I, D, and frequency threshold ¢, compute C

Algorithm: (Géely, 2005; also other authors)

— compute first all closed frequent itemsets containing an item a,
— then all closed frequent itemsets which do not contain a

— apply recursively...

divide and conquer algorithm
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Association Rule Mining

Algorithm
Input : I with some total order <, D, and frequency threshold ¢
Output : all closed frequent itemsets

Initial Call : LISTCLOSED((, (), min 1)

function LISTCLOSED(C, N, i) IIC,NClI,iel
1: X :={kelI\C:k>i}
2: If X # 0 then
3: i =minX

4: C'=c(CU{i'})
5. if C"isfrequentand C' N N = () then
6 print C’
7 LISTCLOSED(C', N,i + 1)
8: Y:={kelI\C:k>i}
9: ifY # (0 then
10: ¢ =minY
11 LISTCLOSED(C, N U {i'},7")
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Association Rule Mining

Algorithm

Thm.: The previous algorithm lists the set of closed frequent itemsets
(1) correctly,
(2) irredundantly,
(3) with polynomial delay, and
(4) in polynomial space.

Proof: (exercise)
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Association Rule Mining

Example ListClosed(<, &, a)
print c(a) = abe (frequent)
1. abde ListClosed(abe, I, )
2 bce c(abce) = abce (infrequent)
3. abde ListClosed(abe, {c}, d)
A abce print c(abde) = abde (frequent)
5 abcde ListClosed(<, {a}, b)
6. bed print c(b) =b (frequent)
ListClosed(b, {a}, c)
t=3 print c(bc) = bc (frequent)
ListClosed(bc, {a}, d)
a<b<c<d<e c(bcd) = bed (infrequent)
ListClosed(bc, {a,d}, e)
print c(bce) = bce (frequent)
ListClosed(b, {a,c}, d)
print c(bd) = bd (frequent)
ListClosed(bd, {a,c}, e)
c(bde) = abde (contains a)
ListClosed(b, {a,c,d}, e)
print c(be) = be (frequent)
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Association Rule Mining

Closed Frequent Itemsets: Summary

= another compact representation

= usually exponentially smaller than the set of frequent itemsets but
exponentially larger then the set of maximal frequent itemsets

» divide and congure: polynomial delay and polynomial space
= closure operators: also in other theory extraction problems

- formal concept analysis

- enumeration of maximal bipartite cliques of a bipartite graph
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Association Rule Mining

Literature to the lectures about Association Rules (I-V)
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I. Witten and E. Frank, Data Mining, Morgan Kaufmann, 2000.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.l. Verkamo: Fast Discovery of Association Rules. In U.M.
Fayyad et al. (Eds.), Advances in Knowledge Discovery and Data Mining, 307-328, AAAI/MIT Press, 1996.

J. Han, J. Pei, Y. Yin, R. Mao: Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern
Tree Approach. Data Mining and Knowledge Discovery 8(1): 53-87, 2004.

D.-l. Lin, Z.M. Kedem: Pincer-Search: An Efficient Algorithm for Discovering the Maximum Frequent Set. IEEE
Trans. Knowl. Data Eng. 14(3): 553-566, 2002.

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, R.S. Sharm: Discovering all most specific
sentences. ACM Trans. Database Syst. 28(2):140-174, 2003.

E. Boros, V. Gurvich, L. Khachiyan, K. Makino: On Maximal Frequent and Minimal Infrequent Sets in Binary
Matrices. Ann. Math. Artif. Intell. 39(3): 211-221, 2003.

N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Efficient Mining of Association Rules Using Closed Itemset
Lattices. Inf. Syst. 24(1): 25-46, 1999.

A. Gély: A Generic Algorithm for Generating Closed Sets of a Binary Relation. In Proc. of the 3" Int.
Conference on Formal Concept Analysis (ICFCA 2005), LNCS 3403, pp. 223-234, Springer-Verlag, 2005.
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