Association Rule Mining

Tamás Horváth

University of Bonn & Fraunhofer IAIS, Sankt Augustin, Germany tamas.horvath@iais.fraunhofer.de

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Association Rules: Example

market basket transactions:

analysis of purchase "basket" data (items purchased together) in a department store

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of Association Rules:

Implication means co-occurrence, not causality!

Association Rules: Example

 discovery of interesting relations between binary attributes, called *items*, in large databases

example of an association rule extracted from supermarket sales:

"Customers who buy milk and diaper also tend to buy beer."

- only rules with support and confidence above some minimal thresholds are extracted
 - support: proportion of customers who bought the three items among all customers
 - confidence: proportion of customers who bought beer among the customers who bought milk and diaper

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Application Example

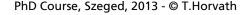
market basket analysis

- marketing plan
- advertising strategies
- catalog design
- store layout

Notions and Notations

- $I = \{I_1, \ldots, I_m\}$: set of items
- itemset: collection of one or more items
- k-itemset: itemset of cardinality k
- transaction: itemset
- transaction database *D*: multiset of transactions
 - each transaction is associated with an identifier, called TID

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Beer



Notions and Notations

support set D[X] of an itemset X:

$$D[X] = \{T : T \in D \text{ and } X \subseteq T\}$$

multiset of sets

support : fraction of transactions that contain an itemset, i.e., for $X \subseteq I$

$$support(X) = \frac{|D[X]|}{|D|}$$

frequent itemset: itemset with support greater than or equal to a threshold minsup

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

example:

```
support(\{Milk, Bread, Diaper\}) = \frac{2}{5}
```


Association Rules

association rule

- implication expression of the form $X \rightarrow Y$, where X and Y are disjoint nonempty itemsets
 - **example:** {Milk, Diaper} \rightarrow {Bread}
- rule evaluation metrics
 - support (s): fraction of transactions that contain both X and Y
 - confidence (c): fraction of transactions that contain both X and Y relative to the transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

example: $R = \{Milk, Diaper\} \rightarrow \{Bread\}$

$$s(R) = \frac{|D[\{Milk, Bread, Diaper\}]|}{|D|} = \frac{2}{5}$$
$$c(R) = \frac{|D[\{Milk, Bread, Diaper\}]|}{|D[\{Milk, Diaper\}]|} = \frac{2}{3}$$

Mining Association Rules

Given

- a *transaction database* D over a set I of items,
- *minimum support threshold min_sup*, and
- *minimum confidence threshold min_conf*

find all association rules $X \to Y$ satisfying

$$s(X \to Y) \ge min_sup \text{ and } c(X \to Y) \ge min_conf$$

universitätbor

Brute-Force Approach

- 1. list all possible association rules
- 2. compute the support and confidence for each rule
- 3. prune rules that fail the *min_sup* and *min_conf* thresholds

computationally prohibitive

- total number of *possible* association rules is exponential in the cardinality of the set of all items
- ⇒ exponential delay in worst case

9

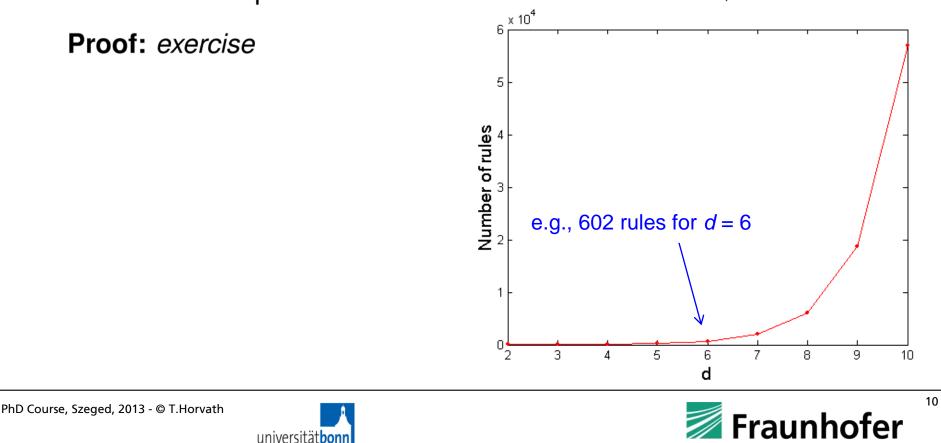
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

IAIS

Upper Bound on the Number of Association Rules

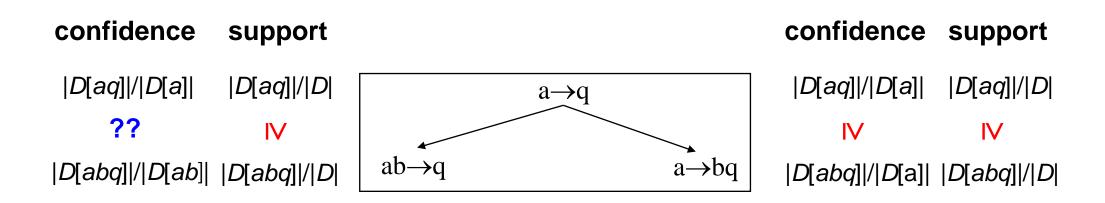
let d = |I|

- \Rightarrow total number of (non-empty) itemsets is $2^d 1$
- \Rightarrow total number of possible association rules is $3^d 2^{d+1} + 1$



RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Observations about the problem (I)



- confidence can both rise or fall, while support can only fall as rules get longer
 - ⇒ support can be used for pruning
- support depends only on *set* of items, not on exact rule
 - ⇒ do not search in space of rules, but in space of itemsets

Mining Association Rules

two-step approach:

- 1. frequent itemset generation
 - generate all itemsets whose support ≥ min_sup

2. rule generation

- generate association rules of confidence $\geq min_conf$ from each frequent itemset X by binary partitioning of X

Step 1: Frequent Itemset Mining – Problem Definition

Given

- a transaction database D over a set I of items and
- an integer *frequency threshold* $t \ge 0$ (i.e., $t = \lceil \min_sup \cdot |D| \rceil$)

find all itemsets $X \subseteq I$ satisfying

 $|D[X]| \ge t$

X is referred to as frequent (or *t*-frequent) itemset

Remark on the Problem Setting

the transaction database D can be regarded as a

- 0/1 (or Boolean) matrix,
- set system over I, where each element (i.e., transaction) is associated with its multiplicity in D (i.e., number of occurrences)
- vertices of the |I|-dimensional unit hypercube where each vertex is associated with the corresponding multiplicity
- hypergraph over the vertex set *I* such that each edge is associated with its multiplicity
- bipartite graph (V_1, V_2, E) such that $V_1 = I$, V_2 is the set of transactions, and there is an edge $\{u, v\}$ $(u \in V_1 \text{ and } v \in V_2)$ if and only if u is an element of transaction corresponding to v

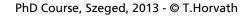
Frequent Itemset Mining (recap)

- **brute-force** approach:
 - each itemset in the power set of *I* is a candidate frequent itemset
 - count the support of each candidate by scanning the database
 - match each transaction against every candidate
 - complexity ~ $O(NMw) \Rightarrow$ expensive since $M = 2^d 1$ (d = |I|)
 - N: number of transactions
 - M: number of candidate itemsets
 - w: maximum cardinality of the transactions

universitätbo

Frequent Itemset Mining Strategies

- reduce the number of candidates (M)
 - complete search: *M*=2^{*d*}-1
 - use **pruning** techniques to reduce *M*
- reduce the number of transactions (N)
 - reduce size of *N* as the number of transactions increases
 - use a subset of the *N* transactions by **sampling**
- reduce the number of comparisons (NM)
 - use efficient data structures to store the candidates or transactions
 - no need to match every candidate against every transaction



Frequent Itemset MiningStrategies

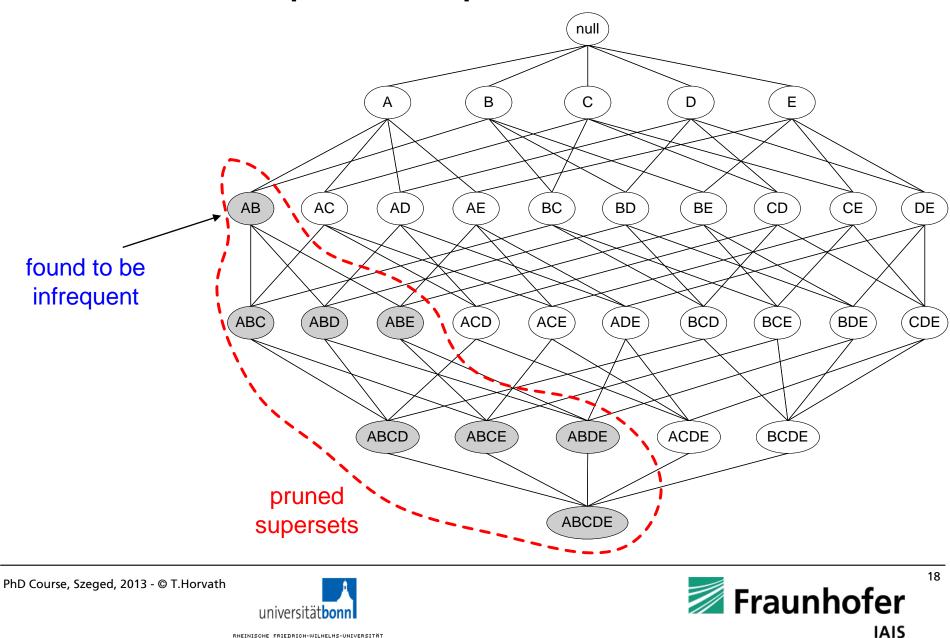
- Apriori principle:
 - if an itemset is frequent then all of its subsets must also be frequent
 - i.e., support set is **anti-monotone** with respect to the subset relation

 $\forall X, Y(X \subseteq Y \implies D[X] \supseteq D[Y])$

universitätbo

Utilization of the Apriori Principle

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT



Utilization of the Apriori Principle

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

pairs (2-itemsets)

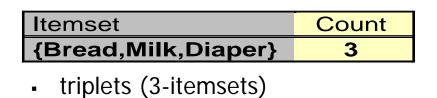
(no need to generate candidates involving Coke or Eggs)

t = 3 (frequency threshold)

if every subset is considered:

$${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$$

with support-based pruning:



The Apriori Algorithm

Input : 0/1 matrix D with column set I and integer frequency threshold $t \ge 0$ **Output**: set of *t*-frequent itemsets

- 1: $C_1 := I$
- 2: i := 1
- 3: while $C_i \neq \emptyset$ do
- 4: $\mathcal{F}_i := \{ X \in \mathcal{C}_i : |D[X]| \ge t \}$
- print \mathcal{F}_i 5:
- $\mathcal{C}_{i+1} := \mathsf{C}\mathsf{ANDIDATE}\mathsf{G}\mathsf{ENERATION}(\mathcal{F}_i)$ 6:
- 7: i := i + 1
- 8: endwhile
- [Agrawal, Mannila, Srikant, Toivonen, & Verkamo, 1996]
- levelwise (breadth-first) search algorithm

// candidate counting

Gaining Efficiency I: Generation of Candidates

Approach:

- generate new candidates by combining current frequent itemsets by utilizing that all (k 1)-itemsets of a frequent k-itemset are also frequent
- define a total order on I and consider an itemset as an ordered sequence

CANDIDATEGENERATION:

Input : set \mathcal{F}_k of frequent *k*-itemsets **Output**: set \mathcal{C}_{k+1} of candidate (k+1)-itemsets

1: $C_{k+1} = \emptyset$

- 2: for all $X, Y \in \mathcal{F}_k$ such that they differ only in their last elements
- 3: make a (k + 1)-element set Z by concatenating the common (k 1)-prefix with the two differing elements according to the order
- 4: if all k-subsets of Z are in \mathcal{F}_k then add Z to C_{k+1}
- 5: return C_{k+1}

Example

candidate generation:

$$egin{array}{rcl} \mathcal{F}_3 &=& \{uvw, uvx, uwx, uwy, vwx\}\ \mathcal{C}_4 &=& \{uvwx, uwxy\}\setminus\{uwxy\} \end{array}$$

Apriori Algorithm for frequency threshold 2

$$\begin{array}{rcl}
\mathcal{C}_{1} &=& \{a, b, c, d, e\} \\
\mathcal{F}_{1} &=& \{a, b, c, e\} \\
\mathcal{C}_{2} &=& \{ab, ac, ae, bc, be, ce\} \\
\mathcal{F}_{2} &=& \{ac, bc, be, ce\} \\
\mathcal{C}_{3} &=& \{bce\} \\
\mathcal{F}_{3} &=& \{bce\} \\
\end{array}$$

database

Tid	Items
10	a, c, d
20	b, c, e
30	a, b, c, e
40	b, e

Complexity of the Apriori Algorithm

remarks on the frequent itemset mining problem

- enumeration problem
- size of the problem is defined by the size of the input database D
- size of the output can be exponentially large in the size of the input
 - e.g., for $D = \{I\}$ with $I = \{1, ..., n\}$ and frequency threshold 1, the number of frequent itemsets is exponential in n
 - ⇒ hopeless to compute the set of frequent itemsets in time polynomial in the input parameter
 - $\Rightarrow\,$ the size of the output is also taken into account in the analyses of the time and space complexity

Enumeration Complexities

the **size** of the output (theory) can be **exponential** in the size of the input *D*

 \Rightarrow the output cannot be computed in time polynomial in the size of D

enumeration complexities:

a set of S with N elements, say s_1, \ldots, s_N , are listed with

- **polynomial delay** if the time before printing s_1 , the time between printing s_i and s_{i+1} for every i=1,...,N-1, and the termination time after printing s_N is bounded by a polynomial of the size of the input,
- **incremental polynomial time** if s_1 is printed with polynomial delay, the time between printing s_i and s_{i+1} for every i=1,...,N-1 (resp. the termination time after printing s_N) is bounded by a polynomial of the combined size of the input and the set $s_1,...,s_i$ (resp. S),
- output polynomial time if S is printed in the combined size of the input and the entire set S

Correctness and Complexity of the Apriori Algorithm

Proposition:

- The Apriori algorithm correctly and irredundantly enumerates all frequent (i) itemsets.
- The Apriori algorithm enumerates the set of frequent itemsets in incre-(ii) mental polynomial time.
- **Proof:** exercise

PhD Course, Szeged, 2013 - © T.Horvath

Gaining Efficiency II: Candidate Counting

Why is counting supports of candidates a problem?

- the total number of candidates can be very huge
- one transaction may contain many candidates

Method:

- store candidate itemsets in a hash-tree
 - leaf nodes of hash-tree contain lists of itemsets and their support
 - interior nodes contain hash tables
- use subset function to find all the candidates contained in a transaction

Hash Tree - Construction

searching for an itemset $i_1, i_2, \dots, i_d, \dots, i_k$

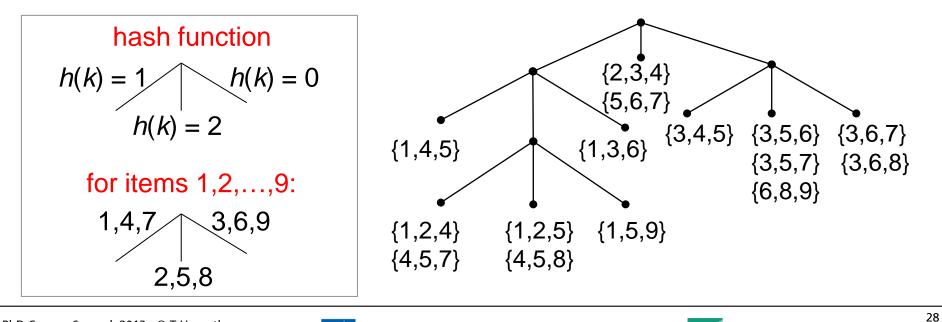
- start at the root
- at level d: apply the hash function h to i_d

insertion of an itemset

- search for the corresponding leaf node, and insert the itemset into that leaf
- if an overflow occurs:
 - transform the leaf node into an internal node
 - distribute the entries to the new leaf nodes according to the hash function

Hash Tree Construction - Example

- candidate 3-itemsets:
 - {1,4,5}, {1,2,4}, {4,5,7}, {1,2,5}, {4,5,8}, {1,5,9}, {1,3,6}, {2,3,4}, {5,6,7}, {3,4,5}, {3,5,6}, {3,5,7}, {6,8,9}, 3,6,7}, {3,6,8}
- hash function: $h(k) = k \mod 3$
- split nodes with more than 3 elements if possible



PhD Course, Szeged, 2013 - © T.Horvath

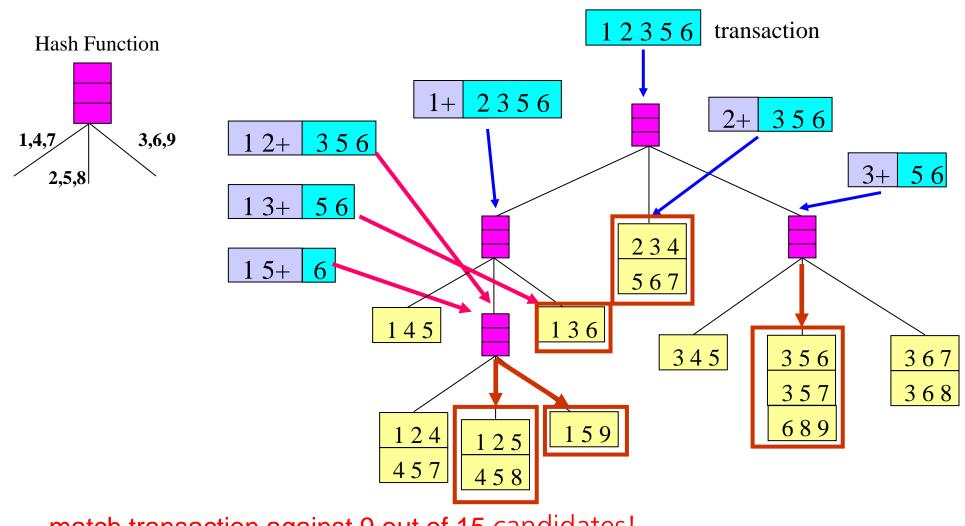
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Hash Tree – Subset Function for Counting

search all candidate k-itemsets contained in a transaction $T = (t_1, t_2, ..., t_n)$

- at the root:
 - determine the hash values for each item $t_1, t_2, \dots, t_{n-k+1}$ in T
 - continue the search in the resulting child nodes
- at an internal node at level d (reached after hashing of item t_i):
 - determine the hash values and continue the search for each item t_j with j > i and j <= n-k+d
- at a leaf node:
 - check whether the itemsets in the leaf node are contained in transaction T

Subset Function for Counting - Example



match transaction against 9 out of 15 candidates!

PhD Course, Szeged, 2013 - © T.Horvath

Mining Association Rules

two-step approach:

- **1. frequent itemset** generation ✓
 - generate all itemsets whose support \geq *minsup*

2. rule generation

- generate association rules of confidence \geq *minconf* from each frequent itemset X by binary partitioning of X

Observations about the Problem (II)

What happens when we create rules from a frequent itemset?

$$c=|D[abc]|/|D[ab]| \quad s=|D[abc]|/|D| \qquad ab \rightarrow c$$

$$|\lor \qquad = \qquad \downarrow$$

$$c=|D[abc]|/|D[a]| \quad s=|D[abc]|/|D| \qquad a \rightarrow bc$$

- the more items we put in the conclusion, the smaller the confidence
 - ⇒ search top-down breadth-first from smallest conclusions, prune
- confidence can be expressed in terms of support
 - ⇒ No DB accesses necessary when all supports of frequent itemsets are known!

Rule Generation

GENERATERULES:

- **Input** : frequent *k*-itemset l_k , family $\mathcal{H}_m \subseteq 2^{l_k}$ of *m*-itemset consequents **Output**: all association rules $l_k \setminus X \to X$ of confidence at least min_conf such that |X| = m + 1
 - 1: if k > m+1 then

2:
$$\mathcal{H}_{m+1} = \mathsf{CANDIDATEGENERATION}(\mathcal{H}_m)$$
 // same function as in Apriori

3: forall
$$h_{m+1} \in \mathcal{H}_{m+1}$$
 do

4:
$$c = \operatorname{support}(l_k) / \operatorname{support}(l_k \setminus h_{m+1})$$

5: **if** $c \ge min_conf$ **then**

6: **print** rule
$$(l_k \setminus h_{m+1}) \rightarrow h_{m+1}$$

- 7: else
- 8: delete h_{m+1} from \mathcal{H}_{m+1}
- 9: GENERATERULES (l_k, \mathcal{H}_{m+1})

Example

<i>D</i> :	<i>C</i> ₁: 1	2	3	4	5	6	7	8	9	
	s: 5	5	6	2	2	1	1	2	2	
• 1234	<i>F₁</i> : 1	2	3		Rule	Genera	ation:			
• 126	C ₂ : 12	13	23			$I_1 = \{\{1\}\}$				
· 1235	s: 4	4	4			(1→2)=		(1)=4/5	5=0.8	
· 1238	<i>F</i> ₂ : 12	13	23		c	(2→1)=	s(12)/s	(2)=4/5	5=0.8	
	C ₃ : 123				13: H	$I_1 = \{\{1\}\}$	},{3}}			
• 139	s: 3				c	(1→3)=	s(13)/s	(1)=4/5	5=0.8	
• 239	<i>F</i> ₃ : 123				c	(3→1)=	s(13)/s	(3)=4/6	5=0.66	
270	0				23: H	$I_1 = \{\{2\}\}$	},{3}}			
• 378	Γ	$c(2\rightarrow 3)=s(23)/s(2)=4/5=0.8$								
• 45		Resul	t:		c	(3→2)=	s(23)/s	(3)=4/6	5=0.66	
		1→2			123:	$H_1 = \{ \{$	1},{2}	,{3}}		
		2→1			C	$(12 \rightarrow 3)$	=s(123))/s(12)	=3/4=0.75	
$min_conf = 0.8$		1→3				````		· · · ·	=3/4=0.75	
min_sup = 3/8		2→3			c	(23→1)	=s(123)/s(23)	=3/4=0.75	
					$H_2 =$	Ø				

universität**bonn**

Performance

evaluation on synthetic data (100.000 transactions based on 1000 items, with frequent set sizes distributed around 4 items and transaction size distributed around 10 items. D size 4.4 MB on an IBM RS6000 534H)

- Minimum Support (%): 2.0 1.5 1.0 0.75 0.5
 Run time (secs) 3.8 4.8 11.2 17.4 19.3
- [Agrawal et.al 96] found linear scaleup (slope 1) for transaction sets of up to 10 Million transactions (up to 838 MB of data)
- This is due to sparsity of data: in the worst case, all itemsets can be frequent, causing exponential behavior.

Summary of the Apriori Algorithm

- 1. find all itemsets with sufficient support (called "frequent" or "large" itemsets):
 - search top-down from one-element itemsets
 - breadth-first search, generate candidates of length k from those of length k-1
 - prune all sets that do not reach min support
- 2. for each frequent itemset from step 1, build all rules and return those with sufficient confidence
 - search top-down from one-element to longer conclusions
 - breadth-first search, generate conclusions of length k from those of length k-1
 - prune all rules that do not reach min confidence

Frequent Itemset Mining – Some Issues

- 1. Apriori is not suited for generating long frequent itemsets (e.g., of length 100)
 - we need alternative algorithms enabling the discovery of **long** patterns
- 2. it would be useful to know in advance the cardinality of the family of frequent itemsets
 - complexity of counting frequent itemsets
- 3. length of frequent itemsets
 - complexity of deciding the existence of a frequent itemset of a given length

Bottleneck of the Apriori Algorithm

Observation:

- to discover a frequent itemset of size k, one needs to generate at least 2^{k-2} candidate itemsets
 - e.g., if k = 100 then about 10^{30} itemsets
 - hopeless to find long frequent itemsets

How can we avoid this bottleneck of Apriori?

⇒ use **depth-first** search

PhD Course, Szeged, 2013 - © T.Horvath

Mining Frequent Itemsets Without Candidate Generation

idea: grow long itemsets from short ones using local frequent items

example:

suppose *abc* is a frequent itemset

- 1. get all transactions in the database D containing abc
 - · D[abc]
- 2. let *d* be a **local** frequent item in *D*[*abc*]
 - \Rightarrow abcd is a frequent itemset in D

Depth-First Search Frequent Itemset Mining Algorithm

DFS_LISTING:

Input : transaction database \mathcal{D} , itemset F, and frequency threshold $t \ge 0$ **Output**: $\{F' \supseteq F : F' \setminus F \text{ is } t \text{-frequent in } \mathcal{D}\}$

- 1: print F
- 2: remove all infrequent items from $\ensuremath{\mathcal{D}}$
- 3: define a linear (total) order \leq on the items in ${\cal D}$
- 4: forall items i in \mathcal{D} such that $i \notin F$ do
- 5: let $\mathcal{D}_i = \{ \operatorname{proj}(T, i) : T \in \mathcal{D} \text{ satisfying } i \in T \}$, where

 $\operatorname{proj}(T,i) = \{i' \in T : i < i'\}$

6: **DFS_LISTING** $(F \cup \{i\}, \mathcal{D}_i)$

initial call: DFS_Listing(\emptyset, \mathcal{D})

universitätbor

Depth-First Frequent Itemset Mining Algorithm

- **Prop.:** the previous algorithm *correctly* and *irredundantly* enumerates all frequent itemsets with **polynomial delay**
 - **correct:** sound and complete
 - **sound:** all itemsets outputted are frequent and
 - **complete:** all frequent itemsets are generated

Proof: *exercise*

How to store projected databases?

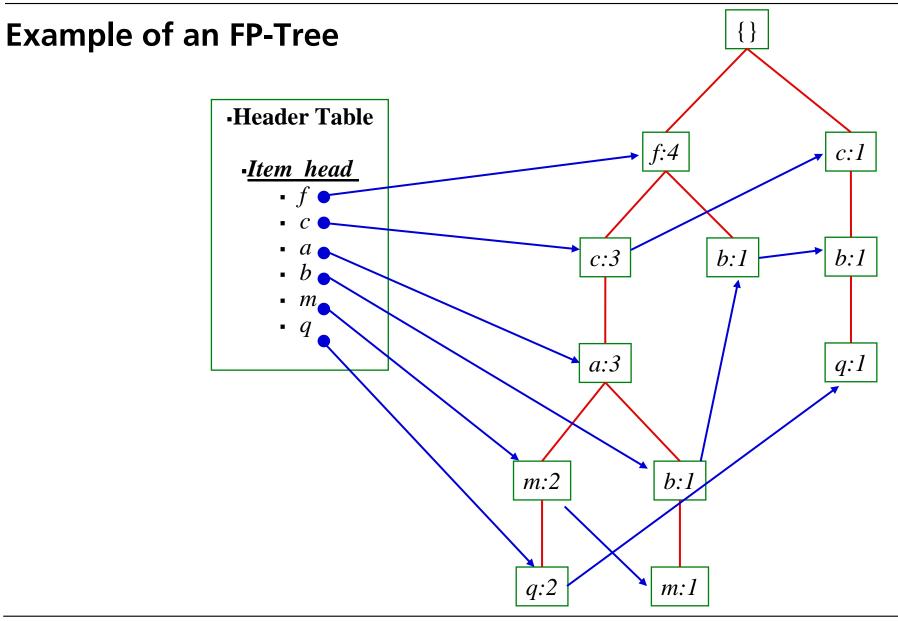
Frequent Pattern Trees (FP-Trees)

[Han, Pei, Yin, & Mao, 2004]

FP-tree consists of

- 1. an **item-prefix tree** with *nodes* consisting of
 - item-name: name of the item represented by the node,
 - number of transactions represented by the portion of the path count: reaching the node,
 - node-link: links to the next node in the item-prefix tree having the same item name (or null if there is no such node)
- 2. a **frequent item header table** with *entries* consisting of
 - item-name. -
 - head of node link: points to the first node in the item-prefix tree having the item name

Provides a compact representation of transaction databases!



43

PhD Course, Szeged, 2013 - © T.Horvath

Algorithm: FP-Tree Construction

Input : transaction database D and frequency threshold t**Output**: frequent-pattern tree T of D w.r.t. t

- 1: compute the set I' of frequent items and their support
- 2: sort I' in support descending order
- 3: create the root of an FP-tree T with label null
- 4: forall transaction $X \in D$ do
- 5: select the frequent items in X and sort them according to the order of I'; let the sorted frequent-item list in X be [p|P], where
 - p is the first element and
 - P is the remaining list
- 6: INSERTTREE([p|P], T)

Function InsertTree

INSERTTREE([p|P], T):

- 1: if T has a child N such that N.item-name = p.item-name then
- 2: ++N.count

3: **else**

- 4: create a new child N of T
- 5: *N*.name := *p*.item-name
- 6: N.count := 1
- 7: N.node_link = NULL
- 8: set the node-link of the last element in the node_link chain of p to N
- 9: if P is nonempty then
- 10: INSERTTREE(P, N)

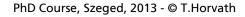
Example (FP-tree)

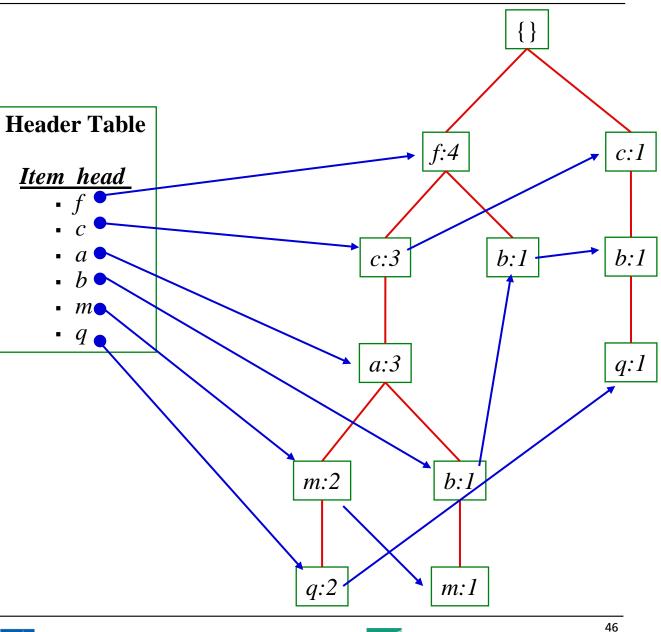
TID	ltems
1	f, a, c, d, g, i, m, q
2	a, b, c, f, l, m, o
3	b, f, h, j, o, w
4	b, c, k, s, q
5	a, f, c, e, l, q, m, n

frequency threshold t = 3

I' = {f:4,c:4,a:3,b:3,m:3,q:3}

TID	Ordered Items
1	f, c, a, m, q
	f, c, a, b, m
3	f, b
4	c, b, q
5	f, c, a, m, q





RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

universität**bonn**

Benefits of FP-trees

- completeness

- preserve complete information for frequent pattern mining
- never break a long pattern of any transaction

compactness

- reduce irrelevant info
 - · infrequent items are removed
- items in frequency descending order
 - · the more frequently occurring, the more likely to be shared
- never larger than the original database
 - *node-links* and the *count* field not counted!
- empirically justified
 - Connect-4 (dataset): 67,557 transactions with 43 items/transaction; t = 33779
 - size of the input database: 2,219,609; size of the FP-tree 13,449
 - ⇒ compression ratio = 165.04

Properties of FP-trees

1. completeness:

Given a transaction database *D* and a frequency threshold *t*, the **complete** set of frequent item projections of transactions in the database can be derived from the FP-tree of *D*.

2. compactness:

Given a transaction database *D* and a frequency threshold *t*, then, without considering the root,

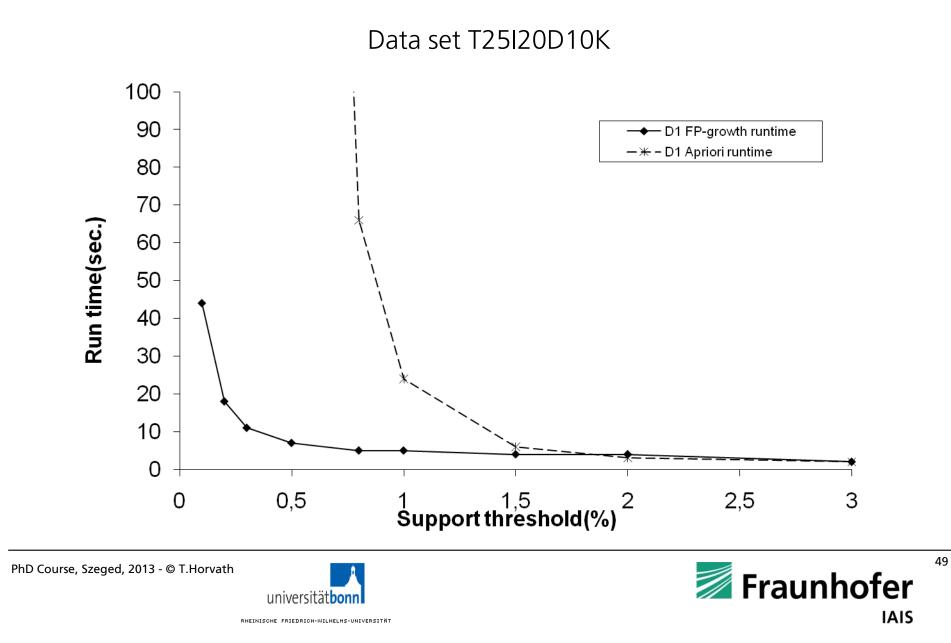
- the size of D's FP-tree is bounded by

 $\Sigma_{T \in D}$ |freq(T)|

- freq(*T*) = { *x*∈ *T*: *x* is frequent }
- and the height of DB's FP-tree is bounded by

 $\max_{T \in D} \{ | freq(T) | \}$

FP-Growth vs. Apriori: Scalability With the Support Threshold



Summary of the FP-Growth Algorithm

- depth-first frequent itemset mining algorithm: •
 - decompose both the mining task and D according to the frequent patterns obtained so far
 - leads to focused search of smaller databases

other factors

- no candidate generation, no candidate test
- compressed database: FP-tree structure
- no repeated scan of entire database
- basic operations: counting and FP-tree building
 - no pattern search and pattern matching
- winner of FIMI 2003 (Frequent Itemset Mining Implementations)

Frequent Itemset Mining – Some Issues

- 1. Apriori is not suited for generating long frequent itemsets (e.g., of length 100)
 - an alternative algorithm not excluding the discovery of long patterns \checkmark
- 2. it would be useful to know in advance the cardinality of the family of frequent itemsets
 - complexity of counting frequent itemsets
- 3. length of the itemsets
 - complexity of deciding the existence of a frequent itemset of a given length

Counting Frequent Itemsets

- **Thm.:** Given a transaction database *D* and an integer frequency threshold *t*, the problem of finding the number of *t*-frequent itemsets is **#P-hard**.
- #P: class of functions f such that there is a nondeterministic polynomial-time Turing machine M with the property that f(x) is the number of accepting computation paths of M on input x
 - L. Valiant, 1979
- some functions in #P are at least as difficult to *compute* as some NP-complete problems are to *decide*
 - e.g., #3CNF
- ⇒ Unless P=NP, frequent itemsets cannot be counted in polynomial time!

Proof

reduction from the **#SAT for monotone 2CNF formulas**

- **#SAT**: number of satisfying assignments
- monotone 2CNF formulas: CNF in which every clause has at most two literals and every literal is positive (i.e., unnegated)
- #P-hard problem [Valiant, 1979]

Proof (cont'd)

- let f be a monotone 2CNF formula with m clauses and n variables
 - say, x_1, \ldots, x_n
 - see also the next slide for an example
- construct an $m \times n$ binary matrix (i.e., transaction database) D with

$$D_{ij} = \begin{cases} 0 & \text{if } x_j \text{ is present in the } i\text{-th clause} \\ 1 & \text{o/w} \end{cases}$$

- \Rightarrow an assignment falsifies f if and only if the set of items corresponding to the variables with value 1 forms a 1-frequent itemset (i.e., abs. freq. t = 1)
- \Rightarrow number of 1-frequent sets = 2^n -number of the satisfying assignments of f

q.e.d.

Construction in the Proof: Example

for frequency threshold t = 1:

- $\{x_3\}$ is *t*-frequent because it occurs in 2(>t=1) lines (transactions)
- \Rightarrow variable assignment (0, 0, 1, 0) corresponding to $\{x_3\}$ falsifies f
 - falsifying assignments: $\{x_1, x_2, x_3, x_4, x_1x_4, x_2x_3, x_3x_4\}$
- \Rightarrow number of satisfying assignments: $2^4 7 = 9$

Frequent Itemset Mining – Some Issues

- 1. Apriori is not suited for generating long frequent itemsets (e.g., of length 100)
 - an alternative algorithm not excluding the discovery of long patterns \checkmark
- 2. it would be useful to know in advance the cardinality of the family of frequent itemsets
 - complexity of counting frequent itemsets \checkmark
- 3. length of frequent itemsets
 - complexity of deciding the existence of a frequent itemset of a given length

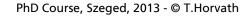
PhD Course, Szeged, 2013 - © T.Horvath

Frequent Itemsets of Given Length

Thm.: Given a transaction database D, an integer frequency threshold t > 0, and an integer k > 0, the problem of deciding if there is a *t*-frequent itemset consisting of at least k items is **NP-complete**.

Proof:

- 1. the problem is in NP: trivial
- 2. NP-hardness: reduction from the Balanced Bipartite Clique problem
 - (V_1, V_2, E) : bipartite graph; a **balanced** bipartite clique of size k is a complete bipartite clique with k vertices from each of V_1 and V_2
 - the **problem**: given a bipartite graph G and a positive integer k, decide whether G has a balanced bipartite clique of size k
 - NP-complete (Garey & Johnson, 1979)



Proof of NP-Hardness (cont'd)

reduction from the **Balanced Bipartite Clique** problem:

- let $G = (V_1, V_2, E)$ be a bipartite graph with $|V_1| = n_1$ and $|V_2| = n_2$
- construct an $n_1 \times n_2 \ 0/1$ matrix D (i.e., transaction database) with

$$D_{i,j} = \begin{cases} 1 & \text{if vertex } i \text{ is connected with vertex } j \\ 0 & \text{o/w} \end{cases}$$

 \Rightarrow G has a balanced bipartite clique of size k if and only if D has a k-frequent set of cardinality at least k

q.e.d.

universitätbo

Summary

- FP-Growth algorithm: no candidate generation
 - oplynomial delay listing
 - in contrast to Apriori: **able** to generate long frequent itemsets
- sometimes it would be useful to know in advance the number of frequent itemsets, but
 - © counting the number of frequent itemsets is computationally intractable
- ... and/or the **length** of frequent itemsets, but
 - e deciding the existence of a frequent itemset of a given length is computationally intractable

Condensed Representations of Frequent Itemsets

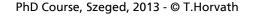
1. maximal frequent itemsets

- the Pincer Search algorithm
 - (Lin & Kedem, 2002)
- the Dualize and Advance Algorithm
 - (Gunopulos, Khardon, Mannila, Saluja, Toivonen, & Sharma, 2003)
- complexity of mining maximal frequent itemsets

universitätbo

Finding the Positive Border: One-Way Searches

- **bottom-up** search (e.g., Apriori):
 - good performance, if all elements in the positive border are expected to be short
- top-down search
 - good performance, if all elements in the positive border are expected to be long
- ⇒ if some elements in the border are long and some are short, then both are inefficient
- Problem: deciding if there is a frequent itemset with at least k attributes is NP-complete
 - see Slides 57-58

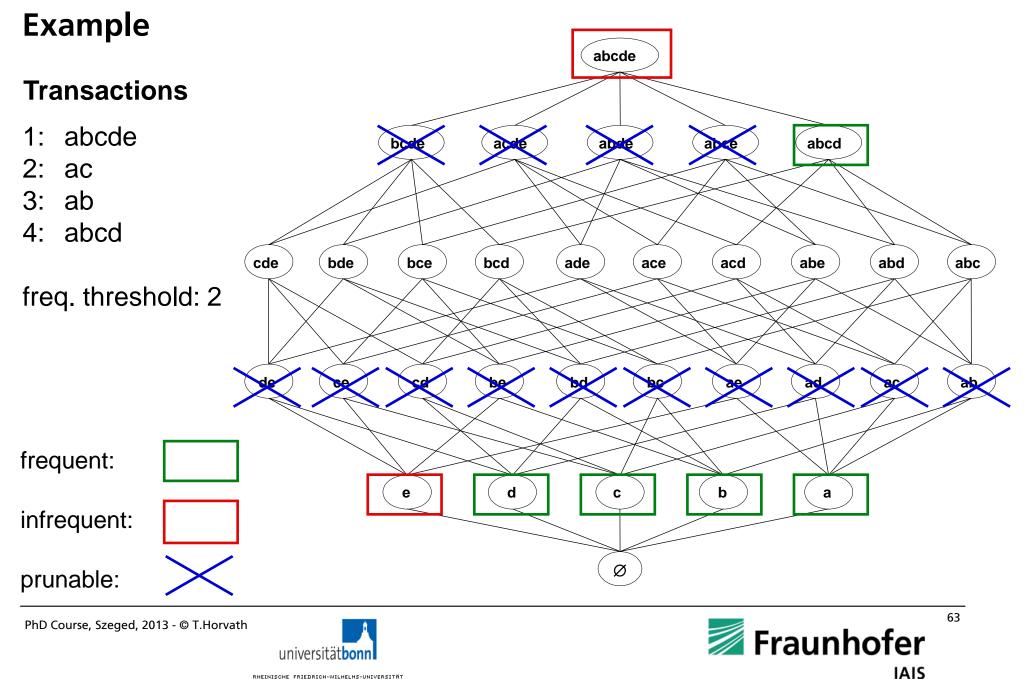


Finding the Positive Border with Bidirectional Search

Pincer-Search [Lin & Kedem, 1998, 2002]:

- computes the positive border (i.e., maximal frequent itemsets)
 - represents the set of frequent itemsets
 - can be exponentially smaller than the set of frequent itemsets
- bidirectional search (i.e., both bottom-up and top-down)
 - **bottom-up:** go up **one** level in each pass (similar to Apriori)
 - top-down: can go down many levels in one pass
- during the search it prunes by the properties:

Property 1: if an itemset is infrequent, all its supersets must be infrequentProperty 2: if an itemset is frequent, all its subsets must be frequent



Maximal Frequent Candidate Set (MFCS)

At some point of the algorithm, let

- **FREQUENT**: set of *known* frequent itemsets
- **INFREQUENT**: set of *known* infrequent itemsets

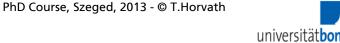
MFS: set of *known* maximal frequent itemsets

MFCS (auxiliary data structure): set of all candidate maximal itemsets satisfying

FREQUENT $\subseteq \bigcup \{2^X : X \in \mathsf{MFS} \cup \mathsf{MFCS}\}$

INFREQUENT $\cap \left(\bigcup \{ 2^X : X \in \mathsf{MFS} \cup \mathsf{MFCS} \} \right) = \emptyset$

• not known to be frequent at this state of the algorithm



The Pincer-Search Algorithm

Input : transaction database over $I = \{1, 2, ..., n\}$ and frequency threshold **Output**: set of all maximal frequent itemsets

- 1: k := 1; $C_k := \{\{i\} : i \in I\}$
- 2: MFCS := $\{I\}$; MFS := \emptyset
- 3: while $C_k \neq \emptyset$ do
- 4: read database and count supports for C_k and MFCS
- 5: remove frequent itemsets from MFCS and add them to MFS
- 6: $\mathcal{L}_k := \{X \in \mathcal{C}_k : (i) \ X \text{ is frequent and } X \notin \mathcal{P}(\mathsf{MFS}) \text{ or } // \mathcal{P}(\mathsf{MFS}) = \bigcup_{M \in \mathsf{MFS}} 2^M$ (ii) $\exists X' \in \mathcal{C}_k \text{ s.t. } X, X' \text{ are joinable, } X, X' \in \mathcal{P}(\mathsf{MFS}), \text{ and } \nexists M \in \mathsf{MFS} \text{ with } X, X' \subseteq M\}$
- 7: $S_k := \{X \in C_k : X \text{ is infrequent}\}$
- 8: if $S_k \neq \emptyset$ then MFCS = MFCS-gen(MFCS, S_k)
- 9: $C_{k+1} = CANDIDATEGENERATION(\mathcal{L}_k)$
- 10: **if** any frequent itemset in C_k has been removed in line 6 **then**
- 11: call the recovery procedure to recover missing candidates to C_{k+1}
- 12: call the new pruning procedure to prune candidates in C_{k+1}
- 13: k := k + 1
- 14: return MFS

// updates MFCS; Slides 66–67

// Apriori; Slide 21

// Slides 68–69

// Slide 70

Updating MFCS: Algorithm MFCS-gen (Line 8 in Slide 65)

Input : old MFCS and family S_k of infrequent sets found in pass k**Output**: new MFCS

- 1: forall itemsets $S \in \mathcal{S}_k$ do
- 2: forall itemsets $M \in MFCS$ do
- 3: if $S \subseteq M$ then
- 4: remove *M* from MFCS
- 5: forall items $e \in S$ do
- 6: **if** $M \setminus \{e\}$ is not a subset of any itemset in MFCS **then**
- 7: add the itemset $M \setminus \{e\}$ to MFCS

8: return MFCS

Algorithm MFCS-gen (Line 8 on Slide 65)

example:

- old MFCS = $\{abcdef\}$
- infrequent sets: $S_k = \{af, cf\}$
 - 1. $af \subseteq abcdef$ $\Rightarrow MFCS = MFCS \setminus \{abcdef\} \cup \{bcdef, abcde\} = \{abcde, bcdef\}$ 2. $cf \subseteq bcdef$ $\Rightarrow MFCS = MFCS \setminus \{bcdef\} \cup \{bdef\}$ // $bcde \subseteq abcde$ $= \{abcde, bdef\}$

Lemma: Algorithm MFCS-gen correctly updates MFCS. **Proof:** *exercise*

Candidate Generation in Pincer-Search

- same candidate generation procedure as in Apriori

problem:

 some of the needed itemsets could be missing from the preliminary candidate set

example: suppose MFS is empty

- abcde ∈ MFCS is frequent ⇒ abcde is deleted from MFCS and added to MFS
- L₃ = {abc,abd,abe,acd,ace,ade,bcd,bce,bde,bdf,bef,cde,def }

are removed by Pincer-Search in Line 6

set of new candidates is empty, although it should be { bdef } !

Missing candidates must be recovered! (Lines 10-11)

The Recovery Procedure (Lines 10-11 on Slide 65)

- Input: current MFS
 - \mathcal{L}_k computed in Line 6
 - C_{k+1} obtained by Apriori candidate generation from L_k in Line 9

Output: a complete set C_{k+1} of candidate (k+1)-itemsets

- 1: forall itemsets $X \in \mathcal{L}_k$ do
- 2: forall itemsets $M \in MFS$ do
- 3: **if** the first k 1 items in X are also in M **then**
- 4: // suppose M[j] = X[k-1]
- 5: // M[j]: *j*-th item of M w.r.t. linear order on the items
- 6: forall i = j + 1 to |M| do

7:
$$C_{k+1} = C_{k+1} \cup \{\{X[1], X[2], \dots, X[k-1], X[k], M[i]\}\}$$

8: return C_{k+1}

Pruning (Line 12 on Slide 65)

Apriori: Check if all *k*-subsets of a candidate itemset *X* in C_{k+1} are in \mathcal{L}_k ! **Pincer-Search:** Check if *X* is a subset of an itemset in the current MFCS!

• One fewer loop!

new pruning procedure:

Input : current MFCS and C_{k+1} after candidate generation and the recovery proc. **Output**: final candidate set C_{k+1}

- 1: forall itemsets $X \in \mathcal{C}_{k+1}$ do
- 2: **if** there exists no $Y \in MFCS$ such that $X \subseteq Y$ **then**
- 3: delete X from C_{k+1}
- 4: return C_{k+1}

Pincer-Search Algorithm: Example

dataset: $\mathcal{D} = \{abcde, ac, ab, abcd\}$, (absolute) frequency threshold: t = 2

$$\begin{split} \mathsf{MFCS} &= \{abcde\}, \, \mathsf{MFS} = \emptyset \\ k &= 1: \\ &-\mathcal{C}_1 = \{a, b, c, d, e\} \\ &- |\mathcal{D}[a]| = 4, \, |\mathcal{D}[b]| = |\mathcal{D}[c]| = 3, \, |\mathcal{D}[d]| = 2, \, |\mathcal{D}[e]| = 1; \quad |\mathcal{D}[abcde]| = 1 \quad // \text{ line } 4 \\ &- \mathsf{MFCS} = \{abcde\} \text{ and } \mathsf{MFS} = \emptyset \qquad // \text{ line } 5 \\ &-\mathcal{L}_1 = \{a, b, c, d\} \text{ and } \mathcal{S}_1 = \{e\} \qquad // \text{ because } \mathsf{MFS} = \emptyset; \text{ lines } 6-7 \\ &- \mathsf{MFCS}\text{-gen} \Rightarrow \mathsf{MFCS} = \{abcd\} \qquad // \text{ line } 8 \\ k = 2: \\ &-\mathcal{C}_2 = \{ab, ac, ad, bc, bd, cd\} \qquad // \text{ because } \mathsf{MFS} = \emptyset; \text{ lines } 9-12 \\ &- |\mathcal{D}[ab]| = |\mathcal{D}[ac]| = 3, \, |\mathcal{D}[ad]| = |\mathcal{D}[bc]| = |\mathcal{D}[bd]| = |\mathcal{D}[cd]| = 2; \quad |\mathcal{D}[abcd]| = 2 \\ &- \mathsf{MFCS} = \emptyset \text{ and } \mathsf{MFS} = \{abcd\} \\ &- \mathcal{L}_2 = \emptyset \text{ and } \mathcal{S}_2 = \emptyset \qquad // \text{ because } ab, ac, ad, bc, bd, cd \subseteq abcd \end{split}$$

because $\mathcal{C}_3 = \emptyset$

return $MFS = \{abcd\}$

universitätbon

Pincer Search Algorithm

Thm: The Pincer-Search algorithm correctly generates the family of maximal frequent itemsets.

Proof: *omitted*

Performance evaluation:

- experiments with large datasets of various properties
 - Lin & Kedem, 2002
- outperforms Apriori

Pincer-Search Algorithm: A Remark

Line 6 of the algorithm on slide 65: the original paper requires only condition (i)

- See D.I. Lin and Z.M. Kedem: *Pincer-Search: An Efficient Algorithm for Discovering the Maximum Frequent Set.* IEEE Transactions on Knowledge and Data Engineering, **14**(3):553-566, 2002.
- however, there is a remark in Case 4 of Lemma 2 in the paper above: if frequent k-itemsets X and X' are joinable, both are subsets of MFS, but there is no single element of MFS containing X and X', then their join must also be recovered
 - this is what we ensure with condition (ii) in Line 6
 - it is an interesting question, whether the algorithm remains complete if only condition
 (i) is used
 - adding condition (ii) to Line 6 does not change the worst-case complexity of the algorithm

Condensed Representations of Frequent Itemsets I

maximal frequent itemsets

- the Pincer Search algorithm ✓
 - (Lin & Kedem, 2002)
- the Dualize and Advance Algorithm
 - Gunopulos, Khardon, Mannila, Saluja, Toivonen, & Sharma, 2003)
- complexity of mining maximal frequent itemsets

universitätbor

💹 Fraunhofer

74

Hypergraph Transversals

hypergraph H = (V, E):

- V: finite set of vertices
- $E \subseteq 2^V \setminus \{ \emptyset \}$: set of (hyper)edges of H
 - ordinary undirected graphs are special hypergraphs

some notions:

- *H* is **simple** (or **Sperner**): none of its edges is contained by any other edge
- **transversal** of H: subset of V that intersects all edges of H
- minimal transversal: does not contain properly any other transversal
 - Tr(H): collection of all minimal transversals of H (also a hypergraph)

Hypergraph Transversals

Problem: Given a hypergraph H, compute Tr(H).

- listing problem
- can be solved in incremental subexponential time
 - subexponential: $k^{O(\log k)}$
 - (Fredman & Khachiyan, 1996)
- open problem whether it can be solved in incremental polynomial time

Hypergraph Transversals: Example

hypergraph H = (V, E):

- $V = \{a, b, c, d\}$
- $E = \{abc, d\}$
- *H* is **simple**
- transversals of *H*: {*ad*, *bd*, *cd*, *abd*, *acd*, *bcd*, *abcd*}
- minimal transversals of H: $Tr(H) = \{ad, bd, cd\}$

notions: for a family \mathcal{F} of frequent itemsets, let

• $\mathsf{cl}(\mathcal{F}) = \{Y : Y \subseteq X \text{ for some } X \in \mathcal{F}\}$

- // downward closure of ${\cal F}$
- $cl(\mathcal{F})$: family of frequent itemsets represented by \mathcal{F}
- + $Bd^+(cl(\mathcal{F}))$: family of maximal frequent itemsets in $cl(\mathcal{F})$
 - positive border of $\text{cl}(\mathcal{F})$
- $Bd^{-}(\mathsf{cl}(\mathcal{F})) = \{X \subseteq I : X \text{ is infrequent and } 2^X \setminus \{X\} \subseteq \mathsf{cl}(\mathcal{F})\}$
 - i.e., X is infrequent and all proper subsets of X are in ${\rm cl}(\mathcal{F})$
 - negative border of $\text{cl}(\mathcal{F})$
- $H(\mathcal{F}) = \{I \setminus X : X \in Bd^+(\mathsf{cl}(\mathcal{F}))\}$

 $\Rightarrow \operatorname{Tr}(H(\mathcal{F}))$ is also a hypergraph on I

78

Thm.: Let S be a family of frequent itemsets. Then $Tr(H(S)) = Bd^{-}(cl(S))$

• folklore; see, e.g., (Mannila & Toivonen, 1997)

Proof:

Step 1. We first show that $X \subseteq I$ is a transversal of $H(\mathcal{S}) \iff X \notin cl(\mathcal{S})$

 $X \subseteq I$ is a transversal of $H(\mathcal{S})$

 $\iff \text{ for every } Y \in H(\mathcal{S}): X \cap Y \neq \emptyset$ $\iff \text{ for every } Z \in Bd^+(\mathsf{cl}(\mathcal{S})): X \cap (I \setminus Z) \neq \emptyset$ $\iff \text{ for every } Z \in Bd^+(\mathsf{cl}(\mathcal{S})): X \nsubseteq Z$

 $\iff X \not\in \mathsf{cl}(\mathcal{S})$

Proof (cont'd) :

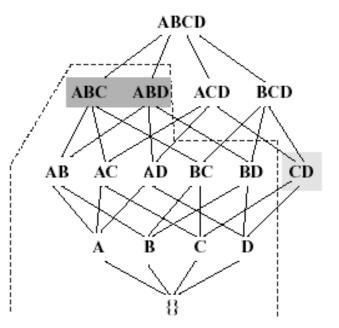
```
Step 1.: X \subseteq I is a transversal of H(S) \iff X \notin cl(S) // prev. slide
Step 2.:
```

```
Tr(H(S)) = \{X : X \text{ is a minimal transversal of } H(S)\}
= \{X : X \text{ is a minimal set such that } X \notin cl(S)\} // \text{ step 1}
= \{X : X \notin cl(S) \text{ and } Y \in cl(S) \text{ for every } Y \subsetneq X\}
= Bd^{-}(cl(S))
```

q.e.d.

Example:

- $I = \{a, b, c, d\}$
- $S = \{abc, abd\}$
- $cl(S) = \{abc, abd, ab, ac, ad, bc, bd, a, b, c, d, \emptyset\}$
 - $Bd^+(\operatorname{cl}(\mathcal{S})) = \{abc, abd\}$
 - $H(\mathcal{S}) = \{d, c\}$
 - $\operatorname{Tr}(H(\mathcal{S})) = \{cd\}$
 - $Bd^-(\operatorname{cl}(\mathcal{S})) = \{cd\}$



$Bd^{-}(cl(\mathcal{S}))$ can be computed without using $2^{I} \setminus cl(\mathcal{S})$, which is usually large!

Dualize and Advance Algorithm

idea:

- let $\mathcal M$ be the set of all maximal frequent itemsets and $\mathcal S\subseteq \mathcal M$
 - \Rightarrow any maximal frequent itemset $X \in \mathcal{M} \setminus \mathcal{S}$ cannot be a subset of any itemset in \mathcal{S}
 - $\Rightarrow \text{ for all } Y \in \mathcal{S} \text{: } X \cap (I \setminus Y) \neq \emptyset$
 - $\Rightarrow X \text{ is a transversal of the hypergraph formed by the complements of the sets in } \mathcal{S} \qquad \qquad // \text{ step 1 of the prev. theorem}$
 - 1. find a minimal transversal of the above hypergraph that is frequent
 - 2. extend it to a maximal frequent itemset
 - $\Rightarrow\,$ if all minimal transversals are infrequent then all maximal frequent itemsets have been generated

The Dualize and Advance Algorithm

Input : transaction database \mathcal{D} over set *I* of items and a frequency threshold **Output**: set of all maximal frequent itemsets

1: i := 1; $S_1 := \emptyset$; $\overline{S}_1 := \{I\}$

- 2: generate a minimal transversal X of \overline{S}_i // use some listing subroutine
- 3: if no minimal transversal has been generated then return S_i // $S_i = \mathcal{M}$
- 4: if X is frequent then
- 5: forall $i \in I \setminus X$ do // lines 5–6: extend X to a maximal frequent itemset
- 6: **if** $X \cup \{i\}$ is frequent **then** $X := X \cup \{i\}$

7:
$$\mathcal{S}_{i+1} := \mathcal{S}_i \cup \{X\}$$

- 8: $\overline{\mathcal{S}}_{i+1} := \{I \setminus Y : Y \in \mathcal{S}_{i+1}\}$
- 9: i := i + 1
- 10: endif
- 11: go to 2

Dualize and Advance Algorithm

- **Lemma:** For any iteration *i* of the algorithm, if $S_i \subsetneq M$ then at least one of the elements of $Tr(\overline{S}_i)$ is frequent.
- **Proof:** suppose $S_i \subsetneq M$
 - \Rightarrow there exists a frequent itemset X such that $X \not\in cl(S_i)$
 - ⇒ there exists a minimal frequent itemset $X' \subseteq X$ such that $X' \notin cl(S_i)$ and all proper subsets of X' are in $cl(S_i)$

$$\Rightarrow X' \in \mathsf{Bd}^{-}(\mathsf{cl}(S_{i}))$$

$$\Rightarrow X' \in \mathsf{Tr}(H(S_{i})) \qquad // \text{ as } \mathsf{Bd}^{-}(\mathsf{cl}(S_{i})) = \mathsf{Tr}(H(S_{i}))$$

$$\Rightarrow X' \in \mathsf{Tr}(\overline{S}_{i}) \qquad // \text{ because } S_{i} \subsetneq \mathcal{M}$$

q.e.d.

Dualize and Advance Algorithm

Thm.: The Dualize and Advance algorithm is correct.

Proof:

soundness: Automatic by lines 5–7 of the algorithm.

completeness: By construction, $S_i \subseteq M$ for all *i*. The proof then follows from the previous lemma.

universitätbo

IAIS

Condensed Representations of Frequent Itemsets I

maximal frequent itemsets

- the Pincer Search algorithm ✓
 - (Lin & Kedem, 2002)
- the Dualize and Advance Algorithm ✓
 - Gunopulos, Khardon, Mannila, Saluja, Toivonen, & Sharma, 2003)
- complexity of mining maximal frequent itemsets

86

Theorem (Boros, Gurvich, Khachiyan, & Makino, 2002): Let

- \mathcal{D} be a transactional database over a set I of items with |I| = n,
- $t \in \mathbb{N}$ be an absolute frequency threshold, and
- $\mathcal{S} \subseteq \mathcal{M}$ be a family of maximal frequent itemsets of \mathcal{D} .

Then it is **NP-hard** to decide if $S \neq M$.

Corollary: If $P \neq NP$ then maximal frequent itemsets **cannot** be generated in **output polynomial** time.

Proof: reduction from the NP-complete *independent vertex set* problem

- **independent vertex set problem:** *Given* a graph G = (V, E) and a positive integer *t*, *decide* if *G* contains an independent vertex set of size at least *t*.
 - independent vertex set: $V' \subseteq V$ such that no two vertices of V' are connected by an edge
- **reduction:** for *G* and *t*, construct a binary matrix (transaction database) \mathcal{D} with |V| columns as follows:
 - $\forall u \in V$: add 1 row to \mathcal{D} with 0 for the column corresponding to u; 1 for all other columns
 - $\forall \{u, v\} \in E$: add t 2 identical rows to \mathcal{D} with 0 for the columns corresponding to u and v; 1 for all other columns

Proof (cont'd): $\forall \{u, v\} \in E$: $C_{uv} = V \setminus \{u, v\}$ is maximal *t*-frequent in \mathcal{D}

- let $\mathcal{S} = \{C_{uv} : \{u, v\} \in E\}$
- the theorem follows from the claim below

Claim: $S \neq M \iff G$ has an independent set V' of size $|V'| \ge t$.

Proof of the claim:

 $(\Rightarrow) \exists C \in \mathcal{M} \setminus \mathcal{S}$

 $\implies C$ cannot be contained by a row introduced for an edge

 $\implies V' = V \setminus C$ is an independent set and $|V'| \ge t$

(\Leftarrow) let V' be an independent set of size t

 $\implies V \setminus V' \text{ is frequent and it cannot be the subset of any member in } S$ $\implies S \neq M$ q.e.d.

- **Proof of the Corollary:** suppose there exists an output-polynomial time algorithm \mathfrak{A} generating all maximal frequent itemsets
 - ⇒ ∃ a polynomial $\psi(\cdot, \cdot)$ s.t. $\forall \mathcal{D}$ over n items and $\forall t \in \mathbb{N}$, \mathfrak{A} generates the family \mathcal{M} of all maximal frequent itemsets in time $\psi(\mathsf{size}(\mathcal{D}), |\mathcal{M}|)$
 - \Rightarrow for any graph G and integer t > 0, \mathfrak{A} could be used to decide the independent vertex set problem in **polynomial time** as follows:
 - 1. construct \mathcal{D} and \mathcal{S} for G and t as in the proof of the theorem
 - 2. run \mathfrak{A} on \mathcal{D} with frequency threshold t
 - (α) if \mathfrak{A} terminates in time $\psi(\operatorname{size}(\mathcal{D}), |\mathcal{S}|)$ with output \mathcal{M} then just check whether $\mathcal{S} = \mathcal{M}$ // claim on the prev. slide
 - (β) if \mathfrak{A} does **not** terminate in time $\psi(\operatorname{size}(\mathcal{D}), |\mathcal{S}|)$ then *G* has an independent vertex set of size t q.e.d.

Maximal Frequent Itemsets: Summary

maximal interesting sentences

- **positive border** of the family of frequent itemsets
- compact representation of frequent itemsets
- Pincer search: bidirectional search
 - one level up, possibly many levels down
 - good performance in practice
- Dualize and Advance algorithm
 - based on minimal hypergraph transversals
 - works in incremental subexponential time
- ⊗ listing maximal frequent itemsets is computationally intractable

⇒ What about other compact representations of frequent itemsets?

Condensed Representations of Frequent Itemsets II

closed frequent itemsets

- notions and basic properties
- relative cardinalities of maximal frequent, closed frequent, and frequent itemsets
- a divide-and-conquer closed frequent itemset mining algorithm
 - (folklore; see, e.g., Gély, 2005)

universitätbor

Closed Frequent Itemsets: Notions

- *I*: set of items; \mathcal{D} : transaction database over *I*
 - each transaction in ${\cal D}$ has a unique identifier (tid)
 - T: set of all tids
- $it: 2^I \rightarrow 2^T$

it(X): set of tids of the transactions that contain X as a subset, i.e.,

$$it(X) = \bigcap_{x \in X} it(x)$$

• $ti: 2^T \to 2^I$

ti(Y): set of all items common to all the transactions with tids in Y, i.e.,

 $ti(Y) = \bigcap_{y \in Y} ti(y)$

Closed Frequent Itemsets: Notions

 $c: 2^I \to 2^I$ is defined by $c: X \mapsto ti(it(X))$ for every itemset X

Prop: *c* is a **closure operator**, i.e., for every itemsets *X* and *Y* it satisfies

$- X \subseteq c(X)$	(extensivity)
- if $X \subseteq Y$ then $c(X) \subseteq c(Y)$	(monotonicity)
- c(c(X)) = c(X)	(idempotency)

Proof: *exercise*

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Closed Frequent Itemsets: Notions

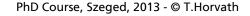
 $c: 2^I \to 2^I$ is defined by $c: X \mapsto ti(it(X))$ for every itemset X

Def.: An itemset X is

- closed: if c(X) = X and
- closed frequent if it is closed and frequent
- \mathcal{C} : family of closed frequent itemsets

Properties:

- X is closed if and only if $|\mathcal{D}[Y]| < |\mathcal{D}[X]|$ for every $Y \supsetneq X$
- all maximal frequent itemsets are closed



Closed Itemsets

Example: let

- $I = \{a, b, c, d, e\},\$
- $T = \{1, 2, 3, 4, 5, 6\},\$
- $\mathcal{D}\{(1, abde), (2, bce), (3, abde), (4, abce), (5, abcde), (6, bcd)\}$
- -ae is **not closed** because

$$c(ae) = ti(it(ae)) = ti(it(a) \cap it(e)) = ti(1345 \cap 12345) = ti(1345)$$

$$= ti(1) \cap ti(3) \cap ti(4) \cap ti(5) = abde \cap abde \cap abce \cap abcde$$

$$= abe$$

-abe is **closed** because $c(abe) = \frac{ti(it(abe))}{it(abe)} = \frac{ti}{it(abe)} = abe$

Closed Frequent Itemsets: Property I

Prop.: for every itemset X, $\mathcal{D}[X] = \mathcal{D}[c(X)]$

- i.e., the support of X is equal to the support of the smallest closed itemset containing X

Proof: exercise

- **Corollary:** closed frequent itemsets provide a complete representation of frequent itemsets
 - complete: support of a frequent itemset can be derived from that of its closure
 - this property does **not** hold for maximal frequent itemsets

algorithm on next slide: generates frequent itemsets with support from closed frequent itemsets without database access

Closed Frequent Itemsets: Property I

Input : C: family of closed frequent itemsets **Output**: F: family of frequent itemsets

- 1: let k = 0 and \mathcal{F}_i be the empty list for every $i \ge 0$
- 2: forall closed frequent itemset $C \in \mathcal{C}$ do
- 3: append C to $\mathcal{F}_{|C|}$
- 4: **if** k < |C| **then** k = |C|
- 5: for (i = k; i > 1; i = i 1) do
- 6: **forall** itemset $C \in \mathcal{F}_i$ in the order of the elements in \mathcal{F}_i do
- 7: forall (i-1)-subsets S of C do
- 8: **if** $S \notin \mathcal{F}_{i-1}$ **then**
- 9: S.support = C.support
- 10: append S to \mathcal{F}_{i-1}

11: return $\bigcup_{i=1,...,k} \mathcal{F}_i$

Example

database $\mathcal{D} = \{(1, abde), (2, bce), (3, abde), (4, abce), (5, abcde), (6, bcd)\}$

frequency threshold: t = 4

closed frequent itemsets: $\{abe, bc, bd, be, b\}$

$$\mathcal{F}_3 = [abe_{\underline{4}}], \ \mathcal{F}_2 = [bc_{\underline{4}}, bd_{\underline{4}}, be_{\underline{5}}], \ \mathcal{F}_1 = [b_{\underline{6}}]$$

i = 3: for $\mathcal{F}_3 = [abe_{\underline{4}}]$ we get

$$\begin{aligned} \mathcal{F}_2 &= \mathcal{F}_2 \oplus ab_{\underline{4}} \oplus ae_{\underline{4}} & // \text{ for } abe_{\underline{4}} \\ &= [bc_{\underline{4}}, bd_{\underline{4}}, be_{\underline{5}}, ab_{\underline{4}}, ae_{\underline{4}}] \end{aligned}$$

i=2: for $\mathcal{F}_2=[bc_{\underline{4}},bd_{\underline{4}},be_{\underline{5}},ab_{\underline{4}},ae_{\underline{4}}]$ we get

\mathcal{F}_1	—	\mathcal{F}_1	\oplus	$[c_4]$	// for bc_4
			\oplus	$[\overline{d_4}]$	// for bd_4^-
			\oplus	$[e_5]$	// for be_5^-
			\oplus	$[a_{\underline{4}}]$	// for $ab_{\underline{4}}^{-}$

 $\textbf{return} \ [abe_{\underline{4}}, bc_{\underline{4}}, bd_{\underline{4}}, be_{\underline{5}}, ab_{\underline{4}}, ae_{\underline{4}}, b_{\underline{6}}, c_{\underline{4}}, d_{\underline{4}}, e_{\underline{5}}, a_{\underline{4}}]$

PhD Course, Szeged, 2013 - © T.Horvath

Condensed Representations of Frequent Itemsets II

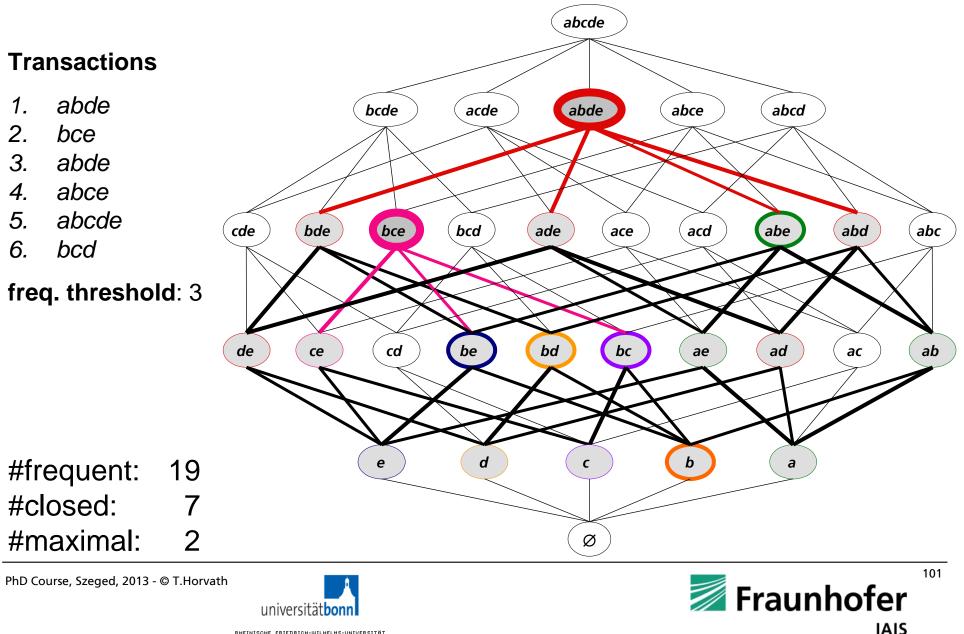
closed frequent itemsets

- notions and basic properties
- relative cardinalities of maximal frequent, closed frequent, and frequent itemsets
- a divide-and-conquer closed frequent itemset mining algorithm
 - (folklore; see, e.g., Gély, 2005)

universitätbor

Frequent vs. Closed vs. Maximal Itemsets: Example

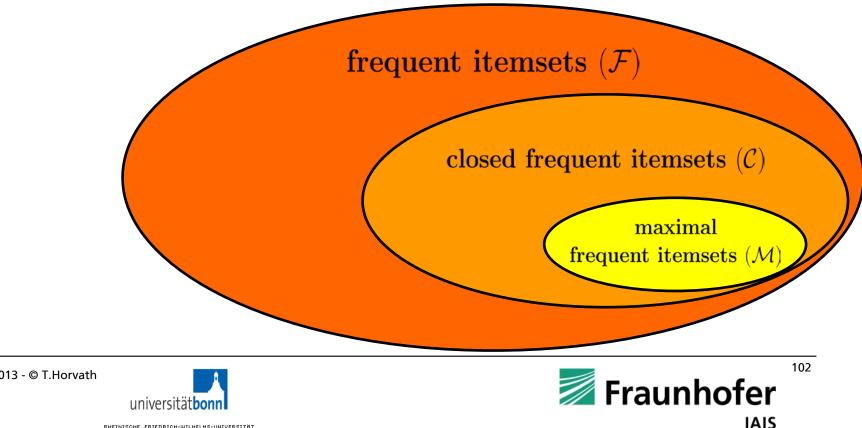
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT



Closed Frequent Itemsets: Property II

Thm. (Boros, Gurvich, Khachiyan, & Makino, 2002):

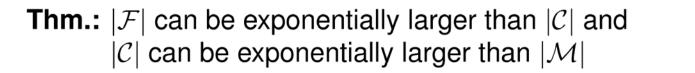
- $|\mathcal{F}|$ can be exponentially larger than $|\mathcal{C}|$ and (i)
- (ii) $|\mathcal{C}|$ can be exponentially larger than $|\mathcal{M}|$
- \Rightarrow closed frequent itemsets: **compact** representation of frequent itemsets

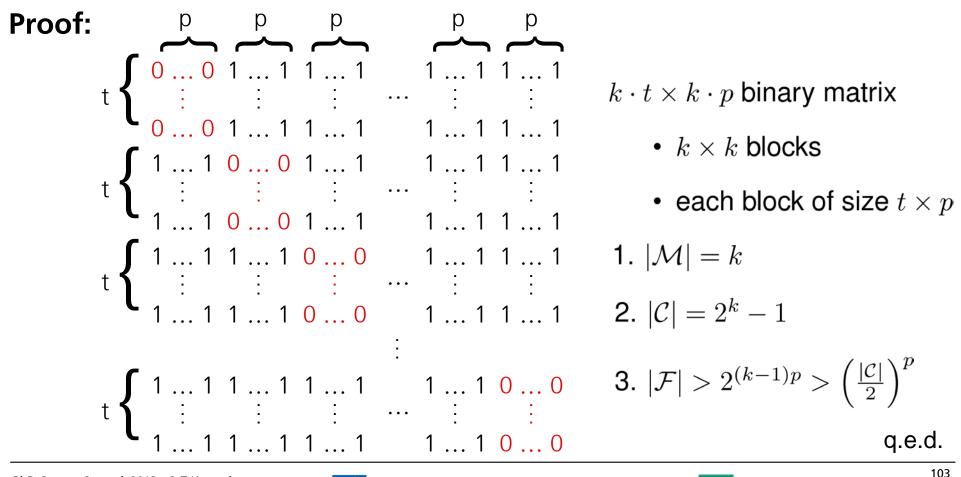


PhD Course, Szeged, 2013 - © T.Horvath

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Frequent vs. Closed Freq. vs. Maximal Freq. Itemsets





PhD Course, Szeged, 2013 - © T.Horvath

Condensed Representations of Frequent Itemsets II

closed frequent itemsets

- notions and basic properties
- relative cardinalities of maximal frequent, closed frequent, and frequent itemsets
- a divide-and-conquer closed frequent itemset mining algorithm
 - (folklore; see, e.g., Gély, 2005)

universitätbor

Computing Closed Frequent Itemsets with DF-Search

Problem: Given *I*, D, and frequency threshold *t*, compute C

Algorithm: (Gély, 2005; also other authors)

- compute first all closed frequent itemsets containing an item a,
- then all closed frequent itemsets which do not contain a
- apply recursively ...

divide and conquer algorithm

105

Algorithm

- **Input** : *I* with some total order \leq , \mathcal{D} , and frequency threshold *t*
- Output : all closed frequent itemsets

```
Initial Call : LISTCLOSED(\emptyset, \emptyset, min I)
```

```
function LISTCLOSED(C, N, i)
```

1:
$$X := \{k \in I \setminus C : k \ge i\}$$

- 2: if $X \neq \emptyset$ then
- 3: $i' = \min X$

4:
$$C' = c(C \cup \{i'\})$$

- 5: **if** C' is frequent and $C' \cap N = \emptyset$ **then**
- 6: **print** C'
- 7: LISTCLOSED(C', N, i' + 1)
- 8: $Y := \{k \in I \setminus C : k > i\}$
- 9: **if** $Y \neq \emptyset$ **then**
- 10: $i'' = \min Y$
- 11: LISTCLOSED $(C, N \cup \{i'\}, i'')$

PhD Course, Szeged, 2013 - © T.Horvath

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

106

// $C,N\subseteq I$, $i\in I$

Algorithm

Thm.: The previous algorithm lists the set of closed frequent itemsets

- (1) correctly,
- (2) irredundantly,
- (3) with polynomial delay, and
- (4) in polynomial space.

Proof: (exercise)

Example

1.	abde			
2.	bce			
3.	abde			
4.	abce			
5.	abcde			
6.	bcd			
t = 3				
a <b<c<d<e< td=""></b<c<d<e<>				

PhD Course, Szeged, 2013 - © T.Horvath

$ListClosed(\emptyset, \emptyset, a)$	
print c(a) = abe	(frequent)
<i>ListClosed</i> (abe, \emptyset , c)	
c(abce) = <mark>abce</mark>	(infrequent)
<i>ListClosed</i> (abe, {c}, d)	
print c(abde) = abde	(frequent)
<i>ListClosed</i> (Ø, {a}, b)	
print $c(b) = b$	(frequent)
<i>ListClosed</i> (b, {a}, c)	
print c(bc) = bc	(frequent)
ListClosed(bc, {a}, d)	
c(bcd) = <mark>bcd</mark>	(infrequent)
<i>ListClosed</i> (bc, {a,d}, e)	
print c(bce) = bce	(frequent)
<i>ListClosed</i> (b, {a,c}, d)	
print c(bd) = bd	(frequent)
<i>ListClosed</i> (bd, {a,c}, e)	
c(bde) = <mark>abde</mark>	(contains a)
<i>ListClosed</i> (b, {a,c,d}, e)	
print c(be) = be	(frequent)

Closed Frequent Itemsets: Summary

- another compact representation
- usually exponentially smaller than the set of frequent itemsets but exponentially larger then the set of maximal frequent itemsets
- divide and conqure: polynomial delay and polynomial space
- closure operators: also in other theory extraction problems
 - formal concept analysis
 - enumeration of maximal bipartite cliques of a bipartite graph

Literature to the lectures about Association Rules (I-V)

- J. Han, M. Kamber, and J. Pei, *Data Mining: Concepts and Techniques*, 3rd ed., Morgan Kaufmann, 2011.
- I. Witten and E. Frank, *Data Mining*, Morgan Kaufmann, 2000.
- R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.I. Verkamo: *Fast Discovery of Association Rules*. In U.M. Fayyad et al. (Eds.), Advances in Knowledge Discovery and Data Mining, 307-328, AAAI/MIT Press, 1996.
- J. Han, J. Pei, Y. Yin, R. Mao: *Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach*. Data Mining and Knowledge Discovery 8(1): 53-87, 2004.
- D.-I. Lin, Z.M. Kedem: Pincer-Search: An Efficient Algorithm for Discovering the Maximum Frequent Set. IEEE
 Trans. Knowl. Data Eng. 14(3): 553-566, 2002.
- D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, R.S. Sharm: *Discovering all most specific sentences*. ACM Trans. Database Syst. 28(2):140-174, 2003.
- E. Boros, V. Gurvich, L. Khachiyan, K. Makino: On Maximal Frequent and Minimal Infrequent Sets in Binary Matrices. Ann. Math. Artif. Intell. 39(3): 211-221, 2003.
- N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: *Efficient Mining of Association Rules Using Closed Itemset Lattices*. Inf. Syst. 24(1): 25-46, 1999.
- A. Gély: A Generic Algorithm for Generating Closed Sets of a Binary Relation. In Proc. of the 3rd Int. Conference on Formal Concept Analysis (ICFCA 2005), LNCS 3403, pp. 223-234, Springer-Verlag, 2005.

