Binary Tomography Using Two Projections and Morphological Skeleton

Norbert Hantos, Péter Balázs, Kálmán Palágyi

ARRSHAS Szeged, June 28-30, 2012

 CS^2

BT Using Two Projections and Morphological Skeleton Norbert Hantos, Péter Balázs, Kálmán Palágyi

Contents

Introduction

Motivation Image and projections Switching components Morphological skeleton

2 Skeleton based reconstruction

Main task Theoretical results Simulated Annealing

8 Results

Motivation

Discrete tomography reconstruct (discrete) images of objects from their projections

Extremely ambiguous if only a few projections are available \rightarrow further information is needed

Norbert Hantos, Péter Balázs, Kálmán Palágyi 💦 BT Using Two Projections and Morphological Skeleton

Skeleton based reconstruction

Results

Image and projections

Image binary square matrix, $F_{n \times n}$ Projections sum of rows and columns, $\mathcal{H}(F)$, $\mathcal{V}(F)$

$$\mathcal{H}_i(F) = \sum_{j=1}^n F_{ij} \qquad \qquad \mathcal{V}_j(F) = \sum_{i=1}^n F_{ij}$$

Norbert Hantos, Péter Balázs, Kálmán Palágyi 💦 BT Using Two Projections and Morphological Skeleton

Skeleton based reconstruction

Results

Switching components

- Submatrix of an image in size of 2×2 where switching 0-s and 1-s do not change the projections
- Necessary and sufficent condition for ambiguity

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Norbert Hantos, Péter Balázs, Kálmán Palágyi BT Using Two Projections and Morphological Skeleton

Morphological skeleton

- Representation of shapes
- Close to the topological skeleton
- Easy to generate
- Can store the image uniquely (with some additional information)

Morphological skeleton

The morphological skeleton of the binary image F with the structuring element Y can be extracted with morphological operators (erosion and dilation).

$$S(F,Y) = \bigcup_{k} S_k(F,Y),$$

where

$$S_k(F,Y) = (F \ominus_k Y) - \big[(F \ominus_{k+1} Y) \oplus Y \big].$$

Introduction

Skeleton based reconstruction

Results

Morphological skeleton Example for erosion and dilation

Morphological skeleton

If we know the structuring element Y and the $S_k(F, Y)$ for each k, then we can reconstruct the orignal image:

$$F = \bigcup_{k} \left[S_k(F, Y) \oplus_k Y \right],$$

or in a different form:

$$F = \bigcup_{p \in S(F,Y)} (p \oplus_{k_p} Y),$$

where k_p is a unique value for every p such that $p \in S_{k_p}(F)$.

Skeleton based reconstruction

Results

Morphological skeleton

Let $K(S) := (k_{p_1}, k_{p_2}, ..., k_{p_{|S|}})$ the series of the k_p values, $p_i \in S = S(F, Y)$, and let the structuring element $Y := \{(-1, 0), (0, -1), (0, 0), (0, 1), (1, 0)\}.$

F is uniquely determined by K(S) and Y.

Skeleton based reconstruction

Main task

Given projections H and V, morphological skeleton S and structuring element Y. We want to find K(S) in a way that the corresponding F is the closest to the required projections:

$$f(K(S)) = ||H - \mathcal{H}(F)||_2 + ||V - \mathcal{V}(F)||_2 \rightarrow \min$$

Theoretical results

Theorem (Un-uniqueness)

The skeleton based reconstruction is not unique, since there could be an image pair F_1 and F_2 that they have the same projections and skeleton, however $F_1 \neq F_2$.

Note that $(2, 1, 1, 2) = K_1(S) \neq K_2(S) = (1, 2, 2, 1).$

Norbert Hantos, Péter Balázs, Kálmán Palágyi

BT Using Two Projections and Morphological Skeleton

Theoretical results

Theorem (Skeletal smoothness)

For any image F and any skeletal points $p,q\in S(F,Y),$

$$|k_p - k_q| < ||p - q||_1,$$

where $||.||_1$ denotes the Manhattan norm.

As a special case, if p is 8-adjacent to q, then $|k_p - k_q| < 2$, that we are to use during the reconstruction.

Theoretical results

Given H, V projection vectors, S skeletal set. Does any binary image F exist where $H = \mathcal{H}(F)$, $V = \mathcal{V}(F)$, S = S(F, Y) and F is 4-connected?

Theorem (NP-completedness)

The problem above is NP-complete.

Note that we fixed the structuring element Y.

Conjecture

The problem above is still NP-complete even without requiring the 4-connectedness.

Norbert Hantos, Péter Balázs, Kálmán Palágyi 💦 BT Using Two Projections and Morphological Skeleton

Simulated Annealing

- Iterative stochastic method for finding a global minimum of a function
- Could find a near-optimal minimum in a reasonable time
- Has many technical parameters, in our case:
 - Variables: K(S)
 - Energy function: $f(K(S)) \to \min$
 - Stopping criteria: iteration number ${\cal M}$ or zero energy
 - Annealing schedule: $T(t) = T_0 \cdot \left(\frac{T_s}{T_0} \right)^{\frac{t}{M}}$, where t denotes time

Simulated Annealing NVC

NVC (No Vase Constraint) model:

- $f(K(S)) = ||H \mathcal{H}(F)||_2 + ||V \mathcal{V}(F)||_2$
- Changing a variable: simply change an element $k_p \in K(S)$ randomly

Simulated Annealing

DVC (Dynamic Vase Constraint) model:

- f is the same as in NVC
- Changing a variable: change an element $k_p \in K(S)$ such that $|k_p-k_q| < C(t)$ for each q 8-adjacent to p and

$$C(t) = \left\lceil C_0 \cdot \left(\frac{C_s}{C_0}\right)^{\frac{t}{M}} \right\rceil$$

Note that C(t) is monotonically decreasing and the limit is 1

$\underset{\mathsf{CEF}}{\mathsf{Simulated}} \ \mathsf{Annealing}$

CEF (Combined Energy Function) model:

•
$$f(K(S)) = \alpha \cdot \left(||H - \mathcal{H}(F)||_2 + ||V - \mathcal{V}(F)||_2 \right) + (1 - \alpha) \cdot \sum_{||p-q||_1 \le 1} h(k_p, k_q) ,$$

where

$$h(k_p, k_q) = \begin{cases} 0 & \text{if } |k_p - k_q| \le 1\\ |k_p - k_q|/2 & \text{otherwise.} \end{cases}$$

• Changing a variable: the same as in NVC

Results

- Artificial images in size of 256×256
 - Simple convex shape
 - ② Grid of comvex shapes
 - 8 Random set of convex shapes
 - 4 Miscellaneous images
- Technical parameters: M = 50000, $T_0 = 10$, $T_s = 0.001$
- Testing environment: Intel Core 2 Duo T250, 1.5 GHz, 2GB RAM

Error measurement

$$E = \sqrt{\sum_{i=1}^{2n} (b_i - b'_i)^2} ,$$

where b_i and b_i' are the elements of the original and the reconstructed projections, respectively.

Norbert Hantos, Péter Balázs, Kálmán Palágyi BT Using Two Projections and Morphological Skeleton

lmage	Method	CPU	E	
	NVC	3842	1060	
	DVC_{10}	4030	98	
	DVC_5	4116	97	
	\mathbf{DVC}_1	4563	18	
	$CEF_{0.3}$	4358	2468	
	$\text{CEF}_{0.5}$	4415	1675	
	$\operatorname{CEF}_{0.7}$	4435	1305	
	NVC	3784	3405	
	\mathbf{DVC}_{10}	3038	1291	
	DVC_5	3164	4288	
	DVC_1	3566	5307	
	$CEF_{0.3}$	5412	5665	
	$CEF_{0.5}$	5387	4829	
	$\operatorname{CEF}_{0.7}$	5328	3212	

Image	Method	CPU	E		
	NVC	7276	1285		
	DVC_{10}	7900	174		
	DVC_5	8127	146		
	DVC_1	4473	0		
	$CEF_{0.3}$	7626	2578		
	$CEF_{0.5}$	7665	1849		
	$CEF_{0.7}$	7691	1505		
	NVC	4346	6136		
	DVC_{10}	4733	1066145		
	DVC_5	4609	1722350		
	DVC_1	4926	3302481		
	$CEF_{0.3}$	7308	14371		
	$CEF_{0.5}$	7243	8896		
	$CEF_{0.7}$	7222	7402		

Image	Method	CPU	E		Image	Method	CPU	E
•••	NVC	1666	1341			NVC	2165	2709
	DVC ₁₀	1215	292		, • 9] /:] • `	DVC ₁₀	1713	6042
	DVC ₅	1234	314			DVC ₅	1724	7962
	DVC ₁	1302	294			DVC ₁	1910	6360
	CEF _{0.3}	2904	2534			CEF _{0.3}	4123	5688
	$CEF_{0.5}$	2827	1950			$CEF_{0.5}$	4131	4178
	$CEF_{0.7}$	2851	1732			$CEF_{0.7}$	4114	3346
••	NVC	3537	2530			NVC	2757	4034
	DVC ₁₀	2852	9154		٢	DVC ₁₀	2304	4523
	DVC ₅	2981	13138			DVC ₅	2467	7472
	DVC ₁	3226	67493			DVC ₁	2430	13096
	$CEF_{0.3}$	6380	5183			$CEF_{0.3}$	8884	6663
	$CEF_{0.5}$	6367	4102			CEF _{0.5}	8856	5012
	CEF _{0.7}	6343	3029			$CEF_{0.7}$	8959	4407

Introduction

Results Examples

Skeleton based reconstruction

Results 000●000

Norbert Hantos, Péter Balázs, Kálmán Palágyi 💦 BT Using Two Projections and Morphological Skeleton

- Image reconstruction is extremely underdetermined if only a few projections are used
- Morphological skeleton can reduce the ambiguity, however, the reconstruction problem is (possibly) NP-complete
- 3 variants of SA are tested on artifical images
 - NVC generally acceptable reconstruction
 DVC smoother results, sometimes converges very slowly (highly depends on the initial image)
 CEF similar results as NVC, computationally intensive

Future work

- Prove NP- (or P-) completedness of the original task and its variants (such as *h*-convex images)
- Examine strategies for choosing the initial image for SA
- Find a more sophisticated function minimizer
- Try other prior information, such as smoothness on the boundary
- Study the robustness of the reconstruction when the projections are corrupted by noise

References

- Hantos, N., Balázs, P., Palágyi, K.: Binary Image Reconstruction From Two Projections Using Morphological Skeleton Information. In proceeding of the 15th International Workshop on Combinatorial Image Analysis (IWCIA 2012)
- Herman, G.T., Kuba, A. (eds.): *Advances in Discrete Tomography and Its Applications*. Birkhäuser, Boston (2007)
- Gonzalez, R.C., Woods, R.E.: *Digital Image Processing (3rd Edition)*. Prentice Hall (2008)
- Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: *Optimization by Simulated Annealing*. Science 220, 671–680 (1983)

Acknowledgement

The presentation is supported by the European Union and co-funded by the European Social Fund.

Project title: "Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged by ensuring the rising generation of excellent scientists."

Project number: TÁMOP-4.2.2/B-10/1-2010-0012