Binary Tomography Using Two Projections and Morphological Skeleton

Norbert Hantos, Péter Balázs, Kálmán Palágyi

Szeged, June 28-30, 2012

CS ${ }^{2}$

Contents

(1) Introduction

Motivation
Image and projections
Switching components
Morphological skeleton
(2) Skeleton based reconstruction

Main task
Theoretical results
Simulated Annealing
(3) Results

Motivation

Discrete tomography reconstruct (discrete) images of objects from their projections

Extremely ambiguous if only a few projections are available \rightarrow further information is needed

Image and projections

Image binary square matrix, $F_{n \times n}$
Projections sum of rows and columns, $\mathcal{H}(F), \mathcal{V}(F)$

$$
\mathcal{H}_{i}(F)=\sum_{j=1}^{n} F_{i j}
$$

$$
\mathcal{V}_{j}(F)=\sum_{i=1}^{n} F_{i j}
$$

Switching components

- Submatrix of an image in size of 2×2 where switching 0 -s and $1-s$ do not change the projections
- Necessary and sufficent condition for ambiguity

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \Longleftrightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Morphological skeleton

- Representation of shapes
- Close to the topological skeleton
- Easy to generate
- Can store the image uniquely (with some additional information)

Morphological skeleton

The morphological skeleton of the binary image F with the structuring element Y can be extracted with morphological operators (erosion and dilation).

$$
S(F, Y)=\bigcup_{k} S_{k}(F, Y),
$$

where

$$
S_{k}(F, Y)=\left(F \ominus_{k} Y\right)-\left[\left(F \ominus_{k+1} Y\right) \oplus Y\right]
$$

Morphological skeleton

Example for erosion and dilation

Original F

Erosion $F \ominus Y$

Dilation $F \oplus Y$

Morphological skeleton

If we know the structuring element Y and the $S_{k}(F, Y)$ for each k, then we can reconstruct the orignal image:

$$
F=\bigcup_{k}\left[S_{k}(F, Y) \oplus_{k} Y\right]
$$

or in a different form:

$$
F=\bigcup_{p \in S(F, Y)}\left(p \oplus_{k_{p}} Y\right),
$$

where k_{p} is a unique value for every p such that $p \in S_{k_{p}}(F)$.

Morphological skeleton

Let $K(S):=\left(k_{p_{1}}, k_{p_{2}}, \ldots, k_{p_{|S|}}\right)$ the series of the k_{p} values, $p_{i} \in S=S(F, Y)$, and let the structuring element $Y:=\{(-1,0),(0,-1),(0,0),(0,1),(1,0)\}$.

F is uniquely determined by $K(S)$ and Y.

Skeleton based reconstruction

Main task

Given projections H and V, morphological skeleton S and structuring element Y. We want to find $K(S)$ in a way that the corresponding F is the closest to the required projections:

$$
f(K(S))=\|H-\mathcal{H}(F)\|_{2}+\|V-\mathcal{V}(F)\|_{2} \rightarrow \min
$$

Theoretical results

Theorem (Un-uniqueness)

The skeleton based reconstruction is not unique, since there could be an image pair F_{1} and F_{2} that they have the same projections and skeleton, however $F_{1} \neq F_{2}$.

Note that $(2,1,1,2)=K_{1}(S) \quad \neq \quad K_{2}(S)=(1,2,2,1)$.

Theoretical results

Theorem (Skeletal smoothness)

For any image F and any skeletal points $p, q \in S(F, Y)$,

$$
\left|k_{p}-k_{q}\right|<\|p-q\|_{1},
$$

where $\|.\|_{1}$ denotes the Manhattan norm.

As a special case, if p is 8 -adjacent to q, then $\left|k_{p}-k_{q}\right|<2$, that we are to use during the reconstruction.

Theoretical results

Given H, V projection vectors, S skeletal set. Does any binary image F exist where $H=\mathcal{H}(F), V=\mathcal{V}(F), S=S(F, Y)$ and F is 4-connected?

Theorem (NP-completedness)

The problem above is NP-complete.
Note that we fixed the structuring element Y.

Conjecture

The problem above is still NP-complete even without requiring the 4-connectedness.

Simulated Annealing

- Iterative stochastic method for finding a global minimum of a function
- Could find a near-optimal minimum in a reasonable time
- Has many technical parameters, in our case:
- Variables: $K(S)$
- Energy function: $f(K(S)) \rightarrow$ min
- Stopping criteria: iteration number M or zero energy
- Annealing schedule: $T(t)=T_{0} \cdot\left(\frac{T_{s}}{T_{0}}\right)^{\frac{t}{M}}$, where t denotes time

Simulated Annealing

 NVCNVC (No Vase Constraint) model:

- $f(K(S))=\|H-\mathcal{H}(F)\|_{2}+\|V-\mathcal{V}(F)\|_{2}$
- Changing a variable: simply change an element $k_{p} \in K(S)$ randomly

Simulated Annealing DVC

DVC (Dynamic Vase Constraint) model:

- f is the same as in NVC
- Changing a variable: change an element $k_{p} \in K(S)$ such that $\left|k_{p}-k_{q}\right|<C(t)$ for each q-adjacent to p and

$$
C(t)=\left\lceil C_{0} \cdot\left(\frac{C_{s}}{C_{0}}\right)^{\frac{t}{M}}\right\rceil
$$

Note that $C(t)$ is monotonically decreasing and the limit is 1

Simulated Annealing CEF

CEF (Combined Energy Function) model:

- $f(K(S))=\alpha \cdot\left(\|H-\mathcal{H}(F)\|_{2}+\|V-\mathcal{V}(F)\|_{2}\right)+$

$$
+(1-\alpha) \cdot \sum_{\|p-q\|_{1} \leq 1} h\left(k_{p}, k_{q}\right)
$$

where

$$
h\left(k_{p}, k_{q}\right)=\left\{\begin{array}{cl}
0 & \text { if }\left|k_{p}-k_{q}\right| \leq 1 \\
\left|k_{p}-k_{q}\right| / 2 & \text { otherwise }
\end{array}\right.
$$

- Changing a variable: the same as in NVC

Results

- Artificial images in size of 256×256
(1) Simple convex shape
(2) Grid of comvex shapes
(3) Random set of convex shapes
(4) Miscellaneous images
- Technical parameters: $M=50000, T_{0}=10, T_{s}=0.001$
- Testing environment: Intel Core 2 Duo T250, 1.5 GHz, 2GB RAM

Error measurement

$$
E=\sqrt{\sum_{i=1}^{2 n}\left(b_{i}-b_{i}^{\prime}\right)^{2}}
$$

where b_{i} and b_{i}^{\prime} are the elements of the original and the reconstructed projections, respectively.

Results

Image	Method	CPU	E
\bigcirc	NVC	3842	1060
	DVC_{10}	4030	98
	DVC_{5}	4116	97
	DVC ${ }_{1}$	4563	18
	$\mathrm{CEF}_{0.3}$	4358	2468
	$\mathrm{CEF}_{0.5}$	4415	1675
	$\mathrm{CEF}_{0.7}$	4435	1305
	NVC	3784	3405
	DVC ${ }_{10}$	3038	1291
	DVC_{5}	3164	4288
	DVC_{1}	3566	5307
	$\mathrm{CEF}_{0.3}$	5412	5665
	$\mathrm{CEF}_{0.5}$	5387	4829
	$\mathrm{CEF}_{0.7}$	5328	3212

Image	Method	CPU	E
	NVC	7276	1285
	DVC_{10}	7900	174
	DVC_{5}	8127	146
	DVC_{1}	4473	0
	$\mathrm{CEF}_{0.3}$	7626	2578
	$\mathrm{CEFF}_{0.5}$	7665	1849
	$\mathrm{CEFF}_{0.7}$	7691	1505
88	NVC	4346	6136
	DVC_{10}	4733	1066145
	DVC_{5}	4609	1722350
	DVC_{1}	4926	3302481
	$\mathrm{CEFF}_{0.3}$	7308	14371
	$\mathrm{CEFF}_{0.5}$	7243	8896
	$\mathrm{CEF}_{0.7}$	7222	7402

Results

Image	Method	CPU	E
\because	NVC	1666	1341
	DVC ${ }_{10}$	1215	292
	DVC_{5}	1234	314
	DVC_{1}	1302	294
	$\mathrm{CEF}_{0.3}$	2904	2534
	$\mathrm{CEF}_{0.5}$	2827	1950
	$\mathrm{CEF}_{0.7}$	2851	1732
00	NVC	3537	2530
	DVC_{10}	2852	9154
	DVC_{5}	2981	13138
	DVC_{1}	3226	67493
	$\mathrm{CEF}_{0.3}$	6380	5183
	$\mathrm{CEF}_{0.5}$	6367	4102
	$\mathrm{CEF}_{0.7}$	6343	3029

Image	Method	CPU	E
	NVC	2165	2709
	DVC_{10}	1713	6042
	DVC_{5}	1724	7962
	DVC_{1}	1910	6360
	$\mathrm{CEFF}_{0.3}$	4123	5688
	$\mathrm{CEFF}_{0.5}$	4131	4178
	$\mathrm{CEFF}_{0.7}$	4114	3346
	NVC	2757	4034
	DVC_{10}	2304	4523
	DVC_{5}	2467	7472
	DVC_{1}	2430	13096
	$\mathrm{CEFF}_{0.3}$	8884	6663
	$\mathrm{CEFF}_{0.5}$	8856	5012
	$\mathrm{CEFF}_{0.7}$	8959	4407

Results

Examples

Original

Original

Skeleton

Skeleton

Result with CEF $_{0.5}$

Result with NVC

Conclusions

- Image reconstruction is extremely underdetermined if only a few projections are used
- Morphological skeleton can reduce the ambiguity, however, the reconstruction problem is (possibly) NP-complete
- 3 variants of SA are tested on artifical images

NVC generally acceptable reconstruction
DVC smoother results, sometimes converges very slowly (highly depends on the initial image)
CEF similar results as NVC, computationally intensive

Future work

- Prove NP- (or P-) completedness of the original task and its variants (such as h-convex images)
- Examine strategies for choosing the initial image for SA
- Find a more sophisticated function minimizer
- Try other prior information, such as smoothness on the boundary
- Study the robustness of the reconstruction when the projections are corrupted by noise

References

Hantos, N., Balázs, P., Palágyi, K.: Binary Image Reconstruction From Two Projections Using Morphological Skeleton Information. In proceeding of the 15th International Workshop on Combinatorial Image Analysis (IWCIA 2012)

Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston (2007)

Gonzalez, R.C., Woods, R.E.: Digital Image Processing (3rd Edition). Prentice Hall (2008)

國 Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671-680 (1983)

Acknowledgement

NEW SZÉCHENYIPLAN

HUNGARY'S RENEWAL

The presentation is supported by the European Union and co-funded by the European Social Fund.
Project title: "Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged by ensuring the rising generation of excellent scientists."

Project number: TÁMOP-4.2.2/B-10/1-2010-0012

