

University of Szeged

Address: 13 Dugonics tér, 6720 Szeged, Hungary

www.u-szeged.hu

www.szechenyi2020.hu

EFOP-3.4.3-16-2016-00014

READER

Selected Chapters from Algorithms

author: András Erik Csallner

 Department of Applied Informatics

 University of Szeged

reviewer: Attila Tóth

This teaching material has been made at the University of

Szeged, and supported by the European Union. Project

identity number: EFOP-3.4.3-16-2016-00014

Learning outcomes
A.E. Csallner - Selected Chapters from Algorithms a)

EFOP-3.4.3-16-2016-00014

The aim of this reader and learning outcomes

The present reader can be used at higher level studies in algorithms at college and

university courses. Although the topics include some higher mathematics and

computer science, no more prior knowledge for understanding is necessary than

a secondary school can provide. The aim is to teach the students those basic

notions and methods that are used in informatics to develop and analyze

algorithms and data structures.

This reader can also be considered as a uniform learning guide to basic algorithms

studies. If used this way it aims at given learning outcomes which we list below.

Knowledge Skills Attitude Autonomy/

responsibility

The student

knows the

elements and

properties of

algorithms, is

aware of

different

algorithm

description

methods and

special

algorithmic

approaches.

They are capable

to develop simple

algorithms of

different

approaches and

recognizes a

method not to be

an algorithm.

They are curious

to find the right

approach to solve

simple problems

algorithmically,

and is open to

experiment with

unusual

solutions.

They apply

algorithm

description

methods with

responsibility.

They

autonomously

convert iterative

and recursive

algorithms

between each

other.

The student is

aware of the

basic algorithmic

complexity

notation.

They can analyze

both iterative

and recursive

algorithms and

express the

magnitudes of

their complexity.

They strive to

find the most

efficient way of

solving problems

algorithmically or

to find the best

data structure for

a given problem.

They

independently

state upper

bounds on the

running time of

different types of

simple

algorithms.

Learning outcomes
A.E. Csallner - Selected Chapters from Algorithms b)

EFOP-3.4.3-16-2016-00014

The student

knows the basic

linear and

nonlinear data

structures, their

operators, and

the time

complexity of the

operators.

They are able to

design an array

or a linked list

together with

their operations

using an

algorithm

description

method.

They are open to

use different

linear data

structure

approaches to

find the best

solution with the

fastest operators.

They

independently

implement

stacks, queues,

and other

dynamic data

structures using

different basic

linear data types.

The student

knows some

essential sorting

algorithms, like

the insertion,

merge, heap and

quick sorting

algorithms, and is

aware of the

selection

problem and its

algorithmic

solution in linear

time.

They are capable

of adopting the

appropriate

sorting algorithm

for a given

problem

considering its

properties like

stability or being

on-line or in-

place.

They strive to

apply the most

appropriate

sorting algorithm

for a given

application and is

committed to

take all necessary

circumstances

into account.

They can choose

the right sorting

method for a

given problem on

hir own. They

check the

necessity of using

the five-step

algorithm for the

selection

problem

independently.

The student

knows the

methodology and

elements of the

dynamic

programming

approach

They are able to

design a dynamic

programming

algorithm for a

simple related

problem.

They are

committed to

always use

dynamic

programming

where a

recursion would

be inefficient.

They can decide

whether a

dynamic

approach is

necessary for a

recursively

defined problem.

The student is

aware of higher

amortized

analysis methods,

They can analyze

an algorithm or

operators on a

given data

They are curious

about using the

best method for

an amortized

They can monitor

the process of an

iterative method

on their own, and

Learning outcomes
A.E. Csallner - Selected Chapters from Algorithms c)

EFOP-3.4.3-16-2016-00014

like the

aggregate

analysis, the

accounting and

potential

methods.

structure using

any of the known

amortized

analysis method.

analysis to get

the sharpest

bound on the

time complexity

function.

find out if

amortized

analysis is

necessary. They

autonomously

choose the best

way to analyze

the algorithm.

The student

knows how and

when greedy

algorithms work,

and is aware of

the solution of

the activity-

selection

problem and

knows the

algorithm to

create Huffman

codes.

They are capable

to construct an

algorithm for a

corresponding

problem and

determine

whether it

delivers an

optimal solution

for it.

They strive to use

the greedy

approach where

possible to get a

fast and

straightforward

solution to an

optimization

problem.

They responsibly

apply greedy

algorithms after

independently

setting out the

conditions to be

met to guarantee

an optimal

solution for the

given problem.

The student

knows how to

represent graphs

on a computer,

and knows basic

graph walk

algorithms

including the

solution of the

shortest paths

problem.

They are able to

implement the

graph

representations

and Dijkstra’s

shortest paths

algorithm.

They strive to

find the optimal

way how to

represent a graph

for a particular

problem and is

curious of

adopting graph

walk methods to

different

applications.

They can check

independently

whether a graph

model is

appropriate for a

simple problem.

The student is

aware of basic

problems of

They are able to

give pseudocodes

to particular

They are

committed to use

simple computer

They

autonomously

apply basic

Learning outcomes
A.E. Csallner - Selected Chapters from Algorithms d)

EFOP-3.4.3-16-2016-00014

computational

geometry and

their solution,

including the

problem of

finding

intersecting line

segments and

creating the

convex hull of a

set of points.

problems from

computational

geometry using

cross products

and logical

formulae.

geometry

algorithms

instead of

algebraic

solutions where

possible. They

strive to solve

geometry

problems in an

optimal way.

computer

geometric

solutions to given

simple problems

like finding the

convex hull of

polygons instead

of finding the

convex hull of

points.

András Erik Csallner

Selected Chapters from
Algorithms

Reader
Department of Applied Informatics

University of Szeged

Manuscript, Szeged, 2020

A.E. Csallner - Selected Chapters from Algorithms

i

Contents

Contents ... i

About Algorithms .. 1

Structured programming .. 1

Algorithm description methods .. 2

Flow diagrams ... 2

Pseudocode ... 4

Type algorithms .. 5

Special algorithms ... 7

Recurrences .. 7

Backtracking algorithms .. 8

Analysis of algorithms ... 10

Complexity of algorithms .. 10

The asymptotic notation ... 11

Formulating time complexity .. 12

Data Structures ... 16

Linear data structures ... 16

Arrays vs. linked lists ... 16

Representation of linked lists ... 17

Stacks and queues ... 20

Hash tables .. 23

Direct-address tables .. 23

Hash tables .. 24

Collision resolution by chaining .. 24

Binary search trees ... 26

Binary search tree operations ... 28

Binary search ... 33

A.E. Csallner - Selected Chapters from Algorithms

ii

Sorting ... 34

Insertion sort ... 34

Merge sort .. 36

Heapsort.. 37

Heaps .. 37

Sorting in a heap ... 39

Quicksort ... 40

Partition algorithm .. 40

Sorting with quicksort ... 41

Sorting in Linear Time ... 44

Lower bounds for sorting .. 44

Counting sort... 46

Radix sort .. 49

Medians and Order Statistics .. 50

Minimum and maximum ... 51

Selection in expected linear time ... 52

Selection in worst-case linear time ... 53

Dynamic Programming ... 57

Rod cutting .. 57

Recursive top-down implementation ... 60

Using dynamic programming for optimal rod cutting 62

Reconstructing a solution ... 65

Amortized Analysis .. 67

Two examples ... 67

Augmented stack operations .. 67

Incrementing a binary counter ... 68

Aggregate analysis .. 68

Aggregate analysis of the augmented stack operations 69

A.E. Csallner - Selected Chapters from Algorithms

iii

Aggregate analysis of incrementing a binary counter 69

The accounting method .. 71

Accounting method for the augmented stack operations 71

Accounting method for incrementing a binary counter 72

The potential method ... 73

Potential method for the augmented stack operations 74

Potential method for incrementing a binary counter................................... 75

Greedy Algorithms .. 77

Elements of the greedy approach ... 77

Huffman coding... 79

Graphs ... 84

Graphs and their representation .. 84

Single-source shortest path methods ... 85

Breadth-first search .. 85

Dijkstra’s algorithm ... 87

Computational Geometry ... 90

Cross products .. 90

Determining whether consecutive segments turn left or right 91

Determining whether two line segments intersect .. 91

Determining whether any pair of segments intersect 93

Ordering segments .. 94

Moving the sweep line .. 94

Correctness and running time .. 95

Finding the convex hull ... 98

Graham’s scan ... 98

References .. 100

Index ... 101

A.E. Csallner - Selected Chapters from Algorithms

1

About Algorithms

In everyday life we could simply call a sequence of actions an algorithm, however,

since we intend to talk about algorithms all through this course, we ought to

define this notion more carefully and rigorously. A finite sequence of steps

(commands, instructions) for solving a certain sort of problems is called an

algorithm if it can provide the solution to the problem after executing a finite

number of steps. Let us examine the properties and elements of algorithms closer.

The notion of finiteness occurs twice in the definition above. Not only does the

number of steps have to be finite but each step also has to be finished in finite

time (e.g., a step like “list all natural numbers” is prohibited). Another point is

definiteness. Each step has to be defined rigorously, therefore the natural

languages that are often ambiguous are not suitable for an algorithm’s

description. We will use other methods for this purpose, like flow diagrams or

pseudocodes (see later in this chapter). Moreover, an algorithm has to be

executable. This means that every step of the algorithm must be executable (e.g.,

a division by zero is not a legal step).

Each algorithm has an input and an output. These are special sets of data in a

special format. The input is a set of data that has to be given prior to beginning

the execution of the algorithm but can be empty in some cases (e.g., the algorithm

“open the entrance door” has no further input, the algorithm itself determines

the task). The output is a set of data, as well, however, it is never an empty set.

The output depends on the algorithm and the particular input. Both the input and

the output can be of any kind of data: numbers, texts, sounds, images, etc.

Structured programming

When designing an algorithm we usually follow the top-down strategy. This

method breaks up the problem to be solved by the algorithm under design into

subproblems, the subproblems into further smaller parts, iterating this procedure

until the resulting building blocks can be solved directly. The basic method of the

top-down program design was worked out by E.W. DIJKSTRA in the 1960s (1), and

says that every algorithm can be broken up into steps coming from the following

three basic classes of structural elements:

• Sequence is a series of actions to be executed one after another.

A.E. Csallner - Selected Chapters from Algorithms

2

• Selection is a kind of decision where only one of a given set of actions can be

executed, and the algorithm determines the one.

• Iteration (also called repetition) means a frame that regulates the repeat of

an action depending on a condition. The action is called the body of the

iteration loop.

This means that all low or high level algorithms can be formulated as a series of

structural elements consisting only of the three types above. Hence, for any

algorithm description method it is enough to be able to interpret the three types

above.

Algorithm description methods

There are various description methods. They can be categorized according on the

age when they were born and the purpose they were invented for. From our

present point of view the two most important and most widely used are flow

diagrams and pseudocodes. There are several methods which support structured

algorithm design better and also ones which reflect the object-oriented approach

and programming techniques. But for describing structured algorithmic thoughts,

methods, procedures or whatever we call them, the two mentioned above are the

most convenient to use and most understandable of all.

We will demonstrate the two kinds of algorithm description methods on a simple

problem, the problem of finding the least number in a given set of numbers. Thus,

the input is a set of numbers, usually given as a sequence, and the output the least

among them. The algorithm works as follows. We consider the first number in the

sequence as the actual least one, and then check the remaining numbers. If a

number less than the actual minimum is found, we replace our choice with the

newly found. After all numbers have been checked, the actual minimum is the

minimum of all numbers at the same time.

Flow diagrams

A flow diagram consists of plane figures and arrows connecting them in a directed

way. There is more than one standard, yet we have a look at only one of them

here.

A.E. Csallner - Selected Chapters from Algorithms

3

yes

yes

no

no

START

Let min equal the first

input number

Are there any

numbers left?

Take the next input number

as the actual one

Is the actual number

less than min?

Let min equal the actual

number

Answer min

STOP

sequence

selection

iteration

Figure 1. The flow diagram of the minimum finding problem.

A.E. Csallner - Selected Chapters from Algorithms

4

Circle: A circle denotes a starting point or an endpoint containing one of the words

START or STOP. There can be more than one endpoint but only one starting

point.

Rectangle: A rectangle always contains an action (command).

Diamond: A diamond (rhombus) formulates a simple decision, it contains a yes/no

question, and has two outgoing arrows denoted with a yes and a no,

respectively.

The flow diagram of the problem of finding the least element can be seen in Figure

1. Examples of the three basic structural elements can be found in the light dotted

frames (the frames are not part of the flow diagram).

Pseudocode

The pseudocode is the closest description method to any general structured

programming language such as Algol, Pascal or C, and the structured part of Java

and C#. Here we assume that the reader is familiar with the basic structure of at

least one of these. The exact notation of the pseudocode dialect we are going to

use is the following.

• The assignment instruction is denoted by an arrow ().

• The looping constructs (while-do, for-do, and repeat-until) and the

conditional constructs (if-then and if-then-else) are similar to those in Pascal.

• Blocks of instructions are denoted by indentation of the pseudocode.

• Objects are handled as references (hence, a simple assignment between

objects does not duplicate the original one, only makes a further reference to

the same object). Fields of an object are separated by a dot from the object

identifier (object.field). If an object reference is empty, it is referred to as a NIL

value. Arrays are treated as objects but the indices are denoted using

brackets, as usual.

• Parameters are passed to a procedure by value by default. For objects this

means the value of the pointer, i.e., the reference.

The following pseudocode formulates the algorithm of finding the least number

of a set of numbers given in an array A. Although the problem can be solved in

several ways, the one below follows the structure of the flow diagram version

given in Figure 1.

A.E. Csallner - Selected Chapters from Algorithms

5

Minimum(A)

 1 min  A[1]

 2 i  1
 3 repeat

 4 i  i + 1
 5 if A[i] < min

 6 then min  A[i]

 7 until i  A.Length
 8 return min

Exercises

1 Give a simple real-life example to the design of an algorithm using the top-down strategy. Draw

a flow diagram for the algorithm.

2 Draw a flow diagram for the following task: Take a given n number of books from the shelf and

put them into a bin, supposing you can hold at most h (≤ n) books at a time in your hands.

3 Write a pseudocode for the task described in the previous exercise.

4 Write a computer program simulating the task of exercise 1.

Type algorithms

Algorithms can be classified by more than one attribute, one of these is to consider

the number and structure of their input and output. From this point of view four

different types of algorithms can be distinguished (2).

1 Algorithms assigning a single value to a sequence of data.

2 Algorithms assigning a sequence to another sequence.

3 Algorithms assigning a sequence to more than one sequence.

4 Algorithms assigning more than one sequence to a sequence.

Some examples for the particular type algorithms are given in the following

enumeration.

• Algorithms assigning a single value to a sequence are among others

o sequence calculations (e.g. summation, product of a series, linking

elements together, etc.),

o decision (e.g. checking whether a sequence contains any element with

a given property),

iteration
selection

sequence

A.E. Csallner - Selected Chapters from Algorithms

6

o selection (e.g. determining the first element in a sequence with a

given property provided we know that there exists at least one),

o search (e.g. finding a given element),

o counting (e.g. counting the elements having a given property),

o minimum or maximum search (e.g. finding the least or the largest

element).

• Algorithms assigning a sequence to another sequence:

o selection (e.g. collect the elements with a given property of a

sequence),

o copying (e.g. copy the elements of a sequence to create a second

sequence),

o sorting (e.g. arrange elements into an increasing order).

• Algorithms assigning a sequence to more than one sequence:

o union (e.g. linking two sequences together excluding duplicates – set

union),

o intersection (e.g. producing the set intersection of the elements of

two sequences),

o difference (e.g. producing the set difference of two sequences),

o uniting sorted sequences (merging / combing two ordered

sequences).

• Algorithms assigning more than one sequence to a sequence:

o filtering (e.g. filtering out elements of a sequence having given

properties).

Exercises

5 Write a pseudocode that calculates the product of a series given as an array parameter.

6 Write a pseudocode that determines the index of the second least element in an unsorted array

consisting of pair-wise different values. (The second least element is that which is greater than

exactly one other element in the array.)

7 Write a pseudocode that finds a number that is smaller than at least one of the elements

preceding it in an input array.

8 Write a pseudocode that counts how many odd numbers there are in a given array.

9 Write pseudocodes for the set operations union, intersection and difference. The sets are stored

in arrays.

A.E. Csallner - Selected Chapters from Algorithms

7

10 Write a pseudocode that combs two sorted arrays in a third array.

Special algorithms

As we have seen, algorithms consist of sequences of algorithmic steps

(instructions) where some series of steps can be repeatedly executed (iteration).

Because of this latter feature these algorithms are jointly called iterative

algorithms. An iterative algorithm usually has an initialization part consisting of

steps (initialize variables, open files, etc.) to be executed prior to the iteration part

itself, subsequently the loop construct is executed. However, there are algorithms

slightly differing from this pattern, although they consist of simple steps in the

end.

Recurrences

We call an algorithm recursive if it refers to itself. A recurrence can be direct or

indirect. It is direct if it contains a reference to itself, and it is indirect if two

methods are mutually calling each other.

A recursive algorithm always consists of two parts, the base case and the recursive

case. The base criterion decides which of them has to be executed next. Roughly

speaking, if the problem is small enough, it is solved by the base case directly. If it

is too big for doing so, it is broken up into smaller subproblems that have the same

structure as the original, and the algorithm is recalled for these parts. The process

obviously ends when all arising subproblems “melt away”.

A typical example of a recursive solution is the problem known as the Towers of

Hanoi, which is a mathematical puzzle. It consists of three rods, and a number of

disks of different sizes which can slide onto any rod. The puzzle starts with the

disks in a neat stack in ascending order of size on one rod, the smallest at the top,

thus making a conical shape. The objective of the puzzle is to move the entire stack

to another rod, obeying the following rules:

1 Only one disk may be moved at a time.

2 Each move consists of taking the upper disk from one of the rods and sliding

it onto another rod, on top of the other disks that may already be on that rod.

3 No disk may be placed on top of a smaller disk.

The recursive solution of moving n disks from the first rod to the second using the

third one can be defined in three steps as demonstrated in Figure 2.

A.E. Csallner - Selected Chapters from Algorithms

8

The pseudocode of the procedure providing every single disk move is given below.

In order to move n disks from the first to the second rod using the third one, the

method has to be called with the parameters TowersOfHanoi(n,1,2,3).

TowersOfHanoi(n,FirstRod,SecondRod,ThirdRod)
 1 if n > 0
 2 then TowersOfHanoi(n – 1,FirstRod,ThirdRod,SecondRod)
 3 write “Move a disk from ” FirstRod “ to ” SecondRod
 4 TowersOfHanoi(n – 1, ThirdRod,SecondRod,FirstRod)

The base criterion is the condition formulated in line 1. The base case is n = 0 when

no action is necessary. If n > 0 then all disks are moved using recurrence in lines 2

and 4.

Backtracking algorithms

Backtracking algorithms are systematic trials. They are used when during the

solution of a problem a selection has to be passed without the information which

is needed for the algorithm to come to a decision. In this case we choose one of

the possible branches and if our choice turns out to be false, we return (backtrack)

to the selection and choose the next possible branch.

1st step: move n–1 disks

2nd step: move 1 disk

3rd step: move n–1 disks

Figure 2. Three steps of recursive solution

A.E. Csallner - Selected Chapters from Algorithms

9

A typical example of backtracking algorithms is the solution to the Eight Queens

Puzzle where eight chess queens have to be placed on a chessboard in such a way

that no two queens attack each other.

To solve the problem we place queens on the chessboard column by column

selecting a row for each new queen where it can be captured by none of the ones

already placed. If no such row can be found for a new queen, the algorithm steps

a column back and continues with trying to replace the previously placed queen

to a new safe row in its column (backtracking). The pseudocode of this procedure

drawing all possible solutions is given below.

EightQueens

 1 column  1

 2 RowInColumn[column]  0
 3 repeat

 4 repeat RowInColumn[column]  RowInColumn[column] + 1
 5 until IsSafe(column,RowInColumn)
 6 if RowInColumn[column] > 8

 7 then column  column – 1
 8 else if column < 8

 9 then column  column + 1

 10 RowInColumn[column]  0
 11 else draw chessboard using RowInColumn
 12 until column = 0

Each element of the array RowInColumn stores the row number of the queen in
the column given by its index, and equals 0 if there is none. The procedure
IsSafe(column,RowInColumn) returns true if a queen placed to the coordinates
(column,RowInColumn[column]) is not attacked by any of the queens in the
previous columns or is outside the chessboard, i.e., RowInColumn[column] > 8
here. In the latter case a backtracking step is needed in line 7.

Exercises

11 Write a pseudocode solving the warder’s problem: There is a prison having 100 cells all of which

are locked up. The warder is bored, and makes up the following game. He opens all cells, then

locks up every second, subsequently opens or locks up every third depending on its state, then

every forth, etc. Which cells are open by the end of the warder’s “game”.

12 Write the pseudocode of IsSafe(column,RowInColumn) used in the pseudocode of EightQueens.

A.E. Csallner - Selected Chapters from Algorithms

10

13 Let us suppose that there are 10 drivers at a car race. Write a pseudocode which lists all

possibilities of the first three places. Modify your pseudocode so that it works for any n drivers

and any first k(≤n) places. (We call this the k-permutation of n elements.)

14 Let us suppose we are playing a lottery game: we have 90 balls in a pot numbered from 1 to 90,

and we draw 5 of them. Write a pseudocode which lists all possible draws. Modify your

pseudocode so that it works for any n balls and any k(≤n) drawn of them. (We call this the k-

combination of n elements.)

Analysis of algorithms

After an algorithm is constructed ready to solve a given problem, two main

questions arise at once. The first is whether the method always gives a correct

result to the problem, and the second is how it manages the resources of a

computer while delivering this result. The answer to the first question is simple, it

is either “yes” or “no”, even if it is usually not easy to prove the validity of this

answer. Furthermore, the second question involves two fields of investigations:

that of the storage complexity and the time complexity of the algorithm.

Complexity of algorithms

Storage and time complexity are notions which express the amount of storage

and time the algorithm consumes depending on the size of the input. In order to

be able to interpret and compare functions describing this dependence, a piece of

the used storage or time is considered as elementary if it does not depend on the

size of the input. For instance, if we consider the problem of finding the minimum

as seen previously, then if the cardinality of the set to be examined is denoted by

n, the storage complexity turns out to be n+1, while the time complexity equals

n. How do we come to these results?

The storage complexity of the algorithm is n+1 because we need n elementary

storage places to store the elements to be examined, and we need one more to

store the actual minimum. (For the sake of simplicity here we are disregarding the

loop variable.) We do not use any unit of measurement since if an element

consists of 4 bytes, then (n+1) 4 bytes are needed in all, but if a single element

takes 256 bytes then it is (n+1) 256 bytes of storage that the algorithm occupies.

Therefore the algorithm’s tendency of storage occupation is n+1 independently

of the characteristics of the input type.

A.E. Csallner - Selected Chapters from Algorithms

11

Note that in reality the algorithm does not need to store all the elements at the

same time. If we modified it getting the elements one by one during execution,

the storage complexity would work out as 1.

The same methodology of analysis can be observed in calculating time complexity.

In our example it is n. Where does this come from? For the analysis of the

algorithm we will use the pseudocode of the method Minimum (page 5) (the

n=A.length notation is used here). Lines 1 and 2 are executed together and only

once so they can be considered as a single elementary algorithmic step due to our

definition above, i.e. the execution time of the first two lines does not depend on

the input’s size. The same holds for the body of the iteration construct in lines 4

through 6, which is executed n−1 times (from i=1 to i=n−1 when entering the

body). Hence the time complexity of the whole algorithm equals 1+(n−1)=n.

The asymptotic notation

If, for example two algorithmic steps can be considered as one, or even a series of

tens or hundreds of steps make up a single elementary step, the question arises

whether there is any sense in distinguishing between n and n+1. Since

n=(n−1)+1 while n+1=(n−1)+2, and we have just learned that it is all the same

whether we execute one or two steps after having taken n−1; n and n+1 seem to

denote the same complexity. This is exactly the reason for using asymptotic

notation which eliminates these differences and introduces a uniform notation for

the complexity functions.

Let us define the following set of functions. We say that a function f has the

asymptotic upper bound (or is asymptotically bounded from above by) g and we

denote this as 𝑓(𝑥) = 𝑂(𝑔(𝑥)) (correctly we should use the “set element of”

notation: 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥))) if

(∃𝐶, 𝑥0 > 0) (∀𝑥 ≥ 𝑥0) 0 ≤ 𝑓(𝑥) ≤ 𝐶 ∙ 𝑔(𝑥)

holds. The notation is called Landau (3) notation (or big O notation). The word

asymptotic is used here because the bounding property is fulfilled only from a

given threshold x0 upwards, and only applying a multiplier C for the bounding

function g. Using this definition all the functions 𝑓0(𝑛) = 𝑛, 𝑓1(𝑛) = 𝑛 + 1,

𝑓2(𝑛) = 𝑛 + 2, etc. are of 𝑂(𝑛) delivering the expected result, even a linear

function such as 𝑓(𝑥) = 3𝑥 − 2 is 𝑂(𝑛). However, it is easy to check that all linear

functions are of 𝑂(𝑛2) at the same time. This is no wonder because the O()

notation formulates only an asymptotic upper bound on the function f, and n and

A.E. Csallner - Selected Chapters from Algorithms

12

n2 are both upper bounds of n, although the latter one is not a tight bound. To

make this bound tight, we extend our definition for the same function to be also

a lower bound. We say that the function f asymptotically equals function g and we

denote this relation as 𝑓(𝑥) = 𝜃(𝑔(𝑥)) if

(∃𝑐, 𝐶, 𝑥0 > 0) (∀𝑥 ≥ 𝑥0) 0 ≤ 𝑐 ∙ 𝑔(𝑥) ≤ 𝑓(𝑥) ≤ 𝐶 ∙ 𝑔(𝑥)

holds. Certainly, in this case 𝑛 ≠ 𝜃(𝑛2) since no positive number c exists that

satisfies the inequality 𝑐 ∙ 𝑛2 ≤ 𝑛 for all natural numbers.

The notion of an asymptotic lower bound can be defined in a similar way, and the

notion of the proper version of asymptotic lower and upper bounds also exists but

we will use only the two defined above.

Formulating time complexity

When we use asymptotic notation, the algorithm for finding the minimum of n

elements has a time complexity of T(n)=O(n). A strange consequence of this

notation is that due to the formal definition time complexity of finding the

minimum of n numbers is the same as that of finding the minimum of 2n numbers,

i.e. T(2n)=O(n). Obviously, the execution of the algorithm would take twice as long

in practice. Nevertheless, the asymptotic notation delivers only the tendency of

the awaited time consumption, delivering this strange result. This means that if

the time complexity is O(n), i.e. linear in n, then having two, three or four times

more data, the algorithm will approximately run two, three and four times longer,

respectively. For instance, if an algorithm has T(n)=θ(n2) time complexity, this

means that increasing the size of its input to the double or triple, it will

approximately run four and nine times longer, respectively.

If we merge an algorithm’s groups of steps which are not repeated by a number

of repetitions depending on the input’s size, the time complexity can easily be

formulated. However, if the algorithm under consideration is recursive, this

problem can be far more difficult. Let us revisit the puzzle Towers of Hanoi

described on page 8. In the pseudocode the solution consists of only three steps,

however, the time complexity of the recursive calls in lines 2 and 4 is not explicitly

known. Moreover, we make the observation that the formula for the time

complexity of any recursive algorithm is itself recursive. In this case, if we take the

time complexity of the pseudocode line by line, the time complexity of the method

TowersOfHanoi is the following.

A.E. Csallner - Selected Chapters from Algorithms

13

𝑇(𝑛) = 1 + 𝑇(𝑛 − 1) + 1 + 𝑇(𝑛 − 1) = 2𝑇(𝑛 − 1) + 2 = 2𝑇(𝑛 − 1) + 1

The last equation looks weird from a mathematical point of view, but since this is

a time complexity function, any constant number of steps can be merged into one

single step.

The difficulty of calculating this function is due to the recurrence in it. In this

particular case it is not too hard to find the explicit formula 𝑇(𝑛) = 2𝑛 − 1 but in

general it is a very difficult, sometimes insoluble problem. A simple way of

determining the time complexity of a recursive algorithm, or at least giving an

asymptotic upper bound of it is using a recursion tree. The recursion tree of the

algorithm for the problem Towers of Hanoi is shown in Figure 3.

In the recursion tree we draw the hierarchic system of the recurrences as a tree

graph. Subsequently we calculate the effective number of algorithmic steps (in

n

n−1 1 n−1

n−2 1 n−2 n−2 1 n−2

1

2

4
1 1 1 1

1 1 1 1 2n − 1

2n−1

Figure 3. Recursion tree of the Towers of Hanoi puzzle

A.E. Csallner - Selected Chapters from Algorithms

14

this example the number of disks being moved is meant, denoted by shaded boxes

in Figure 3) for each level, i.e. “row of the tree”. At the end, these sums are

summarized, delivering the time complexity of the algorithm.

In our examples above the algorithms have always been supposed to work in one

way only. In other words, given n elements, the way of finding the minimum does

not depend on where we find it among the elements; or given n disks on one of

three rods, the way of moving the disks to another rod does not depend on

anything except for the initial number of disks. Nevertheless, there exist

algorithms where the procedure depends also on the quality of the input, not only

on the quantity of it. If the problem is to find a certain element among others (e.g.,

a person in a given list of names), then the operation of the algorithm can depend

on where the wanted person is situated in the list. Let us consider the easiest

search algorithm, the so-called linear search, taking the elements of the list one

by one until it either finds the wanted one or runs out of the list.

LinearSearch(A,w)

 1 i  0

 2 repeat i  i + 1
 3 until A[i] = w or i = A.Length
 4 if A[i] = w then return i
 5 else return NIL

The best case is obviously if we find the element at the first position. In this case

𝑇(𝑛) = 𝑂(1). Note that to achieve this result it is enough to assume to find w in

one of the first positions (i is a constant). The worst case is if it is found at either

the last place or if it isn’t found at all. Thus, the number of iterations in lines 2 and

3 of the pseudocode equals the number n of elements in the list, hence 𝑇(𝑛) =

𝜃(𝑛). In general, none of the two extreme cases occur very frequently but a kind

of average case operation happens. We think that this is when the element to be

found is somewhere in the middle of the list, resulting in a time complexity of

𝑇(𝑛) = (𝑛 + 1) 2⁄ = 𝜃(𝑛). Indeed, the average case time complexity is defined

using the mathematical notion of mean value taking all possible inputs’ time

complexities into consideration. Since on a finite digital computer the set of all

possible inputs is always a finite set, this way the mean value is unambiguously

defined. In our example if we assume that all possible input situations including

the absence of the searched element occur with the same probability this is the

following.

A.E. Csallner - Selected Chapters from Algorithms

15

𝑇(𝑛) =
1 + 2 + 3 + ⋯+ 𝑛 + 𝑛

𝑛 + 1
=

𝑛(𝑛 + 1) + 2𝑛

2(𝑛 + 1)
=

𝑛

2
+

𝑛

𝑛 + 1
≤

𝑛

2
+ 1 = 𝑂(𝑛)

Exercises

15 Prove that the function 𝑓(𝑥) = 𝑥3 + 2𝑥2 − 𝑥 is 𝜃(𝑥3).

16 Prove that the function 𝑓(𝑥) = 2𝑥2 − 3𝑥 + 2 is 𝑂(𝑥3) but is not 𝜃(𝑥3).

17 Prove that the time complexity of the Towers of Hanoi is 𝜃(2𝑛).

18 Prove that in the asymptotic notation 𝜃(log 𝑛) the magnitude of the function is independent

from the base of the logarithm.

19 Determine an upper bound on the time complexity of the algorithm called the Sieve of

Eratosthenes for finding all primes not greater than a given number n.

20 Determine the time complexity of the recursive algorithm for calculating the nth Fibonacci

number. Compare your result with the time complexity of the iterative method.

A.E. Csallner - Selected Chapters from Algorithms

16

Data Structures

Most algorithms need to store data, and except for some very simple examples,

sometimes we need to store a huge amount of data in structures which serve our

purposes best. Depending on the problem our algorithm solves, we might need

different operations on our data. And because there is no perfect data structure

letting all kinds of operation work fast, the appropriate data structure has to be

chosen for each particular problem.

Linear data structures

Arrays vs. linked lists

Arrays and linked lists are both used to store a set of data of the same type in a

linear ordination. The difference between them is that the elements of an array

follow each other in the memory or on a disk of the computer directly, while in a

linked list every data element (key) is completed with a link that points at the next

element of the list. (Sometimes a second link is added to each element pointing

back to the previous list element forming a doubly linked list.) Both arrays and

linked lists can manage all of the most important data operations such as

searching an element, inserting an element, deleting an element, finding the

minimum, finding the maximum, finding the successor and finding the

predecessor (the latter two operations do not mean finding the neighbors in the

linear data structure, but they concern the order of the base set where the

elements come from). Time complexity of the different operations (in the worst

case if different cases are possible) on the two different data structures is shown

in Table 1.

Arrays are easier to handle because the elements have a so-called direct-access

arrangement, which means they can be directly accessed knowing their indices in

constant time, whereas an element of a linked list can only be accessed indirectly

through its neighbor in the list finally resulting in a linear time complexity of access

in the worst case. On the other hand, an array is inappropriate if it has to be

modified often because the insertion and the deletion both have a time

complexity of 𝑂(𝑛) even in the average case.

A.E. Csallner - Selected Chapters from Algorithms

17

 Search Insert Delete Minimum Maximum Successor Predecessor

Array 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)

Linked

list

𝑂(𝑛) 𝑂(1) 𝑂(1) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)

Table 1. Time complexity of different operations on arrays and linked lists (worst case).

Representation of linked lists

Linked lists can be implemented using record types (struct or class) with pointers

as links if available in the given programming language but simple pairs of arrays

will do, as well (see later in this subsection). A linked list is a series of elements

each consisting of at least a key and a link. A linked list always has a head pointing

at the first element of the list (upper part of Figure 4). Sometimes dummy head

lists are used with single linked lists where the dummy head points at the leading

element of the list containing no key information but the link to the first proper

element of the list (lower part of Figure 4).

All kinds of linked lists can be implemented as arrays. In Figure 5 the dummy head

linked list of Figure 4 is stored as a pair of arrays. The dummy head contains the

index 3 in this example.

18 29 22

18 29 22

head

dummy head head

pointer

pointer

Figure 4. The same keys stored in a simple linked list and a dummy head linked list.

A.E. Csallner - Selected Chapters from Algorithms

18

The advantage of dummy head linked lists is that they promote the usage of

double indirection (red arrow in the lower part of Figure 4) by making it possible

to access the first proper element in a similar way like any other element. On the

other hand, double indirection maintains searching a position for an insertion or

a deletion. This way after finding the right position, the address of the preceding

neighbor is kept stored in the search pointer. For instance, if the element

containing the key 29 in Figure 4 is intended to be deleted, then the link stored

with the element containing 18 has to be redirected to point at the element

containing 22. However, using a simple linked list (upper part of Figure 4) the

address of 18 is already lost by the time 29 is found for deletion.

The following two pseudocodes describe the algorithm of finding and deleting an

element from a list on a simple linked list and a dummy head linked list,

respectively, both stored in a pair of arrays named key and link.

FindAndDelete(toFind,key,link)
 1 if key[link.head] = toFind

 2 then toDelete  link.head

 3 link.head  link[link.head]
 4 Free(toDelete,link)

 5 else toDelete  link[link.head]

 6 pointer  link.head

 7 while toDelete  0 and key[toDelete]  toFind

 8 do pointer  toDelete

 9 toDelete  link[toDelete]

 10 if toDelete  0

 11 then link[pointer]  link[toDelete]
 12 Free(toDelete,link)

Figure 5. A dummy head linked list stored in a pair of arrays. The dummy head is pointing at 3.
The head of the garbage collector list is pointing at 6.

 1 2 3 4 5 6 7 8

key 22 X 18 29

link 8 0 5 0 7 1 2 4

A.E. Csallner - Selected Chapters from Algorithms

19

Procedure Free(index,link) frees the space occupied by the element stored at

index. In lines 1-4 given in the pseudocode above the case is treated when the key

to be deleted is stored in the first element of the list. In the else clause beginning

in line 5 two pointers (indices) are managed, pointer and toDelete. Pointer

toDelete steps forward looking for the element to be deleted, while pointer is

always one step behind to enable it to link the element out of the list if once found.

The following realization using a dummy head list is about half as long as the usual

one. It does not need an extra test on the first element and does not need two

pointers for the search either.

FindAndDeleteDummy(toFind,key,link)

 1 pointer  link.dummyhead

 2 while link[pointer]  0 and key[link[pointer]]  toFind

 3 do pointer  link[pointer]

 4 if link[pointer]  0

 5 then toDelete  link[pointer]

 6 link[pointer]  link[toDelete]
 7 Free(toDelete,link)

Dummy head linked lists are hence more convenient to use for storing lists,

regardless of whether they are implemented with memory addresses or indices of

arrays.

In Figure 5 the elements seem to occupy the space randomly. Situations like this

often occur if several insertions and deletions are done continually on a dynamic

linked list stored as arrays. The problem arises where a new element should be

stored in the arrays. If we stored a new element at position 8, positions 1, 4 and 6

would stay unused, which is a waste of storage. Nevertheless, if after this a new

element came again, we would find no more free storage (position 9 does not

exist here). To avoid situations like these, a kind of garbage collector can be used.

This means that the unused array elements are threaded to a linked list, simply

using the index array link (in Figure 5 the head of this list is pointing at 6). Thus, if

a new element is inserted into the list, its position will be the first element of the

garbage list; practically the garbage list’s first element is linked out of the garbage

list and into the proper list (Allocate(link)) getting the new data as its key. On the

other hand, if an element is deleted, its position is threaded to the garbage list’s

beginning (Free(index,link)). Initially, the list is empty and all elements are in the

garbage list.

A.E. Csallner - Selected Chapters from Algorithms

20

The following two pseudocodes define the algorithms for Allocate(link) and

Free(index,link).

Allocate(link)
 1 if link.garbage = 0
 2 then return 0

 3 else new  link.garbage

 4 link.garbage  link[link.garbage]
 5 return new

If the garbage collector is empty (garbage = 0), there is no more free storage place

in the array. This storage overflow error is indicated by a 0 return value.

The method Free simply links in the element at the position indicated by index to

the beginning of the garbage collector.

Free(index,link)

 1 link[index]  link.garbage

 2 link.garbage  index

Stacks and queues

There are some data structures from which we require very simple operations.

The simplest basic data structures are stacks and queues. Both of them have only

two operations: putting an element in and taking one out, but these operations

have to work very quickly, i.e. they need to have constant time complexity. (These

two operations have extra names for stacks; push and pop, respectively.) The

difference between stacks and queues is only that while a stack always returns the

last element which was put into it (this principle is called LIFO = Last In First Out),

a queue delivers the oldest one every time (FIFO = First In First Out). An example

for stacks is the garbage collector of the previous subsection where the garbage

stack is implemented as a linked list. Queues are used in processor “pipelines”, for

instance, where instructions are waiting to be executed, and the one that has been

waiting most is picked up from the queue and executed next.

Both stacks and queues can be implemented using arrays or linked lists. If a stack

is represented with an array, an extra index variable is necessary to store where

the last element is. If a linked list is used, the top of the stack is at the beginning

of the list (no dummy head is needed). For the implementation of queues as linked

lists an extra pointer is defined to point at the last element of the list. Hence new

A.E. Csallner - Selected Chapters from Algorithms

21

elements can be put at the end of the list and picked up at the beginning, both in

constant time. If an array stores a queue, the array has to be handled cyclically

(the last element is directly followed by the first). This way it can be avoided to

come to the end of the array while having plenty of unused space at the beginning

of it.

For both stacks and queues two erroneous operations have to be handled:

underflow and overflow. Underflow happens if an element is intended to be

extracted from an empty data structure. Overflow occurs if a new element is

attempted to be placed into the data structure while there is no more free space

available.

The following pseudocodes implement the push and pop operations on a stack

stored in a simple array named Stack. The top of the stack index is stored in the

Stack object’s field top (in reality it can be the 0th element of the array, for

instance).

Push(key,Stack)
 1 if Stack.top = Stack.Length
 2 then return Overflow error

 3 else Stack.top  Stack.top + 1

 4 Stack[Stack.top]  key

If Stack.top is the index of the last element in the array, then the stack is full and

the overflow error is indicated by the returned value. The next pseudocode

indicates the underflow error in the same way. Note that in this case the value

indicating the error has to differ from all possible proper output values that can

normally occur (i.e. values that are stored in the stack).

Pop(Stack)
 1 if Stack.top = 0
 2 then return Underflow error

 3 else Stack.top  Stack.top − 1
 4 return Stack[Stack.top + 1]

The next two pseudocodes define the two basic operations on a queue stored in

a simple array. The beginning and the end of the queue in the array are

represented by two indices; Queue.end is the index of the last element, and

Queue.beginning is the index of the element preceding the queue’s first element

in a cyclic order (see Figure 6).

A.E. Csallner - Selected Chapters from Algorithms

22

The coding of the empty queue has to be planned thoughtfully. A good solution

can be to let the beginning be the index of the array’s last element (Length) and

end be 0. Hence a difference can be made between an empty and a full queue.

Enqueue(key,Queue)
 1 if Queue.beginning = Queue.end
 2 then return Overflow error
 3 else if Queue.end = Queue.Length

 4 then Queue.end  1

 5 else Queue.end  Queue.end + 1

 6 Queue[Queue.end]  key

Stepping cyclically in the array is realized in lines 3-5 in both of the pseudocodes

Enqueue and Dequeue.

Dequeue(Queue)
 1 if Queue.end = 0
 2 then return Underflow error
 3 else if Queue.beginning = Queue.Length

 4 then Queue.beginning  1

 5 else Queue.beginning  Queue.beginning + 1

 6 key  Queue[Queue.beginning]
 7 if Queue.beginning = Queue.end

 8 then Queue.beginning  Queue.Length

 9 Queue.end  0
 10 return key

In lines 7-10 the coding of the empty queue is restored if it was the last element

that has just been dequeued.

Figure 6. A possible storing of the sequence 16, 22, 24 and 66 in a queue coded in an array.

en
d

b
eg

in
n

in
g

 3 7

 1 2 3 4 5 6 7 8

Queue 22 24 66 16

A.E. Csallner - Selected Chapters from Algorithms

23

Exercises

21 Write a pseudocode that inserts a given key into a sorted linked list, keeping the order of the

list. Write both versions using simple linked lists and dummy head lists stored in a pair of arrays.

22 Write a pseudocode for both the methods push and pop if the stack is stored as a linked list

coded in a pair of arrays. Does it make sense to use garbage collection in this case? Does it make

sense to use a dummy head linked list? Why?

Hash tables

Many applications require a dynamic set that supports only the dictionary

operations insert, search, and delete. For example, a compiler that translates a

programming language maintains a symbol table, in which the keys of elements

are arbitrary character strings corresponding to identifiers in the language.

Direct-address tables

Direct addressing is a simple technique that works well when the universe 𝑈 of

keys is reasonably small. Suppose that an application needs a dynamic set in which

each element has a key drawn from the universe 𝑈, where |𝑈| is not too large.

We shall assume that no two elements have the same key.

To represent the dynamic set, we use an array, or direct-address table, denoted

by 𝑇 of the same size as 𝑈, in which each position, or slot, corresponds to a key in

the universe 𝑈. For example if 𝑈 = {1,2,… ,10}, and from the universe 𝑈 the keys
{2,5,7,8} are stored in the direct-address table, then each key is stored in the slot

with the corresponding index, i.e. the key 2 is stored in 𝑇[2], 5 in 𝑇[5], etc. The

remaining slots are empty (e.g. they store a NIL value). It is similar to a company’s

parking garage, where every employee has its own parking place (slot). Obviously,

all three operations can be performed in 𝑂(1), namely in constant time.

Exercises

23 Suppose that a dynamic set 𝑆 is represented by a direct-address table 𝑇 of length 𝑚. Describe

a procedure that finds the maximum element of 𝑆. What is the worst-case performance of your

procedure?

24 A bit vector is simply an array of bits (0s and 1s). A bit vector of length 𝑚 takes much less space

than an array of 𝑚 numbers. Describe how to use a bit vector to represent a dynamic set of

distinct elements. Dictionary operations should run in constant time.

A.E. Csallner - Selected Chapters from Algorithms

24

Hash tables

The downside of direct addressing is obvious: if the universe 𝑈 is large, storing a

table 𝑇 of size |𝑈| may be impractical, or even impossible, given the memory

available on a typical computer. Furthermore, the set 𝐾 of keys actually stored

may be so small relative to 𝑈 that most of the space allocated for 𝑇 would be

wasted. In our parking garage example, if the employees of the firm work in shifts,

then there might be many employees in all, still only a part of them uses the

parking garage concurrently.

With direct addressing, an element with key 𝑘 is stored in slot 𝑘. With hashing,

this element is stored in slot ℎ(𝑘); that is, we use a so-called hash function ℎ to

compute the slot of the key 𝑘. Here, ℎ maps the universe 𝑈 of keys into the slots

of a hash table 𝑇:

ℎ: 𝑈 → {1,2,… , |𝑇|},

where the size of the hash table is typically much less than |𝑈|. We say that an

element with key 𝑘 hashes to slot ℎ(𝑘); we also say that ℎ(𝑘) is the hash value of

key 𝑘.

There is one hitch: two keys may hash to the same slot. We call this situation a

collision. Fortunately, we have effective techniques for resolving the conflict

created by collisions.

Of course, the ideal solution would be to avoid collisions altogether. We might try

to achieve this goal by choosing a suitable hash function ℎ. Because |𝑈| > |𝑇|,

however, there must be at least two keys that have the same hash value; avoiding

collisions altogether is therefore impossible.

Collision resolution by chaining

In chaining, we place all the elements that hash to the same slot into the same

linked list, as Figure 7 shows. Slot j contains a pointer to the head of the list of all

stored elements that hash to 𝑗; if there are no such elements, slot 𝑗 contains NIL.

A.E. Csallner - Selected Chapters from Algorithms

25

How fast are the operations if chaining is used? Insertion takes obviously constant

time by inserting the key 𝑘 as the new leading element of the linked list of slot

ℎ(𝑘). Note, that this is only possible if it is sure that 𝑘 is not already present in the

hash table. Otherwise, we have to search for 𝑘 first. The same is true for deletion.

If we know the position (i.e. the address) of key 𝑘 to be deleted, then it simply has

to be linked out of its list. Otherwise, we have to find it first. The question remains

how long it takes to search for an element in a hash-table. Assuming that

calculating the hash function ℎ takes constant time the time complexity of finding

an element in an unsorted list depends mainly on the length of the list.

The worst-case behavior of hashing with chaining is terrible: all |𝑈| keys hash to

the same slot. The worst-case time for searching is thus not better than if we used

one linked list for all the elements.

The average-case performance of hashing depends on how well the hash function

ℎ distributes the set of keys to be stored among the slots, on the average. Therefor

we shall assume that any given element is equally likely to hash into any of the

slots, independently of where any other element has hashed to. We call this the

assumption of simple uniform hashing. Let us define the load factor 𝛼 for 𝑇 as
|𝑈|/|𝑇|. Due to the simple uniform hashing assumption the expected value of a

single chain’s length in our hash table equals 𝛼. If we add the constant time of

calculating the hash function ℎ, we have the average case of operations of a hash

table as 𝑂(1 + 𝛼). Thus, if we assume that |𝑈| = 𝑂(|𝑇|), i.e. 𝑈 is only linearly

Figure 7. Collision resolution by chaining. Each hash-table slot 𝑻[𝒋] contains a linked list of
all the keys whose hash value is 𝒋. For example, 𝒉(𝒌𝟏) = 𝒉(𝒌𝟒) and 𝒉(𝒌𝟓) = 𝒉(𝒌𝟐) =
𝒉(𝒌𝟕). The linked list can be either singly or doubly linked; we show it as doubly linked

because deletion is faster that way.

A.E. Csallner - Selected Chapters from Algorithms

26

bigger than 𝑇, then the operations in a hash table can be reduced to an average

time complexity of 𝑂(1).

But how does a good hash function look like? The simplest way to create a hash

function fulfilling the simple uniform hashing is using the so-called division

method. We assume that the keys are coded with the natural numbers ℕ =
{0,1,2,… , |𝑈| − 1}, and define the hash function as follows: for any key 𝑘 ∈ 𝑈 let

ℎ(𝑘) = 𝑘 mod |𝑇|. Another solution is if the keys 𝑘 are random real numbers

independently and uniformly distributed in the range 0 ≤ 𝑘 < 1, then the hash

function can be defined as ℎ(𝑘) = ⌊𝑘 ∙ |𝑇|⌋. This satisfies the condition of simple

uniform hashing, as well.

Exercises

25 Demonstrate what happens when we insert the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 into a hash

table with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be

ℎ(𝑘) = 𝑘 mod 9.

26 Professor Marley hypothesizes that he can obtain substantial performance gains by modifying

the chaining scheme to keep each list in sorted order. How does the professor’s modification

affect the running time for successful searches, unsuccessful searches, insertions, and

deletions?

27 Suppose that we are storing a set of 𝑛 keys into a hash table of size 𝑚. Show that if the keys are

drawn from a universe U with |𝑈| > 𝑛𝑚, then 𝑈 has a subset of size 𝑛 consisting of keys that

all hash to the same slot, so that the worst-case searching time for hashing with chaining is

𝜃(𝑛).

Binary search trees

All structures above in this section are linear, preventing some basic operations

from providing better time complexity results in the worst case than n (the

number of stored elements). Binary search trees have another structure.

A.E. Csallner - Selected Chapters from Algorithms

27

Binary search trees are rooted trees (trees are cycleless connected graphs), i.e.

one of the vertices is named as the root of the tree. A rooted tree is called binary

if one of the following holds. It is either empty or consists of three disjoint sets of

vertices: a root and the left and right subtrees, respectively, which are themselves

binary trees. A binary tree is called a search tree if a key is stored in each of its

vertices, and the binary search tree property holds, i.e. for every vertex all keys in

its left subtree are less and all in its right subtree are greater than the key stored

in it. Equality is allowed if equal keys can occur.

The vertices of binary trees can be classified into levels depending on their

distance from the root (distance is the number of edges on the path) hence the

root alone constitutes the 0th level. For instance in Figure 8 the vertex containing

the number 29 is at level 3. The depth of a binary tree (sometimes also called

height) is the number of the deepest level. Furthermore a vertex directly

preceding another on the path starting at the root is called its parent, and the

vertex following its parent directly is called child. The two children of the same

vertex are called twins or siblings. A vertex without children is a leaf.

Binary search trees can be represented with dynamic data structures similar to

doubly linked lists but in this case every tree element (vertex) is accompanied by

three links, two for the left and the right child, respectively, and one for the

parent.

Figure 8. A binary search tree.

36

41 22

18 34

29

58

43 67

A.E. Csallner - Selected Chapters from Algorithms

28

Binary search tree operations

For a binary search tree, the following operations are defined: walk (i.e. listing),

search, minimum (and maximum), successor (and predecessor), insert, delete.

In a linear data structure it is no question which the natural order of walking the

elements is. However, a binary tree has no such obvious order. A kind of tree walk

can be defined considering the binary tree as a triple consisting of the root and its

two subtrees. The inorder tree walk of a binary tree is defined recursively as

follows. First we walk the vertices of the left subtree using an inorder tree walk,

then visit the root, and finally walk the right subtree using an inorder walk again.

There are so-called preorder and postorder tree walks, which differ from the

inorder only in the order of how these three, well-separable parts are executed.

In the preorder case the root is visited first before the two subtrees are walked

recursively, and in the postorder algorithm the root is visited last. It is easy to

check that in a binary search tree the inorder tree walk visits the vertices in an

increasing order regarding the keys. This comes from the simple observation that

all keys visited prior to the root of any subtree are less than the key of that root,

whilst any key visited subsequently is greater.

The pseudocode of the recursive method for the inorder walk of a binary tree is

the following. It is assumed that the binary tree is stored in a dynamically allocated

structure of objects where Tree is a pointer to the root element of the tree.

InorderWalk(Tree)

 1 if Tree  NIL
 2 then InorderWalk(Tree.Left)
 3 visit Tree, e.g. check it or list it
 4 InorderWalk(Tree.Right)

The tree search highly exploits the special order of keys in binary search trees.

First it just checks the root of the tree for equality with the searched key. If they

are not equal, the search is continued at the root of either the left or the right

subtree, depending on whether the searched key is less than or greater than the

key being checked. The algorithm stops if either it steps to an empty subtree or

the searched key is found. The number of steps to be made in the tree and hence

the time complexity of the algorithm equals the depth of the tree in worst case.

The following pseudocode searches key toFind in the binary search tree rooted at

Tree.

A.E. Csallner - Selected Chapters from Algorithms

29

TreeSearch(toFind,Tree)

 1 while Tree  NIL and Tree.key  toFind
 2 do if toFind < Tree.key

 3 then Tree  Tree.Left

 4 else Tree  Tree.Right
 5 return Tree

Note that the pseudocode above returns with NIL if the search was unsuccessful.

The vertex containing the minimal key of a tree is the leftmost leaf of it (to check

this simply let us try to find it using the tree search algorithm described above).

The algorithm for finding this vertex simply keeps on stepping left starting at the

root until it arrives at an absent left child. The last visited vertex contains the

minimum in the tree. The maximum is symmetrically on the other side of the

binary search tree, it is the rightmost leaf of it. Both algorithms walk down in the

tree starting at the root so their time complexity is not more than the depth of the

tree.

TreeMinimum(Tree)

 1 while Tree.Left  NIL

 2 do Tree  Tree.Left
 3 return Tree

To find the successor of a key stored in a binary search tree is a bit harder problem.

While, for example, the successor 41 of key 36 in Figure 8 is its right child, the

successor 29 of 22 is only in its right subtree but not a child of it, and the successor

36 of 34 is not even in one of its subtrees. To find the right answer we have to

distinguish between two basic cases: when the investigated vertex has a

nonempty right subtree, and when it has none. To define the problem correctly:

we are searching the minimal key among those greater than the investigated one;

this is the successor. If a vertex has a nonempty right subtree, then the minimal

among the greater keys is in its right subtree, furthermore it is the minimum of

that subtree (line 2 in the pseudocode below). However, if it has none, then the

searched vertex is the first one on the path leading upwards in the tree starting at

the investigated vertex which is greater than the investigated one. At the same

time this is the first vertex we arrive at through a left child on this path. In lines 4-

6 of the following pseudocode the algorithm keeps stepping upwards until it either

finds a parent-left child relation, or runs out of the tree at the top (this could only

happen if we tried to find the successor of the greatest key in the tree, which

A.E. Csallner - Selected Chapters from Algorithms

30

obviously does not exist; in this case a NIL value is returned). Parameter Element

in the following pseudocode contains the address of the key’s vertex whose

successor is to be found.

TreeSuccessor(Element)

 1 if Element.Right  NIL
 2 then return TreeMinimum(Element.Right)

 3 else Above  Element.Parent

 4 while Above  NIL and Element = Above.Right

 5 do Element  Above

 6 Above  Above.Parent
 7 return Above

Since in both cases we walk in just one direction in the tree (downwards or

upwards), the time complexity equals the depth of the tree in worst case. Finding

the predecessor of a key results simply in the mirror images of the search paths

described above. Hence changing the words “minimum” and “right” to

“maximum” and “left” in the pseudocode results in the algorithm finding the

predecessor.

The principle of inserting a new vertex into a binary search tree is the same as

when we try to search for the new key. As soon as we find the place where the

new key should be, it is linked into the tree as a new leaf. For this reason we say

that a binary search tree is always grown at its leaf level. Since the time complexity

of the tree search equals the depth of the tree in worst case, so does the insertion

of a new element.

The procedure of deleting an element from a known position in a binary search

tree depends on the number of its children. If it has no children at all, i.e. it is a

leaf, the vertex is simply deleted from the data structure (lines 1-8 of the

pseudocode TreeDelete). If it has only one child (as e.g. key 41 in Figure 8), the

tree’s structure resembles a linked list locally: the vertex to be deleted has just

one vertex preceding it (its parent) and another following it (the only child of it).

Thus we can link it out of the data structure (lines 9-18 if the left child is missing

and lines 19-28 if the right child is missing in the pseudocode TreeDelete). The

most sophisticated method is needed in the case when the vertex to be deleted

has two children. The problem is solved using a subtle idea: instead of rearranging

the tree’s structure near the place where the vertex has been deleted, the

structure is preserved by substituting the deleted vertex by another one from the

A.E. Csallner - Selected Chapters from Algorithms

31

tree, which can easily be linked out from its previous position and contains an

appropriate key for its new position. A good decision is the successor or the

predecessor of the key to be deleted; on one hand it can easily be linked out

because it has one child at most, on the other hand it is the nearest key to the

deleted one in the considered order of keys. (You can check each step in the

pseudocode below. The tree successor is taken as a substitute in line 30. In lines

31-35 the substitute is linked out from its present position, and in lines 36-45 it is

linked into its new position, i.e. where the deleted element has been till now.)

The pseudocode given below is redundant, its verbosity serves better

understanding.

TreeDelete(Element,Tree)
 1 if Element.Left = NIL and Element.Right = NIL
 2 then if Element.Parent = NIL

 3 then Tree  NIL
 4 else if Element = (Element.Parent).Left

 5 then (Element.Parent).Left  NIL

 6 else (Element.Parent).Right  NIL
 7 Free(Element)
 8 return Tree

 9 if Element.Left = NIL and Element.Right  NIL
 10 then if Element.Parent = NIL

 11 then Tree  Element.Right

 12 (Element.Right).Parent  NIL

 13 else (Element.Right).Parent  Element.Parent
 14 if Element = (Element.Parent).Left

 15 then (Element.Parent).Left  Element.Right

 16 else (Element.Parent).Right  Element.Right
 17 Free(Element)
 18 return Tree

 19 if Element.Left  NIL and Element.Right = NIL
 20 then if Element.Parent = NIL

 21 then Tree  Element.Left

 22 (Element.Left).Parent  NIL

 23 else (Element.Left).Parent  Element.Parent
 24 if Element = (Element.Parent).Left

 25 then (Element.Parent).Left  Element.Left

 26 else (Element.Parent).Right  Element.Left

A.E. Csallner - Selected Chapters from Algorithms

32

 27 Free(Element)
 28 return Tree

 29 if Element.Left  NIL and Element.Right  NIL

 30 then Substitute  TreeSuccessor(Element)

 31 if Substitute.Right  NIL

 32 then (Substitute.Right).Parent  Substitute.Parent
 33 if Substitute = (Substitute.Parent).Left

 34 then (Substitute.Parent).Left  Substitute.Right

 35 else (Substitute.Parent).Right  Substitute.Right

 36 Substitute.Parent  Element.Parent
 37 if Element.Parent = NIL

 38 then Tree  Substitute
 39 else if Element = (Element.Parent).Left

 40 then (Element.Parent).Left  Substitute

 41 else (Element.Parent).Right  Substitute

 42 Substitute.Left  Element.Left

 43 (Substitute.Left).Parent  Substitute

 44 Substitute.Right  Element.Right

 45 (Substitute. Right).Parent  Substitute
 46 Free(Element)
 47 return Tree

The time complexity issues of the deletion are the following. If a leaf is deleted, it

can be done in constant time. A vertex with only one child can be linked out in

constant time, too. If the element has two children, the successor or the

predecessor of it has to be found and linked into its place. Finding the successor

or predecessor does not cost any more steps than the depth of the tree as seen

earlier, hence after completing some pointer assignment instructions in constant

time we have a time complexity proportional to the depth of the tree at most.

Summarizing the results for the time complexity of the operations that are usually

executed on binary search trees, we find that all have the time complexity 𝑇(𝑛) =

𝑂(𝑑) where d denotes the depth of the tree. But how does d depend on n? It can

be proven that the depth of any randomly built binary search tree on n distinct

keys is 𝑑 = 𝑂(log 𝑛) (4). (Note that the base of the logarithm in the formula is

inessential since changing the base is equivalent to a multiplication by a constant

that does not influence the asymptotic magnitude, see Exercise 18 on page 15).

This means that all the basic operations on a binary search tree run in 𝑇(𝑛) =

𝑂(log 𝑛) time.

A.E. Csallner - Selected Chapters from Algorithms

33

Binary search

If the data structure is not intended to be extended or to be deleted from

frequently, then the keys can be stored simply in an ordered array. Such

operations as minimum, maximum, successor and predecessor are obvious on

ordered arrays, moreover, they run in constant time. Search can be made in a

similar way as in binary search trees, obtaining the same 𝑇(𝑛) = 𝑂(log 𝑛) time in

the worst case. Let us imagine our array is a coding of a binary tree where the

root’s key is stored in the central element of the array, and the left and right

subtrees’ keys in the first and second half of it, respectively, in a similar way. The

so-called binary search can be implemented using the following pseudocode. It

returns the index of the searched key in the array, and zero if it was not found.

BinarySearch(A,key)

 1 first  1

 2 last  A.Length
 3 while first ≤ last

 4 do central  (first + last) / 2
 5 if key = A[central]
 6 then return central
 7 else if key < A[central]

 8 then last  central – 1

 9 else first  central + 1
 10 return 0

The binary search algorithm can also be implemented easily with a recursive code.

In practice, however, if the same problem can be solved recursively and in a

straightforward way with similar difficulty at the same time, then it is always

decided to use the straightforward one contrary to using recurrence because of

the time consuming administrative steps arising when running recursive codes.

Exercises

28 Write the pseudocode of TreeInsert(Element,Tree) that inserts Element into the binary search

tree rooted at Tree.

A.E. Csallner - Selected Chapters from Algorithms

34

Sorting

The problem of sorting is the following. A set of input data has to be sorted using

an order defined on the base set of the input. A simple example is to arrange a list

of names in an alphabetical order. In this example the order of strings (texts) is

the so-called lexicographical order. This means that if a sequence consists of

symbols having a predefined order themselves (the letters of the alphabet here

certainly have), then an order can be defined on such sequences in the following

way. We first compare the first symbols (letters); if they are equal, then the second

ones, etc. Hence the first difference determines the relation of the two sequences

considered.

The problem of sorting is easy to understand but the solution is not obvious.

Furthermore, plenty of algorithms exist to solve it, hence it is an appropriate

subject for investigating algorithms and algorithmic properties. In the following

we are going to study some of them.

Insertion sort

One of the simplest sorting algorithms is insertion sort. Its principle can be

explained through the following example. Let us imagine we are carrying a stack

of paper in which the sheets have a fixed order. Suddenly we drop the stack and

we have to pick the sheets up to reconstruct the original order. The method that

most people use for this is insertion sort. We do not have any task with the first

sheet, we simply pick it up. When we have at least one sheet in our hands, the

algorithm turns the sheets in our hands one by one starting from the end or from

the beginning searching for the correct place of the new sheet. If the position is

found, the new sheet is inserted there.

The algorithm is very flexible; it can be implemented by using both dynamic

storage (linked lists) without direct access possibility, and arrays. It can be used

on-line (an algorithm is called on-line if it delivers the solution to subproblems

arising at every stage of execution underway, while it is off-line if it needs the

whole input data set prior to execution), since after each step the keys that are

already inserted form an ordered sequence. A possible implementation of the

insertion sort on arrays is given in the following pseudocode. Array A is divided

into the sorted front part and the unsorted rear part by variable i; i stores the

index of the unsorted part’s first key. Variable ins stores the next key to be moved

from the unsorted part to the sorted part. Variable j steps backwards in the sorted

A.E. Csallner - Selected Chapters from Algorithms

35

part until either the first element is passed (ins is the least key found until now) or

the place of insertion is found earlier. In the last line ins is inserted.

InsertionSort(A)

 1 for i  2 to A.Length

 2 do ins  A[i]

 3 j  i – 1
 4 while j > 0 and ins < A[j]

 5 do A[j + 1]  A[j]

 6 j  j – 1

 7 A[j + 1]  ins

The time complexity of the algorithm depends on the initial order of keys in the

input. If after each iteration of the while loop ins can be inserted at the end of the

sorted part, i.e. the while loop’s body is not executed at all, the time complexity

of the while loop is constant. Thus, the whole time complexity equals 𝑇(𝑛) = 1 +

1 + ⋯+ 1 = 𝑛 − 1 = 𝜃(𝑛). This is the best case, and it occurs if the keys are

already ordered in the input. If, on the other hand, the while loop has to search

through the whole sorted part in each iteration of the for loop yielding a time

complexity i for the i th iteration, the time complexity of the whole algorithm will

be 𝑇(𝑛) = 2 + 3 + ⋯+ 𝑛 = 𝑛(𝑛 + 1) 2 − 1 =⁄ 𝜃(𝑛2). The difference between

this worst and the best case is significant. In practice the most important result is

the average case time complexity telling us what can be expected in performance

in most of the cases.

For the insertion sort the best case occurs if only one of the sorted part’s keys has

to be examined, while the worst case means searching through the whole sorted

part for the insertion point. On average we can insert ins somewhere in the middle

of the sorted part consisting of i elements in the i th iteration resulting in 𝑇(𝑛) =

2 2⁄ + 3 2⁄ + ⋯+ 𝑛 2⁄ = (𝑛(𝑛 + 1) 2⁄ − 1) 2⁄ = 𝜃(𝑛2) time complexity, which

is not better asymptotically than the worst case.

Exercises

29 Demonstrate how insertion sort works on the following input: (5, 1, 7, 3, 2, 4, 6).

30 What kind of input yields a best case and which a worst case behavior for the insertion sort?

Give examples.

31 A sorting algorithm is called stable if equal keys keep their order. Is insertion sort stable?

A.E. Csallner - Selected Chapters from Algorithms

36

Merge sort

Merge sort (also known as comb sort) is a typical example for the so-called divide-

and-conquer strategy. The idea is to halve the set of elements first and let the

arising two halves be sorted recursively, subsequently the two presorted parts are

merged. Obviously the algorithm is recursive and so is the function of its time

complexity. However, it is worth investigating. The recursion tree of the algorithm

looks as follows.

Merging n elements costs n steps, and this is all what has to be done at that level.

Because every level of the recursion tree costs n altogether, the question remains:

how many levels does the tree have? The answer to this question is: as many as

many times n has to be halved to decrease to 1. Thus, solving 𝑛 2ℓ = 1⁄ for ℓ we

have 𝑇(𝑛) = 𝜃(𝑛 ∙ log 𝑛). It can be proven that for comparison sorts (i.e. sorting

algorithms working using pair comparisons only) this time complexity is a lower

bound, in other words, merge sort’s worst case speed is optimal.

n

n/2 n/2

n/4 n/4 n/4 n/4

2(n/2)

1 1 1 1 n

n∙log n

n

4(n/4)

Figure 9. Recursion tree of the merge sort

A.E. Csallner - Selected Chapters from Algorithms

37

Unfortunately, merge sort is not in-place (a sorting algorithm is called in-place

sorting if it does not need any auxiliary storage of a size comparable to the size of

the input; e.g. if another array with the same number of elements as the input is

needed, the algorithm is not in-place) but it has more than one implementation

to keep its storage handling simple and relatively efficient.

Exercises

32 Demonstrate how merge sort works on the following input: (4, 2, 8, 1, 6, 7, 3, 5).

33 Write a pseudocode implementing merge sort.

Heapsort

Although heapsort is a well-known and theoretically very efficient sorting

algorithm indeed, this is not the only reason why it is worth studying. It also uses

a special data structure called heap, which is appropriate for several other

problems in algorithm theory.

Heaps

An array A can be considered as a heap if for all of its elements inequalities 𝐴[𝑖] ≥

𝐴[2𝑖] and 𝐴[𝑖] ≥ 𝐴[2𝑖 + 1] hold (this pair of inequalities constitutes the so-called

heap property). To be able to imagine what this means, we will fill in the elements

of the array into a binary tree structure row by row; the first element will be the

root, the following two elements one after the other will form the first level, the

next four elements the second level, etc. (see an example in Figure 10).

The heap property in the binary tree means that every element’s key is not less

than any of its children’s.

8 7 5 1 6 3

1 2 3 4 5 6
8

7 5

3 1 6

1

2 3

4 5 6

Figure 10. Equivalent coding of a heap in an array and in a binary tree
structure.

A.E. Csallner - Selected Chapters from Algorithms

38

A heap is a special data structure supporting the implementation of priority

queues, which support only the operations insert, maximum (or minimum) and

extract maximum (or extract minimum). (The variants in parentheses presume a

so-called minimum heap, which is defined with a similar heap property with

reverse inequalities.)

Before an array can be used as a heap, the order of its elements might be modified

to fulfill the heap property, i.e. we have to build a heap. First let us consider the

obvious case when only the root’s key may infringe the heap property. In this case

we sink it to a position where it fits in the following way (the pseudocode below

sinks the key at index k in the array to a proper position). First we compare it with

its children (lines 1-5 in the pseudocode). If it is the greatest, we are done.

Otherwise we exchange it for the greatest of them and carry on this procedure

(lines 7-8). At the end the key that was originally situated in the root arrives at a

place where it fulfills the heap property.

Sink(k,A)
 1 if 2*k ≤ A.HeapSize and A[2*k] > A[k]

 2 then greatest  2*k

 3 else greatest  k
 4 if 2*k + 1 ≤ A.HeapSize and A[2*k + 1] > A[greatest]

 5 then greatest  2*k + 1

 6 if greatest  k
 7 then Exchange(A[greatest],A[k])
 8 Sink(greatest,A)

To mend all elements of the array this way, we begin from the last array element

having any children in the binary tree representation (its index is obviously 𝑛 2⁄

where n denotes the number of keys) and do the sinking procedure for all

elements backwards from it in the array (direction root). Because we move

upwards in the tree, by the time a given element is visited all the elements in its

subtrees have already been mended. Hence the sinking procedure can be applied

to mending all elements using this order.

BuildHeap(A)

 1 A.HeapSize  A.Length

 2 for k  A.Length / 2 downto 1
 3 do Sink(k,A)

A.E. Csallner - Selected Chapters from Algorithms

39

What is the time complexity of building a heap of an unordered array consisting

of n elements? An upper bound comes right from the observation that sinking any

element of the tree cannot cost more than the whole tree’s depth, which is

𝑂(log 𝑛) for heaps. Since 𝑛 2⁄ elements have to be sunk, an upper bound for the

time complexity of building a heap is 𝑇(𝑛) = 𝑛 2⁄ ∙ 𝑂(log 𝑛) = 𝑂(𝑛 log 𝑛).

However, it can be proven that although this bound is correct, the tight bound

equals 𝑇(𝑛) = 𝜃(𝑛), thus a heap can be built in linear time.

To find the maximum in a heap we need only constant time, i.e. 𝑇(𝑛) = 𝑂(1),

because due to the heap property the greatest key is always stored in the root

element.

To extract the maximum from a heap we first read out the key of the root and

then delete the root element by replacing it with the last element of the array. To

mend the heap we call the sinking procedure for the root. The time complexity of

extracting the maximum is hence 𝑇(𝑛) = 𝑂(log 𝑛), the depth of the tree.

Exercises

34 Write the pseudocode ExtractMaximum(A) if A is assumed to be an array coded heap.

35 Demonstrate how a heap is built from the following input: (3, 1, 7, 5, 9, 6, 4, 8, 2).

Sorting in a heap

Heaps also provide a convenient tool for sorting elements. The idea is very simple.

After building a heap from the input array the first and the last elements are

exchanged. Since the leading element of an array coding a heap is the maximum,

the greatest key is hence put into its final position and this last element of the

array is excluded from the heap. The remaining part is mended by sinking the new

root because this is the only element infringing the heap property. After mending

the heap the first element is exchanged for the last one in the new, shorter heap

effecting the second greatest element of the original array to come to its final

position too. If we iterate this procedure till the heap’s size decreases to 1, the

array becomes sorted.

A.E. Csallner - Selected Chapters from Algorithms

40

HeapSort(A)
 1 BuildHeap(A)

 2 for k  A.Length downto 2
 3 do Exchange(A[1],A[A.HeapSize])

 4 A.HeapSize  A.HeapSize – 1
 5 Sink(1,A)

The time consumption of the heapsort aggregates from the time complexities of

building a heap and iteratively exchanging and sinking elements resulting in

𝑇(𝑛) = 𝑂(𝑛) + (𝑛 − 1) ∙ 𝑂(log 𝑛) = 𝑂(𝑛) + 𝑂(𝑛 log 𝑛) = 𝑂(𝑛 log 𝑛). This

means that the heapsort algorithm is optimal. Moreover it is an in-place sorting.

Exercises

36 Demonstrate how a heapsort works on the following input: (3, 1, 7, 5, 9, 6, 4, 8, 2).

37 Is heapsort a stable sorting algorithm (see Exercise 31 on page 35)?

Quicksort

Although heapsort is in-place and has an optimal asymptotic time complexity

among sorting algorithms, with small size inputs it is not very efficient because of

the relatively expensive heap building at the beginning of it. Quicksort is much

worse in the worst case, still it performs better on real-life size problems in the

average case.

Partition algorithm

Quicksort (5) uses a partition algorithm that, roughly speaking, puts the small keys

in an array at the beginning and the large keys at the end of the array in-place in

linear time. Because this algorithm is used by other algorithms, too, it is treated

separately here.

First, let us choose any element of the array, which will be the so-called pivot key.

Keys not greater than the pivot key will be considered as small and those not

smaller will be the large keys. To arrange the elements following the rule above,

loops are started from both the beginning and from the end of the array. Every

time a large key is found in the first part of the array and a small key in the second

part they are exchanged. The procedure ends if the indices of the two loops meet.

The meeting point’s index indicating the border between the small and the large

elements is then returned by the method.

A.E. Csallner - Selected Chapters from Algorithms

41

Partition(A,first,last)

 1 left  first – 1

 2 right  last + 1

 3 pivotKey  A[RandomInteger(first,last – 1)]
 4 repeat

 5 repeat left  left + 1
 6 until A[left] ≥ pivotKey

 7 repeat right  right – 1
 8 until A[right] ≤ pivotKey
 9 if left < right
 10 then Exchange(A[left],A[right])
 11 else return right
 12 until false

The time complexity of this algorithm is obviously 𝑇(𝑛) = 𝜃(𝑛) since every n

element of the array is visited by exactly one of the two loops.

Note that there is no guarantee for a good balance between the size of the two

parts. It can occur that the array is halved but either of the parts can even consist

of only one element. How the algorithm proceeds depends on the choice of the

pivot key; if it is too small, the second part will be very long, and if it is two large,

then the first part gets long. Unfortunately, to find a good pivot element is not

easy. To avoid consistent unbalanced output on certain series of inputs, the pivot

element is chosen randomly in general.

Exercises

38 Demonstrate how the partition algorithm works on the following input: (4, 1, 9, 3, 7, 8, 2, 5, 6).

Try to use different elements as the pivot key.

39 What does the partition algorithm do if all keys in the input array are the same?

Sorting with quicksort

Quicksort is the most widely used sorting algorithm. It executes the divide-and-

conquer principle in a very simple but efficient way. It calls the partition algorithm

for the input array and then calls itself to the two parts provided by the partition.

The size of the occurring subarrays constitutes the base criterion; if an array

consists of only one single element, it is already sorted so no further sorting of it

is needed.

A.E. Csallner - Selected Chapters from Algorithms

42

The time complexity of quicksort highly depends on the balance of the partitions.

If the partition algorithm can halve the arrays occurring during the execution of

the sorting algorithm, the recursion tree will look like that of the merge sort seen

in Figure 9, and since the partition algorithm’s time complexity is linear like that

of merging in merge sort, the time complexity of the sorting itself will be 𝑇(𝑛) =

𝜃(𝑛 log𝑛), as well. This is the best case.

However, if the partitions are unbalanced, e.g. at each step one of the parts

contains only one element, the recursion tree will look like Figure 11 resulting in

a quadratic time complexity 𝑇(𝑛) = 𝑛 ∙ (𝑛 + 1) 2⁄ = 𝜃(𝑛2). This is the worst

case.

It is not easy to prove that quicksort is as good in the average case as in the best

case. However, to have an idea about how quicksort works in the special case

when the balance of the occurring parts of partition is not worse than a given fixed

ratio, we investigate this case in details. Therefore, let us assume that in none of

the executions of the partition algorithm during quicksorting will be the ratio of

n

1 n−1

1 n−2

n−1

1 1 0

n∙(n+1) / 2

n

n−2

Figure 11. Recursion tree of the quicksort in worst case.

A.E. Csallner - Selected Chapters from Algorithms

43

the size of the occurring two parts worse than (1 − 𝜆): 𝜆 for a given 𝜆 ∈]0,1[(we

shall refer to this later as the 𝝀 assumption). This means that if, e.g., 𝜆 = 0.25

then none of the partitions will contain less than a quarter of the partitioned

subarray of elements, or equivalently none of the partitions will be longer than

three quarters of the subarray. Since λ can be arbitrarily close to either 0 or 1, let

us say 0.99999, this assumption does not seem to be unfeasible. If we set 𝜆 = 1 −

1/𝑁 where 𝑁 is an upper bound on the number of elements we can store in an

array at a time on our computer, then even the case of separating only one

element from the others during the Partition function will fulfill the 𝜆 assumption.

For the sake of simplicity in the following let us assume without the loss of

generality that 𝜆 ≥ 0.5, otherwise (1 − 𝜆) and 𝜆 may exchange places. As a result

the bigger partition (the λ proportion part) will always be the upper part and

hence the right subtrees of the recursion tree will be deeper than the left subtrees

for all vertices (see Figure 12). Thus, the depth d of the recursion tree depends on

for which d exponent 𝜆𝑑𝑛 = 1 is obtained. The answer is 𝑑 = log1 𝜆⁄ 𝑛 yielding

𝑇(𝑛) ≤ 𝑛 ∙ log1 𝜆⁄ 𝑛 = 𝑂(𝑛 log𝑛) time complexity for that special case.

𝑛

(1 − 𝜆)𝑛 𝜆𝑛

(1 − 𝜆)𝜆𝑛 𝜆2𝑛

n

𝜆𝑑𝑛 ≤ n

≤ n∙log n

n

≤ n

Figure 12. Recursion tree of the quicksort in a special case.

A.E. Csallner - Selected Chapters from Algorithms

44

The pseudocode of quicksort is nevertheless very simple.

QuickSort(A,first,last)
 1 if first < last

 2 then border  Partition(A,first,last)
 3 QuickSort(A,first,border)
 4 QuickSort(A,border + 1,last)

It can be proven that a good pivot key for the partition algorithm can always be

found in linear time which assures that no partition will be longer than a fixed

constant ratio. Hence quicksort can be completed so that it will work in 𝑂(𝑛 log 𝑛)

time even in worst case.

Exercises

40 Demonstrate how quicksort works on the following input: (4, 1, 9, 3, 7, 8, 2, 5, 6). Use the

subarrays’ leading elements as pivot keys.

41 What does quicksort do if the input is already sorted? Is it a best case or a worst case?

42 Is quicksort a stable sorting algorithm (see Exercise 31 on page 35)?

Sorting in Linear Time

We have now introduced several algorithms that can sort 𝑛 numbers in 𝑂(𝑛 log 𝑛)

time. Merge sort and heapsort achieve this upper bound in the worst case;

quicksort achieves it on average. Moreover, for each of these algorithms, we can

produce a sequence of n input numbers that causes the algorithm to run in 𝑛 log 𝑛

time. These algorithms share an interesting property: the sorted order they

determine is based only on comparisons between the input elements. We called

such sorting algorithms comparison sorts. All the sorting algorithms introduced

thus far are comparison sorts.

Lower bounds for sorting

In a comparison sort, we use only comparisons between elements to gain order

information about an input sequence. Hence, to answer the question how many

algorithmic steps there are necessary to sort the sequence, we simply have to find

out how many comparisons we need to analyze the input. This analysis can be

demonstrated using the so-called decision trees.

A.E. Csallner - Selected Chapters from Algorithms

45

A decision tree is a binary tree that represents the comparisons between elements

that are performed by a particular algorithm to determine the order of the input

elements. Figure 13 shows a possible decision tree of an input sequence of three

elements a, b, and c.

The execution of a sorting algorithm corresponds to tracing a simple path from

the root of the decision tree down to a leaf. Each internal node indicates a

comparison. When we come to a leaf, the sorting algorithm has established the

ordering. Because any correct sorting algorithm must be able to produce each

permutation of its input, each of the 𝑛! permutations on 𝑛 elements must appear

as one of the leaves of the decision tree for a comparison sort to be correct. The

length of the longest simple path from the root of a decision tree to any of its

leaves represents the worst-case number of comparisons that the corresponding

sorting algorithm performs. Consequently, the worst-case number of comparisons

for a given comparison sort algorithm equals the depth of its decision tree. A lower

bound on the depths of all decision trees in which each permutation appears as a

leaf is therefore a lower bound on the running time of any comparison sort

algorithm.

a<b?

c<b? a<c?

a<c? abc

acb cab

b<c? bac

bca cba

yes

yes

yes

yes

yes

no

no no

no no

{abc, acb, bac, bca, cab, cba}

{bac, bca, cba} {abc, acb, cab}

{acb, cab} {bca, cba}

Figure 13. Decision tree of analyzing the order of three elements: a, b, and c. The white
rectangles represent the questions of decisions, the lists in curly brackets the possible
orders remaining, and the shaded rectangles the last, only possible order on that route.

A.E. Csallner - Selected Chapters from Algorithms

46

It is obvious that a binary tree of depth 𝑑 can have at most 2𝑑 leaves. Because we

now have exactly 𝑛! leaves, 2𝑑 ≥ 𝑛! follows, and thus

𝑑 ≥ log2(𝑛!) =

= ∑ log2 𝑘

𝑛

𝑘=1

≥ ∫ log2 𝑥 𝑑𝑥
𝑛

1

=

= (ln 2)−1[𝑥 ln 𝑥 − 𝑥]1
𝑛 =

= 𝛩(𝑛 log 𝑛)

That means that any comparison sort algorithm requires at least 𝑛 log 𝑛
comparisons in the worst case. As a consequence, heapsort and merge sort are

asymptotically optimal comparison sorts.

Exercises

43 Draw the decision tree of a sorting algorithm sorting four elements: a, b, c, and d.

44 What is the smallest possible depth of a leaf in a decision tree for a comparison sort?

Counting sort

However, if we have and exploit more information on the input than just their

pairwise relations, sorting algorithms with 𝜃(𝑛), i.e. linear time complexity can be

constructed. One of them is the counting sort, which assumes that each of the 𝑛

input elements is an integer in the range 1 to 𝑘, for some integer 𝑘. When 𝑘 =

𝑂(𝑛), the sort runs in 𝜃(𝑛) time.

Counting sort determines, for each input element 𝑥, the number of elements less

than 𝑥. It uses this information to place element 𝑥 directly into its position in the

output array. For example, if 17 elements are less than 𝑥, then 𝑥 belongs in output

position 18. We must modify this scheme slightly to handle the situation in which

several elements have the same value, since we do not want to put them all in the

same position.

In the code for counting sort, we assume that the input is an array A. We require

two other arrays: an array B as a temporary working storage, and the array C for

the sorted output. Note, that B has only 𝑘 elements. The following pseudocode

implements the counting sort algorithm.

A.E. Csallner - Selected Chapters from Algorithms

47

CountingSort(A,C,k)

 1 for i  1 to k

 2 do B[i]  0

 3 for i  1 to A.Length

 4 do B[A[i]]  B[A[i]] + 1

 5 for i  2 to k

 6 do B[i]  B[i] + B[i – 1]

 7 for i  A.Length downto 1

 8 do C[B[A[i]]]  i

 9 B[A[i]]  B[A[i]] – 1

After the for loop of lines 1–2 initializes the array B to all zeros, the for loop of

lines 3–4 inspects each input element. If the value of an input element is i, we

increment B[i]. Thus, after line 4, B[i] holds the number of input elements equal

to i for each integer i = 1,…,k. Lines 6–7 determine for each i = 1,…,k how many

input elements are less than or equal to i by keeping a running sum of the array B.

Finally, the for loop of lines 7–9 places each element into its correct sorted

position in the output array C. If all input elements are distinct, then when we first

enter line 7, for each A[i], the value B[A[i]] is the correct final position of A[i] in the

output array, since there are B[A[i]] elements less than or equal to A[i]. Because

the elements might not be distinct, we decrement B[A[i]] each time we place a

value A[i] into the C array. Decrementing B[A[i]] causes the next input element

with a value equal to A[i], if one exists, to go to the position immediately before

A[i] in the output array. Since the for loop of lines 7–9 runs through the input

elements in a reverse order (beginning with the last, ending with the first), this

way the original order of equal elements is preserved, and so the resulting

algorithm is stable.

Note, that in line 8 instead of the value of A[i] only the index i is stored in the

output array C. This makes it possible to follow up on the order of equal elements

in the final sorted order. Figure 14 illustrates counting sort. Array C is called a

permutation vector of the input vector A, and it is very useful if a whole database

is sorted by a single field’s values. When using permutation vectors, you don’t

have to change the order of whole records in a database physically, you just store

another order of them. This way also different orders can be stored at the same

time without modifying the input database.

A.E. Csallner - Selected Chapters from Algorithms

48

How much time does counting sort require? The for loop of lines 1–2 takes time

𝜃(𝑘), the for loop of lines 3–4 takes time 𝜃(𝑛), the for loop of lines 5–6 takes time

𝜃(𝑘), and the for loop of lines 7–9 takes time 𝜃(𝑛). Thus, the overall time is 𝜃(𝑘 +

𝑛). In practice, we usually use counting sort when we have 𝑘 = 𝑂(𝑛), in which

case the total running time is 𝑇(𝑛) = 𝜃(𝑂(𝑛) + 𝑛) = 𝜃(𝑛).

Certainly, counting sort cannot only be used if the input consists of integers of a

given range. Any finite base set’s elements can be coded as integers. If, e.g., the

base set consists of the letters A, B, and C, then we can code them as A  1,

Figure 14. Counting sort on an example. Figure a) shows array B with the counted values
(shaded) made by lines 3–4 of the pseudocode, Figure b) the same with cumulative values
after lines 5–6. Figures c)–e) demonstrate some repetitions of lines 8–9 of the pseudocode,
and f) the result. C contains the permutation vector of the sorted order of A.

a) A B C b) A B C

1 2 1 1 1 1 2 1 1 1

2 3 2 2 2 2 3 2 3 2

3 1 3 2 3 3 1 3 5 3

4 3 4 4 3 4

5 2 5 5 2 5

c) A B C d) A B C

1 2 1 1 1 1 2 1 1 1

2 3 2 3→2 2 2 3 2 2 2

3 1 3 5 3 5 3 1 3 5→4 3 5

4 3 4 4 3 4

5 2 5 5 2 5 4

e) A B C f) A B C

1 2 1 1→0 1 3 1 2 1 0 1 3

2 3 2 2 2 2 3 2 1 2 1

3 1 3 4 3 5 … 3 1 3 3 3 5

4 3 4 4 3 4 2

5 2 5 4 5 2 5 4

A.E. Csallner - Selected Chapters from Algorithms

49

B  2, and C  3. Thus, we can sort the numbers instead of the letters using

counting sort.

Exercises

45 Using Figure 14 as a model, illustrate the operation of CountingSort on the array

A = (6, 1, 3, 1, 2, 4, 5, 6, 2, 4, 3).

46 Suppose that we were to rewrite the for loop header in line 7 of the CountingSort as

 7 for i  1 to A.Length

Show that the algorithm still works properly. Is the modified algorithm stable?

Radix sort

If sequences of symbols are to be sorted in a lexicographical order, it is convenient

to use radix sort. Radix sort can only be used if the sequences are of equal length.

It sorts the sequences by their last symbols first, then by their last but one

symbols, etc., using any sorting algorithm on the symbols. If at any position equal

symbols occur, radix sort will only work correctly if the applied sorting algorithm

is stable.

Figure 15 demonstrates how radix sort works. After the first round the sequences

are sorted by their last symbols. After the second round they are sorted by the

subsequences of their last two symbols, etc. It is obvious that for sorting the

particular symbols a stable algorithm is needed, otherwise in the last round, e.g.,

ABC and ACB could change their order ending in an incorrect result.

Figure 15. Radix sort. The arrows show which column will be used next to sort the
sequences, and the shaded parts are those subsequences that are already sorted.

   
B A C C B A C A B A B C
A C B B C A B A C A C B
C B A A C B C B A B A C
A B C C A B A B C B C A
C A B B A C B C A C A B
B C A A B C A C B C B A

A.E. Csallner - Selected Chapters from Algorithms

50

If the length of the sequences is denoted by 𝑑 (the number of digits in a sequence),

and the time complexity of the sorting algorithm used by 𝑇(𝑛), then the time

complexity of radix sort is 𝑑 ∙ 𝑇(𝑛), where 𝑛 stands for the number of sequences.

If we assume that 𝑑 can be considered as a constant for a given class of problems,

and we use a stable, linear time sorting algorithm (e.g. counting sort), then the

time complexity of the radix sort becomes 𝑑 ∙ 𝑇(𝑛) = 𝑑 ∙ 𝜃(𝑛) = 𝜃(𝑛), i.e., linear.

Exercises

47 Using Figure 15 as a model, illustrate the operation of the radix sort on the following list of

English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA,

NOW, FOX.

48 Which of the following sorting algorithms are stable: insertion sort, merge sort, heapsort, and

quicksort?

49 Show how to sort 𝑛 integers in the range 0 to 𝑛3 − 1 in 𝑂(𝑛) time.

Medians and Order Statistics

The ith order statistic of a set of n elements is the ith smallest element. For example,

the minimum of a set of elements is the first order statistic (𝑖 = 1), and the

maximum is the nth order statistic (𝑖 = 𝑛). A median, informally, is the “halfway

point” of the set. When 𝑛 is odd, the median is unique, occurring at 𝑖 = (𝑛 + 1)/2.

When 𝑛 is even, there are two medians, occurring at 𝑖 = 𝑛/2 and 𝑖 = 𝑛/2 + 1.

Thus, regardless of the parity of 𝑛, medians occur at 𝑖 = ⌊(𝑛 + 1)/2⌋ (the lower

median) and 𝑖 = ⌈(𝑛 + 1)/2⌉ (the upper median). For simplicity in this text,

however, we consistently use the phrase “the median” to refer to the lower

median.

Now let us consider the problem of selecting the ith order statistic from a set of 𝑛

distinct numbers. We assume for convenience that the set contains distinct

numbers, although virtually everything that we do extends to the situation in

which a set contains repeated values. We formally specify the selection problem

as follows:

Input: A set A of 𝑛 (distinct) numbers and an integer 𝑖, with 1 ≤ 𝑖 ≤ 𝑛.

Output: The element 𝑥 ∈ 𝐴 that is larger than exactly 𝑖 − 1 other elements of A.

We can solve the selection problem in 𝑂(𝑛 log 𝑛) time, since we can sort the

numbers using heapsort or merge sort and then simply index the ith element in the

output array. Here we present faster algorithms.

A.E. Csallner - Selected Chapters from Algorithms

51

Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of 𝑛

elements? We can easily obtain an upper bound of 𝑛 − 1 comparisons as seen on

page 11. We can, of course, find the maximum with 𝑛 − 1 comparisons, as well.

This is the best we can do, these upper bounds are tight.

In some applications, however, we must find both the minimum and the maximum

of a set of 𝑛 elements. For example, a graphics program may need to scale a set

of (𝑥, 𝑦) data to fit onto a rectangular display screen or other graphical output

device. To do so, the program must first determine the minimum and maximum

value of each coordinate.

At this point, it should be obvious how to determine both the minimum and the

maximum of 𝑛 elements using 𝜃(𝑛) comparisons, which is asymptotically optimal:

simply find the minimum and maximum independently, using 𝑛 − 1 comparisons

for each, for a total of 2𝑛 − 2 comparisons.

In fact, we can find both the minimum and the maximum using at most 3⌊𝑛/2⌋

comparisons. We do so by maintaining both the minimum and maximum

elements seen thus far. Rather than processing each element of the input by

comparing it against the current minimum and maximum at a cost of 2

comparisons per element, we process elements in pairs. We compare pairs of

elements from the input first with each other, and then we compare the smaller

with the current minimum and the larger to the current maximum, at a cost of 3

comparisons for every 2 elements.

How we set up initial values for the current minimum and maximum depends on

whether 𝑛 is odd or even. If 𝑛 is odd, we set both the minimum and maximum to

the value of the first element, and then we process the rest of the elements in

pairs. If 𝑛 is even, we perform 1 comparison on the first 2 elements to determine

the initial values of the minimum and maximum, and then process the rest of the

elements in pairs as in the case for odd 𝑛.

Let us analyze the total number of comparisons. If 𝑛 is odd, then we perform
3(𝑛−1)

2
 comparisons. If 𝑛 is even, we perform 1 initial comparison followed by

3(𝑛−2)

2
 comparisons, for a total of

3(𝑛−2)

2
+ 1 =

3(𝑛−
4

3
)

2
. Thus, in either case, the

total number of comparisons is at most 3⌊𝑛/2⌋.

A.E. Csallner - Selected Chapters from Algorithms

52

Selection in expected linear time

The general selection problem appears more difficult than the simple problem of

finding a minimum. Yet, surprisingly, the asymptotic running time for both

problems is the same: 𝜃(𝑛). In this section, we present a divide-and-conquer

algorithm for the selection problem. The select algorithm is modelled after the

quicksort algorithm. As in quicksort, we partition the input array recursively. But

unlike quicksort, which recursively processes both sides of the partition, the select

algorithm works on only one side of the partition. This difference shows up in the

analysis: whereas quicksort has an expected running time of 𝜃(𝑛 log 𝑛), the

expected running time of the select algorithm is 𝜃(𝑛), assuming that the elements

are distinct.

The following pseudocode of the select algorithm uses the procedure Partition

introduced on page 41, and returns the ith smallest element of the array A.

Select(A,first,last,i)
 1 if first = last
 2 then return A[first]

 3 border  Partition(A,first,last)

 4 k  border – first + 1
 5 if i ≤ k
 6 then Select(A,first,border,i)
 7 else Select (A,border + 1,last,i – k)

If there are more than one element in the remaining subarray (otherwise the ith

element has been found), Select calls the Partition procedure which arrange

smaller elements in the first, larger elements in the second part of its input array,

and returns with the index of the border element between the two parts. The size

of the smaller elements’ part is stored in k, and if 𝑖 ≤ 𝑘, i.e. the ith element is in

the first part, then the recursive call goes to the first part. Otherwise we carry on

with the second part, where this time we are looking for the (i – k)th element since

the first k elements have been left in the first part.

The worst-case running time for Select is 𝜃(𝑛2), even to find the minimum,

because we could be extremely unlucky and always partition around the largest

remaining element, and partitioning of the subarrays shrinking step by step takes

𝑛 + (𝑛 − 1) + ⋯+ 1 =
𝑛(𝑛+1)

2
= 𝜃(𝑛2) time.

A.E. Csallner - Selected Chapters from Algorithms

53

However, if we follow the idea of the 𝜆 assumption that none of the partition

ratios will be worse during execution than a given (1 − 𝜆): 𝜆 for some fixed 𝜆 ∈
]0,1[(see on page 43), it turns out that the expected time complexity is linear. If

𝜆 ≥ 0.5, then a worst behavior in this case results in a series of partitions of

subarrays of the following sizes: 𝑛, 𝜆𝑛, 𝜆2𝑛,… , 𝜆𝑑𝑛, where d stands for the depth

of the recursion tree of the algorithm, and 𝜆𝑑𝑛 = 1 (c.f. Figure 12 on page 43).

Hence the time consumption of the consecutive partitions is

𝑛 + 𝜆𝑛 + 𝜆2𝑛 + ⋯+ 𝜆𝑑𝑛 = (1 + 𝜆 + 𝜆2 + ⋯+ 𝜆𝑑)𝑛 =
𝜆𝑑+1 − 1

𝜆 − 1
𝑛.

But from 𝜆𝑑𝑛 = 1 it follows that 𝑑 = log1
𝜆⁄
𝑛, and so

𝜆𝑑+1 − 1

𝜆 − 1
=

𝜆
log1

𝜆⁄
𝑛

∙ 𝜆 − 1

𝜆 − 1
=

𝜆
𝑛 − 1

𝜆 − 1
,

where the latter equality follows from the identity 𝑎
log1

𝑎⁄
𝑏

=
1

𝑏
. Multiplying this

with 𝑛 we get

𝜆
𝑛

− 1

𝜆 − 1
∙ 𝑛 =

𝑛 − 𝜆

1 − 𝜆
= 𝑂(𝑛),

i.e., linear time complexity.

Selection in worst-case linear time

As we have seen, the select algorithm’s worst case occurs if at every partition the

part in which the selection follows is very large in proportion to the other. This

balance depends on the pivot element of the partition algorithm. If a pivot

element not too small, not too large could be found quickly, then the 𝜆 assumption

could be fulfilled and thus the linear time complexity gained. In the following we

show a modified version of the select algorithm where the pivot element is chosen

in a tricky way.

Five-step algorithm:

1. If there is only one element in the input, then return it as the result. Otherwise

divide the 𝑛 elements of the input array into ⌊𝑛/5⌋ groups of 5 elements each

and at most one group made up of the remaining 𝑛 mod 5 elements.

A.E. Csallner - Selected Chapters from Algorithms

54

2. Find the median of each of the ⌈𝑛/5⌉ groups by first insertion-sorting the

elements of each group (of which there are at most 5) and then picking the

median from the sorted list of group elements.

3. Use the Five-step algorithm recursively to find the median 𝑥 of the ⌈𝑛/5⌉

medians found in step 2.

4. Partition the input array around the median-of-medians 𝑥 using the Partition

algorithm. Let 𝑘 be the number of elements on the low side of the partition.

5. Use the Five-step algorithm recursively to find the ith smallest element on the

low side if 𝑖 ≤ 𝑘, or the (𝑖 − 𝑘)th smallest element on the high side if 𝑖 > 𝑘.

Now we show that the 𝜆 assumption holds for the algorithm above.

At least half of the medians found in step 2 are greater than or equal to the

median-of-medians 𝑥. Thus, at least half of the ⌈𝑛/5⌉ groups contribute at least 3

elements that are greater than 𝑥, except for the one group that has fewer than 5

elements if 5 does not divide 𝑛 exactly, and the one group containing 𝑥 itself.

Discounting these two groups, it follows that the number of elements greater than

𝑥 is at least

3(⌈
1

2
⌈
𝑛

5
⌉⌉ − 2) ≥

3𝑛

10
− 6.

Because at least
3𝑛

10
− 6 elements are greater than 𝑥, at most 𝑛 − (

3𝑛

10
− 6) =

7𝑛

10
+

6 elements, i.e., the remaining elements are less than 𝑥.

Similarly, at least
3𝑛

10
− 6 elements are less than 𝑥 at the same time, and hence at

most
7𝑛

10
+ 6 elements are greater than 𝑥. Note, that if 𝑛60 then

7𝑛

10
+ 6

8𝑛

10
 holds

which means that the 𝜆 assumption is fulfilled for the Five-step algorithm with the

value 𝜆 = 0.8, and thus, the time complexity in all cases is 𝑂(𝑛), linear.

Exercises

50 Show how quicksort can be made to run in 𝑂(𝑛 log 𝑛) time in the worst case, assuming that all

elements are distinct.

A.E. Csallner - Selected Chapters from Algorithms

55

51 Professor Olay is consulting for an oil company, which is planning a large pipeline running east

to west through an oil field of 𝑛 wells. The company wants to connect a spur pipeline from each

well directly to the main pipeline along a shortest route (either north or south), as shown in

Figure 16. Given the 𝑥- and 𝑦-coordinates of the wells, how should the professor pick the

optimal location of the main pipeline, which would be the one that minimizes the total length

of the spurs? Show how to determine the optimal location in linear time.

52 For 𝑛 distinct elements 𝑥1, 𝑥2, … , 𝑥𝑛 with positive weights 𝑤1, 𝑤2, … , 𝑤𝑛 such that ∑ 𝑤𝑖
𝑛
𝑖=1 = 1,

the weighted (lower) median is the element 𝑥𝑘 satisfying

∑ 𝑤𝑖

𝑥𝑖<𝑥𝑘

<
1

2

and

∑ 𝑤𝑖

𝑥𝑖>𝑥𝑘

≤
1

2
.

Figure 16. Professor Olay needs to determine the position of the east-west oil pipeline that
minimizes the total length of the north-south spurs.

A.E. Csallner - Selected Chapters from Algorithms

56

For example, if the elements are 0.1, 0.35, 0.05, 0.1, 0.15, 0.05, 0.2 and each element equals its

weight (that is, 𝑤𝑖 = 𝑥𝑖 for 𝑖 = 1,2, … ,7), then the median is 0.1, but the weighted median is

0.2.

a. Argue that the median of 𝑥1, 𝑥2, … , 𝑥𝑛 is the weighted median of the 𝑥𝑖 with weights 𝑤𝑖 =

1/𝑛 for 𝑖 = 1,2, … , 𝑛.

b. Show how to compute the weighted median of 𝑛 elements in 𝑂(𝑛 log 𝑛) worst-case time

using sorting.

c. Show how to compute the weighted median in 𝜃(𝑛) worst-case time using a linear-time

median algorithm such as the Five-step algorithm.

The post-office location problem is defined as follows. We are given 𝑛 points 𝑝1, 𝑝2, … , 𝑝𝑛 with

associated weights 𝑤1, 𝑤2, … , 𝑤𝑛. We wish to find a point 𝑝 (not necessarily one of the input

points) that minimizes the sum ∑ 𝑤𝑖𝑑(𝑝, 𝑝𝑖)
𝑛
𝑖=1 where 𝑑(𝑎, 𝑏) is the distance between points 𝑎

and 𝑏.

d. Argue that the weighted median is a best solution for the 1-dimensional post-office

location problem, in which points are simply real numbers and the distance between

points 𝑎 and 𝑏 is 𝑑(𝑎, 𝑏) = |𝑎 − 𝑏|.

e. Find the best solution for the 2-dimensional post-office location problem, in which the

points are (𝑥, 𝑦) coordinate pairs and the distance between points 𝑎 = (𝑥1, 𝑦1) and 𝑏 =

(𝑥2, 𝑦2) is the Manhattan distance given by 𝑑(𝑎, 𝑏) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|.

A.E. Csallner - Selected Chapters from Algorithms

57

Dynamic Programming

Dynamic programming, like the divide-and-conquer method, solves problems by

combining the solutions to subproblems. (“Programming” in this context refers to

a tabular method, not to writing computer code.) Divide-and-conquer algorithms

partition the problem into disjoint subproblems, solve the subproblems

recursively, and then combine their solutions to solve the original problem. In

contrast, dynamic programming applies when the subproblems overlap — that is,

when subproblems share subsubproblems. In this context, a divide-and-conquer

algorithm does more work than necessary, repeatedly solving the common

subsubproblems. A dynamic-programming algorithm solves each subsubproblem

just once and then saves its answer in a table, thereby avoiding the work of

recomputing the answer every time it solves each subsubproblem.

We typically apply dynamic programming to optimization problems. Such

problems can have many possible solutions. Each solution has a value, and we

wish to find a solution with the optimal (minimum or maximum) value. We call

such a solution an optimal solution to the problem, as opposed to the optimal

solution, since there may be several solutions that achieve the optimal value.

When developing a dynamic-programming algorithm, we follow a sequence of

four steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Steps 1–3 form the basis of a dynamic-programming solution to a problem. If we

need only the value of an optimal solution, and not the solution itself, then we can

omit step 4. When we do perform step 4, we sometimes maintain additional

information during step 3 so that we can easily construct an optimal solution, or

even all of them.

Rod cutting

Our example uses dynamic programming to solve a simple problem in deciding

where to cut steel rods. Sterling Enterprises buys long steel rods and cuts them

A.E. Csallner - Selected Chapters from Algorithms

58

into shorter rods, which it then sells. Each cut is free. The management of Sterling

Enterprises wants to know the best way to cut up the rods.

We assume that we know, for 𝑖 = 1,2,…, the price 𝑝𝑖 in dollars that Sterling

Enterprises charges for a rod of length 𝑖 inches. Rod lengths are always an integral

number of inches. For instance, they have the following price table:

length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30

Figure 17. A sample price table for rods. Each rod of length 𝒊 inches earns the company 𝒑𝒊 dollars
of revenue.

The rod-cutting problem is the following. Given a rod of length 𝑛 inches and a

table of prices 𝑝𝑖 for 𝑖 = 1,2,…, determine the maximum revenue 𝑟𝑛 obtainable

by cutting up the rod and selling the pieces. Note that if the price 𝑝𝑛 for a rod of

length 𝑛 is large enough, an optimal solution may require no cutting at all.

Figure 18. The 8 possible ways of cutting up a rod of length 4. Above each piece is the value of
that piece, according to the sample price chart of Figure 17. The optimal strategy is part (c)—

cutting the rod into two pieces of length 2—which has total value 10.

Consider the case when 𝑛 = 4. Figure 18 shows all the ways to cut up a rod of 4

inches in length, including the way with no cuts at all. We see that cutting a 4-inch

rod into two 2-inch pieces produces revenue 𝑝2 + 𝑝2 = 5 + 5 = 10, which is

optimal.

We can cut up a rod of length 𝑛 in 2𝑛−1 different ways, since we have an

independent option of cutting, or not cutting, at distance 𝑖 inches from the left

end, for 𝑖 = 1,2,… , 𝑛 − 1. We denote a decomposition into pieces using ordinary

additive notation, so that 7 = 2 + 2 + 3 indicates that a rod of length 7 is cut into

three pieces — two of length 2 and one of length 3. If an optimal solution cuts the

A.E. Csallner - Selected Chapters from Algorithms

59

rod into 𝑘 pieces, for some 1 ≤ 𝑘 ≤ 𝑛, then an optimal decomposition 𝑛 = 𝑖1 +

𝑖2 + ⋯+ 𝑖𝑘 of the rod into pieces of lengths 𝑖1, 𝑖2, … , 𝑖𝑘 provides maximum
corresponding revenue 𝑟𝑛 = 𝑝𝑖1 + 𝑝𝑖2 + ⋯+ 𝑝𝑖𝑘 .

For our sample problem, we can determine the optimal revenue figures 𝑟𝑖, for 𝑖 =

1,2,… ,10, by inspection, with the corresponding optimal decompositions

𝑟1 = 1 from solution 1 = 1 (no cuts),

𝑟2 = 5 from solution 2 = 2 (no cuts),

𝑟3 = 8 from solution 3 = 3 (no cuts),

𝑟4 = 10 from solution 4 = 2 + 2,

𝑟5 = 13 from solution 5 = 2 + 3,

𝑟6 = 17 from solution 6 = 6 (no cuts),

𝑟7 = 18 from solution 7 = 1 + 6 or 7 = 2 + 2 + 3,

𝑟8 = 22 from solution 8 = 2 + 6,

𝑟9 = 25 from solution 9= 3 + 6,

𝑟10 = 30 from solution 10 = 10 (no cuts).

More generally, we can frame the values 𝑟𝑛 for 𝑛 ≥ 1 in terms of optimal revenues

from shorter rods:

𝑟𝑛 = max(𝑝𝑛, (𝑟1 + 𝑟𝑛−1), (𝑟2 + 𝑟𝑛−2),… , (𝑟𝑛−1 + 𝑟1)).

The first argument, 𝑝𝑛, corresponds to making no cuts at all and selling the rod of

length 𝑛 as is. The other 𝑛 − 1 arguments to max correspond to the maximum

revenue obtained by making an initial cut of the rod into two pieces of size 𝑖 and

𝑛 − 𝑖, for each 𝑖 = 1,2, … , 𝑛 − 1, and then optimally cutting up those pieces

further, obtaining revenues 𝑟𝑖 and 𝑟𝑛−𝑖 from those two pieces. Since we don’t

know ahead of time which value of 𝑖 optimizes revenue, we have to consider all

possible values for 𝑖 and pick the one that maximizes revenue. We also have the

option of picking no 𝑖 at all if we can obtain more revenue by selling the rod uncut.

Note that to solve the original problem of size 𝑛, we solve smaller problems of the

same type, but of smaller sizes. Once we make the first cut, we may consider the

two pieces as independent instances of the rod-cutting problem. The overall

optimal solution incorporates optimal solutions to the two related subproblems,

maximizing revenue from each of those two pieces. We say that the rod-cutting

A.E. Csallner - Selected Chapters from Algorithms

60

problem exhibits optimal substructure: optimal solutions to a problem

incorporate optimal solutions to related subproblems, which we may solve

independently.

In a related, but slightly simpler, way to arrange a recursive structure for the rod-

cutting problem, we view a decomposition as consisting of a first piece of length 𝑖

cut off the left-hand end, and then a right-hand remainder of length 𝑛 − 𝑖. Only

the remainder, and not the first piece, may be further divided. We may view every

decomposition of a length-𝑛 rod in this way: as a first piece followed by some

decomposition of the remainder. When doing so, we can couch the solution with

no cuts at all as saying that the first piece has size 𝑖 = 𝑛 and revenue 𝑝𝑛 and that

the remainder has size 0 with corresponding revenue 𝑟0 = 0. We thus obtain the

following simpler formula for 𝑟𝑛:

𝑟𝑛 = max
1≤𝑖≤𝑛

(𝑝𝑖 + 𝑟𝑛−𝑖).

In this formulation, an optimal solution embodies the solution to only one related

subproblem — the remainder — rather than two.

Recursive top-down implementation

The following procedure implements the latter formula for 𝑟𝑛 in a straightforward,

top-down, recursive manner.

CutRod(p,n)
 1 if n = 0
 2 then return 0

 3 q  –∞

 4 for i  1 to n

 5 do q  max(q, p[i] + CutRod(p, n – i))
 6 return q

Procedure CutRod takes as input an array 𝑝[1. . 𝑛] of prices and an integer 𝑛, and

it returns the maximum revenue possible for a rod of length 𝑛. If 𝑛 = 0, no

revenue is possible, and so CutRod returns 0 in line 2. Line 3 initializes the

maximum revenue 𝑞 to −∞, so that the for loop in lines 4–5 correctly computes

𝑞 = max1≤𝑖≤𝑛(𝑝𝑖 + CutRod(𝑝, 𝑛 − 𝑖)); line 6 then returns this value. A simple

induction on 𝑛 proves that this answer is equal to the desired answer 𝑟𝑛.

A.E. Csallner - Selected Chapters from Algorithms

61

If you were to code up CutRod in your favorite programming language and run it

on your computer, you would find that once the input size becomes moderately

large, your program would take a long time to run. For 𝑛 = 40, you would find

that your program takes at least several minutes, and most likely more than an

hour. In fact, you would find that each time you increase 𝑛 by 1, your program’s

running time would approximately double.

Why is CutRod so inefficient? The problem is that CutRod calls itself recursively

over and over again with the same parameter values; it solves the same

subproblems repeatedly. Figure 19 illustrates what happens for 𝑛 = 4:

CutRod(p,n) calls CutRod(p,n-i) for 𝑖 = 1,2,… , 𝑛. Equivalently, CutRod(p,n) calls

CutRod(p,j) for each 𝑗 = 0,1,… , 𝑛 − 1. When this process unfolds recursively, the

amount of work done, as a function of 𝑛, grows explosively.

Figure 19. The recursion tree showing recursive calls resulting from a call CutRod(p,n) for 𝒏 = 𝟒.
Each node label gives the size 𝒏 of the corresponding subproblem, so that an edge from a parent

with label 𝒔 to a child with label 𝒕 corresponds to cutting off an initial piece of size 𝒔 − 𝒕 and
leaving a remaining subproblem of size 𝒕 . A path from the root to a leaf corresponds to one of

the 𝟐𝒏−𝟏 ways of cutting up a rod of length 𝒏. In general, this recursion tree has 𝟐𝒏 nodes and

𝟐𝒏−𝟏 leaves.

To analyze the running time of CutRod, let 𝑇(𝑛) denote the total number of calls

made to CutRod when called with its second parameter equal to 𝑛. This

expression equals the number of nodes in a subtree whose root is labeled 𝑛 in the

recursion tree. The count includes the initial call at its root. Thus, 𝑇(0) = 1 and

𝑇(𝑛) = 1 + ∑ 𝑇(𝑗)𝑛−1
𝑗=0 .

A.E. Csallner - Selected Chapters from Algorithms

62

The initial 1 is for the call at the root, and the term 𝑇(𝑗) counts the number of calls

(including recursive calls) due to the call CutRod(p,n-i), where 𝑗 = 𝑛 − 𝑖.

It is easy to show (see Exercise 53 on page 66) that 𝑇(𝑛 + 1)/𝑇(𝑛) = 2 always

holds. From this and from the initial condition 𝑇(0) = 1 it follows that 𝑇(𝑛) = 2𝑛,

and so the running time of CutRod is exponential in 𝑛.

In retrospect, this exponential running time is not so surprising. CutRod explicitly

considers all the 2𝑛−1 possible ways of cutting up a rod of length 𝑛. The tree of

recursive calls has 2𝑛−1 leaves, one for each possible way of cutting up the rod.

The labels on the simple path from the root to a leaf give the sizes of each

remaining right-hand piece before making each cut. That is, the labels give the

corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting

We now show how to convert CutRod into an efficient algorithm, using dynamic

programming.

The dynamic-programming method works as follows. Having observed that a

naive recursive solution is inefficient because it solves the same subproblems

repeatedly, we arrange for each subproblem to be solved only once, saving its

solution. If we need to refer to this subproblem’s solution again later, we can just

look it up, rather than recompute it. Dynamic programming thus uses additional

memory to save computation time; it serves an example of a time-memory trade-

off. The savings may be dramatic: an exponential-time solution may be

transformed into a polynomial-time solution. A dynamic-programming approach

runs in polynomial time when the number of distinct subproblems involved is

polynomial in the input size and we can solve each such subproblem in polynomial

time.

There are usually two equivalent ways to implement a dynamic-programming

approach. We shall illustrate both of them with our rod-cutting example.

The first approach is top-down with memoization. In this approach, we write the

procedure recursively in a natural manner, but modified to save the result of each

subproblem (usually in an array or hash table). The procedure now first checks to

see whether it has previously solved this subproblem. If so, it returns the saved

value, saving further computation at this level; if not, the procedure computes the

A.E. Csallner - Selected Chapters from Algorithms

63

value in the usual manner. We say that the recursive procedure has been

memoized; it “remembers” what results it has computed previously.

The second approach is the bottom-up method. This approach typically depends

on some natural notion of the “size” of a subproblem, such that solving any

particular subproblem depends only on solving “smaller” subproblems. We sort

the subproblems by size and solve them in size order, smallest first. When solving

a particular subproblem, we have already solved all of the smaller subproblems

its solution depends upon, and we have saved their solutions. We solve each

subproblem only once, and when we first see it, we have already solved all of its

prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time,

except in unusual circumstances where the top-down approach does not actually

recurse to examine all possible subproblems. The bottom-up approach often has

much better constant factors, since it has less overhead for procedure calls.

Here is the pseudocode for the top-down CutRod procedure, with memorization

added:

MemCutRod(p,n)

 1 for i  0 to n

 2 do r[i]  –∞
 3 return MemCutRodAux(p,n,r)

MemCutRodAux(p,n,r)
 1 if r[n] ≥ 0
 2 then return r[n]
 3 if n = 0

 4 then q  0

 5 else q  –∞

 6 for i  1 to n

 7 do q  max(q, p[i] + MemCutRodAux(p, n – i,r))

 8 r[n]  q
 9 return q

Here, the main procedure MemCutRod initializes a new auxiliary array 𝑟[0. . 𝑛]

with the value −∞, a convenient choice with which to denote “unknown.” (Known

A.E. Csallner - Selected Chapters from Algorithms

64

revenue values are always nonnegative.) It then calls its helper routine,

MemCutRodAux.

The procedure MemCutRodAux is just the memoized version of our previous

procedure, CutRod. It first checks in line 1 to see whether the desired value is

already known and, if it is, then line 2 returns it. Otherwise, lines 3–7 compute the

desired value q in the usual manner, line 8 saves it in r[n], and line 9 returns it.

The bottom-up version is even simpler:

BottUpCutRod(p,n)

 1 r[0]  0

 2 for j  1 to n

 3 do q  –∞

 4 for i  1 to j

 5 do q  max(q, p[i] + r[j – i])

 6 r[j]  q
 7 return r[n]

For the bottom-up dynamic-programming approach, BottUpCutRod uses the

natural ordering of the subproblems: a problem of size 𝑖 is “smaller” than a

subproblem of size 𝑗 if 𝑖 < 𝑗. Thus, the procedure solves subproblems of sizes 𝑗 =

0,1,… 𝑛, in that order.

Line 1 of procedure BottUpCutRod initializes 𝑟[0] to 0, since a rod of length 0

earns no revenue. Lines 2–5 solve each subproblem of size 𝑗, for 𝑗 = 1,2,… , 𝑛, in

order of increasing size. The approach used to solve a problem of a particular size

𝑗 is the same as that used by CutRod, except that line 5 now directly references

array entry 𝑟[𝑗 − 𝑖] instead of making a recursive call to solve the subproblem of

size 𝑗 − 𝑖. Line 6 saves in 𝑟[𝑗] the solution to the subproblem of size 𝑗. Finally, line

7 returns 𝑟[𝑛], which equals the optimal value 𝑟𝑛.

The bottom-up and top-down versions have the same asymptotic running time.

The running time of procedure BottUpCutRod is 𝜃(𝑛2), due to its doubly-nested

loop structure. The number of iterations of its inner for loop, in lines 4–5, forms

an arithmetic series. The running time of its top-down counterpart, MemCutRod,

is also 𝜃(𝑛2), although this running time may be a little harder to see. Because a

recursive call to solve a previously solved subproblem returns immediately,

MemCutRod solves each subproblem just once. It solves subproblems for sizes

0,1,… , 𝑛. To solve a subproblem of size 𝑛, the for loop of lines 6–7 of

A.E. Csallner - Selected Chapters from Algorithms

65

MemCutRodAux iterates 𝑛 times. Thus, the total number of iterations of this for

loop, over all recursive calls of MemCutRodAux, forms an arithmetic series, giving

a total of 𝜃(𝑛2) iterations, just like the inner for loop of BottUpCutRod.

Reconstructing a solution

Our dynamic-programming solutions to the rod-cutting problem return the value

of an optimal solution, but they do not return an actual solution: a list of piece

sizes. We can extend the dynamic-programming approach to record not only the

optimal value computed for each subproblem, but also a choice that led to the

optimal value. With this information, we can readily print an optimal solution.

Here is an extended version of BottUpCutRod that computes, for each rod size 𝑗,
not only the maximum revenue 𝑟𝑗, but also 𝑠𝑗, the optimal size of the first piece to

cut off:

ExtBottUpCutRod(p,n)

 1 r[0]  0

 2 for j  1 to n

 3 do q  –∞

 4 for i  1 to j
 5 do if q < p[i] + r[j – i]

 6 then q  p[i] + r[j – i]

 7 s[j]  i

 8 r[j]  q
 9 return r and s

This procedure is similar to BottUpCutRod, except that it uses a local array 𝑠, what

it regularly updates in line 7 to hold the optimal size 𝑖 of the first piece to cut off

when solving a subproblem of size 𝑗.

The following procedure takes a price table 𝑝 and a rod size 𝑛, and it calls

ExtBottUpCutRod to compute the array 𝑠[1. . 𝑛] of optimal first-piece sizes and

then prints out the complete list of piece sizes in an optimal decomposition of a

rod of length 𝑛:

A.E. Csallner - Selected Chapters from Algorithms

66

PrintCutRodSol(p,n)

 1 (r,s)  ExtBottUpCutRod(p,n)
 2 while n > 0
 3 do print s[n]

 4 n  n – s[n]

In our rod-cutting example, the call ExtBottUpCutRod(p,10) would return the

following arrays:

𝑖 0 1 2 3 4 5 6 7 8 9 10

𝑟[𝑖] 0 1 5 8 10 13 17 18 22 25 30

𝑠[𝑖] 0 1 2 3 2 2 6 1 2 3 10

A call to PrintCutRodSol(p,10) would print just 10, but a call with 𝑛 = 7 would

print the cuts 1 and 6, corresponding to the first optimal decomposition for 𝑟7

given earlier.

Exercises

53 Show that 𝑇(𝑛) = 2𝑛 follows from 𝑇(𝑛) = 1 + ∑ 𝑇(𝑗)𝑛−1
𝑗=0 and the initial condition 𝑇(0) = 1.

54 Modify MemCutRod to return not only the value but the actual solution, too.

55 Give an 𝑂(𝑛)-time dynamic-programming algorithm to compute the nth Fibonacci number.

A.E. Csallner - Selected Chapters from Algorithms

67

Amortized Analysis

In an amortized analysis, we average the time required to perform a sequence of

data-structure operations over all the operations performed. With amortized

analysis, we can show that the average cost of an operation is small, if we average

over a sequence of operations, even though a single operation within the

sequence might be expensive. Amortized analysis differs from average-case

analysis in that probability is not involved; an amortized analysis guarantees the

average performance of each operation in the worst case.

Two examples

In the following we introduce two problems over which the various methods of

amortized analysis will be shown later. The traditional worst-case analysis fails to

provide tight bounds on the time complexity of operations, while amortized

analysis delivers much better results.

Augmented stack operations

In our first example of amortized analysis, we analyze stacks that have been

augmented with a new operation. Traditional stacks have two fundamental

operations, each of which takes 𝑂(1) time:

Push(key,Stack) pushes object key onto stack Stack.

Pop(Stack) pops the top of stack Stack and returns the popped object. Calling Pop

on an empty stack generates an error.

Since each of these operations runs in 𝑂(1) time, let us consider the cost of each

to be 1. The total cost of a sequence of 𝑛 Push and Pop operations is therefore 𝑛,

and the actual running time for 𝑛 operations is therefore 𝜃(𝑛).

Now we add the stack operation MultiPop(Stack,k), which removes the 𝑘 top

objects of stack Stack, popping the entire stack if the stack contains fewer than 𝑘

objects. MultiPop simply calls Pop 𝑘 times. What is the running time of

MultiPop(Stack,k) on a stack of 𝑠 objects? The actual running time is linear in the

number of Pop operations actually executed, and thus we can analyze MultiPop

in terms of the abstract costs of 1 each for Push and Pop. The number of calls of

A.E. Csallner - Selected Chapters from Algorithms

68

Pop by MultiPop equals min (𝑠, 𝑘). Thus, the total cost of MultiPop is min (𝑠, 𝑘),

and the actual running time is a linear function of this cost.

Let us analyze a sequence of 𝑛 Push, Pop, and MultiPop operations on an initially

empty stack. The worst-case cost of a MultiPop operation in the sequence is 𝑂(𝑛),

since the stack size is at most 𝑛. The worst-case time of any stack operation is

therefore 𝑂(𝑛), and hence a sequence of 𝑛 operations costs 𝑂(𝑛2), since we may

have 𝑂(𝑛) MultiPop operations costing 𝑂(𝑛) each. Although this analysis is

correct, the 𝑂(𝑛2) result, which we obtained by considering the worst-case cost

of each operation individually, is not tight.

Incrementing a binary counter

As another example, consider the problem of implementing a 𝑘-bit binary counter

that counts upward from 0. We use an array 𝐴[0. . 𝑘 − 1] of bits, where

𝐴. 𝐿𝑒𝑛𝑔𝑡ℎ = 𝑘, as the counter. A binary number 𝑥 that is stored in the counter

has its lowest-order bit in 𝐴[0] and its highest-order bit in 𝐴[𝑘 − 1], so that 𝑥 =

∑ 𝐴[𝑖] ∙ 2𝑖𝑘−1
𝑖=0 . Initially, 𝑥 = 0, and thus 𝐴 contains all zeros. If we increment the

counter anytime, all the one bits in the array 𝐴 are flipped to zeros from left to

right (in writing we use the opposite direction since the lower figures are on the

right then, while in our array they are on the left) until we find a zero bit, which is

then flipped to one, as in the following example:

 The same in the array 𝐴:

That’s how we add in writing: 𝑖 0 1 2 3 4 5 6 7

1 1 0 0 0 1 1 1 𝐴[𝑖] 1 1 1 0 0 0 1 1

+ 1    

1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1

We assume that we implement this algorithm with a function called Increment.

As with the stack example, a cursory analysis of Increment yields a bound that is

correct but not tight. A single execution of Increment takes time 𝜃(𝑘) in the worst

case, in which array 𝐴 contains all 1s. Thus, a sequence of 𝑛 Increment operations

on an initially zero counter takes time 𝑂(𝑛𝑘) in the worst case.

Aggregate analysis

In aggregate analysis, we show that for all 𝑛, a sequence of 𝑛 operations takes

worst-case time 𝑇(𝑛) in total. In the worst case, the average cost, or amortized

cost, per operation is therefore 𝑇(𝑛)/𝑛. Note that this amortized cost applies to

A.E. Csallner - Selected Chapters from Algorithms

69

each operation, even when there are several types of operations in the sequence.

The other two methods we shall study in this chapter, the accounting method and

the potential method, may assign different amortized costs to different types of

operations.

Aggregate analysis of the augmented stack operations

Using aggregate analysis, we can obtain a better upper bound than 𝑂(𝑛2) that

considers the entire sequence of 𝑛 operations. In fact, although a single MultiPop

operation can be expensive, any sequence of 𝑛 Push, Pop, and MultiPop

operations on an initially empty stack can cost at most 𝑂(𝑛). Why? We can pop

each object from the stack at most once for each time we have pushed it onto the

stack. Therefore, the number of times that Pop can be called on a nonempty stack,

including calls within MultiPop, is at most the number of Push operations, which

is at most 𝑛. For any value of 𝑛, any sequence of 𝑛 Push, Pop, and MultiPop

operations takes a total of 𝑂(𝑛) time. The average cost of an operation is

𝑂(𝑛)/𝑛 = 𝑂(1). In aggregate analysis, we assign the amortized cost of each

operation to be the average cost. In this example, therefore, all three stack

operations have an amortized cost of 𝑂(1).

We emphasize again that although we have just shown that the average cost, and

hence the running time, of a stack operation is 𝑂(1), we did not use probabilistic

reasoning. We actually showed a worst-case bound of 𝑂(𝑛) on a sequence of 𝑛

operations. Dividing this total cost by 𝑛 yielded the average cost per operation, or

the amortized cost.

Aggregate analysis of incrementing a binary counter

We can tighten our analysis to yield a worst-case cost of 𝑂(𝑛𝑘) for a sequence of

𝑛 Increment operations instead of by observing that not all bits flip each time

Increment is called. As Figure 20 shows, 𝐴[0] does flip each time Increment is

called. The next bit up, 𝐴[1], flips only every other time: a sequence of 𝑛

Increment operations on an initially zero counter causes 𝐴[1] to flip ⌊𝑛/2⌋ times.

Similarly, bit 𝐴[2] flips only every fourth time, or ⌊𝑛/4⌋ times in a sequence of 𝑛

Increment operations. In general, for 𝑖 = 0,1, … , 𝑘 − 1, bit 𝐴[𝑖] flips ⌊𝑛/2𝑖⌋ times

in a sequence of 𝑛 Increment operations on an initially zero counter. For 𝑖 ≥ 𝑘,

bit 𝐴[𝑖] does not exist, and so it cannot flip. The total number of flips in the

sequence is thus

A.E. Csallner - Selected Chapters from Algorithms

70

∑ ⌊
𝑛

2𝑖
⌋

𝑘−1

𝑖=0

< 𝑛∑
1

2𝑖

∞

𝑖=0

= 2𝑛.

The worst-case time for a sequence of 𝑛 Increment operations on an initially zero

counter is therefore 𝑂(𝑛). The average cost of each operation, and therefore the

amortized cost per operation, is 𝑂(𝑛)/𝑛 = 𝑂(1).

Exercises

56 If the set of stack operations included a MultiPush operation, which pushes 𝑘 items onto the

stack, would the 𝑂(1) bound on the amortized cost of stack operations continue to hold?

57 Show that if a Decrement operation were included in the 𝑘-bit counter example, 𝑛 operations

could cost as much as 𝑂(𝑛𝑘) time.

58 Suppose we perform a sequence of 𝑛 operations on a data structure in which the ith operation

costs i if i is an exact power of 2, and 1 otherwise. Use aggregate analysis to determine the

amortized cost per operation.

Figure 20. An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 Increment
operations. Bits that flip to achieve the next value are shaded. The running cost for flipping bits is

shown at the right. Notice that the total cost is always less than twice the total number of
Increment operations.

A.E. Csallner - Selected Chapters from Algorithms

71

The accounting method

In the accounting method of amortized analysis, we assign differing charges to

different operations, with some operations charged more or less than they

actually cost. We call the amount we charge an operation its amortized cost.

When an operation’s amortized cost exceeds its actual cost, we assign the

difference to specific objects in the data structure as credit. Credit can help pay

for later operations whose amortized cost is less than their actual cost. Thus, we

can view the amortized cost of an operation as being split between its actual cost

and credit that is either deposited or used up. Different operations may have

different amortized costs. This method differs from aggregate analysis, in which

all operations have the same amortized cost.

We must choose the amortized costs of operations carefully. If we want to show

that in the worst case the average cost per operation is small by analyzing with

amortized costs, we must ensure that the total amortized cost of a sequence of

operations provides an upper bound on the total actual cost of the sequence.

Moreover, as in aggregate analysis, this relationship must hold for all sequences

of operations. If we denote the actual cost of the ith operation by 𝑐𝑖 and the

amortized cost of the ith operation by 𝑐̂𝑖, we require

∑𝑐̂𝑖

𝑛

𝑖=1

≥ ∑𝑐𝑖

𝑛

𝑖=1

 ⟺ ∑ 𝑐̂𝑖

𝑛

𝑖=1

− ∑𝑐𝑖

𝑛

𝑖=1

≥ 0

for all sequences of 𝑛 operations. The total credit stored in the data structure is

the difference between the total amortized cost and the total actual cost, which

must be nonnegative at all times. If we ever were to allow the total credit to

become negative (the result of undercharging early operations with the promise

of repaying the account later on), then the total amortized costs incurred at that

time would be below the total actual costs incurred; for the sequence of

operations up to that time, the total amortized cost would not be an upper bound

on the total actual cost. Thus, we must take care that the total credit in the data

structure never becomes negative.

Accounting method for the augmented stack operations

To illustrate the accounting method of amortized analysis, let us return to the

stack example. In the table below we list the actual costs of the particular

operations together with some suggested amortized costs:

A.E. Csallner - Selected Chapters from Algorithms

72

Operation Actual cost Amortized cost

Push(key,Stack) 1 2

Pop(Stack) 1 0

MultiPop(Stack,k) min (𝑠, 𝑘) 0

Note that the amortized cost of MultiPop is a constant (namely, zero), whereas

the actual cost is variable. Here, all three amortized costs are constant. In general,

the amortized costs of the operations under consideration may differ from each

other, and they may even differ asymptotically.

We shall now show that we can pay for any sequence of stack operations by

charging the amortized costs. Suppose we use a dollar bill to represent each unit

of cost. We start with an empty stack. When we push a key on the stack, we use

1 dollar to pay the actual cost of the push and are left with a credit of 1 dollar (out

of the 2 dollars charged), which we leave in the stack together with the key stored

there. At any point in time, every key in the stack has a dollar of credit stored with

it.

The dollar stored with the key serves as prepayment for the cost of popping it

from the stack. When we execute a Pop operation, we charge the operation

nothing and pay its actual cost using the credit stored in the stack. To pop a key,

we take the dollar of credit off the stack and use it to pay the actual cost of the

operation. Thus, by charging the Push operation a little bit more, we can charge

the Pop operation nothing. Moreover, we can also charge MultiPop operations

nothing because MultiPop does nothing more than calling the Pop operation

several times; each of which costs nothing since it has already been prepaid for

when pushing the element to be popped off the stack.

From this point on we can use a traditional worst-case analysis but this time with

the amortized costs. The resulting bound will be an upper bound on the actual

worst-case time complexity, too, because of the relation between the total

amortized and actual costs. The worst-case time complexity of one single

operation is 2 (the Push operation), and assuming this worst case occurs during

all 𝑛 operations it follows that 𝑇(𝑛) ≤ 2𝑛 = 𝑂(𝑛).

Accounting method for incrementing a binary counter

As we observed earlier, the running time of this operation is proportional to the

number of bits flipped, which we shall use as our cost for this example. Let us once

A.E. Csallner - Selected Chapters from Algorithms

73

again use a dollar bill to represent each unit of cost (the flipping of a bit in this

example).

For the amortized analysis, let us charge an amortized cost of 2 dollars to set a bit

to 1. When a bit is set, we use 1 dollar (out of the 2 dollars charged) to pay for the

actual setting of the bit, and we place the other dollar on the bit as credit to be

used later when we flip the bit back to 0. At any point in time, every 1 in the

counter has a dollar of credit on it, and thus we can charge nothing to reset a bit

to 0; we just pay for the reset with the dollar bill on the bit. The single steps’ costs

are listed in the table below:

Step Actual cost Amortized cost

Flip a bit from 0 to 1 1 2

Flip a bit from 1 to 0 1 0

Now we can determine the amortized cost of incrementing the counter. In one

Increment operation some of the bits are flipped to 0, but only one bit is flipped

to 1. That means that the amortized cost of one Increment operation always

equals 2, having this as an upper bound for the actual costs. After 𝑛 times

incrementing the counter the time complexity turns out to be 𝑇(𝑛) ≤ 2𝑛 = 𝑂(𝑛).

Exercises

59 Redo Exercise 58 on page 70 using an accounting method of analysis.

60 Show how to implement a queue with two ordinary stacks so that the amortized cost of each

Enqueue and each Dequeue operation is 𝑂(1).

The potential method

The potential method is very similar to the accounting method only instead of

representing prepaid work as credit stored with specific objects in the data

structure, the potential method of amortized analysis represents the prepaid work

as “potential energy,” or just “potential,” which can be released to pay for future

operations. We associate the potential with the data structure as a whole rather

than with specific objects within the data structure.

The potential method works as follows. We will perform 𝑛 operations, starting

with an initial data structure 𝐷0. For each 𝑖 = 1,2,… , 𝑛, we let 𝑐𝑖 be the actual cost

of the ith operation and 𝐷𝑖 be the data structure that results after applying the ith

operation to data structure 𝐷𝑖−1. A potential function Φ maps each data structure

A.E. Csallner - Selected Chapters from Algorithms

74

𝐷𝑖 to a real number Φ(𝐷𝑖), which is the potential associated with data structure

𝐷𝑖. The amortized cost 𝑐̂𝑖 of the ith operation with respect to potential function Φ

is defined by

𝑐̂𝑖 = 𝑐𝑖 + Φ(𝐷𝑖) − Φ(𝐷𝑖−1).

The amortized cost of each operation is therefore its actual cost plus the change

in potential due to the operation. Hence, the total amortized cost of the

𝑛 operations is

∑𝑐̂𝑖

𝑛

𝑖=1

= ∑(𝑐𝑖 + Φ(𝐷𝑖) − Φ(𝐷𝑖−1))

𝑛

𝑖=1

= ∑𝑐𝑖

𝑛

𝑖=1

+ Φ(𝐷𝑛) − Φ(𝐷0).

The latter equality comes from the sum of the potentials’ differences being a

telescope.

If we can define a potential function Φ so that Φ(𝐷𝑛) ≥ Φ(𝐷0), then the total

amortized cost ∑ 𝑐̂𝑖
𝑛
𝑖=1 gives an upper bound on the total actual cost ∑ 𝑐𝑖

𝑛
𝑖=1 .

In practice, we do not always know how many operations might be performed.

Therefore, if we require that Φ(𝐷𝑖) ≥ Φ(𝐷0) for all 𝑖, then we guarantee, as in

the accounting method, that we pay in advance. We usually just define Φ(𝐷0)

tobe 0 and then show that Φ(𝐷𝑖) ≥ 0 for all 𝑖.

Intuitively, if the potential difference Φ(𝐷𝑖) − Φ(𝐷𝑖−1) of the ith operation is

positive, then the amortized cost 𝑐̂𝑖 represents an overcharge to the ith operation,

and the potential of the data structure increases. If the potential difference is

negative, then the amortized cost represents an undercharge to the ith operation,

and the decrease in the potential pays for the actual cost of the operation.

Potential method for the augmented stack operations

We define the potential function Φ on a stack to be the number of objects in the

stack. For the empty stack 𝐷0 with which we start, we have Φ(𝐷0) = 0. Since the

number of objects in the stack is never negative, the stack 𝐷𝑖 that results after the

ith operation has nonnegative potential, and thus Φ(𝐷𝑖) ≥ 0.

The total amortized cost of 𝑛 operations with respect to Φ therefore represents

an upper bound on the actual cost.

A.E. Csallner - Selected Chapters from Algorithms

75

Let us now compute the amortized costs of the various stack operations. If the ith

operation on a stack containing 𝑠 objects is a Push operation, then the potential

difference is Φ(𝐷𝑖) − Φ(𝐷𝑖−1) = (𝑠 + 1) − 𝑠 = 1. The amortized cost of the

Push operation is therefore 𝑐̂𝑖 = 𝑐𝑖 + Φ(𝐷𝑖) − Φ(𝐷𝑖−1) = 1 + 1 = 2.

Suppose that the ith operation on the stack is MultiPop(Stack,k), which causes

𝑘′ = min (𝑠, 𝑘) objects to be popped off the stack. The actual cost of the

operation is 𝑘′, and the potential difference is Φ(𝐷𝑖) − Φ(𝐷𝑖−1) = −𝑘′. Thus, the

amortized cost of the MultiPop operation is 𝑐̂𝑖 = 𝑐𝑖 + Φ(𝐷𝑖) − Φ(𝐷𝑖−1) = 𝑘′ −

𝑘′ = 0.

Similarly, the amortized cost of an ordinary Pop operation is 0.

The amortized cost of an augmented stack operation in worst case equals 2 so

assuming the worst case for all the 𝑛 operations the total amortized cost is 2𝑛.

Since we have already argued that Φ(𝐷𝑖) ≥ Φ(𝐷0), the total amortized cost of 𝑛

operations is an upper bound on the total actual cost. The worst-case cost of 𝑛

operations is therefore 𝑇(𝑛) ≤ 2𝑛 = 𝑂(𝑛).

Potential method for incrementing a binary counter

This time, we define the potential of the counter after the ith Increment operation

to be 𝑏𝑖, the number of 1s in the counter after the ith operation.

Let us compute the amortized cost of an Increment operation. Suppose that the

ith Increment operation resets 𝑡𝑖 bits. The actual cost of the operation is therefore

𝑐𝑖 = 𝑡𝑖 + 1, since in addition to resetting 𝑡𝑖 bits, it sets at most one bit to 1. Thus,

𝑏𝑖 = 𝑏𝑖−1 − 𝑡𝑖 + 1, and the potential difference is Φ(𝐷𝑖) − Φ(𝐷𝑖−1) = 𝑏𝑖 −

𝑏𝑖−1 = (𝑏𝑖−1 − 𝑡𝑖 + 1) − 𝑏𝑖−1 = 1 − 𝑡𝑖. The amortized cost is therefore 𝑐̂𝑖 = 𝑐𝑖 +

Φ(𝐷𝑖) − Φ(𝐷𝑖−1) = (𝑡𝑖 + 1) + (1 − 𝑡𝑖) = 2.

If the counter starts at zero, then Φ(𝐷0) = 𝑏0 = 0. Since Φ(𝐷𝑖) = 𝑏𝑖 ≥ 0 for all

𝑖, the total amortized cost of a sequence of 𝑛 Increment operations is an upper

bound on the total actual cost, and so the worst-case cost of 𝑛 Increment

operations is 𝑇(𝑛) ≤ 2𝑛 = 𝑂(𝑛).

Exercises

61 Suppose we have a potential function Φ such that Φ(𝐷𝑖) ≥ Φ(𝐷0) for all 𝑖, but Φ(𝐷0) ≠ 0.

Show that there exists a potential function Φ′ such that Φ′(𝐷0) = 0, and the amortized costs

using Φ′ are the same as the amortized costs using Φ.

A.E. Csallner - Selected Chapters from Algorithms

76

62 Redo Exercise 58 on page 70 using a potential method of analysis.

63 Redo Exercise 60 on page 73 using a potential method of analysis.

A.E. Csallner - Selected Chapters from Algorithms

77

Greedy Algorithms

The field of optimization problems is a wide an important branch of mathematics

and algorithm theory. Plenty of mathematical models for real-life problems from

mechanical design to economic planning require optimization. In most of the

cases it is very difficult and time consuming to solve these problems. However,

there are optimization problems that can be solved in a very straightforward and

simple way using so-called greedy algorithms. The question arising here first is

how it can be decided from an optimization problem whether it can be solved in

a greedy way or not.

Elements of the greedy approach

Greedy algorithms solve problems where usually a somehow optimal subset of

the finite set of feasible decisions has to be selected. They set out from an empty

subset and extend it element by element always taking the step that is locally

optimal at that point. Note that this approach excludes revisiting subproblems

once solved. This principle obviously cannot be applied for all optimization

problems. If, e.g., our aim is to find the shortest road route from Los Angeles to

Las Vegas, then it would be really stupid to use a greedy strategy and find the

closest town to our starting point and drive there first, for it would lead us to Santa

Monica, which is situated in the opposite direction as our destination.

An optimization problem has to comply with the following two properties to be

soluble by a greedy algorithm:

1. Greedy choice property: If a greedy choice is made first, it can always be

completed to achieve an optimal solution to the problem.

2. Optimal substructure property: Any substructure of an optimal solution

provides an optimal solution to the adequate subproblem.

The example of finding the shortest road route from L.A. to Vegas has an optimal

substructure property because considering any subroute of a shortest way

provides a shortest way to the subproblem indicated by the subroute. For instance

if a shortest way from L.A. to Vegas leads through Victorville and Barstow, then

the road-section between Victorville and Barstow is obviously a shortest way from

Victorville to Barstow, i.e. an optimal solution to the subproblem.

A.E. Csallner - Selected Chapters from Algorithms

78

However, the shortest road route problem does not comply with the greedy

choice property because if we first head towards Santa Monica as described

above, we cannot correct our faults and the route can never be accomplished to

an optimal one anymore.

A simple example for greedy algorithms is an activity-selection problem. Let us

discuss the problem through an example. Let us assume we have plenty of

channels on our TV and we want to spend a day watching TV. First we select the

programs we would like to watch; this will be the base set (feasible choices). If

there are time overlaps between programs on different channels, we have to

decide. Let us suppose we want to watch as many of the programs as we can (we

maximize for the number of programs seen and not for the time spent watching

TV). The correct greedy algorithm is the following. First we watch the program

which ends at the earliest time. If we are finished, we choose the next program

with the earliest finishing time from those that have not begun yet. We iterate this

procedure till the end, i.e. until no more programs are available.

The algorithm above is greedy in the sense that we always choose the program

that ends at the earliest time because the earlier we finish it the more time we

have left for other programs. We will now verify that the solution delivered by this

method is optimal. Our first decision of choosing the earliest ending TV program

does not bungle the whole solution since no other first choice would give us more

possibilities for the rest of the time. This means that the problem complies with

the greedy choice property, and also that the first program in any optimal solution

for the problem can always be replaced by the greedy choice. Because of this, on

the other hand, if we exclude the first program together with those programs

overlapping it from an optimal solution, the rest still delivers an optimal solution

for this reduced base set (otherwise if we extended an existing better solution for

the reduced base set with our original first choice, we would get a better solution

to the original problem than the considered optimal one). This is exactly the

optimal substructure property, which also means that after the first choice the

rest of the TV programs can be processed in a similar way, leading to an optimal

solution at the end.

Exercises

64 Demonstrate how the greedy algorithm reviewed above for solving the activity-selection

problem works on the following base set: {(8,11), (8,12), (9,10), (10,13), (11,12), (12,13), (12,14),

(14,16), (15,18), (19,20)}.

A.E. Csallner - Selected Chapters from Algorithms

79

65 Verify that the greedy approach of choosing the available activity which starts first (instead the

one that ends first) does not comply with the elements of the greedy approach. Give a counter

example where this modified algorithm fails.

66 Do the same as in the previous exercise but for the greedy approach of choosing the shortest of

the available activities.

Huffman coding

Many people have already heard about Huffman coding as a data compression

method. The notion “data compression” is a bit confusing since it is not the data

themselves that are compressed but rather another coding is applied that delivers

a shorter code for a file than a previous coding. Hence data compression is always

relative. However, we can say that Huffman codes are optimal among the codes

delivered by prefix-free character coding methods. A file coding is called character

coding if every file consists of characters coming from a fixed set (an alphabet),

and each character has its own code in the coding. The file thus consists of a

concatenation of such codes. Moreover, a character coding is called prefix-free (or

shortly prefix coding) if none of the characters’ codewords is the beginning of any

other codeword. This latter notion is certainly significant only if the codewords

are of different length. In this case the codes are called variable-length codes (cf.

the good old ASCII coding which consists of fixed-length, i.e. 7 bit codes for

characters).

For better tractability we introduce the notion of coding trees. A binary tree is

called a coding tree if its leaves represent the characters of a given alphabet, and

the paths leading from the root to the leaves define the character codes in the

following way. Each edge of the tree has a label. This label is 0 if it leads to a left

child and 1 if a right child is reached through it. The code of any character is simply

the sequence of zeros and ones on the path leading from the root to the leaf

representing the character.

Note that a coding defined by a coding tree is always prefix-free. Moreover, a

prefix coding never needs delimiters between the character codes because after

beginning with reading a character code in a file using the coding’s tree it definitely

ends at a leaf of the tree, hence the next bit must belong to the file’s next

character.

To be able to formulate the optimality of a coding defined by a coding tree some

notations need to be introduced. In the following let us fix a file to be coded

A.E. Csallner - Selected Chapters from Algorithms

80

consisting of the characters of a given C alphabet (a set of characters). Then for

any 𝑐 ∈ 𝐶 character the number of its occurrences in the file (its frequency) is

denoted by 𝑓(𝑐). If a 𝑇 coding tree is used for the character codes then the length

of the code of character c (which equals the depth of the leaf representing it in

the tree) is denoted by 𝑑𝑇(𝑐). Hence, the (bit)length of the file using the coding

defined by the coding tree T is 𝐵(𝑇) = ∑ 𝑓(𝑐)𝑑𝑇(𝑐)𝑐∈𝐶 .

When trying to find optimal prefix-free character codings (𝑇 codings with minimal

𝐵(𝑇)), the first observation is that no coding tree containing vertices with only

one child can be optimal. To verify this, imagine there is a vertex having only one

child. Then this vertex can be deleted from the tree resulting in decreasing the

depth of all leaves which were in the subtree of the deleted vertex, thus

shortening the codes of all characters represented by these leaves (see character

c in Figure 21 after deleting the shaded vertex).

However, the basic idea for Huffman coding is that we use different codes for

different files: if a character occurs frequently in the given file, then we code it

with a short codeword, whilst rare characters get long codewords. Following this

principle the Huffman algorithm first sorts the elements of the alphabet according

to their frequencies in an increasing order. Subsequently it joins the two leading

elements of this list, and replaces the two elements with a single virtual one

representing them with a frequency that is the sum of their frequencies preserving

the order of the list. Then the first two elements of the new (one element shorter)

list are joined the same way, and this process is iterated until the list consists of

only one element representing all elements of the alphabet (see Figure 22). Hence

the tree of the coding is built beginning at the leaves and the two rarest characters

are represented by twins at maximal depth in the tree.

a

0 1

0 1

b

c

a

0 1

0 1 0

b c

a = 00

b = 01

c = 10

a = 00

b = 01

c = 1

Figure 21. Deleting vertices having only one child from a coding tree shortens
some of the codes.

A.E. Csallner - Selected Chapters from Algorithms

81

If we can prove that this problem complies with the two properties guaranteeing

the optimality of the greedy approach, then the Huffman code must be optimal.

Our first assertion is that there exists an optimal solution where the two rarest

characters are deepest twins in the tree of the coding, thus the greedy choice

property is fulfilled by the Huffman coding. Indeed, taking any optimal coding tree

and exchanging any two deepest twins for the two rarest characters’ vertices, the

total bitlength of the file code cannot decrease, because rarer characters get

longer (or at least not shorter) codewords, and at the same time more frequent

characters’ codes become shorter (not longer).

The second assertion says that merging two (twin) characters leads to a problem

similar to the original one, delivering the optimal substructure property for the

greedy approach. The assertion itself is obvious. Thus, if an optimal coding tree is

given, then joining any deepest twins the new tree provides an optimal solution

to the reduced problem, where the two characters represented by these twins are

replaced by a single common virtual character having the sum of the twins’

frequencies.

The two assertions above prove the optimality of the Huffman codes.

The following example demonstrates how Huffman’s algorithm works. Let 𝐶 be an

alphabet consisting of five characters: 𝐶 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Let us assume that their

frequencies in the file to be coded are 𝑓(𝑎) = 5000, 𝑓(𝑏) = 2000, 𝑓(𝑐) = 6000,

𝑓(𝑑) = 3000 and 𝑓(𝑒) = 4000. The list and the elements linked to the list

elements are the following during the execution of the Huffman algorithm.

Note that any fixed-length character coding to code five characters would need at

least three bit codewords, hence a 60.000 bit long coded file, while for the

Huffman code above only B(T) = 45.000 bits are needed.

A.E. Csallner - Selected Chapters from Algorithms

82

List0: a (5000) b (2000) c (6000) d (3000) e (4000)

List1: b (2000) d (3000) e (4000) a (5000) c (6000)

Sort the elements of the list.

List1: b (2000) d (3000) e (4000) a (5000) c (6000)

5000

Join the two leading elements of the list.

Extract the two leading elements and insert the joint element.

List2:

b (2000) d (3000)

e (4000) a (5000) c (6000) 5000

List2:

b (2000) d (3000)

e (4000) a (5000) c (6000) 5000

9000

Join the two leading elements of the list.

Etc.

A.E. Csallner - Selected Chapters from Algorithms

83

Exercises

67 Demonstrate how the Huffman algorithm works on an alphabet whose elements have the

following frequencies in the given file: 8000, 2000, 1000, 6000, 3000, 9000.

68 What kind of coding tree is built by the Huffman algorithm if the alphabet consists of n characters

having the frequencies of the first n Fibonacci numbers?

Etc.

At the end, List5 consists of one single element, and the tree of the

coding is finished.

List5:

b (2000) d (3000)

e (4000) a (5000) c (6000) 5000

9000 11000

20000

Figure 22. An example for Huffman codes, the resulting tree yields the codes:
𝒂 = 𝟏𝟎, 𝒃 = 𝟎𝟏𝟎, 𝒄 = 𝟏𝟏, 𝒅 = 𝟎𝟏𝟏 and 𝒆 = 𝟎𝟎.

A.E. Csallner - Selected Chapters from Algorithms

84

Graphs

Graphs can represent different structures, connections and relations. The edges

connecting the vertices can represent e.g. a road-network of a country or a flow

structure of a chemical plant. In these cases the edges can have different

numerical values assigned to them, representing the distances along road-

sections and capacities or actual flow rates of pipelines, respectively. Such graphs

are called weighted graphs, where the values of the edges are the weights.

Whatever we are modeling with graphs, we have to store them on a computer

and be able to make calculations on them.

Graphs and their representation

The two most important graph representation types are the adjacency-matrix

representation and the adjacency-list representation. For both types the vertices

are numbered and are referred to with their serial numbers, as you can see in the

following example.

In the matrix representation if there is an edge pointing from vertex i to vertex j

in the graph, it is represented by a 1 value at the i th row’s j th position in the matrix.

Otherwise there is a 0 at that position. One advantage of this representation is

that connections can be checked or modified in constant time. Moreover,

weighted graphs can easily be stored by simply replacing the 1 values in the matrix

1

4

2

3

 1 2 3 4

1 0 1 0 1

2 1 0 0 1

3 0 0 0 1

4 1 1 1 0

the graph

the adjacency-matrix

representation

the adjacency-list

representation

1 2 4

2 4 1

3 4

4 1 3 2

Figure 23. Different representations of a graph.

A.E. Csallner - Selected Chapters from Algorithms

85

with the weights of the edges. A serious drawback of adjacency-matrices is that if

a graph has very few edges compared to its vertices, then a plenty of 0 values are

unnecessarily stored in the matrix. Moreover, undirected graphs (where the edges

have no direction) have symmetric adjacency matrices, causing further

redundancy.

The list representation stores a list for each vertex i, consisting of the vertices

adjacent with vertex i. This is the most storage saving method for storing graphs,

however, some operations can last somewhat longer than on adjacency-matrices.

To check whether there exists an edge pointing from vertex i to vertex j, the list of

i has to be searched through for j. In worst case this list can contain nearly all

vertices resulting in a time complexity linear in the number of vertices of the

graph.

Single-source shortest path methods

Graphs have a plenty of applications, of which we will investigate only one here:

the problem of finding the shortest path from a vertex to another (typically used

in route planners, among others). Since there is no difference in worst case time

complexity whether we look for the shortest path from a given vertex to a single

other one or to all others (and there is no separate algorithm either), we

investigate the problem of finding the shortest paths from a single vertex (also

called the source).

Breadth-first search

We have seen in subsection “Binary search trees” how binary trees can be walked.

The same problem, i.e. walking the vertices arises on graphs in general. Two basic

methods are the depth-first search and the breadth-first search. The depth-first

search is a backtracking algorithm (see page 8). It starts from the source and goes

along a path as far as it can without revisiting vertices. If it gets stuck, it tries the

remaining edges running out from the actual vertex, and when there are no more,

it steps back one vertex on its original path coming from the source and keeps on

trying there.

The breadth-first search is not only simpler to implement than the depth-first

search but it is also the basis for several important graph algorithms, therefore we

are going to investigate this in details in the following. Breadth-first search can be

imagined as an explosion in a mine where the edges of the graph represent the

galleries of the mine which are assumed to have equal lengths. After the explosion

A.E. Csallner - Selected Chapters from Algorithms

86

a shockwave starts from the source reaching the vertices adjacent to it first, then

the vertices adjacent to these, etc. The breadth-first search algorithm usually

cannot process all neighbors of a vertex at the same time on a computer, as in the

mine example (except for the case of parallel computing), hence they are

processed in a given order.

The following pseudocode executes a breadth-first search from the source vertex

s in a graph given with its adjacency matrix A.

BreadthFirstSearch(A,s,D,P)

 1 for i  1 to A.CountRows

 2 do P[i]  0

 3 D[i]  ∞

 4 D[s]  0
 5 Q.Enqueue(s)
 6 repeat

 7 v  Q.Dequeue

 8 for j  1 to A.CountColumns
 9 do if A[v,j] > 0 and D[j] = ∞

 10 then D[j]  D[v] + 1

 11 P[j]  v
 12 Q.Enqueue(j)
 13 until Q.IsEmpty

Parameters D and P are references to two one-dimensional arrays where the
procedure stores the vertices’ distances from the source during the search and
their predecessors on the paths where they were reached. Initially it stores 0 in

1

0 (0)

2

1 (1)

3

3 (5)

4

1 (1)

5

2 (4)

6

2 (2)

Figure 24. Breadth-first search from the source 1 in a graph.
The labels written in the vertices denote the shortest distance from the source and the

predecessor on a shortest path from the source in parentheses, respectively

A.E. Csallner - Selected Chapters from Algorithms

87

all elements of P indicating that no predecessors have been assigned to the
vertices yet, and ∞ in the elements of D (in reality any value greater than any
distance that can be found during the search, e.g. the number A.CountRows of
vertices of the graph) to indicate that the vertices have not been searched yet.
The algorithm supplies a FIFO queue Q, where it puts the vertices that have
already been reached but whose neighbors have not been processed yet. In the
for-loop it checks all the neighbors j of vertex v (in line 9 it verifies whether
vertex j is adjacent to v and if it has not been visited yet) and sets the values for
the distance of the source and the predecessor on the path coming from the
source.

Knowing the predecessors stored in array P of the vertices, the path leading to a
vertex from the source can be restored recursively any time.

Dijkstra’s algorithm

The breadth-first search immediately delivers shortest paths from a given source

to any of the vertices, however, only if the length of all edges is considered as 1.

In reality the edges of a network where shortest paths are to be determined have

different weights. A very similar algorithm to the breadth-first search is Dijkstra’s

algorithm which can provide the shortest paths provided that every weight is

positive which is mostly the case in real-life applications.

The difference between the breadth-first search and Dijkstra’s algorithm is that

whilst the former never modifies a (shortest) distance value once given to a vertex,

Dijkstra’s algorithm visits all vertices adjacent to the vertex just being checked,

independently from whether any of them have already been labeled or not.

1

2 (4)

2

3 (1)

3

1 (5)

4

1 (5)

5

0 (0)

6

2 (3)

1 3

1 1 4

1

1
3

1

1

1 1

Figure 25. The result of Dijkstra’s shortest path method started from source vertex 5.
The bold values over the edges are the weights, the rest of the notation is similar to that of

Figure 24.

A.E. Csallner - Selected Chapters from Algorithms

88

However, to achieve an optimal solution it always chooses the one with the least

distance value among the unprocessed vertices (those whose neighbors have not

been checked yet). It realizes this idea using a minimum priority queue (that can

be implemented using minimum heaps, see Page 37) denoted by M in the

following pseudocode. The priority queue’s order is defined by the values of array

D of distances.

Dijkstra(A,s,D,P)

 1 for i  1 to A.CountRows

 2 do P[i]  0

 3 D[i]  ∞

 4 D[s]  0

 5 for i  1 to A.CountRows
 6 do M.Enqueue(i)
 7 repeat

 8 v  M.ExtractMinimum

 9 for j  1 to A.CountColumns
 10 do if A[v,j] > 0
 11 then if D[j] > D[v] + A[v,j]

 12 then D[j]  D[v] + A[v,j]

 13 P[j]  v
 14 until M.IsEmpty

The idea mentioned above is simply an extension of the breadth-first search. We

can even visualize this if the weights are natural numbers as in the example of

Figure 25. In this case, if we insert virtual vertices in the graph the problem is

reduced to a breadth-first search in an unweighted graph (see Figure 26, the

virtual vertices are shaded). The choice formulated by taking the vertex with the

minimal distance value in line 8 of the pseudocode translates in the converted

problem to the order of vertices in the FIFO queue Q of the breadth-first search.

The time complexity of Dikstra’s algorithm adds up from initializing the data

structures (setting initial values in lines 1-4 and enqueuing all vertices into M in

lines 5-6) and executing the search itself (the loop construct in lines 7-14).

Initialization of arrays D and P takes 𝑂(𝑛) time (if denoting the number of vertices

in the graph by n). Building a heap (using this optimal implementation of priority

queue M) in lines 5-6 is linear, so this is 𝑂(𝑛) again (see page 39). The repeat loop

is executed n times, for each iteration cycle consuming at most 𝑂(log 𝑛 + 𝑛) time,

A.E. Csallner - Selected Chapters from Algorithms

89

resulting in 𝑂(𝑛(log 𝑛 + 𝑛)) = 𝑂(𝑛2) in worst case. Since the initialization part

does not worsen this, the final result is 𝑇(𝑛) = 𝑂(𝑛2).

Exercises

69 Demonstrate how the breadth-first search works on the example graph of Figure 24.

70 Demonstrate how Dijkstra’s algorithm works on the example graph of Figure 25.

71 Write the pseudocode of a procedure that lists a shortest path from the source to a given vertex

calling Dijkstra’s algorithm.

1

2 (4)

2

3 (1)

3

1 (5)

4

1 (5)

5

0 (0)

6

2 (3)

e

2 (3)

d

3 (e)

f

1 (5)

g

2 (f)

b

2 (c)

a

3 (b)

c

1 (5)

Figure 26. Visualizing the basic idea of Dijkstra’s algorithm by converting the example of Figure
25 to a breadth-first search problem in an unweighted graph using virtual vertices.

A.E. Csallner - Selected Chapters from Algorithms

90

Computational Geometry

Computational geometry is the branch of computer science that studies

algorithms for solving geometric problems. In modern engineering and

mathematics, computational geometry has applications in such diverse fields as

computer graphics, robotics, VLSI design, computer-aided design, molecular

modeling, metallurgy, manufacturing, textile layout, forestry, and statistics. The

input to a computational-geometry problem is typically a description of a set of

geometric objects, such as a set of points, a set of line segments, or the vertices

of a polygon in counterclockwise order. The output is often a response to a query

about the objects, such as whether any of the lines intersect, or perhaps a new

geometric object, such as the convex hull (smallest enclosing convex polygon) of

the set of points.

Cross products

Consider vectors 𝑝1 and 𝑝2, shown in Figure 27. We can interpret the cross

product 𝑝1 × 𝑝2 as the signed area of the parallelogram formed by the points
(0,0), 𝑝1, 𝑝2, and 𝑝1 + 𝑝2. An equivalent, but more useful, definition gives the

cross product as the determinant of a matrix:

𝑝1 × 𝑝2 = det (
𝑥1 𝑥2

𝑦1 𝑦2
) = 𝑥1𝑦2 − 𝑥2𝑦1.

Figure 27. The cross product of vectors 𝒑𝟏 and 𝒑𝟐 is the signed area of the parallelogram.

If 𝑝1 × 𝑝2 is negative, then 𝑝2 is clockwise from 𝑝1 with respect to the origin (0,0);

if this cross product is positive, then 𝑝2 is counterclockwise from 𝑝1 (positive and

negative mathematical turning directions, resp.). A boundary condition arises if

A.E. Csallner - Selected Chapters from Algorithms

91

the cross product is 0; in this case, the vectors are colinear, pointing in either the

same or opposite directions.

To determine whether a directed segment 𝑝0𝑝1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is closer to a directed segment

𝑝0𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ in a clockwise direction or in a counterclockwise direction with respect to

their common endpoint 𝑝0, we simply translate to use 𝑝0 as the origin. That is, we

use the cross product to determine the turning direction of 𝑝1 − 𝑝0 to 𝑝2 − 𝑝0

with respect to (0,0):

(𝑝1 − 𝑝0) × (𝑝2 − 𝑝0) = (𝑥1 − 𝑥0)(𝑦2 − 𝑦0) − (𝑥2 − 𝑥0)(𝑦1 − 𝑦0).

If this cross product is negative, then 𝑝0𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is clockwise from 𝑝0𝑝1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗; if positive, it is

counterclockwise.

Determining whether consecutive segments turn left or right

Our next question is whether two consecutive line segments 𝑝0𝑝1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and 𝑝1𝑝2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ turn

left or right at point 𝑝1. Cross products allow us to answer this question without

computing the angle. We simply translate both vectors to start from the origin

(0,0), resulting the vectors 𝑝1 − 𝑝0 and 𝑝2 − 𝑝1, respectively. The problem then

reduces to the turning direction of a position vector to another one. But this, as

we have already seen, can be stated by using the cross product:

(𝑝1 − 𝑝0) × (𝑝2 − 𝑝1) = (𝑥1 − 𝑥0)(𝑦2 − 𝑦1) − (𝑥2 − 𝑥1)(𝑦1 − 𝑦0).

Determining whether two line segments intersect

To determine whether two line segments intersect, we check whether each

segment straddles the line containing the other. A segment 𝑝1𝑝2̅̅ ̅̅ ̅̅ straddles a line

if point 𝑝1 lies on one side of the line and point 𝑝2 lies on the other side. If a point

lies directly on the line, it counts for both sides.

How can we detect whether, e.g., line segment 𝑝3𝑝4̅̅ ̅̅ ̅̅ straddles the line containing

𝑝1𝑝2̅̅ ̅̅ ̅̅ . Let’s imagine the line of 𝑝1𝑝2̅̅ ̅̅ ̅̅ is a river, and 𝑝1𝑝2̅̅ ̅̅ ̅̅ is our boat floating on it.

The points 𝑝3 and 𝑝4 are trees on the banks of the river. How can we find out if

they are on different sides of the river or not? Let us suppose we are sitting on the

point 𝑝1 looking in the direction of 𝑝2. If we turn our eyes first towards 𝑝3, and

then again from 𝑝2 to 𝑝4, then obviously if the two turns had different directions

(as in Figure 28), then the two trees lie on different banks of the river, what means,

points 𝑝3 and 𝑝4 straddle the line segment 𝑝1𝑝2̅̅ ̅̅ ̅̅ . The same construction works for

A.E. Csallner - Selected Chapters from Algorithms

92

otherwise. Note, that if a point is directly on the line (a tree stands in the river),

then it counts to both sides.

The Boolean expression we have to check is simply the following. If
(𝑝2 − 𝑝1) × (𝑝3 − 𝑝1) and (𝑝2 − 𝑝1) × (𝑝4 − 𝑝1) have different signs (or any of

them equals zero), then 𝑝3 and 𝑝4 straddle the line segment 𝑝1𝑝2̅̅ ̅̅ ̅̅ . Similarly if
(𝑝4 − 𝑝3) × (𝑝1 − 𝑝3) and (𝑝4 − 𝑝3) × (𝑝2 − 𝑝3) have different signs (or any of

them equals zero), then also 𝑝1 and 𝑝2 straddle the line segment 𝑝3𝑝4̅̅ ̅̅ ̅̅ .

Summarized in one formula if

((𝑝2 − 𝑝1) × (𝑝3 − 𝑝1)) ∙ ((𝑝2 − 𝑝1) × (𝑝4 − 𝑝1)) ≤ 0

 and ((𝑝4 − 𝑝3) × (𝑝1 − 𝑝3)) ∙ ((𝑝4 − 𝑝3) × (𝑝2 − 𝑝3)) ≤ 0,

then the two line segments intersect.

Figure 28. Representing the situation how we can find out whether two trees lie on different
banks of the river we are boating on.

However, the boundary case when any of the “trees stand in the river” has to be

examined more carefully. It is obvious, that in that case the corresponding cross

product equals zero making the regarding inequality to be fulfilled, delivering the

correct answer of existing intersection. But if all four points are colinear, i.e., all

four cross products equal zero, this answer can be false, as shown in Figure 29.

𝑝3

𝑝4

A.E. Csallner - Selected Chapters from Algorithms

93

Figure 29. Both pairs of points straddle the lines of the others’, but the two line segments still not
intersect. This case can be excluded from further investigations by observing that their bounding

boxes do not intersect.

To avoid this case, prior to checking whether the pairs of points mutually straddle

each other’s lines we test if the bounding boxes of the two line segments intersect

(Figure 29). This can be done easily, since they only intersect if both of their

coordinate intervals (their projections to both coordinate axes), intersect. In other

words, these two Boolean expressions have to be true:

[𝑥1, 𝑥2] ∩ [𝑥3, 𝑥4] ≠ ∅ and [𝑦1, 𝑦2] ∩ [𝑦3, 𝑦4] ≠ ∅.

Exercises

72 Prove that if 𝑝1 × 𝑝2 is negative, then 𝑝2 is clockwise from 𝑝1 with respect to the origin (0,0);

if this cross product is positive, then 𝑝2 is counterclockwise from 𝑝1.

73 Professor van Pelt proposes that only the expression [𝑥1, 𝑥2] ∩ [𝑥3, 𝑥4] ≠ ∅ needs to be tested

in the boundary case. Show why the professor is wrong.

Determining whether any pair of segments intersect

This section presents an algorithm for determining whether any two line segments

in a set of segments intersect. The algorithm uses a technique known as

“sweeping,” which is common to many computational-geometry algorithms.

Moreover, this algorithm, or simple variations of it, can help solve other

computational-geometry problems.

𝑝3

𝑝4

𝑝1

𝑝2

bounding boxes

A.E. Csallner - Selected Chapters from Algorithms

94

The algorithm determines only whether or not any intersection exists; it does not

print all the intersections.

In sweeping, an imaginary vertical sweep line passes through the given set of

geometric objects, usually from left to right. We treat the spatial dimension that

the sweep line moves across, in this case the 𝑥-dimension, as a dimension of time.

Sweeping provides a method for ordering geometric objects, usually by placing

them into a dynamic data structure, and for taking advantage of relationships

among them. The line-segment-intersection algorithm in this section considers all

the line-segment endpoints in left-to-right order and checks for an intersection

each time it encounters an endpoint.

Ordering segments

We can order the segments that intersect a vertical sweep line according to the

𝑦-coordinates of the points of intersection. If a line segment is vertical then we

treat the bottom endpoint of it as if it were a left endpoint and the top endpoint

as if it were a right endpoint.

To be more precise, consider two segments 𝑠1 and 𝑠2. We say that these segments

are comparable at 𝑥 if the vertical sweep line with 𝑥-coordinate 𝑥 intersects both

of them. We say that 𝑠1 is above 𝑠2 at 𝑥, if 𝑠1 and 𝑠2 are comparable at 𝑥 and the

intersection of 𝑠1 with the sweep line at 𝑥 is higher than the intersection of 𝑠2 with

the same sweep line, or if 𝑠1 and 𝑠2 intersect at the sweep line.

Moving the sweep line

Sweeping algorithms typically manage two sets of data:

1. The sweep-line status gives the relationships among the objects that the

sweep line intersects.

2. The event-point schedule is a sequence of points, called event points, which

we order from left to right according to their 𝑥-coordinates. As the sweep

progresses from left to right, whenever the sweep line reaches the 𝑥-

coordinate of an event point, the sweep halts, processes the event point, and

then resumes. Changes to the sweep-line status occur only at event points.

For some algorithms, the event-point schedule develops dynamically as the

algorithm progresses. The algorithm at hand, however, determines all the event

points before the sweep, based solely on simple properties of the input data. In

A.E. Csallner - Selected Chapters from Algorithms

95

particular, each segment endpoint is an event point. We sort the segment

endpoints by increasing 𝑥-coordinate and proceed from left to right. (If two or

more endpoints are covertical, i.e., they have the same 𝑥-coordinate, we break

the tie by putting all the covertical left endpoints before the covertical right

endpoints. Within a set of covertical left endpoints, we put those with lower 𝑦-

coordinates first, and we do the same within a set of covertical right endpoints.)

When we encounter a segment’s left endpoint, we insert the segment into the

sweep-line status, and we delete the segment from the sweep-line status upon

encountering its right endpoint. Whenever two segments first become

consecutive in the total preorder, we check whether they intersect.

The sweeping line’s algorithm manages an ordered data structure (e.g. a doubly

linked list, see page 16) as the sweep-line status to store the segments actually

intersecting the sweep-line. We use the following operations: Insert and Delete

to insert a new line segment and delete one if the right endpoint has been

reached, respectively. Furthermore, we use the operations Above and Below to

determine which segment is above and which is below a given segment. These are

elements directly preceding or supervening the actual segment in the ordered

structure.

If the sweeping line comes to an event-point, it checks whether it is a left or a right

endpoint. If it is a left endpoint, it inserts it to the sweep-line status, and examines

if it intersects either the segment above or below it. If not, it proceeds with the

next event point. If it is a right endpoint, it examines if the line segments above

and below it intersect each other. If not, it proceeds with the next event point. If

at any time this procedure finds an intersection, it stops and gives a positive

answer. Otherwise it gives a negative answer.

Correctness and running time

If two line segments intersect, then one of the two line segments is inserted to the

sweep-line status just before the other. When processing the left endpoint of the

second line segment, the first line segment is already stored in the sweep-line

status, and the second is inserted either directly above or below it. Hence, the test

will find out that they intersect (part a) of Figure 30). The only exception is if a

third line segment which is still stored in the sweep-line status swags between the

two intersecting line segments. In this case when the sweeping line reaches the

right endpoint of the sagging line segment, it will find the intersecting line

segments above and below it in the sweep-line status (part b) of Figure 30).

A.E. Csallner - Selected Chapters from Algorithms

96

Figure 30. How the algorithm encounters intersection. a) After the second segment’s left
endpoint is reached, the first segment is directly above the second. b) When a sagging segment

ends, the intersecting segments are one above the other in the sweep-line status.

Note, that in both cases the algorithm stops before passing by the first intersection

point. Thus, the order of the segments stored in the sweep-line status never

changes during the execution of the algorithm, thus, no resorting is necessary.

What is the time complexity of the sweeping line’s algorithm? It first sorts the

endpoints resulting in the event point schedule by their 𝑥-coordinates. This

sorting takes 𝑂(𝑛 log 𝑛) time in worst case if using a sorting algorithm with an

optimal time complexity.

At each event point it either inserts a new line segment into the sweep-line status

or deletes one from it together with checking the intersection of one or two pairs

of line segments. In rest of this section we assume that the sweep-line status is

stored in a balanced binary search tree. A binary tree is called balanced if for any

of its nodes the left and right subtree’s depth do not differ more than by one. If a

binary tree is balanced, then its depth depends logarithmically on the number of

its vertices).

If a left endpoint comes next, we insert the line segment into the search tree in

𝑂(log 𝑛) time. Note, that although referring to a previous remark the order of the

line segments does not change while the algorithm is running, during the insertion

of a line segment into the sweep-line status the intersection of the sweep line with

all of the involved nodes of the search tree have to be recalculated. This is

necessary because the height (the 𝑦-coordinate) of the intersection of the line

first

second

sagging segment

a) b)

A.E. Csallner - Selected Chapters from Algorithms

97

segments with the sweep line changes continually (see Figure 31). This takes at

most a constant time multiplied by 𝑂(log 𝑛). Then we have to find the line

segments intersecting the sweep line directly under and above the new line

segment (these are the predecessor and successor, respectively, in the search

tree) in 𝑂(log 𝑛) time each, and at the end we check the intersection of the new

one with these in constant time. In total, the whole number of steps for a single

left endpoint does not exceed 𝑂(log 𝑛), hence for all 𝑛 left endpoints the time

complexity is 𝑂(𝑛 log 𝑛).

Figure 31. Although the intersection of line segment 𝒔𝟐 with the sweeping line at event point 𝒙𝟐
is higher than the intersection of 𝒔𝟏 in 𝒙𝟐, 𝒔𝟐 is in fact below 𝒔𝟏 in 𝒙𝟐.

In the case of a right endpoint the intersection of the line segments above and

under the given line segment is checked prior to deleting it. In the binary search

tree finding each of the line segments above and under the given line segment

takes 𝑂(log 𝑛) time (finding the successor and predecessor, respectively), while

we can check the intersection itself in constant time. For the at most 𝑛 right

endpoints to be checked it makes 𝑂(𝑛 log 𝑛) time.

Thus, the whole algorithm’s time complexity equals 𝑇(𝑛) = 3 ∙ 𝑂(𝑛 log 𝑛) =

𝑂(𝑛 log 𝑛), assuming that our binary search tree stays balanced through the

whole execution of the algorithm.

Exercises

74 Show that a set of 𝑛 line segments may contain 𝑛(𝑛 − 1) = 𝜃(𝑛2) intersections.

higher

lower

𝑥1 𝑥2

𝑠1

𝑠2

sweeping line

A.E. Csallner - Selected Chapters from Algorithms

98

75 Draw an example where the consecutive insertions of line segments into the sweep-line status

results in an unbalanced binary search tree.

Finding the convex hull

The convex hull of a set 𝑄 of points, denoted by CH(𝑄), is the smallest convex

polygon 𝑃 for which each point in 𝑄 is either on the boundary of 𝑃 or in its interior.

We implicitly assume that all points in the set 𝑄 are unique and that 𝑄 contains at

least three points which are not colinear. Intuitively, we can think of each point in

𝑄 as being a nail sticking out from a board. The convex hull is then the shape

formed by a tight rubber band that surrounds all the nails. Figure 32 shows a set

of points and its convex hull.

Figure 32. A set of points 𝑸 = {𝒑𝟎, 𝒑𝟏, … , 𝒑𝟏𝟐} with its convex hull 𝑪𝑯(𝑸) in gray.

The convex hull problem is simply to pick up those points from the input set 𝑄

which are vertices of the convex hull.

Graham’s scan

Graham’s scan solves the convex-hull problem by maintaining a stack 𝑆 of

candidate points. It pushes each point of the input set 𝑄 onto the stack one time,

and it eventually pops from the stack each point that is not a vertex of CH(𝑄).

When the algorithm terminates, stack 𝑆 contains exactly the vertices of CH(𝑄), in

counterclockwise order of their appearance on the boundary.

Two additional stack operations are introduced. The first is Top(S), which just

returns the object on the top of the stack 𝑆 without extracting it from the stack.

The second is Top2(S), doing the same to the object on the stack next to the object

on the top (the second element on the stack from above). Initially stack 𝑆 is empty.

A.E. Csallner - Selected Chapters from Algorithms

99

The algorithm first renumbers the input points. The initial point, 𝑝0 will be the

point with the minimal 𝑦-coordinate value (if there are more than one, then the

point with the minimal 𝑥-coordinate among them will be chosen). The remaining

points are sorted by polar angle in counterclockwise order around 𝑝0 (if more than

one point has the same angle, remove all but the one that is farthest from 𝑝0).

This can be imagined as if a laser ray was shot out of 𝑝0 to the right, in the direction

of positive infinity parallel to the 𝑥-axis. Then the ray is turned counterclockwise

slowly around 𝑝0, and the order of hitting the particular points with the laser

delivers the order of the numbering of them. Note, that this can be implemented

with any comparison sorting algorithm, since we can compare two points 𝑝𝑖 and
𝑝𝑗 by determining the turning direction of 𝑝0𝑝𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ from 𝑝0𝑝𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . If this direction is left,

then 𝑝𝑗 is greater than 𝑝𝑖, otherwise it is less. The equal elements are filtered out

at the end. After this, the first three points, 𝑝0, 𝑝1, and 𝑝2 are pushed to the stack.

The algorithm then iteratively repeats the following steps for all remaining points

𝑝𝑖 (𝑖 = 3,4,…𝑛 − 1, where 𝑛 = |𝑄|) of 𝑄 in their new order. While the

consecutive vectors 𝐓𝐨𝐩𝟐(𝑆) 𝐓𝐨𝐩(𝑆)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and 𝐓𝐨𝐩(𝑆) 𝑝𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ form a right turn or are

colinear, the top element of the stack is popped. That’s because in this case the

point Top(S) would be a dent on the hull, so it must be inside the convex hull, not

being a vertex of it. (If the vectors are colinear, then Top(S) is an inner point of an

edge of the convex hull’s polygon, thus, also not a vertex of it.) After finding the

first left turn, 𝑝𝑖 is pushed to the stack, and the iteration takes the next point (𝑖 ←

𝑖 + 1).

The running time accumulates from the sorting of the points, which takes

𝑂(𝑛 log 𝑛), and the iterative part described above. Because each of the 𝜃(𝑛)

points appear at most once on the stack, the time consumption of the iterations

is 𝜃(𝑛) in all. Thus, the time complexity of Graham’s scan is 𝑂(𝑛 log 𝑛).

Exercises

76 Prove that in the procedure of Graham’s scan, points 𝑝1 and 𝑝𝑛−1 must be vertices of CH(𝑄).

A.E. Csallner - Selected Chapters from Algorithms

100

References

1. Dijkstra, E. W. Notes on Structured Programming. Eindhoven : T.H. Report,

1969.

2. Mágoriné Huhn, Ágnes. Algoritmusok és adatszerkezetek. Szeged : JGYF Press,

2005. p. 167. ISBN: 9789639167360.

3. Landau, Edmund. Handbuch der Lehre von der Verteilung der Primzahlen.

Leipzig : B. G. Teubner, 1909.

4. Cormen, Thomas H., et al. Introduction to Algorithms, Third Edition. US : The

MIT Press, 2009. ISBN-10:0-262-03384-4, ISBN-13:978-0-262-03384-8.

5. "Partition: Algorithm 63," "Quicksort: Algorithm 64," and "Find: Algorithm 65.".

Hoare, C. A.R. 1961, Comm. ACM 4(7), pp. 321-322.

A.E. Csallner - Selected Chapters from Algorithms

101

Index

accounting method, 73
amortized cost, 73
credit, 73

activity-selection problem, 80

aggregate analysis, 70

algorithm, 1
off-line, 35
on-line, 35

alphabet, 81

array, 16

asymptotic upper bound, 11

average case, 15

backtracking, 9

base criterion, 7

best case, 14

binary search tree, 27
balanced, 98
binary search tree property, 27
deleting an element, 30
depth, 27
height. see depth
inorder tree walk, 28
inserting a new key, 30
leaf, 27
level, 27
parent, 27
siblings, 27
tree maximum. see tree minimum
tree minimum, 29
tree predecessor, 30
tree search, 28
tree successor, 29
twins, 27

bit vector, 24

breadth-first search, 87

child, 27

coding tree, 81

convex hull, 100

cross product, 92

definiteness, 1

depth-first search, 87

designing an algorithm, 1

direct-access arrangement, 16

direct-address table, 23

divide-and-conquer, 37, 43, 54

doubly linked list, 16

dynamic programming
bottom-up method, 65
memoization, 64, 65
optimal substructure, 62

Eight Queens Puzzle, 9

elementary step, 10

event point, 96

event-point schedule, 96

executable, 1

FIFO, 20

finiteness, 1

flow diagram, 2

garbage collector, 19

graph, 86
adjacency-list representation, 86
adjacency-matrix representation,

86
weighted graphs, 86

greedy algorithm, 79

greedy choice property, 79

hash table, 24
actually stored, 24

A.E. Csallner - Selected Chapters from Algorithms

102

chaining, 24
collision, 24
division method, 26
hash function, 24
load factor, 25
simple uniform hashing, 25

hash value
hash table. Lásd

heap, 38
build heap, 39
extract maximum, 40
heap property, 38
maximum, 40
sink, 39

input, 1

iteration, 2

iterative algorithm, 7

key, 16

k-permutation of n elements, 10

lexicographical order, 35

LIFO, 20

linked list, 16

Manhattan distance, 58

median
lower, 52
upper, 52
weighted, 57

optimal substructure property, 79

order statistic, 52
maximum, 52
median, 52
minimum, 52

output, 1

overflow, 21

permutation vector, 49

post-office location problem, 58

potential method, 75
potential function, 76

prefix coding, 81

prefix-free. see prefix coding

priority queue, 39

queue, 20

quicksort
pivot key, 42

recurrence
direct, 7
indirect, 7

recursion tree, 14

recursive. see recurrence

repetition. see iteration

selection, 2

sequence, 2

sorting, 35
in-place sorting, 38
stable, 37

source, 87

stack, 20
pop, 20
push, 20

storage complexity, 10

straddle, 93

sweep line, 96
comparable, 96

sweeping, 96

sweep-line status, 96

time complexity, 10

top-down strategy, 1

Towers of Hanoi, 7

tree, 27

underflow, 21

variable-length codes, 81

weight, 86

worst case, 14

λ assumption, 44, 55

