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1 Introduction

In Chapter 2 we review the basics of Keplerian motion in a form suitable for
generalization to the perturbed case. The solution of the two-body problem is
given both in terms of dynamical constants and orbital elements, however the
accent is put on the former, as this is what we want to explore in more detail
in the perturbed case.

Chapter 3 contains the generic discussion of the perturbed two-body prob-
lem. In some cases the perturbation can be related to a generalized Lagrangian
(possibly depending on accelerations). We show how to derive the acceleration
from such a Lagrangian. Then in the rest of the chapter we develop the equations
governing the slow evolution of the Newtonian constants and of the reference
system constructed from them, in terms of the components of the perturbative
force (irrespective of whether these arise or not from a Lagrangian). The evolv-
ing Newtonian constants represent a sequence of Keplerian orbits with different
parameters, which match well the perturbed orbit at each point. The Keplerian
orbit with varying parameters represents the osculating orbit, a notion usually
employed for the ellipse.

Chapter 4 relates the variation in time of the Keplerian dynamical constants
to the evolution of the orbital elements. The latter are known as the Lagrange
planetary equations, equivalent with the evolution equations for the osculating
dynamical constants, provided a reference plane and a reference direction are
singled out.

In chapter 5 the osculating dynamical constants are derived explicitly in
terms of the true anomaly parametrization, which can be introduced exactly
as in the unperturbed case, due to a radial equation, which has an unmodified
functional form as compared to the unperturbed equation. The functional form
of the evolution law for the true anomaly however is modified.

In chapter 6 the eccentric anomaly is introduced exactly in the same way as in
the unperturbed case (same functional form). Its evolution is derived explicitly
and by a formal integration the dynamical law governing the perturbed motion,
the perturbed Kepler equation, is established. In the process the osculating
dynamical constants are determined as function of the eccentric anomaly, the
radial period of the perturbed motion is defined and the condition of circularity
of perturbed Keplerian orbits is analyzed.

As a first application of the formalism derived, we consider a constant per-
turbing force in chapter 7. Such a force can possibly act on a binary system
due to a distant supermassive black hole. This computationally simple toy
model allows to explicitly perform all calculations presented only formally in
the previous chapters. The osculating dynamical constants are determined, the
periastron shift computed and the perturbed Kepler equation written up ex-
plicitly. Another application is proposed as a problem to be developed by the
students.

The gravitational constant G is kept in all expressions. A vector with an
overhat denotes a unit vector, the only exception under this rule being n = r/r.
Time derivatives are denoted both by a dot or by d/dt.
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2 Keplerian motion

The motion of two point masses under their mutual gravitational attraction is
characterized by the one-center Lagrangian:

LN =
µv2

2
+
Gmµ

r
, (1)

where m = m1 + m2 is the total mass, µ = m1m2/m the reduced mass,
r = r2 − r1 = rn, with r the relative distance and v the magnitude of the
relative velocity v = pN/µ, pN= ∂LN/∂v being the relative momentum). The
Lagrangian represents a particle of mass µ moving in the gravitational potential
of a fixed mass M . The Euler-Lagrange equations give the Newtonian acceler-
ation

aN ≡ 1

µ

d

dt
pN =

1

µ

∂

∂r
LN = −Gm

r2
n . (2)

2.1 The one-center problem

The Lagrangian (1) describes the so-called one-center problem: a particle of
mass µ orbiting a mass m fixed in the origin. It is obtained from the two-body
problem with dynamical equations

r̈1 =
Gm1

r3
r ,

r̈2 = −Gm2

r3
r . (3)

These equations arise from the two-body Lagrangian

L2−body
N =

m1ṙ
2
1

2
+
m2ṙ

2
2

2
+
Gm1m2

r
. (4)

By introducing the center of mass vector rCM = (m1r1 +m2r2) /M , then

r1 = rCM − m2

M
r ,

r1 = rCM +
m1

M
r , (5)

and the two-body Lagrangian becomes

L2−body
N =

M ṙ2CM
2

+ LN . (6)

The dynamics (3) can be rewritten as:

d2

dt2
r = −Gm

r3
r , (7)

m1r1 +m2r2 = Pt+K . (8)
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Eq. (7) is the dynamical equation (2), while Eq. (8) gives the evolution of
the center of mass, with the constants P representing the total momentum of
the system, and K/m the position of the center of mass at t = 0. The one-
center problem is obtained by transforming to the center of mass system, e.g. by
choosingP = K = 0. With this choice the two-body and one-center Lagrangians
coincide.

We note that according to the generalN -body theory the differential order of
the dynamical system is 6N−10 (given by 3N second order Newtonian equations
for the three coordinates of each particle, minus 7 constants of motion: the
energy, momentum and angular momentum, minus 3 scalars giving the position
of the center of mass). For the two-body system the differential order is then 2,
which means that we have to integrate twice in order to solve the problem.

When we reduce the two-body problem to the one-center problem, we go to
the center of mass system, reducing the differential order by 6 (three positions
and three momenta being fixed). Therefore the differential order becomes 6,
further reduced by 4 by the remaining constants of motion: the orbital angular
momentum vector and the energy, such that there are still 2 integrations to be
performed.

2.2 Constants of motion

The shape of a Keplerian orbit and orientation of the orbital plane are com-
pletely determined by the energy

EN ≡ v · pN − LN =

[

−1 + v · ∂
∂v

]

LN =
µv2

2
− Gmµ

r
, (9)

and orbital angular momentum

LN ≡ r× pN =

[

r× ∂

∂v

]

LN = µr× v . (10)

It is straightforward to check directly that both are conserved.1 There is another
constant of the motion, the Laplace-Runge-Lenz vector

AN ≡ v × LN − Gmµ

r
r , (11)

which satisfies the constraints

A2
N =

2ENL
2
N

µ
+ (Gmµ)2 , (12)

and
LN·AN = 0 . (13)

1In contrast with the N-body problem, where the momentum, angular momentum and
energy are all constants of the motion, in the reduced 2-body problem (one-center problem)
the momentum pN = ∂LN/∂v = µv of the reduced mass particle µ orbiting the fixed total
mass m is obviously not a constant.
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Due to the constraint (12) only one of its components is independent of the
other constants of motion EN ,LN. Thus there are five constants of motion
altogether, which means that there is one integration left in order to solve the
problem. Due to the constraint (13) the Laplace-Runge-Lenz vector lies in the
plane of motion, determined by L̂N (the direction of LN). Its magnitude being
expressed in terms of EN and LN , the only independent information carried by
AN remains its orientation in the plane of the orbit.

2.3 The orbit

2.3.1 Parametrization of the radial motion by the true anomaly

As the orbital angular momentum is constant, the plane of motion is conserved.
Eqs. (9) and (10) imply that Newtonian dynamics is determined by EN and
LN , as encoded in the relations:

v2 =
2EN
µ

+
2Gm

r
, (14)

ψ̇ =
LN
µr2

. (15)

Here ψ is the azimuthal angle in the fixed plane of motion. As consequence of
v2 = ṙ2 + r2ψ̇2, a first order differential equation for the radial variable r (t)
(the radial equation) is found:

ṙ2 =
2EN
µ

+
2Gm

r
− L2

N

µ2r2
. (16)

Eqs. (15) and (16) give

d
(

Gmµ
AN

− L2

N

µAN r

)

√

1−
(

Gmµ
AN

− L2

N

µAN r

)2
= ±dψ , (17)

with the + (−) sign applying when r increases (decreases) in time. With the
change of variable

r =
L2
N

µ (Gmµ+AN cosχ)
, (18)

Eq. (17) becomes sgn (sinχ) dχ = ±dψ, solved for

χ = ψ − ψ0 , (19)

the true anomaly angle χ being 0 at the point of closest approach (the peri-
astron), where the azimuthal angle is ψ0 and r = rmin. This choice gives the
correct sign both when the point masses approach each other (at χ < 0), and
when the separation increases (at χ > 0). The most distant point of the orbit is
found for χ = ±π if Gmµ ≥ AN (such that r stays positive). If the inequality is
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strict, this represents the apastron and the orbit is bounded (r = rmax is finite
at χ = ±π ). For Gmµ = AN the orbit opens up with r → ∞, when χ → ±π.
For Gmµ < AN the orbit becomes unbounded (r → ∞) already for certain χ±
with |χ±| < π.

As discussed in Section 2.2, there are 5 constants of motion in the one-
center problem, therefore the differential order is 6− 5 = 1. Although obtained
in an integration process, the expressions (18) and (19) represent only a new
radial variable (which happens to be an angle), and we still have to perform
the integration giving the complete solution of the problem. The remaining
differential equation is Eq. (15). By employing the true anomaly, this can be
rewritten as the coupled system:

ṙ =
AN
LN

sinχ , (20)

dt

dχ
=

µ

LN
r2 . (21)

Eq. (20) shows that there are turning points (ṙ = 0) only at χ = 0,±π. Before
carrying on the remaining integration, we discuss in more detail the Keplerian
orbits.

2.3.2 Conics

The orbit r (ψ), as given by Eqs. (18) and (19), represents a conic section,
the intersection of a plane with a cone. We can see this by introducing the
parameter (semilatus rectum) and the eccentricity as

p =
L2
N

Gmµ2
, (22)

e =
AN
Gmµ

. (23)

Eq. (23) relates the magnitude of the Laplace-Runge-Lenz vector to the ec-
centricity of the orbit. Due to the constraint (12) the eccentricity can be also
expressed in terms of EN , LN . According to our previous remarks, e ∈ [0, 1)
characterizes bounded orbits, while e ≥ 1 is for unbounded orbits.

Eq. (18) becomes

r =
p

1 + e cosχ
. (24)

We can get further information on these orbits by rewriting the equation (24)
into Cartesian coordinates x = r cosχ, y = r sinχ. We get:

(

1− e2
)

x2 + y2 = p2 − 2epx , with ex < p . (25)

When x = 0, the above equation gives y = ±p, the points of intersection of the
conic with the y-axis. There are four distinct classes of conics, distinguished by
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the value of eccentricity. Eq. (25) describes:

a circle (e = 0): x2 + y2 = p2 , (26)

an ellipse (0 < e < 1):

(

x+ ep
1−e2

)2

(

p
1−e2

)2 +
y2

(

p√
1−e2

)2 = 1 , (27)

a parabola (e = 1): y2 = p2 − 2px , (28)

a hyperbola (e > 1):

(

ep
e2−1 − x

)2

(

p
e2−1

)2 − y2
(

p√
e2−1

)2 = 1 . (29)

All these curves are represented in the center of mass system (see Fig. 1), the
origin being the focus of the conics.

The orbit with e = 0 represents a circle with radius p.
The orbits with e ∈ (0, 1) are ellipses. Eq. (27) gives their semimajor and

semiminor axes as a = p/
(

1− e2
)

and b = p/
√
1− e2. The distances of the

apastron and periastron measured from the focus are found either from Eq.
(24) for χ = π, 0 as rmax

min
= p/ (1∓ e) = a (1± e) or from Eq. (27) for y = 0 as

x = ∓rmax

min
. The distance between the focus and the center of symmetry of the

ellipse is a− rmin = ae (the linear eccentricity).
For e = 1 Eq. (24) represents a parabola and for e ∈ (1,∞) a hyperbola.

Their point of closest approach to the focus is given by rmin = p/2 for the
parabola and rmin = p/ (1 + e) for the hyperbola. Both are unbounded orbits
with limr→∞ χ = ±π for the parabola and limr→∞ χ = χ± = ± arccos (−1/e)
for the hyperbola. This means that at infinity the two branches of the parabola
become parallel (and horizontal), while the two branches of the hyperbola
asymptote to the directions χ±. For e → ∞ the hyperbola becomes a straight
line, with χ∞

± = ±π/2. In analogy with the ellipse, for the hyperbola we define

a = p/
(

e2 − 1
)

and b = p/
√
e2 − 1. Then for both the ellipse and hyperbola

the parameter can be expressed as p = b2/a.
By shifting horizontally all points of a conic with a distance which is e−1

times their distance from the focus, we obtain xd = e−1r+r cosχ = p/e =constant,
which defines a vertical line, the directrix. The constant xd is also known as
the focal parameter. The focus, the directrix and the eccentricity represent an
equivalent definition of the conics (the circle being an exception). For an ellipse,
the distance between the symmetry center and the directrix is p/e+ ae = a/e.
(The circular orbit limit p = a = b becomes degenerated: for a given radius and
center the directrix is shifted to infinity; while for a given directrix and center
at finite separation the radius becomes zero.)
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Figure 1: Circular (e = 0; brown), elliptic (e = 0.5; red), parabolic (e = 1;
green), hyperbolic (e = 1.8; purple) orbits and the directrices for the ellipse,
parabola and hyperbola, represented in the center of mass system (the origin is
in the focus of the conics). The parameter (here p = 2) defines the intersection
points of the conics with the y-axis. While the circle and the ellipse run over
the whole allowed domain χ ∈ (−π, π], the parabola is depicted only for the
range χ ∈ [−2.35, 2, 35] and the hyperbola for χ ∈ [−1.92, 1.92]. All represented
orbits have the same orbital angular momentum, but different energyEcircularN <

EellipticN < EparabolicN = 0 < EhyperbolicN .
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2.3.3 Dynamical characterization of the periastron

For non-circular orbits we introduce the following orthogonal basis in the plane
of motion, constructed from the constants of motion:

AN = µ

(

2EN
µ

+
Gm

r

)

r−µrṙv ,

QN = LN ×AN = Gmµ2ṙr+
(

L2
N −Gmµ2r

)

v . (30)

Thus for generic orbits the unit vectors

{

f(i)
}

= (ÂN, Q̂N, L̂N) (31)

form a fixed orthonormal basis. The position and velocity vectors in this basis
are:

r =
1

µ

(

ρÂN + σQ̂N

)

, (32)

v = τÂN + λQ̂N , (33)

with coefficients

ρ =
L2
N −Gmµ2r

AN
, σ =

LN
AN

µrṙ ,

τ = −Gmµ
AN

ṙ , λ =
LN
AN

(

2EN
µ

+
Gm

r

)

. (34)

[We note that in terms of the coefficients (34): LN = ρλ− στ .]
The coefficients (34) can be rewritten in terms of the true anomaly by using

Eqs. (12), (18), and (20):

ρ = µr cosχ , σ = µr sinχ ,

τ = −Gmµ
LN

sinχ , λ =
AN +Gmµ cosχ

LN
. (35)

The position vector (32) thus becomes

r = r
(

ÂN cosχ+ Q̂N sinχ
)

. (36)

At the turning point(s) of the radial motion the position vector is aligned with
the Laplace-Runge-Lenz vector: r = r cosχÂN. At the periastron r (χ = 0) =
rminÂN, therefore we conclude that the Laplace-Runge-Lenz vector points to-
ward the periastron.

The basis
{

r̂, L̂N × r̂
}

is related to the basis
{

ÂN, Q̂N

}

by a rotation

with angle χ in the plane of motion, which is also obvious from the definition
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of the true anomaly. In this basis in terms of the true anomaly the velocity is
expressed as

v =
Gmµ

LN

[

−ÂN sinχ+ Q̂N

(

cosχ+
AN
Gmµ

)]

. (37)

In summary L̂N gives the plane of motion, two of the three dependent quan-
tities (EN , LN , AN ) determine the shape of the orbit, finally ÂN indicates the
position of the periastron. This completes the characterization of the Keplerian
orbit in terms of dynamical constraints.

2.4 Solution of the equations of motion: the Kepler equa-

tion

Eq. (21) can be rewritten as [see Eq. (72)]:

dt =
2L3

N

(

1 + tan2 χ2
)

d
(

tan χ
2

)

µ (Gmµ+AN )
2
(

1 + Gmµ−AN

Gmµ+AN
tan2 χ2

)2 . (38)

We introduce y = tan (χ/2) as a new integration variable. There are three cases
to consider, depending on the sign of (Gmµ−AN ). For circular or elliptic orbits
α = (Gmµ−AN ) / (Gmµ+AN ) ∈ (0, 1], for parabolic orbits Gmµ − AN = 0,
while for hyperbolic orbits β ≡ −α = (AN −Gmµ) / (AN +Gmµ) ∈ (0, 1).
Therefore in each case we evaluate one of the integrals:

∫

(

1 + y2
)

dy

(1 + αy2)
2 =

1 + α

2α3/2

[

arctan(α1/2y)− 1− α

1 + α

α1/2y

(1 + αy2)

]

, (39)

∫

(

1 + y2
)

dy = y +
1

3
y3 , (40)

∫

(

1 + y2
)

dy

(1− βy2)
2 =

β − 1

2β3/2

[

arctanh(β1/2y)− 1 + β

1− β

β1/2y

(1− βy2)

]

. (41)

2.4.1 Circular and elliptic orbits

It is straightforward to introduce the variable

x =

√

Gmµ−AN
Gmµ+AN

tan
χ

2
, (42)

in terms of which [employing the result (39)] the remaining dynamical equation,
Eq. (38) can be integrated as

t− t0 = 2Gm

(

µ

−2EN

)3/2 (

arctanx− AN
Gmµ

x

1 + x2

)

. (43)
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With the change of variable

x = tan
ξ

2
(44)

this gives the Kepler equation

t− t0 = Gm

(

µ

−2EN

)3/2(

ξ − AN
Gmµ

sin ξ

)

. (45)

The parameter ξ is the eccentric anomaly, and as can be seen from its definition,
Eqs. (42) and (44) it passes through the values 0,±π,±2π, ... together with χ.
From ξ = 0 to ξ = 2π the time elapsed is t − t0 = TN , thus we find the radial
period

TN = 2πGm

(

µ

−2EN

)3/2

. (46)

2.4.2 Parabolic orbits

By employing Eq. (40), the equation (38) integrates as:

t− t0 =
L3
N

2G2m2µ3

(

tan
χ

2
+

1

3
tan3

χ

2

)

. (47)

This is the analogue of the Kepler equation for parabolic orbits. The motion
along each branch takes infinite time: limχ→±π (t− t0) = ±∞.

2.4.3 Hyperbolic orbits

By employing Eq. (41) and introducing the variable

z =

√

AN −Gmµ

AN +Gmµ
tan

χ

2
= ix , (48)

the equation (38) integrates as:

t− t0 = −2Gm

(

µ

2EN

)3/2(

arctanh z − AN
Gmµ

z

1− z2

)

. (49)

With the further change of variable

z = tanh
ζ

2
(50)

we obtain the analogue of the Kepler equation for hyperbolic orbits:

t− t0 = −Gm
(

µ

2EN

)3/2(

ζ − AN
Gmµ

sinh ζ

)

. (51)
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periastron most distant point
rmin χmin ξmin rmax χmax ξmax

elliptic orbits a (1− e) 0 0 a (1 + e) ±π ±π
parabolic orbits p

2 0 – ∞ ±π –
hyperbolic orbits a (e− 1) 0 0 ∞ ± arccos

(

− 1
e

)

−i (±∞)

Table 1: The values of the radial coordinates at the points of closest approach
and maximal separation. The circular orbit limit arises at e→ 0 from the elliptic
orbits, however for circular orbits the definition of these points is ambiguous.
For parabolic orbits, the eccentric anomaly parametrization remains undefined.

Again, the travel time to χ± = ± arccos (−1/e) is infinite. In order to show
this, first we remark that

tan
χ±
2

= ±
√

e+ 1

e− 1
= ±

√

AN +Gmµ

AN −Gmµ
, (52)

such that Eqs. (48) and (50) give ζ± = 2 arctanh (±1) = ±∞, irrespective of
the value of eccentricity. Thus, limζ→ζ±=±∞ (t− t0) = ±∞.

Remarkably, the equation (51) can be obtained from the Kepler equation
(45) derived for circular / elliptic orbits, by the substitution ξ → −iζ. The
relation between the variable ζ and the true anomaly χ also emerges from Eqs.
(42) and (44) with the same substitution.

We summarize these in Table 2.4.3:

2.4.4 The eccentric anomaly: a summary

In the circular and elliptic case we have introduced the eccentric anomaly cf.:

tan
ξ

2
=

√

Gmµ−AN
Gmµ+AN

tan
χ

2
. (53)

There is no parabolic limit for this equation, however it turned out that it can
also be employed in the hyperbolic case, with the change ξ → −iζ .

There is actually much simpler to obtain the Kepler equation, provided
we already define the eccentric anomaly before integration. Passing to the ξ
variable in Eq. (18) by straightforward trigonometric transformations2 gives
the eccentric anomaly parametrization of the radial variable

r =
Gmµ−AN cos ξ

−2EN
. (54)

Taking its time derivative and employing Eq. (20) gives

−2EN
LN

sinχ = ξ̇ sin ξ . (55)

2The most quicker way would be to employ the forthcoming second relation (76).
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Then with the help of Eq. (53) we eliminate χ and obtain:3

rξ̇ =

(−2EN
µ

)1/2

. (56)

With r (ξ) given by Eq. (54) and TN by Eq. (46) this becomes

2π

TN

dt

dξ
= 1− AN

Gmµ
cos ξ , (57)

a relation, which immediately integrates to the Kepler equation (45). In the
circular and elliptic cases TN represents the orbital period.

In terms of the eccentric anomaly the radial motion and time are parametrized
thus as given by Eq. (54) and

nN (t− t0) = ξ − AN
Gmµ

sin ξ , (58)

where nN = 2π/TN is the mean motion and t0 an integration constant, the time
of periastron passage. It is also customary to quote the left hand side of the
Kepler equation (58) as the mean anomaly

MN = nN (t− t0) , (59)

and M0 = −nN t0 the mean anomaly at the epoch.
Eqs. (54)-(58) are also valid for the hyperbolic case, with TN given by its

definition (46) and by replacing ξ → −iζ.

2.5 Orbital elements

When a reference plane (given on Fig. 2 by its normal ẑ) and a reference axis
x̂ on it are given (these define an orthonormal reference basis), the orientation
of the orbit can be characterized by three angles. The intersection of the plane
of the orbit and the reference plane defines the node line. The angle subtended
by the plane of motion with the reference plane, ι (the inclination); the angle
subtended by the reference direction with the ascending node, Ω (the longitude
of the ascending node) and the angle between the ascending node and periastron,
ω (the argument of the periastron) are the three angular orbital elements. When
the origin of time is chosen at the passage on the ascending node, ω = ψ0.
Instead of ω sometimes the longitude of the periastron, ω̃ = Ω+ ω is chosen.

The orthonormal basis (31) is expressed in the reference system in terms of
the above angles (see Fig. 2) as:

(

ÂN

Q̂N

)

=

(

cosω sinω
− sinω cosω

)(

l̂

m̂

)

, (60)

L̂N =





sin ι sinΩ
− sin ι cosΩ

cos ι



 , (61)

3The most quicker way would be to employ the forthcoming first relation (76).
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where the unit vectors

l̂ =





cosΩ
sinΩ
0



 , m̂ =





− cos ι sinΩ
cos ι cosΩ

sin ι



 , (62)

point along the ascending node and perpendicular to it in the plane of the mo-
tion, respectively. Therefore once the reference plane and direction are chosen,
L̂N and ÂN are equivalent with the angles (ι, Ω) and ω, respectively.

A fourth orbital element is the time of periastron passage, t0. Alternative
options for the fourth orbital element are ε = ω̃ +M0 (the mean longitude at
the epoch) and ε∗ = ε+ nN t−

∫

nNdt.
The parameter p and eccentricity of the orbit e are the two remaining or-

bital elements. From Eqs. (12). (22), and (23) we can express the dynamical
constraints as function of them:

L2
N = Gmµ2p , (63)

AN = Gmµe , (64)

EN =
Gmµ

(

e2 − 1
)

2p
, (65)

We see that for a given value of L2
N (fixing the parameter), the circular, elliptical,

parabolic and elliptic orbits have the energies

Ecircular
N = −G

2m2µ3

2L2
N

< 0 ,

Eelliptic
N = −G

2m2µ3

2L2
N

(

1− e2
)

< 0 ,

Eparabolic
N = 0 ,

Ehyperbolic
N =

G2m2µ3

2L2
N

(

e2 − 1
)

> 0 , (66)

respectively. Thus for a given L2
N , the energies of the orbits obey Ecircular

N <

Eelliptic
N < Eparabolic

N = 0 < Ehyperbolic
N . In terms of dynamical constants

the circular orbits are characterized by Acircular
N = 0, the parabolic orbits by

Eparabolic
N = 0.
For elliptical and circular orbits the role of the parameter as an orbital

element can be taken by the semimajor axis a = p/
(

1− e2
)

. Eq. (65) then
gives

Ecircular, elliptic
N = −Gmµ

2a
. (67)

2.6 Kinematical definition of the parametrizations for the

elliptic and parabolic motions

The parametrization of the orbits in the plane of motion relies on the knowledge
of their geometrical characteristics p and e. An alternative procedure, relying
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Figure 2: The horizontal plane, defined by its normal ẑ is the reference plane.
On it, a reference direction x̂ is chosen. The plane tilted with the angle ι (the
inclination) is the plane of motion, defined by the vectors r, v, or equivalently by
its normal LN. On the plane of motion three orthonormal bases are frequently

used. These are
{

r̂, L̂N × r̂
}

,
{

l̂, m̂ = L̂N × l̂
}

and
{

ÂN, Q̂ = L̂N × ÂN

}

,

where l̂ and ÂN point along the ascending node (the intersection line of the
two planes) and towards the periastron (the point of closest approach). The
azimuthal angle for l̂ measured from x̂ in the reference plane is Ω (the longitude
of the ascending node). The azimuthal angle for ÂN measured from l̂ in the
plane of motion is ω (the argument of the periastron). Note that the projection
of L̂N into the reference plane is also contained in the plane spanned by L̂N

and ẑ. As both these vectors are perpendicular to l̂, so is the projection of L̂N.
Therefore the azimuthal angle of L̂N measured from x̂ in the reference plane is
Ω−π/2, while its polar angle is ι. The azimuthal and polar angles of the vector
m̂ are π/2 + Ω and π/2 − ι, respectively. Finally, the true anomaly χ is the
azimuthal angle in the plane of motion of the position vector r.
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on kinematics, would be much useful for generalizing to a perturbed Kepler
motion. Such a description can be built from the knowledge of the turning
point(s), defined as ṙ = 0. This gives two turning points rmax

min
for the ellipse and

one turning point rmin for the parabola and hyperbola. Therefore a description
based on the turning point(s) rather than (p, e) can be worked out for the elliptic
and parabolic orbits (as the latter is characterized by p alone).

2.6.1 Elliptic orbits

For elliptic orbits an alternative way to find the solution (18) of the radial
equation (16) is to follow the two steps:

(a.) determine the turning points r
min
max

from the condition ṙ = 0. To Newto-

nian order the solution is rmax

min

= r± given by

r± =
L2
N

µ(Gmµ∓AN )
=
Gmµ±AN

−2EN
, (68)

(b1.) define the true anomaly parametrization as

2

r
=

(

1

rmin
+

1

rmax

)

+

(

1

rmin
− 1

rmax

)

cosχ , (69)

Then it is straightforward to verify that Eqs. (18) and (21) hold.
An equivalent form of the solution of the equations of motion can be given

in terms of the eccentric anomaly ξ, an alternative definition of which is
(b2.)

2r = (rmax + rmin)− (rmax − rmin) cos ξ , (70)

It is immediate to verify that the following relation holding between the two
parametrizations is equivalent with the definition of ξ given in the preceding
subsection:

tan
χ

2
=

(

rmax

rmin

)1/2

tan
ξ

2
. (71)

We also mention the follow-up relations:4

sinχ =
2 (rminrmax)

1/2
sin ξ

(rmax + rmin)− (rmax − rmin) cos ξ
,

cosχ = − (rmax − rmin)− (rmax + rmin) cos ξ

(rmax + rmin)− (rmax − rmin) cos ξ
. (74)

4These can be derived from the trigonometric relations

cosχ =
1− tan2 χ

2

1 + tan2 χ

2

, sinχ =
2 tan χ

2

1 + tan2 χ

2

, (72)

and their inverse (written for ξ)

tan2
ξ

2
=

1− cos ξ

1 + cos ξ
, tan

ξ

2
=

sin ξ

1 + cos ξ
. (73)
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This form of the true and eccentric anomaly parametrizations will be particu-
larly suitable in discussing perturbed Keplerian orbits.

Eqs. (74) can be rewritten by employing Eq. (70) as

r sinχ = (rminrmax)
1/2

sin ξ ,

2r cosχ = (rmax + rmin) cos ξ − (rmax − rmin) . (75)

The turning points rmax
min

= r± being given by Eq. (68), we find (rminrmax)
1/2

=

LN/ (−2µEN)
1/2

, rmax + rmin = Gmµ/ (−EN ) and rmax − rmin = AN/ (−EN ).
We obtain:

r sinχ =
LN sin ξ

(−2µEN )
1/2

,

r cosχ =
Gmµ cos ξ −AN

−2EN
. (76)

2.6.2 Parabolic orbits

The true anomaly parametrization (69) can be extended for this case. In the
limit rmax → ∞ it becomes

r =
2rmin

1 + cosχ
, (77)

in accordance with the conic equation (24) and the earlier remark p = 2rmin for
the parabola. Therefore the true anomaly parametrization can be used in the
description of parabolic orbits.
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3 The perturbed two-body system

The dynamical constants and orbital elements of the Keplerian motion slowly
vary due to perturbing forces. In this section we discuss this variation.

3.1 Lagrangian description of the perturbation

The motion of two bodies under the influence of generic perturbations can often
be characterized by a Lagrangian:

L (r,v, a, t) = LN (r,v) + ∆L (r,v, a, t) , (78)

where ∆L represents the collection of perturbation terms. We allow ∆L to be
of second differential order (depending on coordinates, velocities and accelera-
tions). The Euler-Lagrange equations in this case are:

(

∂

∂r
− d

dt

∂

∂v
+
d2

dt2
∂

∂a

)

L = 0 . (79)

We define the acceleration in the perturbed case as

a =
1

µ

d

dt

∂

∂v
LN . (80)

Remembering the definition of the Newtonian acceleration, Eq. (2) and with the
remark that the Newtonian part of the Lagrangian is acceleration-independent,
we can rewrite Eq. (79) as:

∆a ≡ a− aN =
1

µ

(

∂

∂r
− d

dt

∂

∂v
+
d2

dt2
∂

∂a

)

∆L . (81)

The quantity ∆a is of the order of perturbations. Because of this, whenever
accelerations or its derivatives appear when the right hand side of the above
equation is evaluated, they can be replaced by the corresponding Newtonian
expressions.

3.2 Evolution of the Keplerian dynamical constants in

terms of the perturbing force

We decompose the sum of the perturbing forces per unit mass ∆a in the (slowly
evolving) basis {fi} as:

∆a =αÂN + βQ̂N + γL̂N . (82)

We can apply the forthcoming description of the perturbed Keplerian motion
based on the components α, β, γ even when a Lagrangian description is not
available.

The Keplerian dynamical constants are not related to the symmetries of the
perturbed dynamics, and are not constants of motion in general. Nevertheless,
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they are useful in monitoring the evolution of the orbital elements, as will be
discussed later in this Section. In this subsection we wish to determine their
variation as function of the components α, β, γ of the perturbing force.

The time derivative of Eq. (14) gives

ĖN = µv ·∆a . (83)

In the basis
{

f(i)
}

= (ÂN, Q̂N, L̂N) it becomes:

ĖN = µ (τα+ λβ) , (84)

with the coefficients given in Eqs. (35). We note that the angle χ involved in
these coefficients is spanned by ÂN and r̂, as in the unperturbed case and will
be denoted χp in what follows.

The Newtonian orbital angular momentum evolves as:

L̇N = µr×∆a . (85)

In the chosen basis we find

L̇N = γ
(

σÂN − ρQ̂N

)

+ (ρβ − σα) L̂N . (86)

Employing the generic formula for the time derivative of any vector V,

V̇ =V̇ V̂+V
d

dt
V̂ , (87)

both the evolution of the magnitude and of the direction of the Newtonian
orbital angular momentum are found:

L̇N = ρβ − σα , (88)

d

dt
L̂N =

γ

LN

(

ρÂN + σQ̂N

)

× L̂N = γ
µ

LN
r× L̂N , (89)

The last equation describes the change of the orbital plane.
The Laplace-Runge-Lenz vector also evolves in the presence of perturbations.

This can be seen by computing the time derivatives of Eq. (11) and recalling
that AN is a constant of the Keplerian motion:

ȦN = ∆a × LN + v × L̇N

= µ [2 (v·∆a) r− (r·∆a)v− (r · v)∆a] . (90)

Computation gives

ȦN=
(

βLN + λL̇N

)

ÂN −
(

αLN + τL̇N

)

Q̂N − γ (τρ+ λσ) L̂N , (91)

from which we identify

ȦN = βLN + λL̇N , (92)

d

dt
ÂN =

1

AN

[

γ (τρ+ λσ) Q̂N −
(

αLN + τL̇N

)

L̂N

]

× ÂN , (93)
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The last equation describes the evolution of the periastron, composed from a
precessional part in the plane of the motion (about L̂N) and a coevolution with
the plane of motion.

With the expression of the coefficients (35) the evolution of EN , LN and
AN are obtained explicitly as:

ĖN = −αGmµ
2

LN
sinχp + β

µ (AN +Gmµ cosχp)

LN
,

L̇N = µr (β cosχp − α sinχp) ,

ȦN = βLN +
AN +Gmµ cosχp

LN
µr (β cosχp − α sinχp) . (94)

Note that the time derivative of Eq. (12) gives an identity with the above
evolutions and employing the true anomaly parametrization (18), therefore the
algebraic relation (12) continue to hold in the perturbed case.

The evolution of ÂN and L̂N will be given in explicit form in the next
subsection.

3.3 Precession of the basis vectors in terms of the per-

turbing force

As a by-product of the calculations of the subsection 3.2, we also obtained the
precession of two of the basis vectors

{

f(i)
}

. The precession of the remaining

basis vector of the basis
{

f(i)
}

can be derived from its definition Q̂N = L̂N×ÂN.

d

dt
Q̂N =

[

γ
ρ

LN
ÂN − αLN + τL̇N

AN
L̂N

]

× Q̂N . (95)

Inserting the explicit expression (35) for the coefficients ρ, σ, τ, λ (with χp in
place of χ) in the Eqs. (89), (93) and (95) we obtain the explicit expressions of
the precessional motion of the basis vectors (31):

ḟ(i) = Ω(i) × f(i) , (96)

with

Ω(1) = γ
µr sinχp
LN

Q̂N

−
[

α
LN
AN

+ (α sinχp − β cosχp)
Gmµ2r sinχp
LN AN

]

L̂N , (97)

Ω(2) = γ
µr cosχp
LN

ÂN

−
[

α
LN
AN

+ (α sinχp − β cosχp)
Gmµ2r sinχp
LN AN

]

L̂N , (98)

Ω(3) = γ
µr cosχp
LN

ÂN + γ
µr sinχp
LN

Q̂N , (99)
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As f(i)× f(i) = 0, we can add to the above expressions of Ω(i) terms proportional
to f(i), such that we have a single angular velocity vector Ω, with components

in the
{

f(i)
}

basis:

Ωj =

(

γ
µr cosχp
LN

, γ
µr sinχp
LN

,−
[

α
LN
AN

+ (α sinχp−β cosχp)
Gmµ2r sinχp

LNAN

])

.

(100)
Then

ḟ(i) = Ω× f(i) . (101)

The expressions (83)-(100) manifestly vanish in the Newtonian limit together
with either ∆a or the coefficients α, β and γ.

A couple of immediate remarks are in order:
(a) If γ = 0 (no perturbing force is pointing outside the plane of motion),

L̂N (the plane of motion) is conserved, while both ÂN and Q̂N undergo a
precessional motion about L̂N (in the conserved plane of motion).

(b) If α = β = 0 (the perturbing force is perpendicular to the plane of
motion), then ÂN undergoes a precessional motion about Q̂N and vice-versa,
while L̂N about r.

3.4 Summary

The perturbed bounded Keplerian motion can be visualized as a Keplerian
ellipse with slowly varying parameters. The semimajor axis a and eccentricity e
can be defined exactly as in the unperturbed case, from the dynamical quantities
EN and AN . The evolution of a, e can be inferred then from the evolutions of
EN , AN . The orbit therefore rather of being an exact ellipse should be thought
of as a curve which can be approximated in each of its points by an ellipse with
these slowly varying parameters a, e. This description is known as an osculating
ellipse.

Whenever the force depends on χp only, the evolution equations (94) (sup-
plemented with the additional evolution equations of any dynamical variable
- like the spins - possibly contained in α, β) give the radial evolution of the
binary system (provided an equation dt/dχp holding in the perturbed case is
provided - this will be given in chapter 5.1). The additional equations (89) and
(93) give the angular evolutions, e.g. the evolution of the orbital plane and of
the precession of the periastron in the orbital plane.

The equations (84), (89), (92) and (93) are equivalent with the Lagrange
planetary equations for the orbital elements (a, e, ι,Ω, ω) of the osculating orbit,
as will be shown in the next section. However the use of the above mentioned
system of equations has the undoubted advantage of being independent of the
choice of the reference plane and axis.
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4 The Lagrange planetary equations

In chapter 3 we have discussed in detail the evolution of a perturbed Keplerian
system, relying on the corresponding evolution of the Keplerian dynamical con-
stants. An alternative approach to this problem is represented by the Lagrange
planetary equations. In this section we prove that they are equivalent to the
evolution equations of the dynamical constants.

4.1 Evolution of the orbital elements in terms of the evo-

lution of Keplerian dynamical constants

We have seen that in the presence of perturbations the Keplerian dynamical
constants EN , LN and AN slowly vary. Due to perturbations a related slow
evolution of the orbital elements also occurs. In this subsection we determine
the latter as function of the former.

From Eqs. (63) and (64) we find

L̇N =
[

Gmµ2a(1− e2)
]1/2

×
[(

ȧ

2a
− eė

1− e2

)

L̂N +
d

dt
L̂N

]

, (102)

ȦN = Gmµ

(

ėÂN + e
d

dt
ÂN

)

(103)

The time-derivatives of Eqs. (61)-(62) give generic expressions for the time-
derivatives of l̂, m̂ and L̂N in terms of the time-derivatives of the angular orbital
elements:

d

dt
l̂ = Ω̇

(

cos ι m̂− sin ι L̂N

)

, (104)

d

dt
m̂ = ι̇ L̂N − Ω̇ cos ι l̂ , (105)

d

dt
L̂N = −ι̇ m̂+ Ω̇ sin ι l̂ , (106)

From these and the time derivatives of Eqs. (60) we obtain:

d

dt
ÂN =

(

ω̇ + Ω̇ cos ι
)

Q̂N

+
(

ι̇ sinω − Ω̇ sin ι cosω
)

L̂N , (107)

d

dt
Q̂N = −

(

ω̇ + Ω̇ cos ι
)

ÂN

+
(

ι̇ cosω + Ω̇ sin ι sinω
)

L̂N . (108)

Then the projections of the Eqs. (102)-(103) give the time derivatives of 5
orbital elements as functions of the time derivatives of the Keplerian dynamical
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constants:

ι̇ = − L̇N · m̂
[Gmµ2a(1− e2)]1/2

, (109)

Ω̇ =
L̇N · l̂

[Gmµ2a(1 − e2)]
1/2

sin ι
, (110)

ω̇ =
ȦN · Q̂N

Gmµe
−

(

L̇N · l̂
)

cot ι

[Gmµ2a(1 − e2)]
1/2

, (111)

ȧ = 2a





L̇N · L̂N

[Gmµ2a(1− e2)]
1/2

+
e
(

ȦN · ÂN

)

Gmµ (1− e2)



 , (112)

ė =
ȦN · ÂN

Gmµ
. (113)

4.2 Evolution of the orbital elements in terms of the per-

turbing force

Based on the expressions

L̇N = LNΩ2ÂN − LNΩ1Q̂N + L̇N L̂N , (114)

ȦN = ȦN ÂN +ANΩ3Q̂N −ANΩ2L̂N , (115)

with the coefficients derived in the previous section, the relations (60) between
the basis vectors in the plane of motion, and on Eqs. (63) and (64) giving LN
and AN in terms of orbital elements, the variation (109)-(113) of the orbital
elements can be expressed in terms of the perturbing force components as:

ι̇ = Ω1 cosω − Ω2 sinω , (116)

Ω̇ =
Ω2 cosω +Ω1 sinω

sin ι
, (117)

ω̇ = Ω3 − (Ω2 cosω +Ω1 sinω) cot ι , (118)

ȧ = 2a

[

L̇N

[Gmµ2a(1− e2)]
1/2

+
eȦN

Gmµ (1− e2)

]

, (119)

ė =
ȦN
Gmµ

. (120)

From the above relations and the expression of the angular velocities (100) one
readily finds that

Ω̇ = ι̇
tan (ω + χp)

sin ι
. (121)
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The expressions giving the variation of the angular orbital elements can be
given explicitly by inserting the corresponding elements of the angular velocities
(100) and employing Eq. (18) given in terms of the orbital elements as

r =
a
(

1− e2
)

1 + e cosχp
, (122)

together with Eq. (63). We obtain:

ι̇ = γ

[

a
(

1− e2
)

Gm

]1/2
cos (ω + χp)

1 + e cosχp
, (123)

Ω̇ = γ

[

a
(

1− e2
)

Gm

]1/2
sin (ω + χp)

sin ι (1 + e cosχp)
, (124)

ω̇ = −
[

a
(

1− e2
)

Gm

]1/2

×α
(

1+e cosχp+sin2 χp
)

−β sinχp cosχp+γe cot ι sin (ω+χp)
e (1 + e cosχp)

.(125)

Thus the angular orbital elements ι and Ω are changed only by perturbing forces
perpendicular to the plane of motion, while ω is changed by any perturbing
force. If the perturbing force is such that the plane of motion is unchanged
(γ = 0), then l̂ is also unaffected, and the change in ω can be interpreted as
pure periastron precession: ω̇ = Ω3 and ∆ω = ∆ψ0. (Otherwise stated γ = 0
implies Ω1 = Ω2 = 0.)

Note that the α, β-parts of ω̇ become ill-defined in the limit e→ 0. This is
however not surprising, as ω cannot be defined for circular orbits.

The expressions (119)-(120) can be further expanded by employing Eqs.
(94), obtaining

ȧ =
2a3/2

[Gm (1− e2)]
1/2

[β (e+ cosχp)− α sinχp] , (126)

ė =

[

a(1− e2)

Gm

]1/2 β
(

1+2e cosχp+cos2 χp
)

−α (e+cosχp) sinχp

1 + e cosχp
.(127)

Thus the orbital elements a, e are not changed by perturbing forces perpendic-
ular to the plane of motion.

Eqs. (123)-(125) and (126)-(127) are the Lagrange planetary equations.
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5 Orbital evolution under perturbations in terms

of the true anomaly

In this section we return to the characterization of the orbit and dynamics in
terms of the dynamical constants of the Keplerian motion. Although the La-
grange planetary equations are widely used, we find more convenient to discuss
the perturbed Keplerian problem based on the equivalent set of equations (84),
(89), (92) and (93), derived earlier in the subsection 3.2.

5.1 The perturbed Newtonian dynamical constants

As the basis
{

f(i)
}

is comoving with the plane of motion and the periastron, the
position vector

r = xif(i) (128)

with components

x1 = r cosχp, x2 = r sinχp, x3 = 0 (129)

changes according to (see also Appendix A)

v = ẋif(i) + xi ḟ(i) = ẋif(i) + xiΩ× f(i)

=
(

ẋi − ǫi kj x
jΩk

)

f(i) , (130)

where ǫi kj is the antisymmetric Levi-Civita symbol and ẋi are found as the time
derivatives of the coordinates (129).

Then, starting from the definition of the Newtonian orbital angular mo-
mentum, Eq. (61), and employing the relations (128)-(130) and the angular
velocities (100), we obtain by straightforward algebra (see Appendix A)

LN = µr2 (χ̇p +Ω3) L̂N . (131)

This reduces to the manifestly Newtonian expression, whenever Ω3 = 0 , thus
whenever ÂN does not precess about L̂N.

Similarly, starting from the definition of the energy, Eq. (9), by the same
method (see Appendix A) we obtain

EN =
µ
(

ṙ2 + r2χ̇2
p

)

2
− Gmµ

r
+ µr2χ̇p Ω3 +

µr2

2
Ω2

3 . (132)

(The last O
(

α2, αβ, β2
)

term can be dropped in a linear approximation.)
Again, whenever Ω3 = 0 , the Newtonian expression is recovered.

Therefore the Newtonian energy and Newtonian angular momentum share
the properties, that modulo Ω3 terms they reduce to manifestly Newtonian
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forms. We can express χ̇p from Eq. (131) as5

χ̇p =
LN
µr2

− Ω3 . (134)

Inserting this to Eq. (132), we obtain the radial equation

ṙ2 =
2EN
µ

+
2Gm

r
− L2

N

µ2r2
. (135)

Finally, starting from the definition of the Laplace-Runge-Lenz vector, Eq.
(11) and employing the relations (128)-(130) and (131), we can deduce (see
Appendix A) its evolution as

AN =
[

µr2χ̇p (ṙ sinχp + rχ̇p cosχp)−Gmµ cosχp

+ µr2Ω3 (ṙ sinχp + 2rχ̇p cosχp + rΩ3 cosχp)
]

ÂN

−
[

µr2χ̇p (ṙ cosχp − rχ̇p sinχp) +Gmµ sinχp

+ µr2Ω3 (ṙ cosχp − 2rχ̇p sinχp − Ω3r sinχp)
]

Q̂N . (136)

By inserting in the above relation χ̇p given by Eq. (134), all Ω3 terms cancel
out and we obtain:

AN =

[(

L2
N

µr
−Gmµ

)

cosχp + LN ṙ sinχp

]

ÂN

+

[(

L2
N

µr
−Gmµ

)

sinχp − LN ṙ cosχp

]

Q̂N . (137)

As AN = ANÂN:

AN =

(

L2
N

µr
−Gmµ

)

cosχp + LN ṙ sinχp , (138)

0 =

(

L2
N

µr
−Gmµ

)

sinχp − LN ṙ cosχp . (139)

Solving for r and ṙ gives

L2
N

µr
−Gmµ = AN cosχp ,

LN ṙ = AN sinχp . (140)

The derived expressions r (χp) and ṙ (χp) are identical with the zeroth order
true anomaly parametrization r (χ) and zeroth order expression of ṙ (χ), Eqs.

5This also arises from the relation

ω̇ + χ̇p =
LN

µr2
− Ω̇ cos ι (133)

derived in Ref. [1], after inserting the relations (117) and (118).
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(18) and (20), respectively. Therefore the true anomaly parametrization χp is
introduced exactly in the same way than in the unperturbed case.

As a consistency check, we calculate the derivative of r (χp) as

ṙ =
µANr

2χ̇p sinχp
L2
N

+
2rL̇N
LN

− µr2ȦN cosχp
L2
N

, (141)

and put it equal to ṙ (χp), derived earlier. We insert χ̇p as given by Eq. (134);

also L̇N and ȦN as given by the Eqs (94). As a result, we re-obtain the expres-
sion of Ω3 given in Eq. (100).

A second consistency check involving r (χp), ṙ (χp) and the radial equation
(135) also holds, as in the Keplerian motion.

5.2 The evolution of the Newtonian dynamical constants

in terms of the true anomaly

The scalars EN , LN , AN become χp-dependent in the presence of a perturb-
ing force. We can decompose these Newtonian expressions in the unperturbed
(Keplerian) part, and a χp-dependent correction as EN = E0

N + E1
N (χp),

LN = L0
N + L1

N (χp), AN = A0
N + A1

N (χp). Their explicit expression can
be derived starting from their evolution equations (94), by passing from time-
derivatives to derivatives with respect to χp. As all terms in the equations are
first order, we simply employ χ̇p = L0

N/µr
2 and obtain:

dE1
N

dχp
=

Gmµ3

(L0
N)

2 r
2

[

−α sinχp + β

(

A0
N

Gmµ
+ cosχp

)]

,

dL1
N

dχp
=

µ2

L0
N

r3 (β cosχp − α sinχp) ,

dA1
N

dχp
= µβr2 +

Gmµ3

(L0
N)

2 r
3 (β cosχp − α sinχp)

(

A0
N

Gmµ
+ cosχp

)

.(142)

By inserting r (χp) =
(

L0
N

)2
/µ
(

Gmµ+A0
N cosχp

)

and provided the compo-
nents of the perturbing force can be given as functions of χp alone (that is, they
can possibly depend on r and χp only), Eqs. (142) become ordinary differential
equations for E1

N , L
1
N and A1

N . Unless α, β ∝ rn≤−3 however, the integrals may
be cumbersome to evaluate due to the negative powers of

(

Gmµ+A0
N cosχp

)

in
the integrands. In these cases the use of the eccentric anomaly parametrization
may simplify the calculations (similarly as in the derivation of the unperturbed
Kepler equation). Therefore in the next section we will work out the details of
this parametrization applying for the perturbed case.

5.3 Summary of the results obtained with the true anomaly

parametrization

The forces perturbing the Keplerian orbit do not change the true anomaly
parametrization r (χp) and ṙ (χp), Eqs. Eq. (18) and (20), respectively, with χp
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in place of χ. In the order of accuracy of the perturbations the radial equation
(16) also holds. These in turn mean that the eccentric anomaly parametriza-
tion ξp can be introduced exactly as in the Keplerian case. We can also define
a radial period as the time in which the mass µ moves from an rmin location
given by ṙ = 0 to the following rmin, given by the second forthcoming ṙ = 0
locus (the first will give rmax).

The following, however are changed with respect to the Keplerian case:
(a) The basis

{

f(i)
}

constructed from the Keplerian dynamical constants
slowly evolves, with precessional angular velocities Ωj given as linear and ho-
mogeneous expressions of the components of the resulting perturbing force.

(b) The plane of motion, determined by L̂N, can change due to perturbation
forces transverse to the plane of motion.

(c) The periastron, determined by ÂN, undergoes a composed evolution. It
has a precession in the plane of motion due to the forces acting in the plane
of motion (this is characterized by Ω3, the precessional angular velocity of ÂN

about L̂N) and it also moves with the plane of motion.
(d) The precession of the periastron means that the orbit fails to be closed.

The χp-dependence of the Ω3 angular velocity component signifies that at each
moment the movement of the periastron of the corresponding osculating ellipse
will be different. The change of ÂN over one radial period will give the perias-
tron shift.

(e) When expressed in terms of the true anomaly χp, both the Newtonian or-
bital angular momentum vector and the Newtonian energy acquire linear terms
in Ω3, given in Eqs. (131) and (132), respectively.

(f) The scalars EN , LN , AN evolve in χp (or equivalently, in ξp).
(g) The expression χ̇p (r) is changed as compared to the corresponding Ke-

plerian expression by a linear term in Ω3 [Eq. (134)].
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6 Orbital evolution under perturbations in terms

of the eccentric anomaly

In this section, besides rewriting all results of the previous section in terms of
the eccentric anomaly, we derive the perturbed Kepler equation.

6.1 The eccentric anomaly parametrization

We introduce the eccentric anomaly parametrization similarly as in the Keple-
rian case [by Eq. (54), with ξp in place of ξ]:

r =
Gmµ−AN cos ξp

−2EN
. (143)

From the expressions of ṙ (χp) [given by the second relation (140) and em-
ploying Eq. (76)], and of χ̇p [given by Eqs. (134) and the third component of
the expression (100)] we obtain ṙ and χ̇p in terms of the eccentric anomaly:

ṙ =
AN

(−2µEN)
1/2

r
sin ξp , (144)

rχ̇p =
LN
µr

+ α
LN
AN

(

r +
Gmµ

−2EN
sin2 ξp

)

−β
(

µ

−2EN

)1/2
Gmµ

−2ENAN
(Gmµ cos ξp −AN ) sin ξp . (145)

Similarly, the evolutions ĖN , L̇N and ȦN [given by Eqs. (94)], can be rewritten
in terms of ξp [by making use of the relations (12), (76) and (143)]:

rĖN = −αGmµ
(

µ

−2EN

)1/2

sin ξp + βLN cos ξp ,

L̇N = β
µ (Gmµ cos ξp −AN )

−2EN
− αLN

(

µ

−2EN

)1/2

sin ξp ,

ȦN = βLN +
LN
r

(

β
Gmµ cos ξp −AN

−2EN
− α

LN sin ξp

(−2µEN)
1/2

)

cos ξp .(146)

6.2 The evolution of the eccentric anomaly

In order to derive the perturbed Kepler equation for a given perturbing force
with components α, β, γ, we need the expression of ξ̇p to first order accuracy.
This can be found, following the logic of the derivation in the Keplerian case
from subsection 2.4.4.

By taking the time derivative of Eq. (143)

−2EN ṙ − 2ĖNr = −ȦN cos ξp +AN ξ̇p sin ξp . (147)
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next employing the expressions (144) and (146) we obtain the desired relation

rξ̇p =

(−2EN
µ

)1/2

+ β
GmµLN
2ENAN

sin ξp cos ξp

+α

(−2EN
µ

)1/2
µ

AN

[

r2 +

(

Gmµ

−2EN

)2

sin2 ξp

]

. (148)

Another way of deriving this would be to start from the time derivative of
the first Eq. (76), from which we eliminate sinχp and cosχp by use of the same
Eqs. (76), to obtain

ξ̇p cos ξp =

(

ṙ

r
− L̇N
LN

+
ĖN
2EN

)

sin ξp

+

(

µ

−2EN

)1/2
Gmµ cos ξp −AN

LN
χ̇p . (149)

Next we employ once again the expressions (144)-(146) and we recover the
relation (148).

6.3 The evolution of the Newtonian dynamical constants

for ξp-dependent perturbing forces

By employing the eccentric anomaly parametrization for r, Eq. (143), the evolu-
tion of Eqs. (146) in time can be rewritten as evolution in ξp, with dt = ξ̇−1

p dξp,

and ξ̇p given by Eq. (148). We also take EN = E0
N + E1

N (ξp) , AN =
A0
N + A1

N (ξp) , LN = L0
N + L1

N (ξp), the zeroth order terms being the con-
stant Keplerian values. As all terms in Eqs. (146) are first order, we can
employ the Newtonian expression of ξ̇p [the leading order term in Eq. (148),

ξ̇p = (−2EN/µ)
1/2

/r]. We can also insert the constant values EN = E0
N , AN =

A0
N , LN = L0

N , in the manifestly first order terms. We obtain:

(−2E0
N

µ

)1/2
dE1

N

dξp
= −αGmµ

(

µ

−2E0
N

)1/2

sin ξp + βL0
N cos ξp ,

(−2E0
N

µ

)1/2
dL1

N

dξp
= r

[

β
µ
(

Gmµ cos ξp −A0
N

)

−2E0
N

− αL0
N

(

µ

−2E0
N

)1/2

sin ξp

]

,

(−2E0
N

µ

)1/2
dA1

N

dξp
= βL0

Nr

+L0
N

(

β
Gmµ cos ξp −A0

N

−2E0
N

−α L0
N sin ξp

(−2µE0
N)

1/2

)

cos ξp .(150)

Here r should be replaced by its expression (143), taken only to zeroth order
accuracy, as it is everywhere multiplied by the components of the perturbing
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force. Provided the perturbing force components α, β can be expressed in terms
of ξp alone, the above equations become ordinary differential equations, which
formally integrate to

EN = E0
N − T 0

N

π

E0
N

Gmµ

(

T 0
N

π
E0
NIαs + L0

NIβc

)

, (151)

LN = L0
N +

T 0
N

2π

{

µ

2E0
N

[

A0
N

(

Iβ + Iβc2
)

− (Gmµ)
2
+
(

A0
N

)2

Gmµ
Iβc

]

+
T 0
N

π

E0
NL

0
N

Gmµ

(

Iαs −
A0
N

Gmµ
Iαsc

)}

, (152)

AN = A0
N + L0

N

[

L0
N

2E0
N

Iαsc +
T 0
N

2π

(

Iβ + Iβc2 − 2
A0
N

Gmµ
Iβc

)]

. (153)

with

Iαs =

∫

α sin ξpdξp ,

Iαsc =

∫

α sin ξp cos ξpdξp ,

Iβ =

∫

βdξp ,

Iβc =

∫

β cos ξpdξp ,

Iβc2 =

∫

β cos2 ξpdξp . (154)

The notation was somewhat simplified by introducing the period T 0
N of the

unperturbed motion, defined by Eq. (46) in terms of E0
N . As a consistency

check, one can verify, that provided Eq. (12) holds for the Keplerian constants
E0
N , L

0
N , A

0
N it will also hold for the values given in Eqs. (151)-(153).

From Eq. (151), by performing a series expansion in the small quantities
Iαs and Iβc, we can also write the expression of the period TN (of the Keplerian
motion on the osculating ellipse), defined in terms of EN in the same way as
T 0
N in terms of E0

N :

TN = T 0
N

[

1 +
3T 0

N

2πGmµ

(

T 0
N

π
E0
NIαs + L0

NIβc

)]

. (155)

6.3.1 A note on the circularity of the perturbed orbit

In order the perturbed orbit to be circular (in the plane of motion, which can
evolve due to γ), the eccentricity derived from AN = Gmµe should vanish.
Therefore

L0
N

−2E0
N

Iαsc +
T 0
N

2π

(

2
A0
N

Gmµ
Iβc − Iβ − Iβc2

)

=
A0
N

L0
N

(156)
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should hold. If we further want the unperturbed orbit to be also circular, then
A0
N = 0, such that

L0
N

−2E0
N

Iαsc =
T 0
N

2π

(

Iβ + Iβc2
)

. (157)

Obviously, this is a condition very few perturbing forces would obey. Also, the
circularity of the perturbed orbit should be understood in a broad sense: while
condition (156) holds the plane of motion could still undergo a precessional
motion.

6.4 The Kepler equation in the presence of perturbations

By formally integrating Eq. (148), we obtain the perturbed Kepler equation.
We first rewrite Eq. (148), by employing a series expansion in the small

parameters α and β as

dt

dξp
= r

(

µ

−2EN

)1/2
{

1 + β

(

µ

−2EN

)3/2
GmLN
AN

sin ξp cos ξp

−α µ

AN

[

r2 +

(

Gmµ

−2EN

)2

sin2 ξp

]}

. (158)

Next we insert the eccentric anomaly parametrization r (ξp), Eq. (143) and
obtain:

dt

dξp
=

TN
2π

(

1− AN
Gmµ

cos ξp

){

1 + β
TN
2π

LN
AN

sin ξp cos ξp

+ α

(

TN
2π

)2
2EN
AN

[

(

1− AN
Gmµ

cos ξp

)2

+ sin2 ξp

]}

. (159)

In order to simplify the notation, here we have employed again the definition
of the Keplerian period, Eq. (46). In the perturbative terms the quantities
TN , EN , LN , AN can be considered constants and replaced by their unper-
turbed values, however for the leading order term we need the evolutions of
AN (ξp) and TN (ξp), given by Eqs. (153) and (155).
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The Kepler equation is given then by the integral of Eq. (159):

2π

T 0
N

(t− t0) = ξp −
A0
N

Gmµ
sin ξp −

(

L0
N

)2

2GmµE0
N

∫

Iαsc cos ξpdξp

+

(

T 0
N

2π

)2
6E0

N

Gmµ

(∫

Iαsdξp −
A0
N

Gmµ

∫

Iαs cos ξpdξp

)

+
T 0
N

2π

L0
N

Gmµ

[

3

∫

Iβcdξp −
∫ (

Iβ + Iβc2 +
A0
N

Gmµ
Iβc

)

cos ξpdξp

]

+
T 0
N

2π

L0
N

A0
N

(

Iβsc −
A0
N

Gmµ
Iβsc2

)

+

(

T 0
N

2π

)2
2E0

N

A0
N

{

2Iα − 4A0
N

Gmµ
Iαc

−
[

1− 3

(

A0
N

Gmµ

)2
]

Iαc2 +
A0
N

Gmµ

[

1−
(

A0
N

Gmµ

)2
]

Iαc3

}

. (160)

with

Iα =

∫

αdξp ,

Iαc =

∫

α cos ξpdξp ,

Iαc2 =

∫

α cos2 ξpdξp ,

Iαc3 =

∫

α cos3 ξpdξp ,

Iβsc =

∫

β sin ξp cos ξpdξp ,

Iβsc2 =

∫

β sin ξp cos
2 ξpdξp (161)

As the integrations were formally carried out, the perturbed Kepler equation
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(160) can be rewritten in terms of TN , EN , LN , AN :

2π

TN
(t− t0) = ξp −

AN
Gmµ

sin ξp +
LN

2Gmµ

[

LN
EN

Iαsc

+3

(

TN
π

)2
EN
LN

AN
Gmµ

Iαs +
TN
π

(

Iβ + Iβc2 +
AN
Gmµ

Iβc

)

]

sin ξp

− 3TN
2πGmµ

(

TN
π
ENIαs + LNIβc

)

ξp −
L2
N

2GmµEN

∫

Iαsc cos ξpdξp

+

(

TN
2π

)2
6EN
Gmµ

(∫

Iαsdξp −
AN
Gmµ

∫

Iαs cos ξpdξp

)

+
TN
2π

LN
Gmµ

[

3

∫

Iβcdξp −
∫ (

Iβ + Iβc2 +
AN
Gmµ

Iβc

)

cos ξpdξp

]

+
TN
2π

LN
AN

(

Iβsc −
AN
Gmµ

Iβsc2

)

+

(

TN
2π

)2
2EN
AN

{

2Iα − 4AN
Gmµ

Iαc

−
[

1− 3

(

AN
Gmµ

)2
]

Iαc2 +
AN
Gmµ

[

1−
(

AN
Gmµ

)2
]

Iαc3

}

. (162)

In order to evaluate the integrals appearing in either form of the Kepler equa-
tion, we need the explicit time-dependence of the perturbing force components,
α and β. Examples for this will be discussed in the forthcoming sections.

We also note, that the constants of integration should be chosen in such a
way, that the perturbative terms in the expressions of EN , LN , AN , TN [given
by Eqs. (151)-(153), (155)] and in either form of the Kepler equation [Eqs.
(160), (162)] vanish at ξp = 0. In practice this means that all integrals (154),
(161) should vanish at ξp = 0.

6.4.1 The radial period

In the perturbed two-body problem we define the radial period T of the per-
turbed motion as double the time elapsed between successive passages through
points characterized by ṙ = 0. From Eqs. (144) we see that ṙ = 0 is equiv-
alent to ξp = 0,±π,±2π, etc., therefore the radial period is obtained as T =
∫ 2π

0
t (ξp) dξp, or more simply, by inserting ξp = 2π in the perturbed Kepler

equation derived in the previous subsection. We note that T 6= TN |ξp=2π (the

latter representing the radial period on the osculating ellipse at 2π).

6.5 Summary

In the present and the previous chapters we have developed the formalism suit-
able to describe the perturbed two-body problem. We have given explicit ex-
pressions in the parameter ξp for the dynamical constants of the osculating
ellipse EN and AN [Eqs. (151) and (153)], which define the semimajor axis and
the eccentricity of the osculating ellipse. The position of the osculating ellipse
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in the plane of motion is characterized by the precession of ÂN about L̂N, or
Ω3 (χp) [see its expression in Eq. (100), which can be rewritten in terms of ξp
if required]. Finally, the plane of motion is given by L̂N, precessing about r̂ [cf.
Eq. (88)] in the case when the perturbing force has a component perpendicular
to the plane of motion. As both precessions are first order effects, the directions
about which the basis vectors precess, can be considered constants, defined by
the unperturbed dynamics.

The dynamics of the perturbed two-body problem is entirely contained in
the perturbed Kepler equation [in either of its forms (160) and (162)].

In the forthcoming chapters we will present some applications of the devel-
oped formalism.
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7 Constant perturbing force

In this section we present an application of the true and eccentric anomaly
parametrizations of the perturbed Keplerian motion. We consider bounded
orbits only. In the computationally simplest toy model presented here the per-
turbing force is supposed to be constant on the orbit.

7.1 The evolution of the dynamical constants and of the

radial period

The integrals (154), (161) become:

Iα = αξp ,

Iαc = α sin ξp ,

Iαc2 =
α

4
(2ξp + sin 2ξp) ,

Iαc3 =
α

12
(sin 3ξp + 9 sin ξp) ,

Iαs = α (1− cos ξp) ,

Iαsc =
α

4
(1− cos 2ξp) ,

Iαsc2 =
α

12
(4− 3 cos ξp − cos 3ξp) . (163)

The constants of integration were chosen such that at ξp = 0 all these integrals
vanish. Similar relations hold for the corresponding integrals containing β.

The expressions (151)-(153), (155) give for the perturbed valuesEN , LN , AN , TN :

EN = E0
N − T 0

N

π

E0
N

Gmµ

(

α
T 0
N

π
E0
N (1− cos ξp) + βL0

N sin ξp

)

, (164)

LN = L0
N +

T 0
N

2π

{

α
T 0
N

π

E0
NL

0
N

4Gmµ

(

4− A0
N

Gmµ
− 4 cos ξp +

A0
N

Gmµ
cos 2ξp

)

+β
µA0

N

8E0
N

[

6ξp −
4Gmµ

A0
N

[

1 +

(

A0
N

Gmµ

)2
]

sin ξp + sin 2ξp

]}

, (165)

AN = A0
N +

L0
N

8

[

α
L0
N

E0
N

(1− cos 2ξp)

+β
T 0
N

π

(

6ξp −
8A0

N

Gmµ
sin ξp + sin 2ξp

)]

, (166)

TN = T 0
N

[

1 +
3T 0

N

2πGmµ

(

α
T 0
N

π
E0
N (1− cos ξp) + βL0

N sin ξp

)]

. (167)

At ξp = 0 they take the initial values E0
N , L

0
N , A

0
N , T

0
N . Therefore, as a result

of our choice of the integration constants, these unperturbed values characterize
the osculating ellipse at the periastron.
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By employing the relations (76) and (18) we find to leading order

cos ξp =
AN +Gmµ cosχp
Gmµ+AN cosχp

,

sin ξp =

(

−2EN
µ

)1/2
LN sinχp

Gmµ+AN cosχp
, (168)

which allow to rewrite EN , LN , AN , TN in terms of the true anomaly χp.
However the emerging expressions are more complicated than Eqs. (164)-(167).

7.1.1 Changes and averages over one radial period

We define the change of a quantity f (ξp) over a radial period by ∆f (ξp) =
f (ξp + 2π)− f (ξp). Such a change will be called a secular effect. Over a radial
period we find

∆EN (ξp) = ∆TN (ξp) = 0 , (169)

∆LN = βT 0
N

3µA0
N

4E0
N

, (170)

∆AN = βT 0
N

3L0
N

2
. (171)

(The computation is very simple by realizing that we can drop all periodic and
constant terms.)

We define the average of a quantity f (ξp) over a radial period in the param-

eter ξp as f
ξ
= (1/2π)

∫ 2π

0 f (ξp) dξp. We find:

EN
ξ

= E0
N

[

1− α

(

T 0
N

π

)2
E0
N

Gmµ

]

,

LN
ξ

= L0
N

{

1 +
T 0
N

2π

[

α
T 0
N

π

E0
N

4Gmµ

(

4− AN
Gmµ

)

+ β
3πµA0

N

4E0
NL

0
N

]}

,

AN
ξ

= A0
N

[

1 +
L0
N

8A0
N

(

α
L0
N

E0
N

+ 6βT 0
N

)]

,

TN
ξ

= T 0
N

[

1 + α
3E0

N

2Gmµ

(

T 0
N

π

)2
]

. (172)

Note that due to the secular contributions in β the definition above assures a
correct average only for the first period. Therefore the values of L0

N and A0
N

should be updated after each revolution. Alternatively, we can define the average
over an arbitrary period starting at ξinitp by imposing the integration limits ξinitp

and ξinitp + 2π. We also note that a similar definition in the parameter χp by

f = (1/2π)
∫ 2π

0 f (χp) dχp will give different averages, as the two parameters do
not run with the same rate (although they take the same values in the periastron
and apastron).
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7.2 The Kepler equation

The additional integrals needed in the Kepler equation are:

∫

Iαsdξp = α (ξp − sin ξp) ,

∫

Iβcdξp = β (1− cos ξp) ,

∫

Iαs cos ξpdξp = −α
4
(2ξp − 4 sin ξp + sin 2ξp) ,

∫

Iβc cos ξpdξp =
β

4
(1− cos 2ξp) ,

∫

(

Iβ + Iβc2
)

cos ξpdξp =
β

24
(−32 + 33 cos ξp − cos 3ξp + 36ξp sin ξp) ,

∫

Iαsc cos ξpdξp =
α

24
(3 sin ξp − sin 3ξp) . (173)

The Kepler equation (160) in the presence of a constant perturbing force
becomes

2π

T 0
N

(t− t0) = ξp −
A0
N

Gmµ
sin ξp + α

(

T 0
N

2π

)2
E0
N

4Gmµ

×
{

12

(

2 +
Gmµ

A0
N

+
2A0

N

Gmµ

)

ξp −
[

51 +
24A0

N

Gmµ
+ 5

(

A0
N

Gmµ

)2
]

sin ξp

−2

(

Gmµ

A0
N

− 6A0
N

Gmµ

)

sin 2ξp +

[

1−
(

A0
N

Gmµ

)2
]

sin 3ξp

}

+β
T 0
N

2π

L0
N

8Gmµ

[

2

(

16 +
Gmµ

A0
N

− A0
N

Gmµ

)

− 33 cos ξp

+2

(

A0
N

Gmµ
− Gmµ

A0
N

)

cos 2ξp + cos 3ξp − 12ξp sin ξp

]

. (174)

For ξp = 2π the elapsed time interval t − t0 is the radial period T of the
perturbed orbit:

T = T 0
N

[

1 + α

(

T 0
N

2π

)2
3E0

N

Gmµ

(

2 +
Gmµ

A0
N

+
2A0

N

Gmµ

)

]

. (175)

Note that this is not the period of the osculating ellipse at ξp = 2π, found from
Eq. (167) as TN |ξp=2π = T 0

N , neither is its angular average over the orbit given

in Eq. (172). However for perturbing forces with α = 0 all these coincide:

T = TN
ξ
= TN |ξp=2π = T 0

N .
The Kepler equation expressed in terms of the perturbed quantities, Eq.
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(162) is somewhat simpler:

2π

TN
(t− t0) = ξp −

AN
Gmµ

sin ξp

+α

(

TN
2π

)2
EN

2Gmµ

{

6

(

Gmµ

AN
+

2AN
Gmµ

+ 2 cos ξp

)

ξp

−4

[

6 +

(

AN
Gmµ

)2
]

sin ξp −
Gmµ

AN
sin 2ξp

}

+β
TN
2π

LN
4Gmµ

[(

16 +
Gmµ

AN
+

AN
Gmµ

)

− 16 cos ξp

−
(

AN
Gmµ

+
Gmµ

AN

)

cos 2ξp − 12ξp sin ξp

]

, (176)

however as here TN = TN (ξp), it is less useful that Eq. (174). Still, it can be
used to verify the expression of the radial period derived earlier. Indeed, for
ξp = 2π, as TN |ξp=2π = T 0

N , it reproduces Eq. (175).

7.3 The periastron shift

The periastron shift is given by the precession of ÂN about L̂N, thus by the Ω3

component. This includes only contributions from the perturbing force compo-
nents in the plane of motion, α and β. The periastron shift over one period T
is defined as

∆ψ0 =

∫ T

0

Ω3dt . (177)

Here the period is defined as the time over which the system evolves from rmin

through rmax into rmin again, thus double the time between two consecutive
ṙ = 0 passages. As the integrand is already first order, the period can be safely
chosen as T = TN (taking into account the difference ∆T = T − TN would
generate second order contributions).

Similarly, we can freely omit (or reinsert) the superscript 0 from (into) the
dynamical quantities involved in the first order expressions.

7.3.1 Calculation based on the true anomaly

We can rewrite the integral (177) as an integral over χp:

∆ψ0 =

∫ 2π

0

Ω3 (r (χp) , χp)

χ̇p (r (χp))
dχp . (178)

As Ω3 is already of first order, the periastron precession angle to leading (first)
order in the perturbations is found by employing the Newtonian expressions
Eqs. (18) and (21), with χp in place of χ. If the components of the perturbing
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force are constants, as assumed, the integration can be carried out without the
explicit knowledge of the perturbing force components:

∆ψ0 = −
∫ 2π

0

[

α
µr2

AN
+ (α sinχp − β cosχp)

Gmµ3r3 sinχp
L2
NAN

]

dχp

= − L4
N

G2m2µ3AN






α

∫ 2π

0

1 + sin2 χp +
AN

Gmµ cosχp
(

1 + AN

Gmµ cosχp

)3 dχp

−β
∫ 2π

0

sinχp cosχp
(

1 + AN

Gmµ cosχp

)3 dχp






. (179)

Although not impossible, these integrals are not particularly attractive to eval-
uate, due to the negative powers of (Gmµ+AN cosχp), therefore we will try
an alternative method for evaluating ∆ψ0.

7.3.2 Calculation based on the eccentric anomaly

An easier way to compute ∆ψ0 to first order accuracy over the period T would
be to rewrite the integral (177) in terms of the eccentric anomaly:

∆ψ0 =

∫ 2π

0

Ω3 (r (ξp) , ξp)

ξ̇p (r (ξp))
dξp . (180)

The precessional angular velocity Ω3 (r (ξp) , ξp) can be rewritten in terms of ξp
by employing Eqs. (76) in the corresponding element (100). It becomes:

Ω3 (r (ξp) , ξp) = −αLN
AN

−
[

αLN sin ξp−β
(

µ

−2EN

)1/2

(Gmµ cos ξp−AN )

]

×Gmµ sin ξp−2ENANr
. (181)

We have not yet determined the rate of change of the eccentric anomaly ξ̇p to

first order accuracy, nevertheless ξ̇p is needed in the expression (180) only to

leading order, such that we can employ Eq. (56) with ξ̇p in place of ξ̇.
Therefore the integrand in Eq. (180) reads

dψ0

dξ
= −αGmLN

AN

(

µ

−2EN

)3/2 (

1− AN
Gmµ

cos ξp + sin2 ξp

)

+β
G2m2µ3

4ANE2
N

(

cos ξp −
AN
Gmµ

)

sin ξp , (182)

which is straightforward to integrate, such that the periastron shift is found as

∆ψ0 = −α3πGmLN
AN

(

µ

−2EN

)3/2

. (183)
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Figure 3: The form factor as function of eccentricity.

The periastron precession given in terms of orbital elements is

∆ψ0 = −α3πa
2F (e)

Gm
, (184)

with the form factor

F (e) =

(

1− e2
)1/2

e
(185)

represented on Fig. 3. Note that the β-dependence dropped out from the
expression of ∆ψ0 taken over one period, therefore from among the constant

perturbing forces those giving secular periastron precession are the ones oriented

towards the periastron.
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7.3.3 Average precession rate

As an example of how we compute a secular effect (the average over one orbit
of the instantaneous effect), we compute the average of the precessional angular
velocity of the periastron, Ω3 ≡ dψ0/dt. This can be found from the general
prescription of calculating an average over one orbit:

〈Ω3〉 ≡
1

TN

∫ TN

0

Ω3dt =
∆ψ0

TN
. (186)

By employing Eq. (46) for the radial period, we find

〈Ω3〉 = −α 3LN
2AN

= −α 3

2e

[

a
(

1− e2
)

Gm

]1/2

.

7.4 Comment on the parametrizations

In all computations considered in this chapter so far the eccentric anomaly
parametrization turned out to be more suitable in obtaining the results, than the
true anomaly parametrization. The periastron precession, the expressions of the
Newtonian dynamical constants on an arbitrary point of the orbit and the Kepler
equation were all obtained employing the eccentric anomaly parametrization.

Let us discuss, why. In the derivation of the periastron precession the inte-
grand Ω3 is a sum of a sin ξp, a sin 2ξp and a sin ξp cos ξp terms, Eq. (181).
As Ω3 is already first order, when passing to the integration variable ξp the

integrand should be multiplied by the zeroth order expression of ξ̇−1
p ∝ r, which

again is a polynomial in cos ξp. This makes the integrand in the variable ξp a
simple polynomial in sin ξp and cos ξp, straightforward to integrate.

By comparison, expressed in terms of the true anomaly parametrization, Ω3

is a sum of a constant, an r sin2 χp and an r sinχp cosχp terms, see Eq. (100).
By passing to χp as an integration variable, it should be multiplied by the zeroth

order expression of χ̇−1 ∝ r2 ∝ (Gmµ+AB cosχp)
−2. The integrand is not a

simple polynomial any more, and it becomes cumbersome to integrate.
In the computation leading to the explicit expressions of the dynamical con-

stants of the osculating ellipse a similar situation was encountered: the inte-
grands were simple polynomials in trigonometric functions of ξp, while rewritten
in χp they would contain negative powers of (Gmµ+AB cosχp).

When deriving the Kepler equation (both in the perturbed and in the unper-
turbed cases), we have encountered a similar situation. In the unperturbed case
the integrand was simply ξ̇−1

p ∝ r, a polynomial in cos ξp. A similar situation
occurred in the perturbed case, as the perturbing force was chosen a constant.

However we can imagine situations, where the true anomaly parametrization
is more useful. For any first order integrand ∝ rn≤−2, when passing to the true
anomaly parametrization, taken in the zeroth order (where it has the property
r2χ̇p = LN/µ), the new integrand will become a polynomial in sinχp and cosχp,
easy to integrate. Conversely, for any first order integrand ∝ rn≥−1, when
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passing to the eccentric anomaly parametrization, taken in the zeroth order

(where it has the property rξ̇p = (−2EN/µ)
1/2

), the new integrand will become
a polynomial in sin ξp and cos ξp, again easy to integrate.

These convenient properties hold for any Keplerian calculation and for per-
turbed Keplerian calculations, when evaluating the evolution of first order quan-
tities over the orbit, as in the example of periastron shift for constant perturbing
forces. However, when evaluating zeroth order quantities over the orbit, the ad-
vantageous property of the parametrizations is lost, as shown by Eqs. (134)
and (100) for χ̇p and Eq. (148) for ξ̇p. In some cases, like the computations
of this chapter, based on the assumption of a constant perturbing force, the
computations can still be done relatively easy. In other cases the integrals may
become cumbersome (although not impossible to evaluate). This is the price
one has to pay for extending the definition of the true and eccentric anomaly
parametrizations of r derived for the Keplerian motion in an unmodified form
for the perturbed Keplerian dynamics.

As an alternative, we could introduce modified true and eccentric anomaly
parametrizations, reducing to the Keplerian definitions in the absence of per-
turbations, such that we their expressions χ̇ and ξ̇ coincide with the Keplerian
ones, and the nice integrability features are conserved.

7.5 Secular orbital evolution in the plane of motion

Due to Eq. (169) the semimajor axis of the binary remains unchainged under the
action of the constant perturbative force. The eccentricity and the periastron
change according to Eqs. (171) and (183) as

∆e

e
=

∆AN
A0
N

=
β

κL̂N

, (187)

∆ψ0

2π
= − α

κL̂N

, (188)

where κL̂N
is a constant with dimension of acceleration (the subscript L̂N

is for

rotation about L̂N):

κL̂N
≡ 2A0

N

3L0
NT

0
N

=
2Gm

3a20F (e0)
. (189)

For a perturbing force perpendicular to the plane of motion therefore there
is no secular evolution of the quasi-elliptic orbit in the plane of motion. In
all other cases the relative change of the eccentricity and azimuthal angle at
periastron scale with the respective components of the perturbative force.

The eccentricity changes only due to β, the conponent of the perturbative
force in the plane of motion and perpendicular to the semimajor axis. For β < 0
the eccentricity decreases and the orbit tends to circularize. On the contrary, for
β > 0 the eccentricity of the orbit is increased and the quasi-elliptic trajectory
tends to become more elongated.
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quadrant direction of ∆a⊥
∆ψ0

2π = −α
κ

effect on the ellipse

1. ξp = π/4 −ε counter-rotation

(α = β = εκ) Q̂N tends to align to ∆a⊥
2. ξp = 3π/4 ε co-rotation

(−α = β = εκ) Q̂N tends to align to ∆a⊥
3. ξp = −3π/4 ε co-rotation

(α = β = −εκ) ÂN turns opposite to ∆a⊥
4. ξp = −π/4 −ε counter-rotation

(α = −β = εκ) ÂN tends to align to ∆a⊥

Table 2: The effect on the periastron of the specific perturbing force ∆a, for
4 particular configurations. The periastron co-rotates (counter-rotates) with µ
for projections of the perturbing force in the second and third (fourth and first)
quadrants, such that the semiminor axis tends to align to the projection to the
plane of motion of the perturbing force ∆a⊥.

The periastron co-rotates with the orbit (∆ψ0 > 0), when α < 0 and counter-
rotates, when α > 0.

Depending on which quadrant is the projection of the perturbing force, it will
have different effects. Let us illustrate this with four particular configurations
for the perturbing force, given by |α| = |β| = εκ, where ε > 0 represents a small
positive number, which scales the perturbation. In other worlds, the projection
of the perturbing force onto the plane of motion for these configurations is at
ξp = ±π/4, ± 3π/4. The effect of the perturbing force for these configurations
is summarized in Tables 2, 3.

The properties found however for these particular configurations are charac-
teristic for any force with components in the same quadrant (only the magni-
tude of the effects vary). The eccentricity increases for perturbing forces with
projection in the plane of motion lying in the first and second quadrant; and
decreases for perturbing forces with projections in the third and fourth quad-
rant. The periastron co-rotates (counter-rotates) with the motion of the mass µ
for projections of the perturbing force in the second and third (fourth and first)
quadrants.

If the projection of the perturbing force falls into the first or fourth quadrant,
as the periastron counter-rotates in this case, the quasi-ellipse tends to turn
such that Q̂N becomes aligned to the original direction of the projection of the
perturbing force ∆a⊥ to the plane of motion. Thus in the basis (ÂN, Q̂N) the
projection ∆a⊥ of the specific perturbing force will turn towards the positive
y-direction.

If the projection of the perturbing force falls into the second or third quad-
rant, as the periastron co-rotates in this case, the quasi-ellipse again tends to
turn such that Q̂N becomes aligned to ∆a⊥. Therefore this configuration is
stable.

In this stable configuration the eccentricity increases in time due to the
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quadrant direction of ∆a⊥
∆e
e = β

κ
effect on the ellipse

1. ξp = π/4 ε elongation
(α = β = εκ)

2. ξp = 3π/4 ε elongation
(−α = β = εκ)

3. ξp = −3π/4 −ε circularization
(α = β = −εκ)

4. ξp = −π/4 −ε circularization
(α = −β = εκ)

Table 3: The effects on the eccentricity of the specific perturbing force projec-
tion ∆a⊥, for 4 particular configurations. The orbit becomes more elongated for
perturbing forces with projection in the plane of motion lying in the first and sec-
ond quadrant; and it tends to circularize for perturbing forces with projections
in the third and fourth quadrant. As in the preferred configuration the semi-
minor axis (the base vector Q̂N) of the orbit is aligned to the projection of the
perturbing force (see main text), the ellipse becomes more elongated with each
revolution, (keeping though its semimajor axis). This energy-conserving, but
orbital angular momentum extracting process eventually results in the merger
of the binary.

perturbing force. However, as stated earlier, the semimajor axis stays constant.
Therefore, if there is sufficient time for the perturbing force to act, eventually
the orbit will become so much flattenned (rmin = 2a− rmax ≪ rmax), that the
binary components will actually merge at the point of closest approach, rather
than overpassing each other.

Therefore, the constant perturbing force does not extract energy from the

system, however its projection into the plane of motion extracts angular mo-

mentum.

7.6 Secular evolution of the plane of motion

The evolution of the plane of motion is contained in Eq. (89). From here the
shifts of L̂N about ÂN (along −Q̂N) and about Q̂N (along ÂN) during one
radial period are:

∆φÂN
=

γµ

L0
N

∫ T

0

r cosχpdt ,

∆φQ̂N
=

γµ

L0
N

∫ T

0

r sinχpdt . (190)

Due to the simplicity of the integrands these calculations are much easier to
perform than the respective calculation for the periastron shift. We pass to the
integration in terms of the eccentric anomaly by dt = ξ̇−1

p dξp, then we employ
Eqs. (148), Eqs. (76), finally Eq. (143) (all needed only to leading order) and
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obtain:

∆φÂN
= γT 0

N

3µA0
N

4E0
NL

0
N

,

∆φQ̂N
= 0 . (191)

Therefore the plane of motion is rotated about ÂN after each radial period by
the angle ∆φÂN

. Remembering, that the positive sense of rotation about the

basis vectors
{

f(i)
}

is counter-clockwise, we find the following. The rotation is
counter-clockwise (∆φÂN

> 0) if the force and the orbital angular momentum
span an obtuse angle (γ < 0), and clockwise, if they span an accute angle (such
that γ > 0). Clearly, the stable configuration is reached when the perturbing
force spans the right angle with the orbital angular momentum, such that the
force becomes tangent to the plane of motion.

Thus, there is no evolution of the plane of motion for γ = 0, no evolution in
the orientation of the plane of motion if α = 0, and no change in the excentricity
if β = 0.

In order to compare this rotational shift with the precession of the periastron,
we rewrite ∆φÂN

as
∆φÂN

2π
= − γ

κÂN

, (192)

with

κÂN
=

2GmF (e0)

3a20
= κL̂N

F 2 (e0) . (193)

As F (e0) diverges in the origin and goes to zero at e0 = 1, for small eccentricities
κL̂N

≪ κÂN
, while for high eccentricities κL̂N

≫ κÂN
. They become equal at

e0 = 2−1/2. The smaller the value of the coefficients κL̂N
, κÂN

, the bigger
the corresponding secular effect. For nearly circular orbits therefore the above
rotation of the plane of motion about the periastron axis is much faster, than the
periastron precession and the increase of eccentricity. This situaton is reversed
for high eccentricities, where the periastron precession is fast and the ecentricity
increases quickly.

We conclude that the effect of the constant perturbative force on a nearly
circular orbit during one period consist of:

(a) Turning the plane of motion parallel to the force by a rotation about ÂN

(b) Turning the osculating ellipse such that the force points along Q̂N

(c) Increasing or decreasing the eccentricity, according to the sign of β.
While the process (a) is relatively fast for small eccentricities, (b) and (c)

dominate at high values of the eccentricity. These determine the initial data for
the next period, where the perturbing force is reoriented due to the assumption
of α, β, γ being constants.
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8 Equal mass binary perturbed by a small, cen-

ter of mass located body

Let us assume that the two body problem is perturbed by a third mass δm ≪
min (m1,m2), located in the center of mass of the two more massive bodies.
Then the equations of motion are

r̈1 =
Gm2

r2
r− Gδm

r21
r1 ,

r̈2 = −Gm1

r2
r− Gδm

r22
r2 ,

δr̈ =
Gm1

r21
r1 +

Gm2

r22
r2 . (194)

Employing Eqs. (5) and deriving the evolution for r one obtains

r̈ = −Gm
r2

(

1 +
δm

µ

)

r . (195)

The dynamics of the two main bodies is perturbed then by

∆a = −Gmδm
µr2

(

L2
N −Gmµ2r

µAN
ÂN +

LN
AN

rṙQ̂N

)

, (196)

such that

α = −Gmδm
(

L2
N −Gmµ2r

)

µ2AN r2
,

β = −GmδmLN ṙ
µANr

, γ = 0 (197)

Here we have used the expression of r given in Eqs. (32) and (34).
The evolution for δr is given by

δr̈ =
Gm

r2

(

m2

m1
− m1

m2

)

r .

In order to have δm in equilibrium, in what follows we takem2 = m1. Hence δm
can be in equilibrium in the cemter of mass of the other two bodies, provided
its initial velocity is also zero. The equilibrium is unstable, nevertheless it can
be maintained, if we think of a spaceship with its own engine, positioned in the
center of mass of a binary formed by two equal-mass neutron stars.

Exam work: describe in detail the perturbed Keplerian dynamics of the
two larger bodies in the case of this perturbing force.

A Computation details for subsection 5.1

In this Appendix we use summation convention over repeated (covariant and
contravariant) indices.
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The velocity in the perturbed basis is:

v = ẋif(i) + xi ḟ(i) = ẋif(i) + xiΩ× f(i)

= ẋif(i) + xiǫsqpΩqδipf(s)

= ẋif(i) + xpǫsq pΩqf(s)

=
(

ẋi − ǫi q
p xpΩq

)

f(i) , (198)

where the coordinates are given by Eq. (129) and in consequence

ẋ1 = ṙ cosχp − rχ̇p sinχp , ẋ2 = ṙ sinχp + rχ̇p cosχp , ẋ3 = 0 . (199)

The orbital angular momentum becomes

LN

µ
= ǫipqx

p
(

ẋq − ǫq k
j x

jΩk

)

f(i)

=
[

ǫipqx
pẋq −

(

δijδ
k
p − δjpδ

ik
)

xpxjΩk
]

f(i)

=
[(

x1ẋ2 − x2ẋ1
)

δi3 −
(

xkxiΩk − xjx
jΩi
)]

f(i)

=
(

r2χ̇pδ
i
3 − xkxiΩk + xjx

jΩi
)

f(i)

=
(

−xkx1Ωk + xjx
jΩ1

)

f(1)

+
(

−xkx2Ωk + xjx
jΩ2

)

f(2)

+
(

r2χ̇p + xjx
jΩ3

)

f(3)

=
(

x2Ω1 − x1Ω2

) (

x2f(1) − x1f(2)
)

+
[

r2χ̇p +
(

x1x1 + x2x2
)

Ω3

]

f(3)

= r2 (χ̇p +Ω3) L̂N , (200)

where we have employed x2Ω1 = x1Ω2, see Eq. (100).
For the calculation of the energy, we employ:

v2 =
(

ẋi − ǫi k
j xjΩk

) (

ẋs − ǫs qp x
pΩq

)

δis

= ẋiẋsδis − 2ǫi k
j xj ẋsΩkδis + ǫi qp ǫ

k
ij x

jxpΩkΩq

=
(

ẋ1
)2

+
(

ẋ2
)2 − 2ǫ1 k

j x
j ẋ1Ωk − 2ǫ2 k

j xj ẋ2Ωk

+
(

x1
)2

Ω2
2 +

(

x2
)2

Ω2
1 + r2Ω2

3 − 2x1x2Ω2Ω1

= ṙ2 + r2χ̇2
p + 2r2χ̇pΩ3 + r2Ω2

3 . (201)

Remarkably, many of the second order terms in Ωi-s cancelled out.

51



The Laplace-Runge-Lenz vector is found by a similar calculation:

AN = ǫ 3k
i

(

ẋi − ǫi n
m xmΩn

)

µr2 (χ̇p +Ω3) f(k) −
Gmµ

r
xkf(k)

=

[

µr2 (χ̇p +Ω3)
(

ẋ2 + x1Ω3

)

− Gmµ

r
x1
]

ÂN

+

[

−µr2 (χ̇p +Ω3)
(

ẋ1 − x2Ω3

)

− Gmµ

r
x2
]

Q̂N

=
[

µr2χ̇p (ṙ sinχp + rχ̇p cosχp)−Gmµ cosχp

+ µr2Ω3 (ṙ sinχp + 2rχ̇p cosχp + rΩ3 cosχp)
]

ÂN

−
[

µr2χ̇p (ṙ cosχp − rχ̇p sinχp) +Gmµ sinχp

+ µr2Ω3 (ṙ cosχp − 2rχ̇p sinχp − Ω3r sinχp)
]

Q̂N . (202)
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