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Introduction

Introduction

In this lecture we will apply time-dependent perturbation theory
introduced in the previous lecture to study atomic dynamics in an
external time-periodic electromagnetic field.

We apply the dipole approximation, which means that the spatial
dependence of the field can be neglected and the field strength is taken
to be

E(z, t) = E0 cosωt.

Here, E0 is the field amplitude, which is assumed to be a constant in
this lecture.
We have also learnt that the relevant interaction Hamiltonian in this
case can be taken in the form

KS = −DE = −DE0 cosωt.
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Solution for the final state amplitude

Introduction

The equation to be solved is now the following time-dependent
Schrödinger equation:

i~
∂ |Ψ(t)〉
∂t

= (H0 + K(t)) |Ψ(t)〉 = (H0 −DE0 cosωt) |Ψ(t)〉 . (SchE)

We look for the amplitudes Ck(t) in the expansion:

|Ψ(t)〉 =
∑

Ck(t)e−iεkt/~ |k〉 ,

where |k〉 is the eigenstate of H0 with eigenvalue εk.
In Lecture 6, we derived the following equation for Ck(t) in the first-
order approximation

dC(1)
k (t)
dt

= − i
~

Kkieiωkit, with the assumption C(1)
k (0) = δik.

The assumption means that the atom is initially in the stationary state
|i〉 .
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Solution for the final state amplitude

Interaction with the atomic dipole

The matrix element Kki is given by

Kki = −〈k|D |i〉E0 cosωt = −dkiE0 cosωt,

where 〈k|D |i〉 =: dki, as it is the dipole moment D that represents an
atomic operator, while E0 cosωt is an ordinary c number.
We shall not go beyond the first-order approximation in this lecture, so
we omit the superscript (1) from now on, and write Ck(t) for C(1)

k (t).

dCk(t)
dt

= − i
~

Kkieiωkit =
i
~

dki(E0 cosωt)eiωkit
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Solution for the final state amplitude

Solution for the final state amplitude

The differential equation

dCk(t)
dt

= − i
~

Kkieiωkit =
i
~

dki(E0 cosωt)eiωkit

is easily integrated:

Ck(t) = − i
~

∫ t

0
Kkieiωkit1dt1 =

i
~

∫ t

0
dki(E0 cosωt)eiωkit′dt′ for k 6= i.

We are interested in a specific final state amplitude Cf (t) i.e., k = f 6= i.
As cosωt = (eiωt + e−iωt)/2, we can perform the integration:

Cf (t) =
1
~

dfiE0

2

(
ei(ωfi+ω)t − 1
ω + ωfi

+
ei(ωfi−ω)t − 1
ωfi − ω

)
.
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Solution for the final state amplitude

Transition dipole moment

The matrix element of the dipole moment operator, dfi sometimes called as
the transition dipole moment, is a very important notion in atomic
physics and spectroscopy. This is the atomic parameter that
determines the probability of a transition, and in case of emission, the
intensity of the emitted radiation.

dfi is a vector, as the dipole moment operator is a vector itself. The
Cf (t) amplitude of the final state, and therefore the transition
probability is nonzero only if dfi 6= 0.

This leads us to dipole selection rules, to be discussed a little later.
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Absorbtion and stimulated emission

Absorbtion and stimulated emission I

We see in the solution

Cf (t) =
1
~

dfiE0

2

(
ei(ωfi+ω)t − 1
ω + ωfi

+
ei(ωfi−ω)t − 1
ωfi − ω

)

two terms that differ in their denominators.

(St) The first term is large and dominates if ωfi + ω ≈ 0, then
|ωfi − ω| ≈ 2ω � 0

(Ab) The second is large and dominates if ωfi − ω ≈ 0, then
|ωfi + ω| ≈ 2ω � 0

Note that for optical fields ω ' 1015 1/s.
In addition, the nominator of the dominant term varies slowly in time
with frequency close to zero, in contrast to the other term where the
nominator varies rapidly and has a small average over a time interval
longer than 2π/ω.
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Absorbtion and stimulated emission

Absorbtion and stimulated emission II

(St) case: we omit the second term and have

ωfi + ω ≈ 0, εf = εi − ~ω. (St)

The final state has lower energy than the initial one, this process
corresponds to stimulated (or induced) emission driven by the external
field. The atom emits a "photon" of energy ~ω and its energy decreases.

(Ab) case: we omit the first term and have

ωfi − ω ≈ 0, εf = εi + ~ω. (Ab)

The final state has higher energy than the initial one, this process
corresponds to absorbtion driven by the external field. The atom
absorbs a "photon" of energy ~ω and its energy increases.

Quote marks refer to the situation: no quantized field=no photon. The
concept of the photon makes no sense actually in this approach. Still
allowed to speak of it, as QED leads essentially to the same result.
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Absorbtion and stimulated emission

Absorbtion and stimulated emission III

The description of the two processes are very similar, and we can write
both as a single equation for Cf , where the upper sign refers to (St), the
lower to (Ab)

Cf (t) =
1
~

dfiE0

2

(
ei(ωfi±ω)t/2 − e−i(ωfi±ω)t/2

ωfi ± ω

)
ei(ωfi±ω)t/2,

where we picked out a factor ei(ωfi±ω)t/2, for later convenience.
For the probability of finding the system in the state f we take the
square of the absolute value of the probability amplitude,∣∣Cf (t)

∣∣2 =

(
dfiE0

2~

)2 sin2 [(ωfi ± ω)t/2
][

(ωfi ± ω)/2
]2 =

(
dfiE0

2~

)2

4
sin2 ∆t

2
∆2 ,

where ∆ := ωfi ± ω. The expression above is signficant when
(εf − εi)/~ = ω (absorbtion: upper sign), or when (εf − εi)/~ = −ω,
(stimulated emission: lower sign).
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Absorbtion and stimulated emission

Transition probability

Take for a moment dfiE0 = dfiE0 (we will correct this below).

Pf (t) =
∣∣Cf (t)

∣∣2 =

(
dfiE0

2~

)2

t2 sin2 ∆t
2

(∆t/2)2

For ∆ = 0, the factor sin2 ∆t
2

(∆t/2)2 = 1, the probability of finding the system
in |f 〉

Pf (t,∆ = 0) =

(
dfiE0

2~

)2

t2

grows as t2, which cannot be the case for long times, because
normalization requires

∑
k
|Ck(t)|2 = 1.

Perturbation theory fails. The effect of a monochromatic field in exact
resonance with the atomic transition cannot be calculated in this way.

M. Benedict (Dept. of Theo. Phys.) 7: Atom in electromagnetic field, 11 / 29



Field with a wide-band spectrum, Einstein’s B coefficient

Interaction with a field with a wide-band spectrum

Still the previous result can be used when the atom is placed in the
field which has a wide-band spectrum, like black-body radiation.
Then the divergence in the formula for

∣∣Cf (t)
∣∣2 above is compensated

by the effect, that the interaction is effective only with an infinitesimal
part of the spectrum where the atom emits or absorbs.
In order to see this, we use first the limiting form of the function
g(t,∆) = sin2[∆t/2]

t(∆/2)2 = t sin2[∆t/2]
t2(∆/2)2 . Then g(t, 0) = t , and

g(t,∆) < 1/(t(∆/2)2) for ∆t > 2π. For any smooth function, f (∆) :

lim
t→∞

∫
f (∆)

sin2 [∆t/2]

t(∆/2)2 d∆ = 2πf (0)

thus lim(t→∞)
sin2 [∆t/2]

(∆/2)2 = 2πtδ(∆)

where δ(∆) is the Dirac delta.
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Field with a wide-band spectrum, Einstein’s B coefficient

Golden rule

lim(t→∞)
∣∣Cf (t)

∣∣2 = 2πt
(dfiE0)2

4~2 δ(ωfi ± ω)

The transition probability per unit time is given by for the (Ab) case:

wfi =
1
t
∣∣Cf (t)

∣∣2 =
(dfiE0)2

2~2 πδ(ωfi − ω).

This is a specific case of a more general rule called Fermi’s golden rule,
describing an energy conserving transition from or to a discrete level
or level pairs to continuum. Here the role of the continuum is played
by all the possible photon energies ~ω. The derivation is due to Dirac,
who did this earlier than Fermi.
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Field with a wide-band spectrum, Einstein’s B coefficient

Transition rate =Transition probability/unit time

Now if the field is polychromatic E2
0 is to be replaced by E2(ω)dω,

where E(ω) is the Fourier amplitude (spectrum) of the field at the
angular frequency ω, and the transition probability per unit time is
obtained after integration with respect to ω :

wfi = π
∫ (dfi)2

2~2 E2(ω)δ(ωfi − ω)dω = π
d2

ki
2~2 E2

0(ωfi).

The square of the field amplitude is proportional to the field energy
density, and it will be useful to make use of :

u(ω) =
1
2
ε0E2(ω) +

1
2µ0

B2(ω) = ε0E2(ω) =
1
2
ε0E2

0(ω),

which is valid for plane waves. Time average of the cos2ωt introduces
the factor 1/2. Then E2

0(ω) = 2u(ω)/ε0 and the transition
probability/unit time

wfi = π
d2

fi

ε0~2 u(ωfi).
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Field with a wide-band spectrum, Einstein’s B coefficient

Random direction correction

We have taken so far dfiE =dfiE, while in reality the relative direction of
dfi and E is a random angle ϑ.
Thus dfiE = dfiE cosϑ, and spatial averaging of the square containing
cos2 ϑ over all directions yields 1/3.
So the the final result for absorbtion is

transition probability/unit time=transition rate= wfi =
πd2

fi

3ε0~2 u(ωfi)

The result is the same for the (Ab) and the (St) case, so
wfi is proportional to the energy density of the field, u(ω) in both cases with
the same constant of proportionality. (This is to be refined when level
degeneracy is taken into account).
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Field with a wide-band spectrum, Einstein’s B coefficient

B coefficient

Long before this quantum theoretical calculation, done first by Dirac in
1927, in 1916 Einstein simply postulated the existence of absorbtion
and stimulated emission, when he introduced phenomenologically the
notion of transition probability and transition rate into atomic physics.
(Ironically, later on, he became the main opponent of the sole
probabilistic interpretation of quantum physics.)

Einstein denoted the coefficient multiplying u(ωfi) by Bif , so

Bif =
πd2

fi

3ε0~2 . (Bcoeff)

Lacking genuine quantum mechanics in 1916, Einstein could not
calculate the explicit value from the atomic data, seen to be contained
in the matrix element dfi. (Note the order of the indices in Bif is the
opposite to the one used in quantum mechanics.)
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Relation between Einstein’s A and B coefficients

A coefficient

Besides (Ab) and (St) Einstein did also consider spontaneous emission
(Sp) and postulated the transition from an upper to a lower level even
without the presence of the field, and denoted the transition rate from
level 2 to level 1 by A21.

Note that quantum electrodynamics puts this process into a different
perspective, explaining spontaneous emission by the effect of
fluctuations of the vacuum field.

By a simple consideration of the transition rates for a gas of atoms,
which is assumed to be in thermal equilibrium with a cavity filled with
black body radiation, Einstein derived a simple relation between the B
and A coefficients.
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Relation between Einstein’s A and B coefficients

Einstein’s argument

Einstein’s argument
Denote here the lower and upper levels by indices 1 and 2, and the
number of atoms in the corresponding levels by N1 and N2,
respectively.

According to the three possible processes considered by Einstein, the
rate equations are obviously

Ṅ1 = (B21N2 − B12N1)u(ω0) + A21N2, Ṅ2 = −Ṅ1 (Einstein)

with ω0 = ωfi = (ε2 − ε1)/~ .
In thermal equilirium, when the time derivatives vanish and according
to Boltzmann we must have N2/N1 = e−~ω0/kT, we obtain

u(ω0) =
A21

B21

1
B12
B21

N1
N2
− 1

=
A21

B21

1
B12
B21

e~ω0/kT − 1
.
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Relation between Einstein’s A and B coefficients

Einstein’s A coefficient, and spontaneous lifetime

Compare this with Planck’s formula for uP(ω0) of black body radiation

u(ω0) =
A21

B21

1
B21
B12

e~ω0/kT − 1
compare u(ω0) =

~ω3
0

π2c3
1

e~ω0/kT − 1
(Planck)

yielding:
A21 = B21

~ω3
0

π2c3 B21 = B12.

Note that this is to be modified if level degeneracy is taken into
account. This is left to a problem.

An interpretation of the factor: ~ω3
0

π2c3 . The product of ~ω0 (single photon

energy) times the volume mode density at ω0: ω2
0

π2c3 .

Problem:
In case of degenerate levels, i.e., multiple quantum states with the same
energies this is to be modified. Repeat the above derivation with level
degeneracies gi, and show that g1B12 = g2B21.
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Relation between Einstein’s A and B coefficients

A coefficient and spontaneous lifetime

In case of nondegenerate levels then

A21 =
πd2

21
3ε0~2

~ω3
0

π2c3 =
1

4πε0

4
3

d2
kiω

3
0

~c3 = γ0

Important notes:
1 The inverse of the spontaneous transition rate

1/γ0 = τ0

is the natural life time of the level if there is only one lower state
where to decay.

2 According to the rate equation in the absence of external fields this
decay is exponential.

Problem:
Show that exponential decay results in Lorentzian line shape with a line
width γ0, this is called the natural line width.
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Relation between Einstein’s A and B coefficients

On spontaneous lifetime

3 The life time is inversely proportional to ω3
0 , so the lifetimes of lev-

els are much smaller in the visible than, say, in the infrared.

Problems:
Estimate the lifetime of an atomic transition in the visible domain
around λ0 = 500 nm , by assuming as an order of magnitude d = q0a0,
where q0 is the charge of the electron and a0 is the Bohr radius.

Calculate the life time more precisely corresponding to the Lyman α
line (2p→ 1s) of the H atom.
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Selection rules

Role of the dipole matrix element

The dipole transition matrix elements dfi = 〈f |D |i〉must be nonzero in
order to have a transition in the dipole approximation.

We derive now certain selection rules that determine when these
matrix elements are nonzero.

In atoms the single active electron we consider is in the field of the
other electrons which can be approximated by a central potential V(r).
This is exact in the case of Hydrogen like atoms where the potential of
the unperturbed electron is the Coulomb field originating from the
nucleus.
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Selection rules

Parity of a quantum state

In a central potential the square of the orbital angular momentum is a
constant of motion, as well as any of its components as the
commutators [H0,L2] = [H0,Li] = 0 for i = x, y, z.

This is the reason why in the case of atoms the orbital angular
momentum quantum number ` as well as the magnetic quantum
number m are good quantum numbers, they can be used to label the
eigenstates of H0.

An important point also is that the angular momentum eigenstates
have definite parity, i. e. on reflection with respect to the origin they
are are either even or odd depending on ` .
In the abstract notation with the parity operator or in coordinate
representation this means

Π |un,`,m 〉 = (−1)` |un,`,m〉 ,
Πun,`,m(r)=un,`,m(−r)=(−1)`un,`,m(r).
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Selection rules

Parity and dipole moment anticommute

Laporte rule:
Dipole transition is possible only between states of different parity.

Proof: The dipole moment operator for a single electron is D = q0R,
here q0 is the charge of the electron, q0 < 0, and R points from the
nucleus to the electron.
The parity operator anticommutes with R, as the latter is a polar
vector, i.e., it changes sign if mirroring with respect to the origin. This
means that ΠR = −RΠ = 0, or ΠR + RΠ = 0.
To see this take any function ψ(r), and calculate

Π(Rψ(r)) =Π(rψ(r)) = −rψ(−r).

On the other hand, R(Πψ(r)) = rψ(−r), which proves the
anticommutation.
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Selection rules

Proof of Laporte rule

We use that parity is a selfadjoint operator and calculate

0 = 〈un′,`′,m′ |ΠR + RΠ|un,`,m〉 = (1)

(−1)`
′〈un′,`′,m′ |R|un,`,m〉+ (−1)`〈un′,`′,m′ |R|un,`,m〉 = (2)

((−1)`
′
+ (−1)`)〈un′,`′,m′ |R|un,`,m〉. (3)

Because (−1)`
′
+ (−1)` = ±2 whenever `′ and ` are of the same parity,

the other factor must then be zero

〈un′,`′,m′ |R|un,`,m〉 = 0, if `
′

and ` are of the same parity.

This proves Laporte rule.
Problem: Prove the same result by using the coordinate representation form of
the above matrix element.
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Selection rules

The selection rule for angular momentum quantum
number

A special case of the Laporte rule is that the diagonal matrix elements
of R and D do vanish, as then the two eigenstates have obviously the
same parity.

The same result holds whenever the difference of ` and `′ is even.

In reality the selection rules for dipole transitions are more stringent.
The matrix elements of R vanish unless ∆` = ±1.

This selection rule is also connected with a symmetry, it follows from
the rotational properties of R and |un,`,m〉 . It will not be proven here,
neither the more complicated selection rules between levels depending
on the spin, etc.
See the specialized literature in atomic physics.
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Questions

Questions

1 What is the operator the matrix elements of which play the most
important role in describing an atom in electromagnetic radiation?

2 What physical processes were we able to identify using a perturba-
tive approach?

3 Why first order perturbation calculations are valid only on a short
time scale?

4 What is the usual name for the "one to many" (from a discrete level
to continuum) transition rate?

5 What physical quantity of the broadband radiation determines the
transition rate wfi?

6 What physical process is described by Einstein’s B coefficient?
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Questions

Questions (continued)

7 What physical process is described by Einstein’s A coefficient?
8 Without degeneracy, what is the relation between Einstein’s A and

B coefficients?
9 Show that exponential decay results in Lorentzian line shape with

a line witdth γ0, this is called the natural line width.
10 Estimate the life time of an atomic transition in the visible domain

around λ0 = 500 nm , by assuming as an order of magnitude d =
q0a0, where q0 is the charge of the electron and a0 is the Bohr radius.

11 Calculate the life time more precisely corresponding to the Lyman
α line (2p→ 1s) of the H atom.

12 What is Laporte rule?
13 Prove Laporte rule by using the coordinate representation form of

the matrix elements.
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Questions
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