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Correlation and prediction 
 Relationship between two variables
 It frequently happens that statisticians want to describe with a 

single number a relationship between two sets of scores. 
 A number that measures a relationship between two sets of scores 

is called a correlation coefficient. There are several correlation 
coefficients for measuring various types of relationships between 
different kinds of measurements. 

 We will illustrate the basic concepts of correlation by discussing 
only the Pearson correlation coefficient, which is one of the more 
widely used correlation coefficients. 
 The statistic is named for its inventor, Karl Pearson (1857-1936), one of the 

founders of modern statistics. It is denoted by r, and is used to measure what 
is called the linear relationship between two sets of measurements
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To explain how r works and what is meant by a linear relationship, we 
will look at a few over simplified examples. It is unlikely that a real 
application of the correlation coefficient would be made with so few 

scores. Imagine that 6 students are given a battery  of tests by a 
vocational guidance  counselor  with the results shown in the following 

table 
student in retailing in theater math aptitude language aptitude

Pat 51 30 525 550
Sue 55 60 515 535
Inez 58 90 510 535
Amie 63 50 495 520
Gene 85 30 430 455
Bob 95 90 400 420
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 The counselor might want to see if there are any correlation among there set 
of marks. For example, between math and language.

 Let us draw a graph called scattergram to investigate this relationship.
 We put math scores on the horizontal axis, but that is not important. We 

could have put it on the vertical axis. After both axes are drawn and labeled, 
we use one dot for each person.

 You will notice there things about the scattergram.
 1. There is one point for each pair of scores, 6 points in all.
 2. The points are arranged approximately in a straight line. When this 

happens we say that there is a good linear correlation between the two 
variables.

 3. The higher numbers in the math column of the table correspond to the 
higher numbers in the language column. This causes the line to slope up to 
right. This is called positive correlation.
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Math aptitude vs Language aptitude
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Math aptitude vs interest in theather
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Math aptitude vs interest in retailing
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Correlation
 You will notice that there is no special tendency for the points 

to appear in a straight line. We say that there is a little or no 
correlation between the math scores and the theater-interest 
scores.

 Also note that it is not necessary for both variables to be scored 
on the same scale, since the correlation coefficient describes 
the pattern of the scores, not the actual values.

 Relationship between  math scores and retailing-interest scores: 
there is a tendency for the points to lie in a line that slopes 
down to the right. This is called negative correlation. (The 
higher scores in the column for math correspond to the low 
scores in the column for retailing interest)
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Computation of r 
(r denotes the correlation coefficient)

 Let us denote the two samples by :
x1, x2, ..., xn and y1, y2, ..., yn. 
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Properties of r

 The value of r is always between -1 and 1.
 When there is no tendency for the points to lie in 

a straight line, we say that there is no correlation 
(r=0) or we have low correlation ( r is near 0 ). 

 If r is near +1 or -1 we say that we have high 
correlation. If r=1, we say that there is perfect 
positive correlation. If r=-1, then we say that 
there is a perfect negative correlation 
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Testing the significance of r 
 Suppose that we examined an entire population and 

computed the correlation coefficient for two variables. 
 If this coefficient equaled zero, we would say that there is no 

correlation between these two variables in this population. 
Consequently, when we examine a random sample taken 
from a population, then a sample value of r near zero is 
interpreted as reflecting no correlation between the variables 
in the population. 

 A sample value of r far from zero (near 1 or -1) indicates that 
there is some correlation in the population. The statistician 
must decide when a sample value of r is far enough from 
zero to be significant, that is, when it is sufficiently far from 
zero to reflect the correlation in the population.
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The t-test
 H0: correlation coefficient in population = 0, in notation: ρ =0
 Ha: ρ ≠ 0
 This test can be carried out by expressing the t statistic in terms of r. 

It can be proven that the statistic has t-distribution with n-2 degrees 
of freedom

 Decision using statistical table: If ttable  denotes the value of the table 
corresponding to n-2 degrees of freedom and probability, 
 if |t| > ttable, we reject H0 and state that  the population correlation coefficient,ρ 

is different from 0. 
 Decision using p-value: if p < α (=0.05) we reject H0 and state that 

the population correlation coefficient, ρ is different from 0 
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Example 
 The correlation coefficient between math skill and language 

skill was found r=0.9989 
 H0: correlation coefficient in population = 0, in notation: ρ =0
 Ha: ρ ≠ 0
 Let's compute the test statistic

 The critical value in the table is  t0.05, 4 = 2.776. 
 Because 42.6 > 2.776, we reject H0 and claim that there is a 

significant linear correlation between the two variables at 95 
% level.
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Prediction based on linear correlation: 
the linear regression 

 If the statistician determines that there is high  linear 
correlation between two variables, we can try to 
represent the correspondence by an ideal line - a line 
that best represents the linear correspondence. 

 We can then write the formula which determines this 
line, and use this formula which determines this line, 
and use this formula to predict, for instance, which 
value of the Y variable corresponds ideally to any 
given value of the X variable.
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Example
 Let us suppose that math aptitude and language 

aptitude have a high positive correlation. 
 Suppose we have found a formula which predicts 

language aptitude from scores of math. aptitude. 
 Given that value of math aptitude 410 scores, the 

formula predicts 432.2 scores of language 
 language = 1.016 * math + 15.5 
 r =0.9989, 
 r2 = 91.7 %) 
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How to get the formula for the line which is 
used to get the best point estimates? 
 The general equation of a line is y = a + b x. 
 We are going to find the values of a and b in such a way 

that the resulting line be the best fitting line. 
 Let's suppose we have n pairs of (xi, yi) measurements. We 

estimate yi  by values of a line . If xi is the independent 
variable, the value of the line is   a + b xi. 

 We will approximate yi by the value of the line at xi, that is, 
by a + b xi. The approximation is good if the differences   
are small. These differences can be positive or negative, so 
let's take its square and summarize 
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Least squares method of fit

 This is a function of the unknown parameters a and b, 
called also the sum of squared residuals. To determine a 
and b: we have to find the minimum of S(a,b). In order to 
find the minimum, we have to find the derivatives of  S, 
and solve the equations 

 The solution of the equation-system  gives the formulas for 
 b and a: 
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Least squares linear regression
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Geometrical meaning of a and b 

 a: is called regression coefficient, slope of 
the best-fitting line or regression line;

 b: y-intercept of the regression line 
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Coefficient of determination and coefficient of 
correlation 

 It can be shown that the ratio of the explained and the total variation is 
the square of the correlation coefficient 

 This is called coefficient of determination. Generally it is multiplied by 
100. The square of the correlation coefficient shows the percentages of 
the total variation explained by the linear regression.

 Model goodness-of-fit statistics
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Regression using transformations 
 Up to this point, we have suited linear models, when the relationship between x and y had the form
 y=a +b x.  This model is linear in parameters
  Sometimes, however, useful models are not linear in parameters. Examining the scatterplot of the 

data shows a functional, but not linear relationship between data. In special cases we are able to 
find the bets fitting curve to the data. 

 For instance, the model 
 y=a (bx) 
 is not linear in parameters. Here the independent variable x enters as an exponent. To apply the 

technique of estimation and prediction of linear regression, we must transform such a nonlinear 
model into a linear model that is linear in parameters.

 Some non-linear models can be transformed into a linear model by taking the logarithms on both 
sides. Either 10 base logarithm (denoted log) or natural (base e) logarithm(denoted ln) can be used. 
If a>0 and b>0, applying a logarithmic transformation to the model 

 y=a (bx) 
resulted log y = log a + x log b

 If we let Y=log y and A = log a and B = log b, the transformed version of the model becomes
 Y=A + B x
 Thus we see that the model with dependent variable log y is linear in the parameters A and B. 
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Example 
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Multiple linear regression

 The data on next slide show responses, percentages of 
total calories obtained from complex carbohydrates, for 
twenty male insulin-dependent diabetics who had been on 
a high-carbohydrate diet for six months. Compliance with 
the regime was thought to be related to age (in years), 
boddy weights (relative to ‘ideal’ weight for height) and 
other components of the diet, such as the perentage of 
calories as protein. These other variables are treated as 
explanatory variables
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Carbohydrate Age Weight Protein

33 33 100 14

40 47 92 15

37 49 135 18

27 35 144 12

30 46 140 15

43 52 101 15

34 62 95 14

48 23 101 17

30 32 98 15

38 42 105 14

50 31 108 17

51 61 85 19

30 63 130 19

36 40 127 20

41 50 109 15

42 64 107 16

46 56 117 18

24 61 100 13

35 48 118 18

37 28 102 14
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Linear regression model between carbohydrate (Y) and age 
(X) variables

Regression Statistics
Multiple R 0,059107
R Square 0,003494
Adjusted R Square -0,05187
Standard Error 7,778111
Observations 20

ANOVA
  df SS MS F Significance F

Regression 1 3,817852 3,817852 0,063106 0,804498
Residual 18 1088,982 60,49901
Total 19 1092,8      

  Coefficients Standard Error t Stat P-value
Intercept 39,21943 6,677034 5,87378 1,46E-05
Age -0,03509 0,139687 -0,25121 0,804498 25HUSRB/0901/221/088  „Teaching Mathematics and Statistics in Sciences:  Modeling and Computer-aided  Approach 25



Linear regression model between carbohydrate (Y) 
and weight (X) variables

Regression Statistics
Multiple R 0,4074
R Square 0,165975
Adjusted R Square 0,11964
Standard Error 7,115798
Observations 20

ANOVA
  df SS MS F

Regression 1 181,3776 181,3776 3,58209
Residual 18 911,4224 50,63458
Total 19 1092,8    

  Coefficients Standard Error t Stat P-value
Intercept 58,16381 10,98103 5,296754 4,91E-05
Weight -0,18576 0,098149 -1,89264 0,074601

164.58186.0 +−= XY
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Linear regression model between carbohydrate (Y) and 
protein (X) variables

Regression Statistics
Multiple R 0,462889
R Square 0,214266
Adjusted R Square 0,170614
Standard Error 6,906721
Observations 20

ANOVA
  df SS MS F

Regression 1 234,1497 234,1497 4,908511
Residual 18 858,6503 47,7028
Total 19 1092,8    

  Coefficients Standard Error t Stat P-value
Intercept 12,47868 11,44351 1,090459 0,289894
Protein 1,579957 0,713133 2,215516 0,039855

478.12579.1 += XY
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Multiple linear regression model between 
carbohydrate (Y), weight (X1) and protein (X2) variables

Regression Statistics
Multiple R 0,667414
R Square 0,445441
Adjusted R Square 0,380199
Standard Error 5,970624
Observations 20

ANOVA
  df SS MS F Significance F

Regression 2 486,7781 243,389 6,827498 0,006661
Residual 17 606,0219 35,64835
Total 19 1092,8      

  Coefficients
Standard 

Error t Stat P-value
Intercept 33,13032 12,57155 2,635341 0,017361
Weight -0,22165 0,083262 -2,66208 0,016423
Protein 1,824291 0,623274 2,926949 0,009409

13.33824.122.0 21 ++−= XXY
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Multiple linear regression model between carbohydrate (Y), age 
(X1), weight (X2) and protein (X3) variables

Regression Statistics
Multiple R 0,693211925
R Square 0,480542773
Adjusted R Square 0,383144543
Standard Error 5,956419107
Observations 20

  df SS MS F
Significance 

F
Regression 3 525,1371 175,0457 4,933794 0,012971
Residual 16 567,6629 35,47893
Total 19 1092,8      

  Coefficients
Standard 

Error t Stat P-value
Intercept 36,96005591 13,07128 2,827577 0,012131
Age -0,113676356 0,109325 -1,0398 0,313893
Weight -0,228017362 0,083289 -2,73767 0,014599
Protein 1,957712571 0,634893 3,083532 0,007121

96.36958.1228.0 32 ++−= XXY
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Model selection
 AGE was not 

correlated with 
carbohydrate neither 
in simple nor in 
multiple linear 
regression models. 

 Thus choose model of 
carbohydrate (Y), 
weight (X1) and protein 
(X2) variables as

  Y=-0.22*X1+1.82*X2 
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