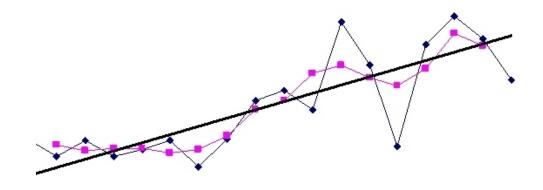
Teaching Mathematics and Statistics in Sciences, IPA HU-SRB/0901/221/088 - 2011 Mathematical and Statistical Modelling in Medicine

Author: Tibor Nyári PhD

University of Szeged Department of Medical Physics and Informatics www.model.u-szeged.hu www.szote.u-szeged.hu/dmi

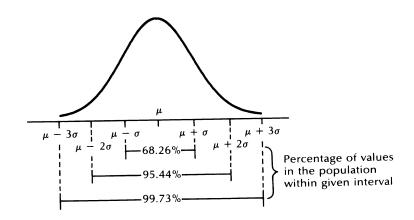
Testing for proportions



Testing forsingle proportion The square contingency table Pearson -, Yates – and Fisher exact tests

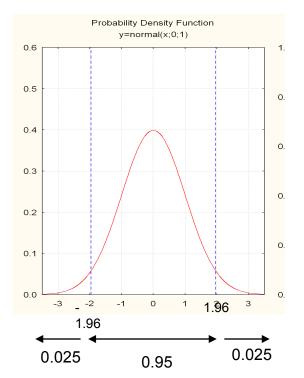
Special distribution of a continuous variable: the normal distribution $N(\mu,\sigma)$

- The density curves are symmetric, single-peaked and bell-shaped
- The 68-95-99.7 rule . In the normal distribution with mean μ and standard deviation σ:
 - 68% of the observations fall within σ of the mean μ
 - 95% of the observations fall within 2σ of the mean μ
 - 99.7% of the observations fall within 3σ of the mean μ

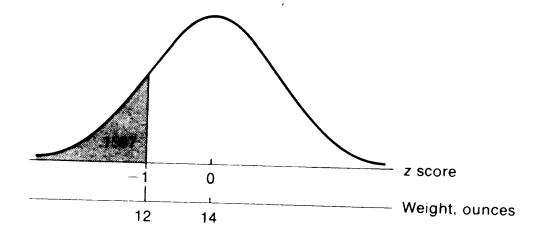


Standard normal probabilities

Х	(x): proportion of area to the left of x
-4	0.0003
-3	0.0013
-2.58	0.0049
-2.33	0.0099
-2	0.0228
-1.96	0.0250
-1.65	0.0495
-1	0.1587
0	0.5
1	0.8413
1.65	0.9505
1.96	0.975
2	0.9772
2.33	0.9901
2.58	0.9951
3	0.9987
4	0.99997



The use of the normal curve table



Example

Find the area under a standard normal curve between x=-1.96 and x=1.96.

Solution.

- $P(-1.96 \le X \le 1.96) = P(X \le 1.96) P(X \le -1.96) = 0.95$
- Φ(-1.65)=0.025, Φ(1.96)=0.975. We find the area by subtracting. Thus, the area between is 0.975-0.025=0.95

PROPORTIONS

Comparing a single proportion

- In a country hospital were 515 Cesarean section (CS) in 2146 live birth in 2001. Compare this proportion to the national proportion 22%. Does proportion of CS in this hospital differ from the national one?
- H₀: p=22%
 H_A: p≠22%

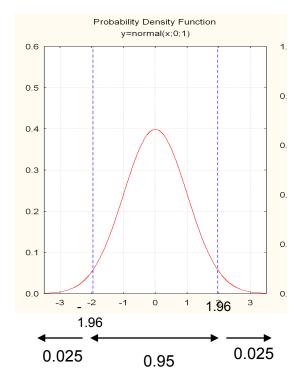
$$z = \frac{p_1 - p}{\sqrt{\frac{p(1 - p)}{n}}} = \frac{(515/2146) - 0.22}{\sqrt{\frac{0.22 \cdot 0.78}{2146}}} = \frac{0.24 - 0.22}{0.0089} = 2.234$$

Decision

As the calculaterd |z| score was greater than 1.96, thus Nullhypothesis is rejected, and the alternative hypothesis is accepted, namely the diffence is significant

Standard normal probabilities

Х	(x): proportion of area to the left of x
-4	0.0003
-3	0.0013
-2.58	0.0049
-2.33	0.0099
-2	0.0228
-1.96	0.0250
-1.65	0.0495
-1	0.1587
0	0.5
1	0.8413
1.65	0.9505
1.96	0.975
2	0.9772
2.33	0.9901
2.58	0.9951
3	0.9987
4	0.99997



Testing for independence

Chi-squre test: 2 by 2 tables

	Risk factor		Total
	Yes	No	
Group 1	<i>k</i> ₁₁	<i>k</i> ₁₂	<i>k</i> ₁₊
Group 2	<i>k</i> ₂₁	<i>k</i> ₂₂	<i>k</i> ₂₊
Total	<i>k</i> ₊₁	<i>k</i> ₊₂	n

Chi-square test for 2x2 tables

Formula of the test statistic

$$\chi_{p}^{2} = \frac{n(k_{11}k_{22} - k_{12}k_{21})^{2}}{k_{+1}k_{+2}k_{1+}k_{2+}}, df = 1;$$

Frank Yates, an English statistician, suggested a correction for continuity that adjusts the formula for Pearson's chisquare test by subtracting 0.5 from the difference between each observed value and its expected value in a 2 × 2 contingency table. This reduces the chi-square value obtained and thus increases its *p*-value.

$$\chi^{2} = \frac{n(|k_{11}k_{22} - k_{12}k_{21}| - n/2)^{2}}{k_{+1}k_{+2}k_{1+}k_{2+}}, \text{ df} = 1; \text{ Yates}$$

Example

- We are going to compare the proportions of two different treatments' output. Our data are tabulated as below.
- H₀: the outcome is independent of treatment in the population.

outcome

Treatment	Death	Survival	Total
A	5	45	50
В	8	42	50
Total	13	87	100

$$\chi_{p}^{2} = \frac{n(k_{11}k_{22} - k_{12}k_{21})^{2}}{k_{+1}k_{+2}k_{1+}k_{2+}} = \frac{100(5*42 - 8*45)^{2}}{50*50*13*87} = 0.79, df = 1;$$

Decision

- Here Pearson $\chi^2 = 0.796 < \chi^2_{table} = 3.841$ thus we accept the null hypothesis that the two variables are independent
- SPSS p-value (=0.372) is greater than α=0.05 so thus we accept also the null hypothesis that the two variables are independent

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	,796 ^D	1	,372		
Continuity Correction ^a	,354	1	,552		
Likelihood Ratio	,802	1	,370		
Fisher's Exact Test				,554	,277
Linear-by-Linear Association	,788	1	,375		
N of Valid Cases	100				

Chi-Square Tests

a. Computed only for a 2x2 table

b. 0 cells (,0%) have expected count less than 5. The minimum expected count is 6,50.

Notes

- Both variables are dichotomous
- The Chi-squares give only an estimate of the true Chi-square and associated probability value, an estimate which might not be very good in the case of the marginals being very uneven or with a small value (~less than five) in one of the cells
- In that case the Fisher Exact is a good alternative for the Chi-square. However, with a large number of cases the Chi-square is preferred as the Fisher is difficult to calculate.

Fisher's-exact test

Calculation of the p-value is based on the permutational distribution of the test Statistic (without using chi-square formula).

Display of data

	Disease status		
	Disease	No	Total
Exposed	a	b	a+b
Non-exposed	C	d	c+d
Total	a+c	b+d	n

Fisher-exact test

The procedure, ascribed to Sir Ronald Fisher, works by first using probability theory to calculate the probability of observed table, given fixed marginal totals.

Note :0!=1

$$\frac{(a+c)!(b+d)!(a+b)!(c+d)!}{n!a!b!c!d!}$$

Example

	Disease status		
	Yes	No	Total
Exposed	2	3	5
Non-exposed	4	0	4
Total	6	3	9

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	3,600 ^p	1	,058		
Continuity Correction ^a	1,406	1	,236		
Likelihood Ratio	4,727	1	,030		
Fisher's Exact Test				,167	,119
Linear-by-Linear Association	3,200	1	,074		
N of Valid Cases	9				

a. Computed only for a 2x2 table

b. 4 cells (100,0%) have expected count less than 5. The minimum expected count is 1,33.

Observed probabilities

Original table

	Disease	Status
	Yes	No
Exposed	2	3
Non-exposed	4	0

Possible re-arrangements

	Disease	Status
	Yes	No
Exposed	3	2
Non-exposed	3	1
		p=0,4762
Exposed	4	1
Non-exposed	2	2
		p=0,3571
Exposed	5	0
Non-exposed	1	3
		P=0,0476

n	$= \frac{5!4!6!3!}{12441600} = 0,1190$
p_{ob}	$s = \frac{1}{9!2!3!4!0!} = \frac{1}{104509440} = 0,1190$
	Fisher's p-value=0,119+0,0476=0,167
	Fisher showed that to generate a significance level, we need consider only the cases where the
	marginal totals are the same as in the observed table, and among those, <u>only the cases where the</u> <u>arrangement is as extreme as the observed</u> <u>arrangement, or more so.</u>