## Mathematical and Statistical Modelling in Medicine

Author: Tibor Nyári PhD

## Kappa, ODDS ratio, Relative risks: Measurement of agreement



## Cohen's Kappa

- Kappa measures the agreement between two test results.
- Jacob Cohen (1923 - 1998) was a US statistician and psychologist.
- He described kappa statistic in 1960.
- $\mathrm{H}_{0}: \kappa=0$
- $\mathrm{H}_{\mathrm{A}}: \kappa \neq 0$


## Measuring agreements (observed frequencies)

|  | Test 1 |  |  |  |
| :--- | :---: | :---: | :--- | :--- |
| Test 2 | Positive | Negative | Total |  |
| Positive | a | b | $\mathrm{Z}_{1}=\mathrm{a}+\mathrm{b}$ | $\mathrm{Z}_{1} / \mathrm{N}$ |
| Negative | c | $\rightarrow \mathbf{d}$ | $\mathrm{Z}_{2}=\mathrm{c}+\mathrm{d}$ | $\mathrm{Z}_{2} / \mathrm{N}$ |
| Total | $\mathrm{S}_{1}=\mathrm{a}+\mathrm{c}$ | $\mathrm{S}_{2}=\mathrm{b}+\mathrm{d}$ | N | N |
|  | $\mathrm{S}_{1} / \mathrm{N}$ | $\mathrm{S}_{2} / \mathrm{N}$ |  |  |

- Agreement in the diagonal.
- Probability of a positive and negative results of the Test I are $\mathrm{S}_{1} / \mathrm{N}$ and $\mathrm{S}_{2} / \mathrm{N}$, respectively
- Probability of a positive and negative results of the Test II are : $\mathrm{Z}_{1} / \mathrm{N}$ and $\mathrm{Z}_{2} / \mathrm{N}$, respectively
■ Observed probability of agreement: $\mathrm{p}_{\mathrm{obs}}=(\mathrm{a}+\mathrm{d}) / \mathrm{N} \quad p_{o}=\frac{a+d}{N}$


## Expected frequencies

|  | $P(A B)=P(A) P(B) \Rightarrow \frac{E_{11}}{N}=\frac{S_{1}}{N} \frac{Z_{1}}{N}$ |  |
| :--- | :--- | :--- |
|  | Test I |  |
| Positiv |  | Negativ |
| Positiv | E11 $=\frac{S_{1}}{N} \frac{Z_{1}}{N} N$ | E12 |
| Negativ | E21 | E22 $=\frac{S_{2}}{N} \frac{Z_{2}}{N} N$ |

Expected probability of agreement : $\mathrm{p}_{\text {Expected }}=\left(\mathrm{E}_{11}+\mathrm{E}_{22}\right) / \mathrm{N}$

$$
p_{E}=\frac{E_{11}+E_{22}}{N}
$$

## Cohen's kappa

$$
\begin{aligned}
p_{\text {observed }} & =\frac{a+d}{N} \quad p_{E}=\frac{E_{11}+E_{22}}{N} \\
\kappa & =\frac{p_{\text {Observed }}-p_{\text {Expected }}}{1-p_{\text {Expected }}}
\end{aligned}
$$

Standard error (SE) for kappa:

$$
\hat{s e}(\kappa)=\sqrt{\frac{1}{\left(1-p_{E}\right)^{2} N}\left(p_{E}^{2}+p_{E}-\sum_{i=1}^{l} \frac{S_{i} Z_{i}}{N}\left\{S_{i}+Z_{i}\right\}\right)}
$$

The test statistic for kappa:

$$
\left(\frac{x}{\hat{s e l}(x)}\right)^{2}
$$

This follows a $\chi^{2}$ with 1 df .

$$
\chi_{\text {table }(\alpha=0,0,05 ; \text { FG=1) }}^{2} \text {-value }=3.841\left(=1.96^{2}\right)
$$

## Characteristics of kappa

- It takes the value 1 if the agreement is perfect and 0 if the amount of agreement is entirely attributable to chance.
- If $\kappa<0$ then the amount of agreement is less then would be expected by chance.
- If $\kappa>1$ then there is more than chance agreement.
- According to Fleiss:
- Excellent agreement if

> к>0.75

- Good agreement
if
$0.4<k<0.75$
- Poor agreement
if $\mathrm{k}<0.4$


## Altman DG, Bland JM. Statistics Notes:

## Diagnostic tests : sensitivity and specificity

## BMJ 1994; 308 : 1552

- Relation between results of liver scan and correct diagnosis

| Liver scan | Pathology |  |  |
| :--- | :---: | :---: | :---: |
|  | abnormal (+) | normal (-) | Total |
|  |  |  |  |
| abnormal (+) | 231 | 32 | 263 |
| normal(-) | 27 | 54 | 81 |
| Total | 258 | 86 | 344 |

## The expected freqencies

$$
\begin{gathered}
P(A B)=P(A) P(B) \Rightarrow \frac{E_{11}}{N}=\frac{S_{1}}{N} \frac{Z_{1}}{N} \\
■ \mathbf{E}_{11}=(\mathbf{2 6 3 / 3 4 4})^{*}(\mathbf{2 5 8 / 3 4 4}) * \mathbf{3 4 4}=197.25 \\
■ \mathrm{E}_{22}=(81 / 344)^{*}(\mathbf{8 6 / 3 4 4})^{*} \mathbf{3 4 4}=\mathbf{2 0 . 2 5}
\end{gathered}
$$

| Liver scan | Pathology |  |  |
| :--- | :---: | :---: | :---: |
|  | abnormal (+) | normal (-) | Total |
|  | $\mathbf{1 9 7 . 2 5}$ |  | 263 |
| normal(-) |  | $\mathbf{2 0 . 2 5}$ | 81 |
| Total | 258 | 86 | 344 |

## Cohen's kappa

- The observed $p_{\text {obs }}$ and $p_{\text {Exp }}$ values are 0.828 and 0.63 , respectively. Cohen's kарра (к) $=0.53$.

$$
\begin{gathered}
p_{\text {obs }}=\frac{a+d}{N}=\frac{231+54}{344}=0.828 \\
p_{E}=\frac{E_{11}+E_{22}}{N}=\frac{197.25+20.25}{344}=0.63 \\
\kappa=\frac{p_{o b s}-p_{E}}{1-p_{E}}=\frac{0.828-0.632}{1-0.632}=0.53
\end{gathered}
$$

## Decision

- Here $\mathrm{k}=0.53$
- As $0.4<\kappa \leq 0.75$ : good agreement

Other applications

## Study types



## Prevalence and incidence

- Prevalence quantifies the proportion of individuals in a population who have a specific disease at a specific point of time.

$$
\text { Pr evalence }=\frac{\text { number of existing cases of disease }}{\text { total population }}
$$

- In contrast with the prevalence, the incidence quantifies the number of new events or cases of disease that develop in a population of individuals at risk during a specified period of time.

Incidence risk $=\frac{\text { number of new cases of disease during a given period of time }}{\text { number at risk of contracting the disease at the beginning of the period }}$

- There are two specific types of incidence measures: incidence risk and incidence rate.
- The incidence risk is the proportion of people who become diseased during a specified period of time, and is calculated as


## Odds ratio

- It measures of association in case-control studies.
- $\mathrm{H}_{0}: \mathrm{OR}=1 \quad O R=\frac{a / b}{c / d}=\frac{a d}{c b}$ and $\mathrm{SE}(\mathrm{OR})=\sqrt{\left(\frac{1}{\mathrm{a}}\right)+\left(\frac{1}{\mathrm{~b}}\right)+\left(\frac{1}{\mathrm{c}}\right)+\left(\frac{1}{\mathrm{~d}}\right)}$
- $\mathrm{H}_{\mathrm{A}}: \mathrm{OR} \neq 1$
- An alternative measure of incidence is the odds of disease to non-disease. This equals the total number of cases divided by those still at risk at the end of the study. Using the notation of previous Table, reproduced on next slide:


## Odds ratio

|  | Disease |  |  |
| :--- | :---: | :---: | :---: |
|  | Yes | No | Total |
| Exposed | a | b | $\mathrm{e}=\mathrm{a}+\mathrm{b}$ |
| Non-exposed | c | d | $\mathrm{f}=\mathrm{c}+\mathrm{d}$ |
| Total | $\mathrm{g}=\mathrm{a}+\mathrm{c}$ | $\mathrm{h}=\mathrm{b}+\mathrm{d}$ | $\mathrm{n}=\mathrm{g}+\mathrm{h}$ |

the odds of disease among the exposed is $\mathrm{a} / \mathrm{b}$ and that among the unexposed is c/d.
Their ratio, called the odds ratio, is

$$
O R=\frac{a / b}{c / d}=\frac{a d}{c b} \text { and } \operatorname{SE}(\mathrm{OR})=\sqrt{\left(\frac{1}{\mathrm{a}}\right)+\left(\frac{1}{\mathrm{~b}}\right)+\left(\frac{1}{\mathrm{c}}\right)+\left(\frac{1}{\mathrm{~d}}\right)}
$$

## Case-control studies

- In a case-control study, the sampling is carried out according to the disease rather than the exposure status.
- A group of individuals identified as having the disease, the cases, is compared with a group of individuals not having the disease, the controls, with respect to their prior exposure to the factor of interest.
- No information is obtained directly about the incidence in the exposed and non-exposed populations, and so the relative risk cannot be estimated; instead, the odds ratio is used as the measure of association.
- It can be shown, however, that for a rare disease the odds ratio is numerically equivalent to the relative risk.
- The $95 \%$ confidence interval for the odds ratio is calculated in the same way as that for relative risk:
$95 \% \mathrm{CI}=\mathrm{e}^{\left(\ln (O R) \pm 1.96 \sqrt{\left(\frac{1}{\mathrm{a}}\right)+\left(\frac{1}{\mathrm{~b}}\right)+\left(\frac{1}{\mathrm{c}}\right)+\left(\frac{1}{\mathrm{~d}}\right)}\right)}$, where $\mathrm{e}=2.718$


## Example

■ The risk of HPV infection for smokers was measured in a study.

- $\mathrm{H}_{0}: \mathrm{OR}=1$
- $\mathrm{H}_{\mathrm{A}}: O R \neq 1$
- Calculate the odds ratio and $95 \%$ confidence interval using the data table

|  |  | HPV |  |  |
| :--- | :--- | :---: | :---: | :--- |
|  |  | Yes | No | Total |
| Smoking | Yes | $\mathbf{3 3}$ | $\mathbf{8 1}$ | 114 |
|  | No | $\mathbf{5 8}$ | $\mathbf{2 2 5}$ | 283 |
| Total |  | 91 | 306 | 397 |

$O R=\frac{a d}{c b}=\frac{33 * 225}{81 * 58}=1.58046 \quad S E(O R)=\sqrt{\left(\frac{1}{33}\right)+\left(\frac{1}{225}\right)+\left(\frac{1}{81}\right)+\left(\frac{1}{58}\right)}=0.25364$

## Results of Risk Estimate

$$
\begin{gathered}
O R=\frac{a d}{c b}=\frac{33 * 225}{81 * 58}=1.58046 \\
\operatorname{SE(OR)}=\sqrt{\left(\frac{1}{33}\right)+\left(\frac{1}{225}\right)+\left(\frac{1}{81}\right)+\left(\frac{1}{58}\right)}=0.25364 \\
95 \% \mathrm{CI}=2.718^{\left(\ln (1.5804)+1.96 \sqrt{\left(\frac{1}{33}\right)+\left(\frac{1}{225}\right)+\left(\frac{1}{81}\right)+\left(\frac{1}{58}\right)}\right)}=0.961 ; 2.598
\end{gathered}
$$

As $\mathrm{OR}=1.58$ and its $95 \%$ confidence interval $(95 \% \mathrm{Cl})$ [ $0.96-2.59$ ] contains 1 , the $\mathrm{H}_{0}$ is accepted.

## SPSS results fo Risk Estimate

- As OR=1.58 and its 95\% confidence interval (95\%CI) [ $0.96-2.59$ ] contains 1 , the $\mathrm{H}_{0}$ is accepted.

Risk Estimate

|  |  | $95 \%$ Confidence <br> Interval |  |
| :--- | ---: | ---: | ---: |
|  | Value |  | Lower |
| Upper |  |  |  |
| Odds Ratio for row (1,00 | 1,580 | , 961 | 2,598 |
| $\mathbf{2 , 0 0})$ |  |  |  |
| For cohort column $=1,00$ | 1,412 | , 978 | 2,041 |
| For cohort column $=2,00$ | , 894 | , 784 | 1,019 |
| $N$ of Valid Cases | 397 |  |  |

## Example

## Research Report

## Addictive Behaviour of Adolescents in Secondary Schools in Hungary

Table 2. Results of the univariate analysis in the ever-smoked and regular-smoker groups

|  |  | Children | Drug users | OR (95\% CI) | p value |
| :--- | :--- | :---: | :--- | :--- | :---: |
| Ever-smoked |  |  |  |  |  |
| Drug usage in the family | Yes | 296 | 33 | $5.7(1.7-19.0)$ | 0.005 |
|  | No | 23 | 9 | 1.0 |  |
| Living in a block of flat | Yes | 71 | 14 | $1.8(0.9-3.7)$ | 0.086 |
|  | No | 263 | 31 | 1.0 |  |
| Age, years | $17-18$ | 107 | 23 | $2.3(1.2-4.6)$ | 0.014 |
|  | $15-16$ | 171 | 18 |  |  |
| Sociable delinquencies | Yes | 129 | 28 | $3.4(1.7-6.7)$ | $<0.001$ |
|  | No | 186 | 14 | 1.0 |  |
| School performance | Poor | 17 | 6 | $15.0(2.7-84.5)$ | 0.002 |
|  | Acceptable | 117 | 17 | $4.8(1.0-21.0)$ | 0.044 |
|  | Good | 144 | 20 | $4.4(1.0-19.7)$ | 0.050 |
|  | Very good | 57 | 2 | 1.0 |  |
|  | Yes | 50 | 13 | $3.3(1.5-7.3)$ | 0.003 |
| Truancy from school | No | 210 | 20 | 1.0 |  |

## SPSS Results

row * column Crosstabulation
Count

|  |  | column |  |  |
| :--- | :--- | ---: | ---: | ---: |
|  |  | 1,00 | 2,00 |  |
| row | 1,00 | 13 | 37 | 50 |
|  | 2,00 | 20 | 190 | 210 |
| Total |  | 33 | 227 | 260 |

Risk Estimate

|  |  | $95 \%$ Confidence <br> Interval |  |
| :--- | ---: | ---: | ---: |
|  | Value | Lower | Upper |
| Odds Ratio for row (1,00 | 3,338 | 1,527 | 7,296 |
| / 2,00) | 2,730 | 1,459 | 5,108 |
| For cohort column = 1,00 | , 818 | , 690 | , 970 |
| For cohort column = 2,00 | 260 |  |  |
| N of Valid Cases |  |  |  |

## Results

- $\mathrm{H}_{0}$ : $\mathrm{OR}=1$
- $\mathrm{H}_{\mathrm{A}}: \mathrm{OR} \neq 1$

| Count | lumn Cr | bulatio |  | $\sqrt{\left(\frac{1}{13}\right)+\left(\frac{1}{37}\right)+\left(\frac{1}{20}\right)+\left(\frac{1}{190}\right)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | column |  |  |  |  |
|  | 1,00 | 2,00 | Total |  |  |
| row 1,00 | 13 | 37 | 50 |  |  |
| 2,00 | 20 | 190 | 210 |  |  |
| Total | 33 | 227 | 260 |  |  |

- $\mathrm{OR}=(13 * 190) /(37 * 20)=3.337 \Rightarrow \ln (\mathrm{OR})=1.205$
- $\mathrm{SE}=0.399$

■ Lower bound $=\exp (1.205-1.96 * 0.399)=1.5269$
■ Upper bound $=\exp \left(1.205+1.96^{*} 0.399\right)=7.296$
■ As the $95 \%$ confidence interval $(95 \% \mathrm{CI})$ [1.53-7.29] does not contain 1, thus $\mathrm{H}_{\mathrm{A}}$ is accepted.

## Mantel - Haenszel Odds ratio

|  | Risk yes | Risk no | Total |  |
| :--- | :---: | :---: | :--- | :--- |
| 1st group | $\boldsymbol{n}_{111}$ | $\boldsymbol{n}_{112}$ | $n_{11+}$ | $p_{11}=n_{111} / n_{11+}$ |
| 2nd group | $\boldsymbol{n}_{121}$ | $\boldsymbol{n}_{122}$ | $n_{12+}$ | $p_{12}=n_{121} / n_{12+}$ |
| Total | $n_{1+1}$ | $n_{1+2}$ | $n_{1}$ |  |


|  | Risk yes | Risk no | Total |  |
| :--- | :---: | :---: | :--- | :--- |
| 1st group | $\boldsymbol{n}_{211}$ | $\boldsymbol{n}_{212}$ | $n_{21+}$ | $p_{21}=n_{211} / n_{21+}$ |
| 2nd group | $\boldsymbol{n}_{221}$ | $\boldsymbol{n}_{222}$ | $n_{22+}$ | $p_{22}=n_{221} / n_{22+}$ |
| Total | $n_{2+1}$ | $n_{2+2}$ | $n_{2}$ |  |

$$
E H=\frac{\sum_{i=1}^{2} \frac{n_{i 11} * n_{i 22}}{n_{i}}}{\sum_{i=1}^{2} \frac{n_{i 12} * n_{i 21}}{n_{i}}}
$$

## Example

- In a study the risk of coronary heart disease was investigated using ECG diagnosis by gender.
ecg * CHD * gender Crosstabulation

| Count |  |  |  |  |  |
| :--- | :--- | :--- | ---: | ---: | ---: |
| gender |  |  | CHD |  |  |
|  | CHD_No | CHD_Yes | Total |  |  |
|  | ecg | normal | 11 | 4 | 15 |
|  |  | abnormal | 10 | 8 | 18 |
|  | Total |  | 21 | 12 | 33 |
| Male | ecg | normal | 9 | 9 | 18 |
|  |  | abnormal | 6 | 21 | 27 |
|  | Total |  | 15 | 30 | 45 |

- Female OR=2.2

- Male OR=3.5

|  |  | $95 \%$ Confidence <br> Interal |  |
| :--- | ---: | ---: | ---: |
|  | Value |  | Lower |
| Upper |  |  |  |
| Odds Ratio $(1,00$ | 3,500 | , 959 | 12,778 |
| $/ 2,00)$ | 2,250 | , 968 | 5,230 |
| For cohort column $=1,00$ | , 643 | , 388 | 1,064 |
| For cohort column $=2,00$ | 45 |  |  |
| N of Valid Cases |  |  |  |

## Results

ecg * CHD * gender Crosstabulation
Count

| gender |  |  | CHD |  |  |
| :--- | :--- | :--- | ---: | ---: | ---: |
|  |  |  | CHD_No | CHD_Yes |  |
|  | ecg | normal | 11 | 4 | 15 |
|  |  | abnormal | 10 | 8 | 18 |
|  | Total |  | 21 | 12 | 33 |
| Male | ecg | normal | 9 | 9 | 18 |
|  |  | abnormal | 6 | 21 | 27 |
|  | Total |  | 15 | 30 | 45 |

$$
E H=\frac{\sum_{i=1}^{2} \frac{n_{i 11} * n_{i 22}}{n_{i}}}{\sum_{i=1}^{2} \frac{n_{i 12} * n_{i 21}}{n_{i}}}=
$$

$$
E H=\frac{\frac{11 \cdot 8}{33}+\frac{9 \cdot 21}{45}}{\frac{10 \cdot 4}{33}+\frac{9 \cdot 6}{45}}=\frac{\frac{88}{33}+\frac{189}{45}}{\frac{40}{33}+\frac{54}{45}}=2.84673
$$

Mantel-Haenszel Common Odds Ratio Estimate

| Estimate |  |  | 2,847 |
| :--- | :--- | :--- | ---: |
| $\ln ($ Estimate $)$ |  | 1,046 |  |
| Std. Error of $\operatorname{In}$ (Estimate) |  | , 496 |  |
| Asymp. Sig. (2-sided) |  | , 035 |  |
| Asymp. 95\% Confidence | Common Odds | Lower Bound | 1,077 |
| Interval | Ratio | Upper Bound | 7,528 |
|  | $\operatorname{In}$ (Common | Lower Bound | , 074 |
|  | Odds Ratio) | Upper Bound | 2,019 |

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.

## Incidence risk

- The incidence risk, then, provides an estimate of the probability, or risk, that an individual will develop a disease during a specified period of time. This assumes that the entire population has been followed for the specified time interval for the development of the outcome under investigation. However, there are often varying times of entering or leaving a study and the length of the follow-up is not the same for each individual. The incidence rate utilizes information on the follow-up time for each subjects, and is calculated as
 Incidence rate $=$
total "person - time" of observation


## Example

- In a study of oral contraceptive (OC) use and bacteriuria, a total of 2390 women aged between 16 to 49 years were identified who were free from bacteriuria. Of these, 482 were OC users at the initial survey in 1993. At a second survey in 1996, 27 of the OC users had developed bacteriuria. Thus,
■ Incidence risk=27 per 482, or 5.6 percent during this 3-year period


## Example

- In a study on postmenopausal hormone use and the risk of coronary heart disease, 90 cases were diagnosed among 32317 postmenopausal women during a total of 105782.2 person-years of follow-up. Thus,
- Incidence rate=90 per 105782.2 person-years, or 85.1 per 1000000 person-years


## Issues in the calculation of measures of incidence

- Precise definition of the denominator is essential.
- The denominator should, in theory, include only those who are considered at risk of developing the disease, i.e. the total population from which new cases could arise.
- Consequently, those who currently have or have already had the disease under study, or those who cannot develop the disease for reasons such as age, immunizations or prior removal of an organ, should, in principal, be excluded from the denominator.


## Measures of association in cohort studies

| Lung cancer |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Yes | No | Total | Incidence rate |
| Smokers | 39 | 29961 | 30000 | $1.30 / 1000 /$ year |
| Non-smokers | 6 | 59994 | 60000 | $0.10 / 1000 /$ year |
| Total | 45 | 89555 | 90000 |  |

## Relative risk

|  | Disease |  |  |
| :--- | :---: | :---: | :---: |
|  | Yes | No | Total |
| Exposed | a | b | $\mathrm{e}=\mathrm{a}+\mathrm{b}$ |
| Non-exposed | c | d | $\mathrm{f}=\mathrm{c}+\mathrm{d}$ |
| Total | $\mathrm{g}=\mathrm{a}+\mathrm{c}$ | $\mathrm{h}=\mathrm{b}+\mathrm{d}$ | $\mathrm{n}=\mathrm{g}+\mathrm{h}$ |

$$
R R=\frac{I_{\exp }}{I_{n o n \exp }}=\frac{a / e}{c / f}
$$

## Relative risk

- The further the relative risk is from 1, the stronger the association.
- Its statistical association can be tested by using a $2 \times 2 \chi 2$ - test
- Confidence interval for RR:

$$
95 \% \mathrm{CI}=\mathrm{RR}^{\left(1 \pm 1.96 \sqrt{\chi^{2}}\right)}
$$

 confidence interval for the relative risk is therefore 6.7 to 25.3

## Incidence rates (IR)

- Neuroblastoma is one of the most common solid tumour in children and the most common tumour in infants, accounting for about $9 \%$ of all cases of paediatric cancer and is a major contributor to childhood cancer mortality worldwide
- The incidence and distribution of the age and stage of neuroblastoma at diagnosis, and outcome in Hungary over a period of 11 years were investigated and compared with that reported for some Western European countries.

Age-specific and directly age-standardized (world population) incidence rates (per million) for neuroblastoma in Hungary (1988-1998) and in

Austria (1987-1991)

|  |  | Hungary |  |  | Austria |
| :--- | :---: | :---: | :--- | :---: | :---: |
| Age-specific | IR | $95 \% \mathrm{CI}$ |  | IR | $95 \% \mathrm{CI}$ |
| $<1$ year | 60.9 | $(40.6-81.1)$ |  | 65.8 | $(44.1-94.5)$ |
| $1-4$ years | 25.5 | $(19.8-31.2)$ |  | 17.0 | $(11.4-24.2)$ |
| $5-9$ years | 4.2 | $(2.6-5.8)$ |  | 3.1 | $(1.2-6.4)$ |
| $10-14$ years | 1.7 | $(0.8-2.4)$ |  | 1.3 | $(0.3-3.9)$ |
| Age- <br> standardized | 14.4 | $(12.6-16.2)$ |  | 11.7 | $(9.0-14.5)$ |

