
Nonparametric test 
One sample tests
Two sample tests

Testing for three or more samples 
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Background
 So far we have stressed that in order to carry out hypothesis tests 

we need to make certain assumptions about the types of 
distributions from which we were sampling. For example. to do t 
tests we needed to assume that the populations involved were 
approximately normal. In the two sample t-test we needed to 
make the more specific assumption that the variances are equal. 
An important part of statistics deals with tests for which we do 
not need to make such specific assumptions. These tests are 
called nonparametric or distribution-free tests.

 These tests would ordinarily be used if a parametric test were not 
appropriate. This might happen. for instance. if you were 
working with a non normal distribution. or a distribution whose 
shape was not yet evident. It might also happen that you are 
working with some special type of data for which there was no 
appropriate parametric test
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Ranking the data

 Nonparametric tests can't use the estimations of population 
parameters. They use ranks instead. Instead of the original 
sample data we have to use its rank. to show the ranking 
procedure suppose we have the following sample of 
measurements:

 199. 126. 81. 68. 112. 112. 
 Case 4 has the smallest value (68). it is assigned a rank of 1. 

Case 3 has the next smallest value. it is assigned a rank of 2.  
Cases 5 and 6 are equal. they are assigned a rank of 3.5. the 
average rank of 3 and 4. We say that case 5 and 6 are tied. The 
next table shows the result of ranking.
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Tabulate the data
Case Data Rank

1 199 6

2 126 5

3 81 2

4 68 1

5 112 3.5

6 112 3.5
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Type of tests

 One sample tests 
 Sign test
 Wilcoxon sign test

 Two samples tests 
 (Mann-Whitney test)
 (Wilcoxon Rank-Sum test)

 More than two samples 
 Kruskall-Wallis test
 Jonckheere-Terpstra test
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Wilcoxon sign test

 Data are in pairs
 E.g.: before-after treatment

 We have n subjects and X (x1.x2...xn). Y (y1.y2...yn) denotes the 
variable before and after treatment. respectively.

 Ignore where xj=yj.
 xj=τ+ε i

 yj=τ- ν +εi’
 dj=xj-yj=ν + εi -εi’

 E(di)= ν ; and E(εi)=E(εi’)=0
 H0: ν=0
 Ha:= ν>0; Ha= ν<0 or Ha ν ≠0
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Wilcoxon Sign Test

 Calculate absolute values of zi.
 Sort them.
 Calculate δi.
 The test statistics T+
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Decision rule
 Use standard normal distribution table
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Decision

 If the calculaterd |z| score is greater than 
1.96, then Nullhypothesis is rejected , and 
the alternative hypothesis is accepted, 
namely the diffence is significant

 If the calculaterd |z| score is less than 1.96, 
then Nullhypothesis is accepted, namely the 
diffence is NOT significant.
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Standard normal probabilities
z Φ(x): proportion of area to the left of Z

-4 0.0003

-3 0.0013

-2.58 0.0049

-2.33 0.0099

-2 0.0228

-1.96 0.0250

-1.65 0.0495

-1 0.1587

0 0.5

1 0.8413

1.65 0.9505

1.96 0.975

2 0.9772

2.33 0.9901

2.58 0.9951

3 0.9987

4 0.99997

-
1.96

1.96

0.025 0.0250.95
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Example

 There is a treatment using a new drug at 9 
patients.

 Data are summarised in the next table.
 X is the baseline hormone level
 Y is the after treatment hormone level
 Is there any changes at hormone levels 

after treatment?
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The data
i xi yi di |di| Ri δi δiRi

1 1.83 0.878 -0.952 0.952 8 0 0
2 0.5 0.647 0.147 0.147 3 1 3
3 1.62 0.598 -1.022 1.022 9 0 0
4 2.48 2.05 -0.43 0.43 4 0 0
5 1.68 1.06 -0.62 0.62 7 0 0
6 1.88 1.29 -0.59 0.59 6 0 0
7 1.55 1.06 -0.49 0.49 5 0 0
8 3.06 3.14 0.08 0.08 2 1 2
9 1.3 1.29 -0.01 0.01 1 0 0
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 H0: ν=0
 Ha ν ≠0
 Test statistics

 T α /2. n=9=39
 The  intervall:
 T+≤6 or T+ ≥39 

 So we reject H0
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STATA results
     sign |      obs   sum ranks    expected
 ---------+---------------------------------
 positive |        7          40        22.5
 negative |        2           5        22.5
     zero |        0           0           0
 ---------+---------------------------------
      all |        9          45          45

 unadjusted variance       71.25
 adjustment for ties        0.00
 adjustment for zeros       0.00
                      ----------
 adjusted variance         71.25

 Ho: xi = yi
              z =   2.073
     Prob > |z| =   0.0382
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t-Test: Paired Two Sample for Means

  before after
Mean 1.766666667 1.334777778
Variance 0.512075 0.643738944
Observations 9 9
Pearson Correlation 0.847876519
df 8
t Stat 3.035375416
P(T<=t) one-tail 0.008088314
t Critical one-tail 1.859548033
P(T<=t) two-tail 0.016176627
t Critical two-tail 2.306004133  
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Mann-Whitney Test 
 (Non-parametric independent two-group comparisons) 

 Definition: A non-parametric test (distribution-free) used to compare two independent groups of sampled data. 

 Assumptions: Unlike the parametric t-test. this non-parametric makes no assumptions about the distribution of the data 
(e.g.. normality). 

 Characteristics: This test is an alternative to the independent group t-test. when the assumption of normality or equality 
of variance is not met. This. like many non-parametric tests. uses the ranks of the data rather than their raw values to 
calculate the statistic. Since this test does not make a distribution assumption. it is not as powerful as the t-test. 

 Test: The hypotheses for the comparison of two independent groups are: 

 Ho: The two samples come from identical populations 

 Ha: The two samples come from different populations 
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Mann-Whitney (M-W) procedure
 To compute the test. the observations from both samples are first 

combined and ranked from smallest to largest value. The statistic 
for testing the null hypothesis that the two distributions are equal 
is the sum of the ranks for each of the two groups. If the groups 
have the same distribution. their sample distributions of ranks 
should be similar. If one of the groups has more than its share of 
small or large ranks. there is reason to suspect that the two 
underlying distributions are different.

 If the total sample size is less than 30. tables can be used where an 
interval for Rmin-Rmax is given. If one of our test statistic is in the 
interval. we do not reject the null hypothesis. For large sample 
size a normal approximation is possible to get the p-value  

17HUSRB/0901/221/088  „Teaching Mathematics and Statistics in Sciences:  Modeling and Computer-aided  Approach 17



M-W test Notice that the hypothesis makes no assumptions about the distribution of the populations. 
These hypotheses are also sometimes written as testing the equality of the central tendency 
of the populations. 

 The test statistic for the Mann-Whitney test is U. This value is compared to a table of 
critical values for U based on the sample size of each group. If U exceeds the critical value 
for U at some significance level (usually 0.05) it means that there is evidence to reject the 
null hypothesis in favor of the alternative hypothesis. 

 Note: Actually. there are two versions of the U statistic calculated. where U' = n1n2 - U 
where n1 and n2 are the sample sizes of the two groups. The largest of U or U' is 
compared to the critical value for the purpose of the test. 

 Note: For sample sizes greater than 8. a z-value can be used to approximate the 
significance level for the test. In this case. the calculated z is compared to the 
standard normal significance levels. 

 Note: The U test is usually perform as a two-tailed test. however some text will have 
tabled one-tailed significance levels for this purpose. If the sample size if large. the z-test 
can be used for a one-sided test. 
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Example (M-W)

 Professor Testum wondered if students 
tended to make better scores on his test 
depending if the test were taken in the 
morning or afternoon. From a group of 19 
similarly talented students. he randomly 
selected some to take a test in the 
morning and some to take it in the 
afternoon. The scores by groups were: 
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The Data
Morning Afternoon
89.8 87.3
90.2 87.6
98.1 87.3
91.2 91.8
88.9 86.4
90.3 86.4
99.2 93.1
94.0 89.2
88.7 90.1
83.9  
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Calculate ranks
Morning Afternoon Morning Ranks Afternoon Ranks

89.8 87.3 10 4.5
90.2 87.6 12 6
98.1 87.3 18 4.5
91.2 91.8 14 15
88.9 86.4 8 2.5
90.3 86.4 13 2.5
99.2 93.1 19 16
94 89.2 17 9
88.7 90.1 7 11
83.9   1
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Sum of ranks

 ΣMorning ranks= 119
 ΣAfternoon ranks= 71
 M-W critical value is 75-125
 119є[75-125]
 So we accept null hypothesis.
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STATA Results of Mann-Whitney test
 Two-sample Mann-Whitney rank-sum test                                
                                                                                 
    group |      obs    rank sum    expected                                     
 ---------+---------------------------------                                     
        1 |       10         119         100                                     
        2 |        9          71          90                                     
 ---------+---------------------------------                                     
 combined |       19         190         190                                     
                                                                                 
 unadjusted variance      150.00                                                 
 adjustment for ties       -0.26                                                 
                      ----------                                                 
 adjusted variance        149.74                                                 
                                                                                 
 Ho: data(group==1) = data(group==2)                                             
              z =   1.553                                                        
     Prob > |z| =   0.1205                                                       
                              
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t-Test: Two-Sample Assuming Equal 
Variances

  Morning Afternoon
Mean 91,43 88,8
Variance 20,83566667 5,85
Observations 10 9
Pooled Variance 13,78358824
Hypothesized Mean Difference 0
df 17
t Stat 1,541768106
P(T<=t) one-tail 0,070769125
t Critical one-tail 1,739606716
P(T<=t) two-tail 0,14153825
t Critical two-tail 2,109815559   24HUSRB/0901/221/088  „Teaching Mathematics and Statistics in Sciences:  Modeling and Computer-aided  Approach 24



Wilcoxon Rank-Sum Test

 (Non-parametric independent two-group comparisons) 
 Definition: A non-parametric test (distribution-free) used to 

compare two independent groups of sampled data. 
 Test: The hypotheses for the comparison of two independent 

groups are: 

 H0: The two samples come from identical populations 
 Ha: The two samples come from different populations 
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Wilcoxon Rank Sum test

 We have M=m+n observations in two groups:
  X (x1.x2...xm). Y (y1.y2...yn) denotes the variables.

 We suppose:
 xj=ε i i=1,2,..m

 yj=Δ+εm+j , j=1,2,..., n

 xj,yj are the observed frequencies.

 H0: Δ =0
 Ha:= Δ >0
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Wilcoxon Rank-Sum Test
 Sort in ascending order the total M observations 

 (Merge the two groups).
  If Rj denotes the ranks of yj then calculate the sum of Rjs. 

 Test statistics (z)  is approximately N(0,1) distributed for large M:
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Example

 We have the following measurements of serum 
triglyceride level in two groups:

 Control (X; m=6) : 
 1.29 1.60 2.27 1.31 1.81 2.21 

 Treated (Y; n=3):
 0.96 1.14 1.59

 Conbine them and assign the ranks:
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Example

 Conbine them and assign the ranks:
 X: 1.29 1.31 1.60 1.81 2.21 2.27
 Y: 0.96 1.14 1.59
 R: 1   2   3      4          5         6      7      8      9

 W= 1+2+5=8
 Critical interval for W is [7-23] at α=0.05. Thus, we 

accept H0. 
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STATA Results of Wilcoxon ranksum test
 Two-sample Wilcoxon rank-sum (Mann-Whitney) test

    group |      obs    rank sum    expected
 ---------+---------------------------------
  control |        6          37          30
  treated |        3           8          15
 ---------+---------------------------------
 combined |        9          45          45

 unadjusted variance       15.00
 adjustment for ties        0.00
                      ----------
 adjusted variance         15.00

 Ho: data(group_==0) = data(group==1)
              z =   1.807
     Prob > |z| =   0.0707
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EXAMPLE

 After a randomised trial comparing aspririn 
with placebo for hadache, 8 patients on 
aspirin and 10 on placebo rated their 
improvement on a 10 cm kine. A measure 
of 0 indicating no improvement and one of 
10 indicating very much better.
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Data
Group Improvement
Aspirin 7.5
Aspirin 8.3
Aspirin 9.1
Aspirin 6.2
Aspirin 5.4
Aspirin 8.3
Aspirin 6.5
Aspirin 8.4
Placebo 3.1
Placebo 5.6
Placebo 4.5
Placebo 6.2
Placebo 5.1
Placebo 5.3
Placebo 5.5
Placebo 4.1
Placebo 4.3
Placebo 4.2
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Stata results
 Two-sample Wilcoxon rank-sum (Mann-Whitney) test                                
                                                                                 
 mw_group |      obs    rank sum    expected                                     
 ---------+---------------------------------                                     
  Aspirin |        8       112.5          76                                     
  Placebo |       10        58.5          95                                     
 ---------+---------------------------------                                     
 combined |       18         171         171                                     
                                                                                 
 unadjusted variance      126.67                                                 
 adjustment for ties       -0.26                                                 
                      ----------                                                 
 adjusted variance        126.41                                                 
                                                                                 
 Ho: improvem(mw_group==Aspirin) = improvem(mw_group==Placebo)                   
              z =   3.246                                                        
     Prob > |z| =   0.0012       
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Kruskall-Wallis test
 We have more than two groups.
 (Non-parametric independent two-group comparisons) 
 Definition: A non-parametric test (distribution-free) used to 

compare more than two independent groups of sampled data. 
 Test: The hypotheses for the comparison of independent 

groups are: 

 H0: The samples of all groups come from identical populations 
 Ha: The samples of all groups come from different populations
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Kruskall-Wallis test
1 2 ... i ... k

X11 X12 ... X1i ... X1k

X21 X22 ... X2i ... X2k

Xn22

Xnii

Xnkk

Xn11
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Kruskall-Wallis test

 xjj=μ+τi+εij , j=1,2,..., ni, i=1,2,..., k and N=Σni. 
(i=1,2, ...k)
 where μ is the unknown expected value 
 τi is the effect of ith treatment.

 H0: τ1 = τ2 = ...= τk

 HA: τo ≠τp , there is at least one group differs from 
others.
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Kruskall-Wallis test
 Combine and sort all xij values in ascending order. rij denotes the 

rank of xij.  

 We know:
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Test Statistics
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• H statistics is approximately  chi-square 
distributed with k-1 degrees of freedom
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Example

 We have results of 
three treatments

A B C

 6.4   2.5   1.3 

 6.8   3.7   4.1 

 7.2   4.9   4.9 

 8.3   5.4   5.2 

 8.4   5.9   5.5 

 9.1   8.1   8.2 

 9.4   8.2 

 9.7   
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Assign ranks

A B C
 11
12
13
17
18
19
20
21

2
3
5.5
8
10
14

15.5

1
4

5.5
7
9

15.5

131 58 42

A B C

average of ranks 16.4 8.3 7.0

84.9)121(3)
6

42
7

58
8

131(
)121(21

12 222
=+−++
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STATA Result for Kruskal-Wallis test

 Test: Equality of populations (Kruskal-Wallis Test)                      
       

                                                                          
       

   Groups          _Obs   _RankSum                                        
       

        1             8     131.00                                        
       

        2             7      58.00                                        
       

        3             6      42.00                                        
       

                                                                          
       

 chi-squared =     9.836 with 2 d.f.                                      
       

 probability =     0.0073                                                 
       

                          
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Spearman's rank correlation coefficient 

 The rank correlation coefficient is the Pearson 
correlation coefficient based on the ranks of the data if 
there are no ties (adjustments are made if some of the 
data are tied). If the original data for each variable have 
no ties. the data for each variable are first ranked. and 
then the Pearson correlation coefficient between the 
ranks for the two variables is computed. Like Pearson 
correlation coefficient. the rank correlation ranges 
between -1 and +1. where -1 and +1 indicate a perfect 
linear relationship between the ranks of the two 
variables. The interpretation is therefore the same 
except that the relationship between ranks. and not 
values. is examined 
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Ranks of the 
1.sample

Ranks of the 
2.sample

Difference

r1 q1 d1=r1-q1

r2 q2 d2=r2-q2

... ... ...

rn qn dn=rn-qn
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Test statistics

21
2

r
nr

t
−

−
=

nn

d
r

i

n

i
s −

−=
∑

=
3

2

1
6

1

44HUSRB/0901/221/088  „Teaching Mathematics and Statistics in Sciences:  Modeling and Computer-aided  Approach 44



The t-test
 H0: correlation coefficient in population = 0, in notation: ρ =0
 Ha: ρ ≠ 0
 This test can be carried out by expressing the t statistic in terms of r. 

It can be proven that the statistic has t-distribution with n-2 degrees 
of freedom

 Decision using statistical table: If ttable  denotes the value of the table 
corresponding to n-2 degrees of freedom and probability, 
 if |t| > ttable, we reject H0 and state that  the population correlation coefficient,ρ 

is different from 0. 
 Decision using p-value: if p < α (=0.05) we reject H0 and state that 

the population correlation coefficient, ρ is different from 0 
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Example for Spaerman rank correlation

 The effectiveness of a treatment was 
measured on a scale between 0-12.

 The scores were determined by both the 
patients and doctors. 

 Is there any relationship between the 
patients’ and doctors’ scores?
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Data

patient doctor
2 1.5

10 9.1
7.1 8.1
2.3 1.5

3 3.1
4.1 5.2
10 1

10.5 9.6
11.0 7.6
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The results
patients doctors Rank 

(patients’)
Rank 
(doctor)

difference di
2

2 1.5 1 2.5 -1.5 2.25
10 9.1 6.5 9 -2.5 6.25
7.1 8.1 5 7 -2 4
2.3 1.5 2 2.5 -0.5 0.25
3 3.1 3 4 -1 1

4.1 5.2 4 5 -1 1
10 1 6.5 1 5.5 30.25

10.5 9.6 8 10 -2 4
11.0 7.6 9 6 3 9
12 9 10 8 2 4
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Results
 H0: correlation coefficient in population = 0, in 

notation: ρ =0
 Ha: ρ ≠ 0
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STATA results
  Number of obs =      10                                                        
 Spearman's rho =      0.6220                                                   
                                                                                 
 Test of Ho: patient and doctor independent                             

         
       Pr > |t| =       0.0549      
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Jonckheere-Terpstra Test (JP) 
 The Jonckheere-Terpstra test. which is a nonparametric test for ordered 

differences among classes.
  It tests the null hypothesis that the distribution of the response variable 

does not differ among classes. 
 It is designed to detect alternatives of ordered class differences. which can 

be expressed as  (or  ). with at least one of the inequalities being strict. 
where   denotes the effect of class i. 

 For such ordered alternatives. the Jonckheere-Terpstra test can be 
preferable to tests of more general class difference alternatives. such as 
the Kruskal - Wallis test. 

 The Jonckheere-Terpstra test is appropriate for a contingency table in 
which an ordinal column variable represents the response. The row 
variable. which can be nominal or ordinal. represents the classification 
variable. The levels of the row variable should be ordered according to the 
ordering you want the test to detect
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Jonckheere-Terpstra statistics

 The Jonckheere-Terpstra test statistic is 
computed by first forming R(R-1)/2 Mann-
Whitney counts Mi.i'. where i < i'. for pairs of 
rows in the contingency table .

52HUSRB/0901/221/088  „Teaching Mathematics and Statistics in Sciences:  Modeling and Computer-aided  Approach 52



Null and alternative hypothesis

kH τττ === ...: 210

kAH τττ ≤≤≤ ...: 21
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Test statistics
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Example:Do five different chemotherapy 
methods differ significantly in treatment 

response? 

 A small pilot study was performed with five 
chemotherapy regimens: Cytoxan (CTX) alone, 
Cyclohexyl-chloreoethyl nitrosourea (CCNU) 
alone, Methotrexate (MTX) alone, CTX and MTX 
together, and CTX, CCNU, and MTX together. 
Tumor regression was measured on a three-
point scale: no response, partial response, and 
complete response. The results are displayed in 
the following Table.
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Example

No. of Patients

Chemo No Response Partial 
Response

Complete 
Response

CTX 2 0 0
CCNU 1 1 0
MTX 3 0 0
CTX+CCNU 2 2 0
CTX+CCNU+MTX 1 1 4
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Ranks
  No. of Patients

Chemo No 
Response

Partial 
Response

Complete 
Response

CTX 12 3,5 3,5
CCNU 8,5 8,5 3,5
MTX 14 3,5 3,5
CTX+CCNU 12 12 3,5
CTX+CCNU+MTX 8,5 8,5 15
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Test statistics
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