Teaching Mathematics and Statistics in Sciences, IPA HU-SRB/0901/221/088 - 2011

## Biostatistics

Author: Krisztina Boda PhD

## Correlation and regression II. Regression using transformations



## Scatterplot

## Relationship between two continuous variables

| Student | Hours studied | Grade |
| :--- | :---: | :---: |
| Jane | 8 | 70 |
| Joe | 10 | 80 |
| Sue | 12 | 75 |
| Pat | 19 | 90 |
| Bob | 20 | 85 |
| Tom | 25 | 95 |



## Scatterplot Other examples




## Example II.

- Imagine that 6 students are given a battery of tests by a vocational guidance counsellor with the results shown in the following table:

|  | STUDENT | RETAIL | THEATER | MATH | LANGUAGE |
| :--- | :--- | ---: | ---: | ---: | ---: |
| 1 | Pat | 51.00 | 30.00 | 525.00 | 550.00 |
| 2 | Sue | 55.00 | 60.00 | 515.00 | 535.00 |
| 3 | Inez | 58.00 | 90.00 | 510.00 | 535.00 |
| 4 | Arnie | 63.00 | 50.00 | 495.00 | 520.00 |
| 5 | Gene | 85.00 | 30.00 | 430.00 | 455.00 |
| 6 | Bob | 95.00 | 90.00 | 400.00 | 420.00 |

- Variables measured on the same individuals are often related to each other.


## Possible relationships


positive correlation

negative correlation

no correlation

## Describing linear relationship with number: the coefficient of correlation (r).

 Also called Pearson coefficient of correlation- Correlation is a numerical measure of the strength of a linear association.
- The formula for coefficient of correlation treats $x$ and $y$ identically. There is no distinction between explanatory and response variable.
- Let us denote the two samples by $x_{1}, x_{2}, \ldots x_{n}$ and $y_{1}, y_{2}, \ldots y_{n}$,
the coefficient of correlation can be computed according to the following formula
$r=\frac{n \cdot \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sqrt{\left(n \cdot \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right)\left(n \cdot \sum_{i=1}^{n} y_{i}^{2}-\left(\sum_{i=1}^{n} y_{i}\right)^{2}\right)}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}$


## Karl Pearson

- Karl Pearson (27 March 1857 - 27 April 1936) established the discipline of mathematical statistics. http://en.wikipedia.org /wiki/Karl_Pearson



## Properties of $r$

- Correlations are between -1 and +1 ; the value of $r$ is always between -1 and 1, either extreme indicates a perfect linear association.

$$
-1 \leq r \leq 1 .
$$

- a) If $r$ is near +1 or -1 we say that we have high correlation.
- b) If $r=1$, we say that there is perfect positive correlation. If $r=-1$, then we say that there is a perfect negative correlation.
- c) A correlation of zero indicates the absence of linear association. When there is no tendency for the points to lie in a straight line, we say that there is no correlation $(r=0)$ or we have low correlation ( $r$ is near 0 ).



## Calculated values of $r$


positive correlation, $\mathbf{r}=\mathbf{0 . 9 9 8 9}$

negative correlation, $\mathbf{r = - 0 . 9 9 9 3}$

no correlation, $\mathbf{r}=-\mathbf{0 . 2 1 5 7}$

## Scatterplot <br> Other examples


$r=0.018$

$\mathrm{r}=0.873$

## Correlation and causation

- a correlation between two variables does not show that one causes the other.


## When is a correlation „high"?

- What is considered to be high correlation varies with the field of application.
- The statistician must decide when a sample value of $r$ is far enough from zero, that is, when it is sufficiently far from zero to reflect the correlation in the population.


## Testing the significance of the coefficient of correlation

- The statistician must decide when a sample value of $r$ is far enough from zero to be significant, that is, when it is sufficiently far from zero to reflect the correlation in the population.


## Testing the significance of the coefficient of correlation

- The statistician must decide when a sample value of $r$ is far enough from zero to be significant, that is, when it is sufficiently far from zero to reflect the correlation in the population. This test can be carried out by expressing the $t$ statistic in terms of $r$.
- $\mathrm{H}_{0}: \rho=0$ (greek rho=0, correlation coefficient in population $=0$ )
- $H_{a}: \rho \neq 0$ (correlation coefficient in population $\neq 0$ )
- Assumption: the two samples are drawn from a bivariate normal distribution
- If H 0 is true, then the following t-statistic has n -2 degrees of freedom

$$
t=\frac{r \cdot \sqrt{n-2}}{\sqrt{1-r^{2}}}=r \cdot \sqrt{\frac{n-2}{1-r^{2}}}
$$

## Bivariate normal distributions

Function Plot
Function $=1 /\left(2^{*} \mathrm{pi}\right)^{*} \exp \left(-0.5^{*}\left(x^{\wedge} 2\right)\right)^{*} \exp \left(-0.5^{*}\left(y^{\wedge} 2\right)\right)$


Function Plo
Function $=1 /\left(2^{*} \mathrm{pi}\right)^{*} \exp \left(-0.5^{*}\left(\times^{\wedge} 2\right)\right)^{*} \exp \left(-0.5^{*}\left(y^{\wedge} 2\right)\right)$

$\quad>0.16$
$<0.15$
$<0.13$
$<0.11$
$<0.09$
$<0.07$
$<0.05$
$<0.03$
$<0.01$

## Testing the significance of the coefficient of correlation

- The following t-statistic has n -2 degrees of freedom

$$
t=\frac{r \cdot \sqrt{n-2}}{\sqrt{1-r^{2}}}=r \cdot \sqrt{\frac{n-2}{1-r^{2}}}
$$

- Decision using statistical table:
- If $|t|>t_{\alpha, n-2}$, the difference is significant at a level, we reject $\mathrm{H}_{0}$ and state that the population correlation coefficient is different from 0.
- If $|t|<t_{\alpha, n-2}$, the difference is not significant at a level, we accept $H_{0}$ and state that the population correlation coefficient is not different from 0 .

■ Decision using p-value:

- if $p<\alpha$ a we reject $\mathrm{H}_{0}$ at $\alpha$ level and state that the population correlation coefficient is different from 0 .


## Example 1.

- The correlation coefficient between math skill and language skill was found $r=0.9989$. Is significantly different from 0 ?
- $\mathrm{H}_{0}$ : the correlation coefficient in population $=0, \boldsymbol{\rho}=0$.
- $\mathrm{H}_{\mathrm{a}}$ : the correlation coefficient in population is different from 0 .
- Let's compute the test statistic:

$$
t=\frac{0.9989 \cdot \sqrt{6-2}}{\sqrt{1-0.9989^{2}}}=0.9989 \cdot \sqrt{\frac{4}{1-0.9989^{2}}}=42.6
$$

- Degrees of freedom: df=6-2=4
- The critical value in the table is $t_{0.05,4}=2.776$.
- Because $42.6>2.776$, we reject $\mathrm{H}_{0}$ and claim that there is a significant linear correlation between the two variables at $5 \%$ level.


## Example 1, cont.


$p<0.05$, the correlation is significantly different from 0 at $5 \%$ level

## Example 2.

- The correlation coefficient between math skill and retailing skill was found $r=-0.9993$. Is significantly different from 0 ?
- $\mathrm{H}_{0}$ : the correlation coefficient in population $=0, \boldsymbol{\rho}=0$.
- $H_{a}$ : the correlation coefficient in population is different from 0 .
- Let's compute the test statistic:

$$
t=\frac{-0.9993 \cdot \sqrt{6-2}}{1-0.9993^{2}}=-0.9993 \cdot \sqrt{\frac{4}{1-0.9986}}=-53.42
$$

- Degrees of freedom: $\mathrm{df}=6-2=4$
- The critical value in the table is $t_{0.05,4}=2.776$.
- Because |-53.42|=53.42 > 2.776, we reject $\mathrm{H}_{0}$ and claim that there is a significant linear correlation between the two variables at $5 \%$ level.


## Example 2., cont.



## Example 3.

- The correlation coefficient between math skill and theater skill was found $r=-0.2157$. Is significantly different from 0 ?
- $\mathrm{H}_{0}$ : the correlation coefficient in population $=0, \boldsymbol{\rho}=0$.
- $H_{a}$ : the correlation coefficient in population is different from 0 .
- Let's compute the test statistic:

$$
t=\frac{-0.2157 \cdot \sqrt{6-2}}{\sqrt{1-0.2157^{2}}}=-0.2157 \cdot \sqrt{\frac{4}{1-0.04653}}=-0.4418
$$

- Degrees of freedom: $\mathrm{df}=6-2=4$
- The critical value in the table is $t_{0.05,4}=2.776$.
- Because $|-0.4418|=0.4418<2.776$, we do not reject $\mathrm{H}_{0}$ and claim that there is no a significant linear correlation between the two variables at $5 \%$ level.


## Example 3., cont. <br> Scatterplot (corr 5v*6c)

THEATER $=112.7943-0.1137^{*} \mathrm{x}$


## Significance of the correlation Other examples




## Prediction based on linear correlation: the linear regression

- When the form of the relationship in a scatterplot is linear, we usually want to describe that linear form more precisely with numbers.
- We can rarely hope to find data values lined up perfectly, so we fit lines to scatterplots with a method that compromises among the data values. This method is called the method of least squares.
- The key to finding, understanding, and using least squares lines is an understanding of their failures to fit the data; the residuals.


## Residuals, example 1.



## Residuals, example 2.



## Residuals, example 3.

Scatterplot (corr 5v*6c)
THEATER $=112.7943-0.1137^{*} x$


## Prediction based on linear correlation: the linear regression

- A straight line that best fits the data:

$$
y=b x+a \text { or } y=a+b x
$$

is called regression line

- Geometrical meaning of $\boldsymbol{a}$ and $\boldsymbol{b}$.
- $b$ : is called regression coefficient, slope of the best-fitting line or regression line;
- a: $y$-intercept of the regression line.
- The principle of finding the values $\boldsymbol{a}$ and $\boldsymbol{b}$, given $x_{1}, x_{2}, \ldots x_{\mathrm{n}}$ and $y_{1}, y_{2}, \ldots y_{n}$.
- Minimizing the sum of squared residuals, i.e.

$$
\Sigma\left(y_{i}-\left(a+b x_{i}\right)\right)^{2} \rightarrow \min
$$

## Residuals, example 3.

Scatterplot (corr 5v*6c)
THEATER $=112.7943-0.1137^{*} x$


The general equation of a line is $\mathrm{y}=\mathrm{a}+\mathrm{b} \mathrm{x}$. We would like to find the values of $a$ and $b$ in such a way that the resulting line be the best fitting line. Let's suppose we have $n$ pairs of $\left(x_{i}, y_{i}\right)$ measurements. We would like to approximate $y_{i}$ by values of a line. If $x_{i}$ is the independent variable, the value of the line is $a+b x_{i}$.

We will approximate $y_{i}$ by the value of the line at $x_{i}$, that is, by $a+b x_{i}$. The approximation is good if the differences $y_{i}-\left(a+b \cdot x_{i}\right)$ are small. These differences can be positive or negative, so let's take its square and summarize:

$$
\sum_{i=1}^{n}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2}=S(a, b)
$$

This is a function of the unknown parameters $a$ and $b$, called also the sum of squared residuals. To determine $a$ and $b$ : we have to find the minimum of $S(a, b)$. In order to find the minimum, we have to find the derivatives of $S$, and solve the equations
$\frac{\partial S}{\partial a}=0, \quad \frac{\partial S}{\partial b}=0$

The solution of the equation-system gives the formulas for $b$ and $a$ :
$b=\frac{n \cdot \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$ and $a=\bar{y}-b \cdot \bar{x}$
It can be shown, using the 2nd derivatives, that these are really minimum places.

## Equation of regression line for the data of Example 1.

- $y=1.016 \cdot x+15.5$
the slope of the line is 1.016
- Prediction based on the equation: what is the predicted score for language for a student having 400 points in math?
- $y_{\text {predicted }}=1.016 \cdot 400+15.5=421.9$



## Computation of the correlation coefficient from the regression coefficient.

- There is a relationship between the correlation and the regression coefficient:

$$
r=b \cdot \frac{S_{x}}{s_{y}}
$$

- where $s_{x}, s_{y}$ are the standard deviations of the samples .
- From this relationship it can be seen that the sign of $r$ and $b$ is the same: if there exist a negative correlation between variables, the slope of the regression line is also negative .


## Hypothesis tests for the parameters of the regression line

- Does y really depend on $x$ ? (not only in the sample, but also in the population?)
- Assumption: the two samples are drawn from a bivariate normal distribution
- One possible method:

■ t-test for the slope of the regression line

- $\mathrm{H}_{0}: b_{\mathrm{pop}}=0$ the slope of the line is 0 (horizontal line)
- Ha: $b_{\text {pop }} \neq 0$
- If HO is true, then the statistic $t=b / \operatorname{SE}(b)$ follows $t$-distribution with $\mathrm{n}-2$ degrees of freedom


## Hypothesis tests for the parameters of the regression line

- Does y really depend on x? (not only in the sample, but also in the population?)
- Another possible method (equivalent)
- F-test for the regression - analysis of variance for the regression
- Denote the estimated value

$$
\hat{y}_{i}=b x_{i}+a
$$

- The following decomposition is true:
Total variation of $\mathrm{y}=$
SStot
$\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$


## Analysis of variance for the regression

| Source of <br> variation | Sum of <br> Squares | Degrees of <br> freedom | Variancie | F |
| :--- | :--- | :--- | :--- | :--- |
| Regression | SSr | 1 | SSr |  |
| Residual | SSh | $\mathrm{n}-2$ | $\mathrm{SSh} / \mathrm{n}-2$ | $F=\frac{\mathrm{SSr}}{\mathrm{SSh} /(n-2)}$ |
| Total | SStot | $\mathrm{n}-1$ |  |  |

F has two degrees of freedom: 1 and $\mathrm{n}-2$.
This test is equivalent to the t-test of the slope of the line, and to the t-test of the coefficient of correlation (they have the same p value).

## SPSS ouput for the relationship between age and body mass



The independent variable is Age in years.


## SPSS output for the relationship between body mass 3 years ago and at present



The independent variable is Mass Body mass (kg).


## Coefficient of determination

- The square of the correlation coefficient multiplied by 100 is called the coefficient of determination.
- It shows the percentages of the total variation explained by the linear regression.
- Example.
- The correlation between math aptitude and language aptitude was found $r=0,9989$.
The coefficient of determination, $r^{2}=0.9978$. So $91.7 \%$ of the total variation of $Y$ is caused by its linear relationship with X .

Model Summary

| R | R Square | Adjusted <br> R Square | Std. Error of <br> the Estimate |
| :---: | ---: | ---: | ---: |
| .9989 | .9978 | .997 | 2.729 |

The independent variable is Matematika.

|  | ANOVA |  |  |  |  |
| :--- | :---: | ---: | ---: | ---: | ---: |
|  | Sum of |  |  |  |  |
| Squares | df | Mean Square | F | Sig. |  |
| Regression | 13707.704 | 1 | 13707.704 | 1840.212 | .000 |
| Residual | 29.796 | 4 | 7.449 |  |  |
| Total | 13737.500 | 5 |  |  |  |

The independent variable is Matematika.
r2 from the ANOVA table:
r2 = Regression SS/Total SS=

$$
=13707.704 / 13737.5=0.9978 .
$$

## Regression using transformations

■ Sometimes, useful models are not linear in parameters. Examining the scatterplot of the data shows a functional, but not linear relationship between data.

## Example

- A fast food chain opened in 1974. Each year from 1974 to 1988 the number of steakhouses in operation is recorded.
- The scatterplot of the original data suggests an exponential relationship between $x$ (year) and y (number of Steakhouses) (first plot)
- Taking the logarithm of $y$, we get linear relationship (plot at the bottom)

- Performing the linear regression procedure to $x$ and $\log (y)$ we get the equation
- $\log y=2.327+0.2569 x$
- that is
- $y=\mathrm{e}^{2.327+0.2569 x}=\mathrm{e}^{2.327} \mathrm{e}^{0.2569 x}=1.293 \mathrm{e}^{0.2569 x}$ is the equation of the best fitting curve to the original data.


$$
y=1.293 e^{0.2569 x}
$$


$\log y=2.327+0.2569 x$

## Types of transformations

- Some non-linear models can be transformed into a linear model by taking the logarithms on either or both sides. Either 10 base logarithm (denoted log) or natural (base e) logarithm (denoted In) can be used. If $a>0$ and $b>0$, applying a logarithmic transformation to the model


## Exponential relationship ->take log y

| $x$ | $y$ | $\lg y$ |
| :---: | :---: | :---: |
| 0 | 1.1 | 0.041393 |
| 1 | 1.9 | 0.278754 |
| 2 | 4 | 0.60206 |
| 3 | 8.1 | 0.908485 |
| 4 | 16 | 1.20412 |

- Model: $y=a^{*} 10^{b x}$
- Take the logarithm of both sides:
- $\lg y=\lg a+b x$
- so $\lg y$ is linear in $x$




## Logarithm relationship ->take log x

| $x$ | $y$ | $\log x$ |
| :---: | :---: | :---: |
| 1 | 0.1 | 0 |
| 4 | 2 | 0.60206 |
| 8 | 3.01 | 0.90309 |
| 16 | 3.9 | 1.20412 |

- Model: $y=a+\lg x$
- so $y$ is linear in $\lg x$




## Power relationship ->take $\log x$ and $\log y$

| $x$ | $y$ | $\log x$ | $\log y$ |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 0 | 0.30103 |
| 2 | 16 | 0.30103 | 1.20412 |
| 3 | 54 | 0.477121 | 1.732394 |
| 4 | 128 | 0.60206 | 2.10721 |



- Model: $y=a x^{b}$
- Take the logarithm of both sides:
- $\lg y=\lg a+b \lg x$
- so $\lg y$ is linear in $\lg x$



## Log10 base logarithmic scale



## Logarithmic papers



Semilogarithmic paper

log-log paper

## Reciprocal relationship ->take reciprocal of $x$

| $x$ | $y$ | $1 / x$ |
| :---: | :---: | :---: |
| 1 | 1.1 | 1 |
| 2 | 0.45 | 0.5 |
| 3 | 0.333 | 0.333333 |
| 4 | 0.23 | 0.25 |
| 5 | 0.1999 | 0.2 |



- Model: $y=a+b / x$
- $y=a+b * 1 / x$
- so $y$ is linear in $1 / x$



## Example from the literature

# Circulation 

Learn and Live w

Correlation between echocardiographic endocardial surface mapping of abnormal wall motion and pathologic infarct size in autopsied hearts GT Wilkins, JF Southem, CY Choong, JD Thomas, JT Fallon, DE Guyer and AE Weyman
Circulation 1988;77;978-987
Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 72514
Copyright © 1988 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539


FIGURE 4. Correlation of the left ventricular endocardial surface area measured at autopsy (Autopsy Surface Area) with the endocardial surface area derived from the echocardiographic map (MAP ESA).

Vol. 77, No. 5, May 1988
Downloaded from circ.ahajoumals.org at SZTE ALTALANOS ORVOSTUDOMANYI KAR on November 22, 2007

Example 2. EL HADJ OTHMANE TAHA és mtsai: Osteoprotegerin: a regulátor, a protektor és a marker. Orvosi Hetilap 2008 ■ 149. évfolyam, 42. szám ■ 1971-1980.


## Useful WEB pages

- http://davidmlane.com/hyperstat/desc biv.html
- http://onlinestatbook.com/stat sim/reg by eye/index.html
- http://www.youtube.com/watch?v=CSYTZWFnVpg\&feature =related
- http://www.statsoft.com/textbook/basicstatistics/\#Correlationsb
- http://people.revoledu.com/kardi/tutorial/Regression/NonLin ear/LogarithmicCurve.htm
- http://www.physics.uoguelph.ca/tutorials/GLP/


## Review questions and problems

- Graphical examination of the relationship between two continuous variables (scatterplot)
- The meaning and properties of the coefficient of correlation
- Coefficient of correlation and linearity
- The significance of correlation: null hypothesis, t-value, degrees of freedom, decision
- The coefficient of determination
- The meaning of the regression line and its coefficients
- The principle of finding the equation of the regression line
- Hypothesis test for the regression
- Regression using transformations.


## Problems

- Based on $\mathrm{n}=5$ pairs of observations, the coefficient of correlation was calculated, its value $r=0.7$. Is the correlation signficnat at $5 \%$ level?
- Null and alternative hypothesis:
- $t$-value of the correlation: $\qquad$ Degrees of freedom: $\qquad$
- Decision (t-value in the table $t 3,0.05=3.182$ ) $\qquad$
$\qquad$
On the physics practicals the waist circumference was measured. The measurement was repeated three times. The relationship of the first two measurements were examined by linear regression. Interpret the results below ( coefficient of correlation, coefficient of determination, the significance of correlation. Null hypothesis, t-value, p-value, the equation of the regression line)

| Model Summary |  |  |  |
| :---: | ---: | ---: | ---: |
| R | R Square | Adjusted <br> R Square | Std. Error of <br> the Estimate |
| .980 | .960 | .960 | 2.267 |

The independent variable is Waist circumference 1.

ANOVA

|  | Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 44733.495 | 1 | 44733.495 | 8707.197 | .000 |
| Residual | 1849.511 | 360 | 5.138 |  |  |
| Total | 46583.007 | 361 |  |  |  |

The independent variable is Waist circumference 1.
Coefficients

|  | Unstandardized <br> Coefficients |  | Standardized <br> Coefficients |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: |
|  | t |  |  |  |  |
|  | t | Std. Error | Beta | Sig. |  |
| Waist circumference 1 | .960 | .010 | .980 | 93.312 | .000 |
| (Constant) | 3.061 | .832 |  | 3.678 | .000 |

Waist circumference 2


# The origin of the word „regression". Galton: Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute 1886 Vol.15, 246-63 

## TABLE I.

Ntaber of Adtlt Children of fariots statcres born of 205 Mid-parests of rariofs statures.
(All Female heights have been multiplied by $1 \cdot 0 \Sigma^{\circ}$ ).

| Mrights of the Midparents in inches. | Heights of the Adult Children. |  |  |  |  |  |  |  |  |  |  |  |  |  | Totai Number of |  | Medians. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Belors | 62.2 | 63.2 | 64.2 | 65.2 | , 66.2 | $67 \cdot 2$ |  | 2 | 70 |  |  |  | Abore | Adult Chiidren. | $\begin{gathered} \text { Mid- } \\ \text { parents. } \end{gathered}$ |  |
| Abore | .. | . | $\cdots$ | . | . | $\cdots$ |  |  |  |  |  |  |  |  | 19 | 5 |  |
| 72.5 71.5 | . |  | .. | .. | - | $\stackrel{3}{ }$ | $\stackrel{4}{4}$ |  | 2 | 10 | 2 |  | 2 2 2 | ${ }_{2}^{4}$ | ${ }_{4}^{19}$ | ${ }^{6}$ | 72.2 69.9 |
| 70.5 | i | $\cdots$ | 1 | $\because$ | 1 | 1 | 3 | 12 | 18 | 14 | 7 | 4 |  | 3 | 68 | 22 | 69.5 |
| 69.5 |  | .. | 1 | 16 | 4 | 17 | 27 | 20 | 33 | 25 | 20 | 11 |  | 5 | 153 | 41 | 68.9 |
| 65 | 1 | $\cdot$. | 7 | 11 | 16 | 25 | 31 | 34 | 48 | 21 | 18 | 4 |  | . | 219 | 49 | 65.2 |
| 67.5 | . | 3 | 5 | 14 | 15 | 36 | 3 s | 28 | 38 | 19 | 11 |  |  | .. | 211 | 33 | $67 \cdot 6$ |
| 66.5 | $\cdot$ | 3 | 3 | 5 | 2 | 17 | 17 | 14 | 13 | 4 |  |  |  |  | 78 | 20 | 67.2 |
| $65 \cdot 5$ | 1 | 1 | 9 | 5 | 7 | 11 | 11 |  | 7 | 5 | 2 |  |  | . | 66 | 12 | 66.7 |
| ${ }_{\text {Below }}{ }^{645}$ | 1 | 1 | 4 | 4 | 1 | 5 | 5 |  | 2 | . | . | .. | .. | .. | 23 | 5 | 65.8 |
| Below |  | .. | 2 | 4 | 1 | 2 | 2 | 1 | 1 | .. | .. | . | . | .. | 14 | 1 | .. |
| Totals | 5 | 7 | 32 | 59 | 4 S | 117 | 135 | 120 | 167 | 99 | $6+$ | 41 | 17 | 14 | 929 | 205 | .. |
| Medians | .. |  | 166.36 |  | 67.9 | $67 \cdot 7$ | 67-9 | 68.3 | $68 \cdot 5$ |  | $1{ }^{69 \cdot}$ |  |  | . | . | . | . |

[^0]


[^0]:    Note.-In calculating the Medians, the entries hare been taken as referring to the middle of the squares in which they stand. The reason why the headings run $62 \cdot 2,63 \cdot 2$, \&c., instead of $62 \cdot 5,63 \cdot 5, \& c$., is that the obserrations are unequally distributed between 62 and 63,63 and 64 , \&c., there being a strong lias in farour of integral inches. After careful consideration, I concluded that the headings, as adopted, best satisfied the conditions. This inequality was not apparent in the case of the Mid-parents.

