HOMEWORK NO. 1 – September 15, 2017

Exercise 1. If a, b, c, d are distinct objects, determine which of the five sets $\{a, b, c\}$, $\{b, c, a, b\}$, $\{c, a, c, b\}$, $\{b, c, b, a\}$, $\{a, b, c, d\}$ are equal.

Exercise 2. Let $A = \{a, b, c\}$, $B = \{a, b\}$, $C = \{a, b, d\}$, $D = \{a\}$ and $E = \{b, c\}$, where a, b, c are distinct objects. State whether each of the following statements is true or false:

(a) $B \subset A$, (b) $E \neq C$, (c) $D \not\subset B$, (d) $D \subset A$, (e) A = B

Exercise 3. Let $A = \{1, 2, 3, 4, 5, 6\}, B = \{4, 5, 6, 7, 8, 9\}, C = \{2, 4, 6, 8\}, D = \{4, 5\}, E = \{5, 6\}, F = \{4, 6\}, and X a set which satisfies the following conditions: <math>X \subset A, X \subset B$ and $X \not\subset C$. Determine which of the sets A, B, C, D, E, F can equal X.

Exercise 4. Which of the following sets is the empty set?

- (a) $\{x: x \text{ is an odd integer and } x^2 = 4\}$
- (b) $\{x: x \text{ is an integer and } x+8=8\}$
- (c) $\{x: x \text{ is a positive integer and } x < 1\}$

Exercise 5. Let $A = \{a, b, c, d\}, B = \{b, d, f, h\}, C = \{c, d, e, f\}$. Find

- (a) $A \cap B, A \cap C, B \cap C$,
- (b) $A \cup B, A \cup C, B \cup C$,
- (c) $A \setminus B$, $B \setminus A$, $A \setminus C$, $C \setminus A$, $C \setminus B$, $B \setminus C$.

Exercise 6. Let R be the set of real numbers, $A = \{x \in R : 1 \le x \le 3\}$ and $B = \{x \in R : 2 \le x \le 4\}$. Find

(a) $A \cup B$, (b) $A \cap B$, (c) $(R \setminus A) \cap B$, (d) $(R \setminus B) \cap A$, (e) $(R \setminus A) \cap (R \setminus B)$, (f) $(R \setminus B) \cap (R \setminus A)$, (g) $(R \setminus A) \cup (R \setminus B)$, (h) $B \cup [A \cap (R \setminus B)]$, (i) $[(R \setminus A) \cap B] \cup [(R \setminus B) \cap A]$.

Exercise 7. Let Z be the set of all integers, $A = \{x \in Z : x \text{ is a multiple of } 10\}$, and $B = \{x \in Z : x \text{ is a multiple of } 15\}$. What is $A \cap B$? Can you generalize this result?

Exercise 8. Let $A = \{1, 2, 3, 8, 9\}$, $B = \{2, 4, 6, 8\}$, $C = \{3, 6, 9\}$. Determine $A \setminus B$, $C \setminus A$, $(A \setminus B) \cap C$, $(B \cup C) \setminus (A \setminus C)$, $\mathcal{P}(C)$, $\mathcal{P}(A \setminus B)$.

Exercise 9. Sketch the following sets: $(-2; 3] \setminus [1; 4], (-2; 3] \cup [1; 4], (-2; 3] \cap [1; 4].$

Exercise 10. Sketch the following sets: $(2, 6] \setminus (1; 4), (2, 6] \cap (1; 4), (2, 6] \cup (1; 4).$

Exercise 11. Let $A = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$. Determine whether each of the following statements is true or false:

(a)
$$\emptyset \in A$$
(c) $\{\emptyset\} \in A$ (e) $\{\{\emptyset\}\} \in A$ (g) $\{\emptyset, \{\emptyset\}\} \in A$ (b) $\emptyset \subseteq A$ (d) $\{\emptyset\} \subseteq A$ (f) $\{\{\emptyset\}\} \subseteq A$ (h) $\{\emptyset, \{\emptyset\}\} \subseteq A$

Exercise 12. Let $A = \mathcal{P}(\{a, b\})$ and $B = \mathcal{P}(\{b, c\})$. Determine the elements of the following sets:

$$A \cup B$$
, $A \cap B$, $A \setminus B$, $B \setminus A$, $A \triangle B$.

Exercise 13. Let $U = \{a, b, c, d, e\}$ be the universal set, $A = \{a, b, c, d\}$, $B = \{d, e\}$ and $C = \{a, b, e\}$. Determine the elements of the following sets:

 $A \cup B, \quad A \cap B, \quad \overline{B}, \quad A \setminus B, \quad A \triangle B, \quad (A \triangle \overline{C}) \setminus \overline{B}, \quad \mathcal{P}(B).$

Exercise 14. Give the elements of the set $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.

Exercise 15. Are there any sets A, B, C, such that $A \subseteq B \in C$ and $A \in B \subseteq C$?