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Course details

I am: Norbert Bogya

Email: nbogya@math.u-szeged.hu
Office address: Aradi vértanúk tere 1., H-6720 Szeged,
Hungary, Bolyai Institute, Room M05.

The lecture and the practice will not be held separately, mainly
we are going to solve exercises, but you will receive grades for
both.

To attend the classes is not obligatory, but ...
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Grading

Starting from the second lesson, at the beginning of the lessons there
will be a short, 10 min Quiz (8-10 altogether) worth 5 points (each),
however only the best 6-8 quizzes will count towards your practice
grade. Grading will be done according to the following table.

80-100% 5

64-79% 4

47-63% 3

30-46% 2

0-29% 1

The lecture grade will be based on the 2 midterms (60 min long,
25 points each) which will be held on the 6-7th and 12-13th week
(no quizzes at these times). The grading table is just like before.
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Plan (Probably, it will change.)

Week 1. Set theory

Week 2. Quiz 1; Functions

Week 3. Quiz 2; Limit

Week 4. Quiz 3; Limit

Week 5. Quiz 4; Differentiation

Week 6. Quiz 5; Differentiation

Week 7. Midterm 1; Differentiation

Week 8. Quiz 6; Integration

Week 9. Quiz 7; Sequences

Week 10. Quiz 8; Series

Week 11. Quiz 9; Linear algebra

Week 12. Quiz 10; Linear programming

Week 13. Midterm 2
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Basic set theory
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Basic “definitions”

A set is a well-defined collection of distinct objects. The objects
that make up a set (also known as the elements or members of a
set) can be anything.

Notation: A = {1, 2, 3, 4, 5}.

Membership: there is fundamental “belonging to” connection
between objects and sets: 5 ∈ A, 7 /∈ A

We can say: x is in H , x is an element of H , H contains x ...

Definition

Sets A and B are equal if and only if they have precisely the same
elements.

{2, 3, 5, 7} = set of 1-digit positive prime numbers
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Basic “definitions”

A set can be described by

(1) a rule or semantic description:
A is the set whose members are the first four positive integers
B is the set of colours of the French flag

(2) listing each member:
A = {2, 3, 1, 4}
B = {red,white, blue}

(3) a mathematical formula:
A = {x ∈ Z : 1 ≤ n < 5}
F = {n2 − 4 | n is even and 3 ≤ n ≤ 8}

Norbert Bogya (Bolyai Institute) Mathematics 2017 8 / 27



More than sets

Remarks.

A set is irrelevant to multiplicity.

{a, b, b, c , c , c} = {a, b, c}

A set is irrelevant to ordering.

{1, 4, 3, 2} = {1, 2, 3, 4}

If we consider multiplicity, we get a multiset.

If we consider ordering, we get ordered set.
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Empty set

Definition

The set which contains no element is called empty set.

Theorem

There is one and only one set, which contains no element.

Notation: ∅.

∅ = set of red horses with 7 heads

= {x | x is an even prime and x > 20}
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Combining sets

Operations are used for construct new objects from same type of
different ones. For example: addition of numbers.

We can take several operations with sets:

intersection

union

complement

difference

symmetric difference
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Combining sets
Intersection operator

Definition

A ∩ B = {x | x ∈ A and x ∈ B}

Example

A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8, 9}, A ∩ B = {2, 4}

1 3 5 6 8 9

7

A B

2 4
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Combining sets
Union operator

Definition

A ∪ B = {x | x ∈ A or x ∈ B}

Example

A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8, 9}, A ∪ B = {1, 2, 3, 4, 5, 6, 8, 9}

1 3 5 6 8 9

7

A B

2 4
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Combining sets
Difference operator

Definition

A \ B = {x | x ∈ A but x /∈ B}

Example

A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8, 9},
A \ B = {1, 3, 5}, B \ A = {6, 8, 9}

1 3 5 6 8 9

7

A B

2 4 1 3 5 6 8 9

7

A B

2 4
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Combining sets
Symmetric difference operator

Definition

A4B = {x | x ∈ A \ B or x ∈ B \ A} = (A ∪ B) \ (A ∩ B)

Example

A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8, 9}, A4B = {1, 3, 5, 6, 8, 9}

1 3 5 6 8 9

7

A B

2 4
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Combining sets
Complement operator

Universal set: everything we care about in the context of our problem.

Definition

Ac = A = {x | x ∈ U but x /∈ A}

Example

A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8, 9}, A = {6, 7, 8, 9}

1 3 5 6 8 9

7

A B

2 4
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Practice

Exercise

Let U = {a, b, c , d , e} be the universal set and A = {a, b, c , d},
B = {d , e}, C = {a, b, e}. Give the elements of the following sets.

A ∪ B , A ∩ B , B , A \ B , B \ A,
A4B , (A4C ) \ B , (C \ A)4B

Exercise

Illustrate the following sets.

[0, 2] ∩ (1, 3), [0, 3) ∪ (−1, 2], (0, 5] \ [1, 2]
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Properties of operations

Theorem

For all sets A,B ,C we have the following statements:

A ∩ A = A,
A ∩ B = B ∩ A,
(A ∩ B) ∩ C = A ∩ (B ∩ C ) ,
(A ∪ B) ∩ A = A,
(A ∪ B)∩C = (A ∩ C )∪(B ∩ C ) ,

A ∪ A = A,
A ∪ B = B ∪ A,
(A ∪ B) ∪ C = A ∪ (B ∪ C ) ,
(A ∩ B) ∪ A = A,
(A ∩ B)∪C = (A ∪ C )∩(B ∪ C ) .
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Properties of operations

Theorem

For all sets A,B (⊆ U) we have the following statements:

A ∩ B = A ∪ B , A ∪ B = A ∩ B ,

A = A,
A ∩ A = ∅, A ∪ A = U ,
A ∩ U = A, A ∪ U = U ,
A ∩ ∅ = ∅, A ∪ ∅ = A.

The equalities in the first row are called De Morgan’s laws.

Norbert Bogya (Bolyai Institute) Mathematics 2017 19 / 27



Subsets
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Subsets

Definition

If every member of set A is also a member of set B , then A is said to
be a subset of B , written A ⊆ B .

1

3

6

7
2

3
4

5

{1, 3, 6} ⊆ {1, 2, 3, 4, 5, 6, 7}
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Subsets

Theorem

Every H set has trivial subsets:

∅ ⊆ H

H ⊆ H

Definition

Let A be a set. The set of all subsets of A is called power set of A
and it is denoted by P(A). So

P(A) = {X : X ⊆ A}.

Questions

P({1, 2})=? P({a, 1, 5})=? P(∅)=? P(P(∅)) =?
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Cardinality

A set has finite or infinitely many element. This mean a cardinality of
a set can be finite or infinite. The cardinality of the set H is
denoted by |H |.

Theorem

If H is a finite set and |H | = n, then |P(H)| = 2n.

This theorem holds for all cardinality, but to prove that we need deeper knowl-

edge in mathematics.
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Number sets

N
Z
Q
R
C Natural numbers:

N = {1, 2, 3, . . .}
Integers:
Z = {. . . ,−2,−1, 0, 1, 2, . . .}
Rational numbers:
Q =

{a

b
: a ∈ Z, b ∈ N

}
Real numbers: R
Complex numbers: C

N ⊆ Z ⊆ Q ⊆ R ⊆ C

These number sets are infinite sets, but |N| = |Z| = |Q| < |R| = |C|.
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Barber paradox
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Barber paradox

Let R be the set of all sets, that DO NOT contain themselves.

R = {A | A /∈ A}

Paradox:

R ∈ R =⇒ R /∈ R

R /∈ R =⇒ R ∈ R

This paradox can be resolved by axiomatic set theory, but it needs deeper

mathematical knowledge.
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Barber paradox

SOLVED
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