Mathematics
 Lecture and practice

Norbert Bogya

University of Szeged, Bolyai Institute

2017

Limit

" Limes"

The word limes was used by Latin writers to denote a marked or fortified frontier. This term has been adapted and used by modern historians as an equivalent for the frontiers of the Roman Empire.

Motivating example

How does the function

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

behave near $x=1$?
Step 1. Investigation of the domain: the domain of the function is the real numbers except $x=1$.

Step 2. We substitute some values below and above 1 .

x	0	0.5	0.9	0.99	0.999	0.999999	\ldots	1
$f(x)$	1	1.5	1.9	1.99	1.999	1.999999	\ldots	X

1	\ldots	1.000001	1.0001	1.001	1.01	1.1	1.5	2
X	\ldots	2.000001	2.0001	2.001	2.01	2.1	2.5	3

Step 3. We can try to graph the function with computer.

Step 4. Try to do some mathematics...

$$
f(x)=\frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{x-1}=x+1, \quad(x \neq 1)
$$

We say that $f(x)$ approaches the limit 2 as x approaches 1 , and write

$$
\lim _{x \rightarrow 1} f(x)=2 \quad \text { or } \quad \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2
$$

Remark. The limit value does not depend on how the function is defined at x_{0}.

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} h(x)=2
$$

What about these?

(1) Both of the two functions defined over real numbers (no exclusion).
(2) None of the two functions has limit at $x_{0}=0$.

Limit

Definition

Let $f(x)$ be defined on an open interval about x_{0}, except at x_{0} itself. We say that the limit of $f(x)$ as x approaches x_{0} is the number L, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=L,
$$

if, for every number $\varepsilon>0$, there exists a corresponding number $\delta>0$ such that for all x,

$$
0<\left|x-x_{0}\right|<\delta \quad \Longrightarrow \quad|f(x)-L|<\varepsilon .
$$

Limit

One-sided limit

- To have a limit L as x approaches c, a function must be defined on both sides of c and its values $f(x)$ must approaches c from either side. Because of this, ordinary limits are called two-sided.
- If f fails to have a two-sided limit c, it may still have a one-sided limit, that is, a limit if the approach is only from one side. If the approach is from the right, the limit is a right-hand limit. From the left, it is a left-hand limit.

One-sided limit

$$
f(2)=3
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=2 \\
& \lim _{x \rightarrow 2^{-}} f(x)=4
\end{aligned}
$$

One-sided limit

Definition

If $f(x)$ is defined on an interval $\left(x_{0}, c\right)$, where $x_{0}<c$ and approaches arbitrarily close to L as x approaches x_{0} from within that interval, then f has right-hand limit L at x_{0}.

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)=L
$$

Definition

If $f(x)$ is defined on an interval $\left(a, x_{0}\right)$, where $a<x_{0}$ and approaches arbitrarily close to M as x approaches x_{0} from within that interval, then f has left-hand limit M at x_{0}.

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=M
$$

Connection between one- and two-sided limits

Theorem

A function $f(x)$ has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$
\lim _{x \rightarrow c} f(x)=L \Longleftrightarrow \lim _{x \rightarrow c^{+}} f(x)=L \text { and } \lim _{x \rightarrow c^{-}} f(x)=L .
$$

One-sided limit

$$
\lim _{x \rightarrow 2^{+}} f(x)=2
$$

$$
\lim _{x \rightarrow 2^{-}} f(x)=4
$$

$\lim _{x \rightarrow 2} f(x)$ doesn't exist

What about these?

(1) $f(0)=1, \lim _{x \rightarrow 0^{-}} f(x)=0, \lim _{x \rightarrow 0^{+}} f(x)=1$
(2) $g(0)=0, \lim _{x \rightarrow 0} g(x)=$?

One-sided limit

Exercise

Find the one- and two-sided limits at $x_{0}=0, x_{1}=1$, and $x_{2}=2$.

Finding limit algebraically

By substitution

Exercise

Find the following limits.
(a) $\lim _{x \rightarrow 2} 4=$
(b) $\lim _{x \rightarrow-13} 4=$
(c) $\lim _{x \rightarrow 3} x=$
(d) $\lim _{x \rightarrow 2}(5-2 x)=$
(e) $\lim _{x \rightarrow-1} \frac{x^{3}+4 x^{2}-3}{x^{2}+5}=$
(f) $\lim _{x \rightarrow-2} \frac{3 x+4}{x+5}=$

Finding limit algebraically

(Creating and) canceling a common factor

Exercise

Find the following limits.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}=$
(b) $\lim _{x \rightarrow 0} \frac{x^{2}\left(x^{2}-3 x+2\right)}{x^{2}+x}=$
(c) $\lim _{x \rightarrow-2} \frac{-2 x-4}{x^{3}+2 x^{2}}=$

What about $f(x)=\frac{1}{x}$?

- As $x \rightarrow 0^{+}$the values of f
 grow without bound, eventually reaching and surpassing every positive real number. That is, given any positive real number B, however large, the values of f become larger still.

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

What about $f(x)=\frac{1}{x}$?

- As $x \rightarrow 0^{-}$the values of f become arbitrarily large and negative. Given any negative real number $-B$, the values of f eventually lie below $-B$.

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

Exercises

(1) $\lim _{x \rightarrow 2} \frac{(x-2)^{2}}{x^{2}-4}=$
(4) $\lim _{x \rightarrow 2^{-}} \frac{x-3}{x^{2}-4}=$
(2) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=$
(3) $\lim _{x \rightarrow 2^{+}} \frac{x-3}{x^{2}-4}=$
(5) $\lim _{x \rightarrow 2} \frac{x-3}{x^{2}-4}=$
(6) $\lim _{x \rightarrow 2} \frac{2-x}{(x-2)^{3}}=$

Conclusion

Rational functions can behave in various ways near zeros of their denominators.

What about $f(x)=\frac{1}{x}$?

- When x is positive and becomes increasingly large, $1 / x$ becomes increasingly small.

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

- When x is negative and its magnitude becomes increasingly large, $1 / x$ again becomes small.

$$
\lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

Finite limits as $x \rightarrow \pm \infty$

The symbol for infinity (∞) does not represent a real number. We use ∞ to describe the behaviour of a function when the values in its domain or range outgrow all finite bounds.

Definition

We say that $f(x)$ has the limit L as x approaches infinity (minus infinity) and write

$$
\lim _{x \rightarrow \infty} f(x)=L, \lim _{x \rightarrow-\infty} f(x)=L
$$

if, for every number $\varepsilon>0$, there exists a corresponding number M (N) such that for all x,

$$
x>M,(x<N) \quad \Longrightarrow \quad|f(x)-L|<\varepsilon
$$

Exercise

Find the limits of $f(x)=\frac{1}{x-1}$ at $x_{0}=1$ and at infinities.

Geometric solution.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} f(x)=\infty \\
& \lim _{x \rightarrow 1^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow \infty} f(x)=0 \\
& \lim _{x \rightarrow-\infty} f(x)=0
\end{aligned}
$$

Exercise

Find the limits of $f(x)=\frac{1}{x-1}$ at $x_{0}=1$ and at infinities.

Analytic solution.

Theorem

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{x}=0, \quad \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty, \quad \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

- $x \rightarrow \infty \quad \Longrightarrow \quad x-1 \rightarrow \infty \quad \Longrightarrow \quad \frac{1}{x-1} \rightarrow 0$
- $x \rightarrow-\infty \quad \Longrightarrow \quad x-1 \rightarrow-\infty \quad \Longrightarrow \quad \frac{1}{x-1} \rightarrow 0$
- $x \rightarrow 1^{+} \quad \Longrightarrow \quad x-1 \rightarrow 0^{+} \quad \Longrightarrow \frac{1}{x-1} \rightarrow \infty$
- $x \rightarrow 1^{-} \quad \Longrightarrow \quad x-1 \rightarrow 0^{-} \quad \Longrightarrow \frac{1}{x-1} \rightarrow-\infty$

Exercises

(1) $\lim _{x \rightarrow \infty}\left(5+\frac{1}{x}\right)=$
(5) $\lim _{x \rightarrow \infty} 7-\frac{8}{x^{2}}=$
(2) $\lim _{x \rightarrow-\infty} \frac{\pi \sqrt{3}}{x^{2}}=$
(6) $\lim _{x \rightarrow \infty} \frac{7 x^{3}}{x^{3}-3 x^{2}+6 x}=$
(3) $\lim _{x \rightarrow \infty} \frac{5 x^{2}+8 x-3}{3 x^{2}+2}=$
(7) $\lim _{x \rightarrow \infty} \frac{2 x^{3}}{5 x^{2}+6 x}=$
(4) $\lim _{x \rightarrow-\infty} \frac{11 x+2}{2 x^{3}-1}=$
(8) $\lim _{x \rightarrow \infty} \frac{2-x^{5}}{x^{3}+3 x}=$

Exercises

(1) $\lim _{y \rightarrow 2} \frac{y+2}{y^{2}+5 y+6}$
(4) $\lim _{x \rightarrow \infty} \frac{2 x^{5 / 3}-x^{1 / 3}+7}{x^{8 / 5}+3 x+\sqrt{x}}$
(2) $\lim _{x \rightarrow 4} \frac{4 x-x^{2}}{2-\sqrt{x}}$
(3) $\lim _{x \rightarrow-2^{+}}(x+3) \frac{|x+2|}{x+2}$
(5) $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{x}-5 x+3}{2 x+x^{2 / 3}-4}$

Continuity

Continuity

Definition

A function $y=f(x)$ is continuous at an interior point c of its domain if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

Definition

A function $y=f(x)$ is continuous at a left endpoint a or at a right endpoint b of its domain if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \text { or } \lim _{x \rightarrow b^{-}} f(x)=f(b) \text {, respectively. }
$$

Definition

A function is continuous if it is continuous at every point of its domain.

Continuity

Exercise

Is the function

$$
f(x)= \begin{cases}\frac{x^{2}-4 x+4}{x^{2}+x-6}, & \text { if } x<2 \\ 0, & \text { if } x=2 \\ \frac{x^{2}-3 x+2}{x^{2}-4 x+4}, & \text { if } x>2\end{cases}
$$

continuous at the point $x=2$?

