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Introduction New results

Recent trends in combinatorics

Example: Bounded degree Trees in graphs

Komlós, G. Sárközy, Szemerédi (1995)
If δ(Gn) ≥ (1 + o(1))n/2 then Tn ⊂ Gn for every bounded
degree tree.

Pósa; Friedman-Pippinger; Haxell; Alon-Krivelevich-Sudakov;
Balogh, Csaba, Pei and Samotij (2010)
For every ε > 0, d if p > d

εn log 1
ε then w.h.p. G (n, p) contains

every tree T with |T | < (1− ε)n, ∆(T ) < d .

Balogh, Csaba, and Samotij (2011)
A.a.s. every subgraph of G (n, p) with minimum degree at
least (1/2 + ε)np contains every bounded degree tree with
(1− ε)n vertices, where p > C (ε)/n.

For what p will a.a.s. G (n, p) contain every bounded degree
spanning tree? Johannsen, Krivelevich, Samotij (2012)
p = n−1/3+o(1) is sufficient.
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Recent trends in combinatorics

Example: Triangle factors in graphs

Corrádi, Hajnal (1963)
If δ(G3n) ≥ 2n then G3n contains a triangle-factor.

Johansson, Kahn, Vu (2008)
If p � n−2/3(log n)1/3 then w.h.p. G (3n, p) contains a
triangle-factor.

Balogh, Lee, Samotij (2012)
For all γ > 0, there exists C such that if p � ((log n)/n)1/2,
then a.a.s. every H ⊂ G (n; p) with δ(H) > (2/3 + γ)np
contains a triangle packing that covers all but at most C/p2

vertices.

Sudakov, Hao, Lee (2011) C/p2 is best possible.

What about larger cliques?
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Example: Ks -factors in graphs

Hajnal, Szemerédi (1970)
If δ(Gsn) ≥ (s − 1)n then Gsn contains a Ks -factor.

Johansson, Kahn, Vu (2008)
If p � n−(s−1)/[s(s−1)](log n)1/s then w.h.p. G (sn, p) contains
a Ks -factor.

Balogh, Morris, Samotij (2012+)
Conlon, Gowers, Samotij, Schacht (2012++)
For every s if p � n−2/(s+1), then a.a.s. every H ⊂ G (sn; p)
with δ(H) > [s − 1 + o(1)]np contains a Ks -packing that
covers all but o(n) vertices.
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Introduction New results

Classical extremal Theorems in combinatorics

Example: Turán type Theorems

Turán (1941)
ex(n,Kk+1) = tk(n) = (1− 1

k + o(1))
(n
2

)
.

Erdős, Frankl, Rödl (1986)
There are 2(1+o(1))·ex(n,Kk+1) Kk+1-free graphs on n vertices.
Kolaitis, Prömel, Rotshchild (1987)
Almost all Kk+1-free graphs are k-partite.

Related Sparse questions:

For what p is the following true?
ex(G (n, p),Kk+1) = (1− 1

k + o(1))p
(n
2

)
.

For what m = m(n) is the following true?

The number Kk+1-free graphs with m edges is
(tk (n)+o(n2)

m

)
.

For what m = m(n) is the following true?
A.a. Kk+1-free graphs with m edges are (almost) k-partite.
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Erdős, Frankl, Rödl (1986)
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Classical extremal Theorems in combinatorics

Definition

We say that A ⊂ [n] is (δ, k)-Szemerédi, if every B ⊂ A with
|B| > δ|A| contains an arithmetic progression of length k . (k-AP).

Theorem Szemerédi (1975)

For every δ > 0, k, for sufficiently large n, the set [n] is
(δ, k)-Szemerédi.

Endre Szemerédi
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(δ, k)-Szemerédi?

For a given m, how many m-subset of [n] does not contain an
k-AP?
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Introduction New results

Generalizing Szemerédi’s theorem

Conjecture (Erdős)

If R ⊆ N satisfies
∑

n∈R
1
n =∞, then R contains arbitrarily long

APs.

Theorem (Green–Tao [2004])

Let A ⊆ P be a subset of the primes whose upper density is
positive, i.e.,

lim sup
n→∞

|A ∩ [n]|
|P ∩ [n]|

> 0

Then A contains arbitrarily long APs.
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Generalizing Szemerédi’s theorem

Theorem (Green–Tao [2004])

Every subset of the primes with positive upper density contains
arbitrarily long APs.

B. Green T. Tao



Introduction New results

Extremal problems – general framework

Framework

Setting:

A finite set V and a k-uniform hypergraph H ⊆ P(V ) on V .

Questions:

What is the size of the largest independent set in H?

What are the largest independent sets in H?

How many independent sets does H have?

What does a typical independent set look like?

Questions: (Sparse random variants)

What is the size of the largest independent set in G (v)(H, p)?

How many independent sets of size m does H have?

What does a typical independent set of size m look like?



Introduction New results

Extremal problems – general framework

Framework

Setting:

A finite set V and a k-uniform hypergraph H ⊆ P(V ) on V .

Questions:

What is the size of the largest independent set in H?

What are the largest independent sets in H?

How many independent sets does H have?

What does a typical independent set look like?

Questions: (Sparse random variants)

What is the size of the largest independent set in G (v)(H, p)?

How many independent sets of size m does H have?

What does a typical independent set of size m look like?



Introduction New results

Extremal problems – general framework

Framework

Setting:

A finite set V and a k-uniform hypergraph H ⊆ P(V ) on V .

Questions:

What is the size of the largest independent set in H?

What are the largest independent sets in H?

How many independent sets does H have?

What does a typical independent set look like?

Questions: (Sparse random variants)

What is the size of the largest independent set in G (v)(H, p)?

How many independent sets of size m does H have?

What does a typical independent set of size m look like?



Introduction New results

Extremal problems – general framework

Framework

Setting:

A finite set V and a k-uniform hypergraph H ⊆ P(V ) on V .

Questions:

What is the size of the largest independent set in H?

What are the largest independent sets in H?

How many independent sets does H have?

What does a typical independent set look like?

Questions: (Sparse random variants)

What is the size of the largest independent set in G (v)(H, p)?

How many independent sets of size m does H have?

What does a typical independent set of size m look like?



Introduction New results

Extremal problems – general framework

Framework

Setting:

A finite set V and a k-uniform hypergraph H ⊆ P(V ) on V .

Questions:

What is the size of the largest independent set in H?

What are the largest independent sets in H?

How many independent sets does H have?

What does a typical independent set look like?

Questions: (Sparse random variants)

What is the size of the largest independent set in G (v)(H, p)?

How many independent sets of size m does H have?

What does a typical independent set of size m look like?



Introduction New results

Extremal problems – general framework

Framework

Setting:

A finite set V and a k-uniform hypergraph H ⊆ P(V ) on V .

Questions:

What is the size of the largest independent set in H?

What are the largest independent sets in H?

How many independent sets does H have?

What does a typical independent set look like?

Questions: (Sparse random variants)

What is the size of the largest independent set in G (v)(H, p)?

How many independent sets of size m does H have?

What does a typical independent set of size m look like?



Introduction New results

Extremal problems – general framework

Framework

Setting:

A finite set V and a k-uniform hypergraph H ⊆ P(V ) on V .

Questions:

What is the size of the largest independent set in H?

What are the largest independent sets in H?

How many independent sets does H have?

What does a typical independent set look like?

Questions: (Sparse random variants)

What is the size of the largest independent set in G (v)(H, p)?

How many independent sets of size m does H have?

What does a typical independent set of size m look like?



Introduction New results

Extremal problems – general framework

Framework

Setting:

A finite set V and a k-uniform hypergraph H ⊆ P(V ) on V .

Questions:

What is the size of the largest independent set in H?

What are the largest independent sets in H?

How many independent sets does H have?

What does a typical independent set look like?

Questions: (Sparse random variants)

What is the size of the largest independent set in G (v)(H, p)?

How many independent sets of size m does H have?

What does a typical independent set of size m look like?



Introduction New results

Extremal problems – general framework

Framework

Setting:

A finite set V and a k-uniform hypergraph H ⊆ P(V ) on V .

Questions:

What is the size of the largest independent set in H?

What are the largest independent sets in H?

How many independent sets does H have?

What does a typical independent set look like?

Questions: (Sparse random variants)

What is the size of the largest independent set in G (v)(H, p)?

How many independent sets of size m does H have?

What does a typical independent set of size m look like?



Introduction New results

Extremal problems – general framework

Example: (Turán problem)

V (H) = E (Kn),

E (H) = edge-sets of copies of Kk in Kn,

H is
(k
2

)
-uniform,

Independent sets in H → Kk -free subgraphs in Kn.

Example: (Szemerédi’s Theorem)

V (H) = {1, . . . , n},
E (H) = k-term APs in [n],

H is k-uniform,

Independent sets in H → k-AP-free subsets of [n].
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Theorem (Conlon, Gowers; Schacht)

For every k and if p ≥ C (k) · n−
2

k+2 , then a.a.s.,

ex(G (n, p),Kk+1) =

(
1− 1

k
+ o(1)

)(
n

2

)
p.

Theorem (Conlon, Gowers; Schacht)

For every k ≥ 3 and δ > 0, if p ≥ C (k , δ) · n−
1

k−1 , then [n]p is
w.h.p. (δ, k)-Szemerédi.
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Introduction New results

Sparse random analogues

Metatheorem (Conlon, Gowers; Samotij)

’dense’ stability result
+ =⇒ ’sparse’ stability result

removal lemma

Theorem (Conlon, Gowers)

For every k ≥ 2 and every δ > 0, there exist C and ε > 0 such

that if p ≥ Cn−
2

k+2 , then a.a.s. every Kk+1-free subgraph of
G (n, p) with at least (1− 1

k − ε)
(n
2

)
p edges may be made k-partite

by removing at most δn2p edges.
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Sparse analogues of counting problems

Definition

For a hypergraph H, let

I(H) := independent sets in H.

Definition

Let V be a (finite) set. A family F ⊆ P(V ) is increasing
(an upset) if A ∈ F and B ⊇ A imply B ∈ F .

Definition

Let H be a k-uniform hypergraph, F ⊆ P(V (H)) an upset, and
ε > 0. We say that H is (F , ε)-dense if for every A ∈ F ,

e(H[A]) ≥ εe(H).
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Refined framework

Example

The following hypergraph is (F , ε)-dense:

V (H) = [n],

E (H) = k-term APs,

F = {A ⊆ [n] : |A| ≥ δn}.

Example

The following hypergraph is also (F , ε)-dense:

V (H) = E (Kn),

E (H) = edge sets of copies of Kk+1,

F = graphs with at least (1− 1/k + ε)
(n
2

)
edges.
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Main result

Theorem (Balogh, Morris, Samotij)

For every k and ε, there is m0 = m0(N) such that if H is an
N-vertex k-uniform hypergraph which

is (F , ε)-dense for some upset F ⊆ P(V (H)) and

satisfies certain technical conditions, [bounds on degrees,
co-degrees]

then there are

a family S ⊆
(V (H)
≤m0

)
and

functions f : S → Fc and g : I(H)→ S
such that for every I ∈ I(H)

g(I ) ⊆ I and I \ g(I ) ⊆ f (g(I )).
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Introduction New results

Corollaries

Implies most results of Conlon-Gowers, and Schacht:

Sparse Szemerédi Theorem.

Sparse Turán Theorem.

Sparse Erdős- Stone Theorem (for balanced graphs).

Sparse stability theorem.

Proof is much shorter and simpler!
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Corollaries – Turán problem

Theorem (Balogh, Morris, Samotij)

For every k and δ > 0, if m ≥ C (k , δ)n2−2/(k+2), then almost
every Kk+1-free n-vertex graph with m edges can be made
k-partite by removing from it at most δm edges.
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Corollaries – Szemerédi Theorem

Theorem (Balogh, Morris, Samotij)

For every k ≥ 3 and δ > 0, if m ≥ C (k , δ)n1− 1
k−1 , then

#m-subsets of [n] with no k-term AP ≤
(
δn

m

)
.

Corollary

For every k ≥ 3 and every δ′ > 0, if p ≥ C (k , δ′) · n−
1

k−1 , then
a.a.s. [n]p is (δ′, k)-Szemerédi.

Proof.

m := δ′pn, δ := δ′/e2.
P
(
[n]p contains a k-term AP-free set of size δ′np

)
≤
(
δn
m

)
· pm ≤

(
eδnp
δ′np

)δ′np
= o(1).
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Introduction New results

How to apply the meta-theorem?

Theorem (Balogh, Morris, Samotij)

For every k ≥ 3 and δ > 0, if m ≥ C (k , δ)n1− 1
k−1 , then

#m-subsets of [n] with no k-term AP ≤
(
δn

m

)
.

Form the hypergraph H with V (H) = [n],E (H) = {k-AP}.
Check if it satisfies co-degree conditions. (easily).

F := {A ⊆ [n] : |A| ≥ δn}. (upset)

Averaging gives that every A ∈ F contains at least cn2

k-AP’s.

There are functions g : I(H)→ S and f : S → Fc .

For given I independent set, S = g(I ) ⊂ I ⊂ f (S) ∪ S .

|S| is small, |f (S)| is small, so number of ways of choosing I
is small.
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On the structure of subsets of [n] with no k-term AP:

Theorem (Balogh, Morris, Samotij)

For every k ≥ 3, δ > 0 there is a C such that for

t = 2Cn
1−1/k log n.

there are F1, . . . ,Ft ⊂ [n],
each of size at most δn,
such that for every subset of [n] with no k-term AP there is an Fi

containing it.



Introduction New results

The KLR-conjecture

Szemerédi Regularity Lemma useful with Embedding Lemma:

(V1,V2), (V1,V3), (V2,V3) regular dense pairs then there is a
triangle v1v2v3 with vi ∈ Vi .

Sparse Regularity Lemma [Kohayakawa 97, Rödl 97, Scott 11]

Luczak: Embedding Lemma is false!

KLR-Conjecture, BMS-Theorem: Counterexamples are rare!

Conlon, Gowers, Samotij, Schacht (2012++)
Counterexamples even for the counting lemma are rare in
random graphs!
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Luczak: Embedding Lemma is false!

KLR-Conjecture, BMS-Theorem: Counterexamples are rare!

Conlon, Gowers, Samotij, Schacht (2012++)
Counterexamples even for the counting lemma are rare in
random graphs!



Introduction New results

The KLR-conjecture
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Szemerédi Regularity Lemma useful with Embedding Lemma:

(V1,V2), (V1,V3), (V2,V3) regular dense pairs then there is a
triangle v1v2v3 with vi ∈ Vi .

Sparse Regularity Lemma [Kohayakawa 97, Rödl 97, Scott 11]
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Introduction New results

One proof idea for 2-uniform hypergraphs

Max degree ordering of H: v1 max degree vertex in H.
v2 max degree vertex in H− v1.. . .

Given I independent set, find S ⊂ I ⊂ f (S) ∪ S .

Let s1 = vi be first vertex of I . Remove v1, . . . , vi−1,N(s1).

Build S until |S | = Cpn, remaining alive vertices form f (S).

density conditions imply that always many vertices are
removed, i.e. |f (S)| is small.
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