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If 6(Gn) > (14 o(1))n/2 then T, C G, for every bounded
degree tree.
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Balogh, Csaba, Pei and Samotij (2010)
For every ¢ > 0,d if p > % Iog% then w.h.p. G(n, p) contains
every tree T with |T| < (1 —¢€)n, A(T) < d.
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degree tree.
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every tree T with |T| < (1 —¢€)n, A(T) < d.
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A.a.s. every subgraph of G(n, p) with minimum degree at
least (1/2 + €)np contains every bounded degree tree with
(1 — €)n vertices, where p > C(€)/n.
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If 6(Gn) > (14 o(1))n/2 then T, C G, for every bounded
degree tree.

@ Pdsa; Friedman-Pippinger; Haxell; Alon-Krivelevich-Sudakov;
Balogh, Csaba, Pei and Samotij (2010)
For every ¢ > 0,d if p > % Iog% then w.h.p. G(n, p) contains
every tree T with |T| < (1 —¢€)n, A(T) < d.

@ Balogh, Csaba, and Samotij (2011)
A.a.s. every subgraph of G(n, p) with minimum degree at
least (1/2 + €)np contains every bounded degree tree with
(1 — €)n vertices, where p > C(€)/n.

@ For what p will a.a.s. G(n, p) contain every bounded degree
spanning tree?
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Example: Bounded degree Trees in graphs

@ Komlés, G. Sarkozy, Szemerédi (1995)
If 6(Gn) > (14 o(1))n/2 then T, C G, for every bounded
degree tree.

@ Pdsa; Friedman-Pippinger; Haxell; Alon-Krivelevich-Sudakov;
Balogh, Csaba, Pei and Samotij (2010)
For every ¢ > 0,d if p > % Iog% then w.h.p. G(n, p) contains
every tree T with |T| < (1 —¢€)n, A(T) < d.

@ Balogh, Csaba, and Samotij (2011)
A.a.s. every subgraph of G(n, p) with minimum degree at
least (1/2 + €)np contains every bounded degree tree with
(1 — €)n vertices, where p > C(€)/n.

@ For what p will a.a.s. G(n, p) contain every bounded degree
spanning tree? Johannsen, Krivelevich, Samotij (2012)
p = n~1/3+o(1) is sufficient.
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e Corradi, Hajnal (1963)
If §(Gsn) > 2n then Gz, contains a triangle-factor.

@ Johansson, Kahn, Vu (2008)
If p>> n=%/3(log n)'/3 then w.h.p. G(3n, p) contains a
triangle-factor.

@ Balogh, Lee, Samotij (2012)
For all 4 > 0, there exists C such that if p > ((log n)/n)*/?,
then a.a.s. every H C G(n; p) with 6(H) > (2/3 + ~)np
contains a triangle packing that covers all but at most C/p2
vertices.

@ Sudakov, Hao, Lee (2011) C/p? is best possible.
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e Corradi, Hajnal (1963)
If §(Gsn) > 2n then Gz, contains a triangle-factor.

@ Johansson, Kahn, Vu (2008)
If p>> n=%/3(log n)'/3 then w.h.p. G(3n, p) contains a
triangle-factor.

@ Balogh, Lee, Samotij (2012)
For all 4 > 0, there exists C such that if p > ((log n)/n)*/?,
then a.a.s. every H C G(n; p) with 6(H) > (2/3 + ~)np
contains a triangle packing that covers all but at most C/p2
vertices.

@ Sudakov, Hao, Lee (2011) C/p? is best possible.
@ What about larger cliques?
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Example: Ks-factors in graphs

@ Hajnal, Szemerédi (1970)
If 6(Gsn) > (s — 1)n then G, contains a Ks-factor.

@ Johansson, Kahn, Vu (2008)
If p>> n=(=1/[s(=Dl(log n)1/s then w.h.p. G(sn, p) contains
a K,-factor.

@ Balogh, Morris, Samotij (2012+)
Conlon, Gowers, Samotij, Schacht (2012++)
For every s if p > n=2/(st1) then a.a.s. every H C G(sn; p)
with §(H) > [s — 1 + o(1)]np contains a Ks-packing that
covers all but o(n) vertices.
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@ Turdn (1941)
ex(n, K1) = te(n) = (1 — % +o(1)) ().
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e Erdés, Frankl, Rodl (1986)

There are 2(1+o(1))-ex(nKii1) Kk1-free graphs on n vertices.
e Kolaitis, Promel, Rotshchild (1987)

Almost all Ky 1-free graphs are k-partite.

Related Sparse questions:

@ For what p is the following true?
ex(G(n, p), Kkt1) = (1 — £ +0o(1)p(5).
e For what m = m(n) is the following true?
The number K, 1-free graphs with m edges is (tk(”);"(”z)).
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Example: Turdn type Theorems

@ Turdn (1941)

ex(n, K1) = te(n) = (1 = £ + 0(1))(3)-
e Erdés, Frankl, Rodl (1986)

There are 2(1+o(1))-ex(nKii1) Kk1-free graphs on n vertices.
e Kolaitis, Promel, Rotshchild (1987)

Almost all Ky 1-free graphs are k-partite.

Related Sparse questions:

@ For what p is the following true?
ex(G(n, p), Kkt1) = (1 — £ +0o(1)p(5).
e For what m = m(n) is the following true?

The number K, 1-free graphs with m edges is (tk(”);"(”z)).

@ For what m = m(n) is the following true?
A.a. Kii1-free graphs with m edges are (almost) k-partite.
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|B| > 6|A| contains an arithmetic progression of length k. (k-AP).
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v

Theorem

For every § > 0, k, for sufficiently large n, the set [n] is
(6, k)-Szemerédi.

A,

Related Sparse questions:

e For what p = p(d, k) a p-random subset of [n] is w.h.p.
(0, k)-Szemerédi?
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We say that A C [n] is (9, k)-Szemerédi, if every B C A with
|B| > d|A| contains an arithmetic progression of length k. (k-AP)

v

Theorem

For every § > 0, k, for sufficiently large n, the set [n] is
(6, k)-Szemerédi.

A,

Related Sparse questions:

e For what p = p(d, k) a p-random subset of [n] is w.h.p.
(0, k)-Szemerédi?

e For a given m, how many m-subset of [n] does not contain an
k-AP?
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Conjecture (Erdés, $5000)

If R C N satisfies )
APs.

neR = = 00, then R contains arbitrarily long

Theorem (Green—Tao [2004])

Let A C P be a subset of the primes whose upper density is
positive, i.e.,

: |AN [n]|
limsup ——— >0
s [P O[]

Then A contains arbitrarily long APs.
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Generalizing Szemerédi's theorem

Theorem (Green—Tao [2004])

Every subset of the primes with positive upper density contains
arbitrarily long APs.

B. Green
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o A finite set V and a k-uniform hypergraph H C P(V) on V.
Questions:

@ What is the size of the largest independent set in H?

@ What are the largest independent sets in H?

@ How many independent sets does H have?

@ What does a typical independent set look like?

Questions: (Sparse random variants)

@ What is the size of the largest independent set in G(")(H,p)?

@ How many independent sets of size m does H have?

@ What does a typical independent set of size m look like?
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@ Independent sets in H  —  Kj-free subgraphs in K.
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Extremal problems — general framework

Example: (Turdn problem)
o V(H) = E(K,),
o E(H) = edge-sets of copies of K in K,
o His (g)—uniform,

@ Independent sets in H  —  Kj-free subgraphs in K.

Example: (Szemerédi's Theorem)
o V(H)={1,...,n},
o E(H) = k-term APs in [n],

@ H is k-uniform,

o Independent sets in H —  k-AP-free subsets of [n].
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Sparse random analogues

Metatheorem (Conlon, Gowers; Schacht (2010+++))

'dense’ extremal result
4 —> 'sparse’ extremal result.
supersaturation

E

.
Yl

Dr D. Conlon Sir W.T. Gowers Dr M. Schacht
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Theorem (Conlon, Gowers; Schacht)

For every k and if p > C(k) - n_k%ﬂ, then a.a.s.,

ex(6(0.p). Kisa) = (1= +o) (3)e
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Sparse random analogues

Metatheorem (Conlon, Gowers; Schacht (2010+++))

'dense’ extremal result
= =—> 'sparse’ extremal result.
supersaturation

Theorem (Conlon, Gowers; Schacht)

For every k and if p > C(k) - n_k%ﬂ, then a.a.s.,

ex(6(0.p). Kisa) = (1= +o) (3)e

A

Theorem (Conlon, Gowers; Schacht)

For every k > 3 and § > 0, if p > C(k,0) - n_ﬁ, then [n], is
w.h.p. (9, k)-Szemerédi.
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Sparse random analogues

Metatheorem (Conlon, Gowers; Samotij)

'dense’ stability result

+ — 'sparse’ stability result
removal lemma

Theorem (Conlon, Gowers)

For every k > 2 and every § > 0, there exist C and € > 0 such
2
that if p > Cn™ k+2, then a.a.s. every Ky 1-free subgraph of

G(n, p) with at least (1 — % — €)(5) p edges may be made k-partite
by removing at most §n’p edges.
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For a hypergraph H, let

Z(#H) := independent sets in H.

v

Let V be a (finite) set. A family F C P(V) is increasing
(an upset) if Ae F and B2 Aimply B € F.
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Sparse analogues of counting problems

For a hypergraph H, let

Z(#H) := independent sets in H.

Let V be a (finite) set. A family F C P(V) is increasing
(an upset) if Ae F and B2 Aimply B € F.

Let H be a k-uniform hypergraph, 7 C P(V(H)) an upset, and
e > 0. We say that H is (F,e)-dense if for every A € F,

e(H[A]) > ce(H).




New results
oe

Refined framework

The following hypergraph is (F, £)-dense:
o V(H) = r],
o E(H) = k-term APs,
o F={AC|[n]: |Al > dn}.




New results
oe

Refined framework

The following hypergraph is (F, £)-dense:
o V(H) = r],
o E(H) = k-term APs,
o F={AC|[n]: |Al > dn}.

The following hypergraph is also (F, £)-dense:
o V(H) = E(Kn),
o E(#) = edge sets of copies of Kj1,
o F = graphs with at least (1 —1/k +¢)(5) edges.

A\
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Main result

Theorem (Balogh, Morris, Samotij)

For every k and ¢, there is mg = mo(N) such that if H is an
N-vertex k-uniform hypergraph which

e is (F,¢e)-dense for some upset F C P(V(H)) and

@ satisfies certain technical conditions, [bounds on degrees,
co-degrees|

then there are

e a family S C (\;(;?) and

e functions f: S — F¢ and g: Z(H) — S
such that for every | € Z(H)

g() 1 and 1\g(l)C Fg(l)).

New results
oooe
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Corollaries

Implies most results of Conlon-Gowers, and Schacht:

@ Sparse Szemerédi Theorem.
@ Sparse Turdan Theorem.
@ Sparse Erdés- Stone Theorem (for balanced graphs).

@ Sparse stability theorem.

Proof is much shorter and simpler!
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Corollaries — Turan problem

Theorem (Balogh, Morris, Samotij)

For every k and § > 0, if m > C(k,8)n?>=2/(k+2) then almost
every Ky1-free n-vertex graph with m edges can be made
k-partite by removing from it at most dm edges.
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Theorem (Balogh, Morris, Samotij)

For every k >3 and 6 > 0, if m > C(k,é)nl_ﬁ, then

#m-subsets of [n] with no k-term AP < <c:1>
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Corollaries — Szemerédi Theorem

Theorem (Balogh, Morris, Samotij)

For every k >3 and 6 > 0, if m > C(k,é)nl_ﬁ, then

#m-subsets of [n] with no k-term AP < <c:1>

<

Corollary

For every k > 3 and every ' >0, if p > C(k,d") - nfk%l, then
a.a.s. [n]p is (8, k)-Szemerédi.
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Corollaries — Szemerédi Theorem

Theorem (Balogh, Morris, Samotij)

For every k >3 and 6 > 0, if m > C(k,é)nl_ﬁ, then

#m-subsets of [n] with no k-term AP < <i:>

Corollary

For every k > 3 and every ' >0, if p > C(k,d") - nfk%l, then
a.a.s. [n]p is (8, k)-Szemerédi.

Proof.

m:=6'pn, & :=8/e.
P([n]p contains a k-term AP-free set of size §'np)

!

&' np
< () -pm< (52) " = o1). O

N
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How to apply the meta-theorem?

Theorem (Balogh, Morris, Samotij)

For every k >3 and 6 > 0, if m > C(k,é)nl_ﬁ, then

#m-subsets of [n] with no k-term AP < <i:>

Form the hypergraph H with V(#) = [n], E(H) = {k-AP}.
Check if it satisfies co-degree conditions. (easily).

F :={AC[n]: |A] > dn}. (upset)

Averaging gives that every A € F contains at least cn®
k-AP's.

There are functions g: Z(H) - S and f: § — F°€.
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How to apply the meta-theorem?

Theorem (Balogh, Morris, Samotij)

For every k >3 and 6 > 0, if m > C(k,é)nl_ﬁ, then

#m-subsets of [n] with no k-term AP < <i:>

Form the hypergraph H with V(#) = [n], E(H) = {k-AP}.
Check if it satisfies co-degree conditions. (easily).

F :={AC[n]: |A] > dn}. (upset)

Averaging gives that every A € F contains at least cn®
k-AP's.

There are functions g: Z(H) - S and f: § — F°€.

For given | independent set, S = g(/) C | C f(S)US.

|S| is small, |£(S)] is small, so number of ways of choosing /
is small.
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On the structure of subsets of [n] with no k-term AP:

Theorem (Balogh, Morris, Samotij)
For every k > 3,0 > 0 there is a C such that for

= 2Cn1_1/k log n

there are Fy,...,F: C [n],

each of size at most dn,

such that for every subset of [n] with no k-term AP there is an F;
containing it.
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New results

The KLR-conjecture

@ Szemerédi Regularity Lemma useful with Embedding Lemma:
(Vi, Vo), (V4, V3), (Va, V3) regular dense pairs then there is a
triangle viwov3 with v; € V.

Sparse Regularity Lemma [Kohayakawa 97, Rodl 97, Scott 11]

Luczak: Embedding Lemma is false!
KLR-Conjecture, BMS-Theorem: Counterexamples are rare!

Conlon, Gowers, Samotij, Schacht (2012++)
Counterexamples even for the counting lemma are rare in
random graphs!
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New results

One proof idea for 2-uniform hypergraphs

@ Max degree ordering of H: v; max degree vertex in H.
v» max degree vertex in H — vy....

Given [ independent set, find S C | C f(S)US.
Let s; = v; be first vertex of /. Remove vy, ..., v;_1, N(s1).

Build S until |S| = Cpn, remaining alive vertices form f(5).

e 6 o6 o

density conditions imply that always many vertices are
removed, i.e. |f(S)| is small.



	Introduction
	Extremal problems in combinatorics

	New results
	Sparse analogues of counting problems
	Main result
	Corollaries
	Corollaries


