Extremal Theorems in Random Discrete Structures

József Balogh

February 2013

• Classical extremal Theorems in combinatorics.

- Classical extremal Theorems in combinatorics.
- Is the random sparse variant true?

Example: Bounded degree Trees in graphs

• Komlós, G. Sárközy, Szemerédi (1995) If $\delta(G_n) \ge (1 + o(1))n/2$ then $T_n \subset G_n$ for every bounded degree tree.

- Komlós, G. Sárközy, Szemerédi (1995) If $\delta(G_n) \ge (1 + o(1))n/2$ then $T_n \subset G_n$ for every bounded degree tree.
- Pósa; Friedman-Pippinger; Haxell; Alon-Krivelevich-Sudakov; Balogh, Csaba, Pei and Samotij (2010) For every ε > 0, d if p > d/εn log 1/ε then w.h.p. G(n, p) contains every tree T with |T| < (1 − ε)n, Δ(T) < d.

- Komlós, G. Sárközy, Szemerédi (1995) If $\delta(G_n) \ge (1 + o(1))n/2$ then $T_n \subset G_n$ for every bounded degree tree.
- Pósa; Friedman-Pippinger; Haxell; Alon-Krivelevich-Sudakov; Balogh, Csaba, Pei and Samotij (2010)
 For every ε > 0, d if p > d/εn log 1/ε then w.h.p. G(n, p) contains every tree T with |T| < (1 − ε)n, Δ(T) < d.
- Balogh, Csaba, and Samotij (2011)
 A.a.s. every subgraph of G(n, p) with minimum degree at least (1/2 + ε)np contains every bounded degree tree with (1 ε)n vertices, where p > C(ε)/n.

- Komlós, G. Sárközy, Szemerédi (1995) If $\delta(G_n) \ge (1 + o(1))n/2$ then $T_n \subset G_n$ for every bounded degree tree.
- Pósa; Friedman-Pippinger; Haxell; Alon-Krivelevich-Sudakov; Balogh, Csaba, Pei and Samotij (2010)
 For every ε > 0, d if p > d/εn log 1/ε then w.h.p. G(n, p) contains every tree T with |T| < (1 − ε)n, Δ(T) < d.
- Balogh, Csaba, and Samotij (2011)
 A.a.s. every subgraph of G(n, p) with minimum degree at least (1/2 + ε)np contains every bounded degree tree with (1 ε)n vertices, where p > C(ε)/n.
- For what *p* will a.a.s. *G*(*n*, *p*) contain every bounded degree spanning tree?

- Komlós, G. Sárközy, Szemerédi (1995) If $\delta(G_n) \ge (1 + o(1))n/2$ then $T_n \subset G_n$ for every bounded degree tree.
- Pósa; Friedman-Pippinger; Haxell; Alon-Krivelevich-Sudakov; Balogh, Csaba, Pei and Samotij (2010)
 For every ε > 0, d if p > d/εn log 1/ε then w.h.p. G(n, p) contains every tree T with |T| < (1 − ε)n, Δ(T) < d.
- Balogh, Csaba, and Samotij (2011) A.a.s. every subgraph of G(n, p) with minimum degree at least $(1/2 + \epsilon)np$ contains every bounded degree tree with $(1 - \epsilon)n$ vertices, where $p > C(\epsilon)/n$.
- For what p will a.a.s. G(n, p) contain every bounded degree spanning tree? Johannsen, Krivelevich, Samotij (2012) $p = n^{-1/3+o(1)}$ is sufficient.

Example: Triangle factors in graphs

Example: Triangle factors in graphs

• Corrádi, Hajnal (1963) If $\delta(G_{3n}) \ge 2n$ then G_{3n} contains a triangle-factor.

Example: Triangle factors in graphs

- Corrádi, Hajnal (1963) If $\delta(G_{3n}) \ge 2n$ then G_{3n} contains a triangle-factor.
- Johansson, Kahn, Vu (2008)

If $p \gg n^{-2/3} (\log n)^{1/3}$ then w.h.p. G(3n, p) contains a triangle-factor.

Example: Triangle factors in graphs

- Corrádi, Hajnal (1963) If $\delta(G_{3n}) \ge 2n$ then G_{3n} contains a triangle-factor.
- Johansson, Kahn, Vu (2008)
 - If $p \gg n^{-2/3} (\log n)^{1/3}$ then w.h.p. G(3n, p) contains a triangle-factor.
- Balogh, Lee, Samotij (2012)

For all $\gamma > 0$, there exists *C* such that if $p \gg ((\log n)/n)^{1/2}$, then a.a.s. every $H \subset G(n; p)$ with $\delta(H) > (2/3 + \gamma)np$ contains a triangle packing that covers all but at most C/p^2 vertices.

• Sudakov, Hao, Lee (2011) C/p^2 is best possible.

Example: Triangle factors in graphs

- Corrádi, Hajnal (1963) If $\delta(G_{3n}) \ge 2n$ then G_{3n} contains a triangle-factor.
- Johansson, Kahn, Vu (2008)

If $p \gg n^{-2/3} (\log n)^{1/3}$ then w.h.p. G(3n, p) contains a triangle-factor.

• Balogh, Lee, Samotij (2012)

For all $\gamma > 0$, there exists *C* such that if $p \gg ((\log n)/n)^{1/2}$, then a.a.s. every $H \subset G(n; p)$ with $\delta(H) > (2/3 + \gamma)np$ contains a triangle packing that covers all but at most C/p^2 vertices.

- Sudakov, Hao, Lee (2011) C/p^2 is best possible.
- What about larger cliques?

Example: K_s-factors in graphs

Example: K_s -factors in graphs

• Hajnal, Szemerédi (1970)

If $\delta(G_{sn}) \ge (s-1)n$ then G_{sn} contains a K_s -factor.

Example: K_s -factors in graphs

- Hajnal, Szemerédi (1970) If $\delta(G_{sn}) \ge (s-1)n$ then G_{sn} contains a K_s -factor.
- Johansson, Kahn, Vu (2008) If $p \gg n^{-(s-1)/[s(s-1)]} (\log n)^{1/s}$ then w.h.p. G(sn, p) contains a K_s -factor.

Example: K_s -factors in graphs

- Hajnal, Szemerédi (1970) If $\delta(G_{sn}) \ge (s-1)n$ then G_{sn} contains a K_s -factor.
- Johansson, Kahn, Vu (2008) If $p \gg n^{-(s-1)/[s(s-1)]} (\log n)^{1/s}$ then w.h.p. G(sn, p) contains a K_s -factor.
- Balogh, Morris, Samotij (2012+) Conlon, Gowers, Samotij, Schacht (2012++) For every s if p ≫ n^{-2/(s+1)}, then a.a.s. every H ⊂ G(sn; p) with δ(H) > [s − 1 + o(1)]np contains a K_s-packing that covers all but o(n) vertices.

Example: Turán type Theorems

Example: Turán type Theorems

• Turán (1941) $ex(n, K_{k+1}) = t_k(n) = (1 - \frac{1}{k} + o(1))\binom{n}{2}.$

Example: Turán type Theorems

• Turán (1941)

$$ex(n, K_{k+1}) = t_k(n) = (1 - \frac{1}{k} + o(1))\binom{n}{2}$$

• Erdős, Frankl, Rödl (1986) There are $2^{(1+o(1))\cdot ex(n,K_{k+1})} K_{k+1}$ -free graphs on *n* vertices.

Example: Turán type Theorems

• Turán (1941)

$$ex(n, K_{k+1}) = t_k(n) = (1 - \frac{1}{k} + o(1))\binom{n}{2}$$

- Erdős, Frankl, Rödl (1986) There are $2^{(1+o(1))\cdot ex(n,K_{k+1})} K_{k+1}$ -free graphs on *n* vertices.
- Kolaitis, Prömel, Rotshchild (1987) Almost all K_{k+1}-free graphs are k-partite.

Example: Turán type Theorems

• Turán (1941)

$$ex(n, K_{k+1}) = t_k(n) = (1 - \frac{1}{k} + o(1))\binom{n}{2}$$

- Erdős, Frankl, Rödl (1986) There are $2^{(1+o(1))\cdot ex(n,K_{k+1})}$ K_{k+1} -free graphs on *n* vertices.
- Kolaitis, Prömel, Rotshchild (1987) Almost all K_{k+1}-free graphs are k-partite.

Related Sparse questions:

Example: Turán type Theorems

• Turán (1941)

$$ex(n, K_{k+1}) = t_k(n) = (1 - \frac{1}{k} + o(1))\binom{n}{2}$$

- Erdős, Frankl, Rödl (1986) There are $2^{(1+o(1))\cdot ex(n,K_{k+1})}$ K_{k+1} -free graphs on *n* vertices.
- Kolaitis, Prömel, Rotshchild (1987) Almost all K_{k+1}-free graphs are k-partite.

Related Sparse questions:

• For what p is the following true? $ex(G(n,p), K_{k+1}) = (1 - \frac{1}{k} + o(1))p\binom{n}{2}.$

Example: Turán type Theorems

• Turán (1941)

$$ex(n, K_{k+1}) = t_k(n) = (1 - \frac{1}{k} + o(1))\binom{n}{2}$$

- Erdős, Frankl, Rödl (1986) There are $2^{(1+o(1))\cdot ex(n,K_{k+1})}$ K_{k+1} -free graphs on *n* vertices.
- Kolaitis, Prömel, Rotshchild (1987) Almost all K_{k+1}-free graphs are k-partite.

Related Sparse questions:

- For what p is the following true? $ex(G(n,p), K_{k+1}) = (1 - \frac{1}{k} + o(1))p\binom{n}{2}.$
- For what m = m(n) is the following true? The number K_{k+1} -free graphs with m edges is $\binom{t_k(n)+o(n^2)}{m}$.

Example: Turán type Theorems

• Turán (1941)

$$ex(n, K_{k+1}) = t_k(n) = (1 - \frac{1}{k} + o(1))\binom{n}{2}.$$

- Erdős, Frankl, Rödl (1986) There are $2^{(1+o(1))\cdot ex(n,K_{k+1})}$ K_{k+1} -free graphs on *n* vertices.
- Kolaitis, Prömel, Rotshchild (1987) Almost all K_{k+1}-free graphs are k-partite.

Related Sparse questions:

- For what p is the following true? $ex(G(n,p), K_{k+1}) = (1 - \frac{1}{k} + o(1))p\binom{n}{2}.$
- For what m = m(n) is the following true? The number K_{k+1} -free graphs with m edges is $\binom{t_k(n)+o(n^2)}{m}$.
- For what m = m(n) is the following true? A.a. K_{k+1} -free graphs with m edges are (almost) k-partite.

Classical Extremal Theorems in Additive Combinatorics

Definition

We say that $A \subset [n]$ is (δ, k) -Szemerédi, if every $B \subset A$ with $|B| > \delta |A|$ contains an arithmetic progression of length k. (k-AP).

Definition

We say that $A \subset [n]$ is (δ, k) -Szemerédi, if every $B \subset A$ with $|B| > \delta |A|$ contains an arithmetic progression of length k. (k-AP).

Theorem Szemerédi (1975)

For every $\delta > 0, k$, for sufficiently large n, the set [n] is (δ, k) -Szemerédi.

Definition

We say that $A \subset [n]$ is (δ, k) -Szemerédi, if every $B \subset A$ with $|B| > \delta |A|$ contains an arithmetic progression of length k. (k-AP).

Theorem Szemerédi (1975)

For every $\delta > 0, k$, for sufficiently large n, the set [n] is (δ, k) -Szemerédi.

Related Sparse questions:

 For what p = p(δ, k) a p-random subset of [n] is w.h.p. (δ, k)-Szemerédi?

Definition

We say that $A \subset [n]$ is (δ, k) -Szemerédi, if every $B \subset A$ with $|B| > \delta |A|$ contains an arithmetic progression of length k. (k-AP).

Theorem Szemerédi (1975)

For every $\delta > 0, k$, for sufficiently large n, the set [n] is (δ, k) -Szemerédi.

Related Sparse questions:

- For what p = p(δ, k) a p-random subset of [n] is w.h.p. (δ, k)-Szemerédi?
- For a given *m*, how many *m*-subset of [*n*] does not contain an k-AP?

Conjecture (Erdős)

If $R \subseteq \mathbb{N}$ satisfies $\sum_{n \in R} \frac{1}{n} = \infty$, then R contains arbitrarily long APs.

Conjecture (Erdős, \$5000)

If $R \subseteq \mathbb{N}$ satisfies $\sum_{n \in R} \frac{1}{n} = \infty$, then R contains arbitrarily long APs.

Conjecture (Erdős, \$5000)

If $R \subseteq \mathbb{N}$ satisfies $\sum_{n \in R} \frac{1}{n} = \infty$, then R contains arbitrarily long APs.

Theorem (Green–Tao [2004])

Let $A \subseteq \mathbb{P}$ be a subset of the primes whose upper density is positive, i.e.,

$$\limsup_{n\to\infty}\frac{|A\cap[n]|}{|\mathbb{P}\cap[n]|}>0$$

Then A contains arbitrarily long APs.

Theorem (Green-Tao [2004])

Every subset of the primes with positive upper density contains arbitrarily long APs.

Framework

Setting:

• A finite set V and a k-uniform hypergraph $\mathcal{H} \subseteq \mathcal{P}(V)$ on V.

Framework

Setting:

• A finite set V and a k-uniform hypergraph $\mathcal{H} \subseteq \mathcal{P}(V)$ on V. Questions:

Framework

Setting:

• A finite set V and a k-uniform hypergraph $\mathcal{H} \subseteq \mathcal{P}(V)$ on V. Questions:

• What is the size of the largest independent set in \mathcal{H} ?

Framework

Setting:

• A finite set V and a k-uniform hypergraph $\mathcal{H} \subseteq \mathcal{P}(V)$ on V. Questions:

- What is the size of the largest independent set in \mathcal{H} ?
- What are the largest independent sets in \mathcal{H} ?

Framework

Setting:

• A finite set V and a k-uniform hypergraph $\mathcal{H} \subseteq \mathcal{P}(V)$ on V. Questions:

- What is the size of the largest independent set in \mathcal{H} ?
- What are the largest independent sets in \mathcal{H} ?
- How many independent sets does $\mathcal H$ have?

Framework

Setting:

• A finite set V and a k-uniform hypergraph $\mathcal{H} \subseteq \mathcal{P}(V)$ on V. Questions:

- What is the size of the largest independent set in \mathcal{H} ?
- What are the largest independent sets in \mathcal{H} ?
- How many independent sets does $\mathcal H$ have?
- What does a typical independent set look like?

Questions: (Sparse random variants)

Framework

Setting:

• A finite set V and a k-uniform hypergraph $\mathcal{H} \subseteq \mathcal{P}(V)$ on V. Questions:

- What is the size of the largest independent set in \mathcal{H} ?
- What are the largest independent sets in \mathcal{H} ?
- How many independent sets does $\mathcal H$ have?
- What does a typical independent set look like?

Questions: (Sparse random variants)

• What is the size of the largest independent set in $G^{(v)}(\mathcal{H}, p)$?

Framework

Setting:

• A finite set V and a k-uniform hypergraph $\mathcal{H} \subseteq \mathcal{P}(V)$ on V. Questions:

- What is the size of the largest independent set in \mathcal{H} ?
- What are the largest independent sets in \mathcal{H} ?
- How many independent sets does $\mathcal H$ have?
- What does a typical independent set look like?

Questions: (Sparse random variants)

- What is the size of the largest independent set in $G^{(v)}(\mathcal{H}, p)$?
- How many independent sets of size m does \mathcal{H} have?

Framework

Setting:

• A finite set V and a k-uniform hypergraph $\mathcal{H} \subseteq \mathcal{P}(V)$ on V. Questions:

- What is the size of the largest independent set in \mathcal{H} ?
- What are the largest independent sets in \mathcal{H} ?
- How many independent sets does $\mathcal H$ have?
- What does a typical independent set look like?

Questions: (Sparse random variants)

- What is the size of the largest independent set in $G^{(v)}(\mathcal{H}, p)$?
- How many independent sets of size *m* does *H* have?
- What does a typical independent set of size *m* look like?

Example: (Turán problem)

- $V(\mathcal{H}) = E(K_n)$,
- $E(\mathcal{H}) =$ edge-sets of copies of K_k in K_n ,
- \mathcal{H} is $\binom{k}{2}$ -uniform,
- Independent sets in $\mathcal{H} \rightarrow K_k$ -free subgraphs in K_n .

Example: (Turán problem)

- $V(\mathcal{H}) = E(K_n)$,
- $E(\mathcal{H}) =$ edge-sets of copies of K_k in K_n ,
- \mathcal{H} is $\binom{k}{2}$ -uniform,
- Independent sets in $\mathcal{H} \rightarrow K_k$ -free subgraphs in K_n .

Example: (Szemerédi's Theorem)

- $V(\mathcal{H}) = \{1, ..., n\},\$
- $E(\mathcal{H}) = k$ -term APs in [n],
- \mathcal{H} is *k*-uniform,
- Independent sets in $\mathcal{H} \rightarrow \text{k-AP-free subsets of } [n]$.

Dr D. Conlon

Sir W.T. Gowers

Dr M. Schacht

Theorem (Conlon, Gowers; Schacht)

For every k and if $p \ge C(k) \cdot n^{-\frac{2}{k+2}}$, then a.a.s.,

$$\exp(G(n,p), \mathcal{K}_{k+1}) = \left(1 - \frac{1}{k} + o(1)\right) \binom{n}{2} p.$$

Theorem (Conlon, Gowers; Schacht)

For every k and if $p \ge C(k) \cdot n^{-\frac{2}{k+2}}$, then a.a.s.,

$$\exp(G(n,p), K_{k+1}) = \left(1 - \frac{1}{k} + o(1)\right) {n \choose 2} p.$$

Theorem (Conlon, Gowers; Schacht)

For every $k \ge 3$ and $\delta > 0$, if $p \ge C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then $[n]_p$ is w.h.p. (δ, k) -Szemerédi.

Metatheorem (Conlon, Gowers; Samotij)

'dense' stability result + ⇒ 'sparse' stability result removal lemma

Theorem (Conlon, Gowers)

For every $k \ge 2$ and every $\delta > 0$, there exist C and $\varepsilon > 0$ such that if $p \ge Cn^{-\frac{2}{k+2}}$, then a.a.s. every K_{k+1} -free subgraph of G(n, p) with at least $(1 - \frac{1}{k} - \varepsilon) {n \choose 2} p$ edges may be made k-partite by removing at most $\delta n^2 p$ edges.

Sparse analogues of counting problems

Definition

```
For a hypergraph \mathcal{H}, let
```

$$\mathcal{I}(\mathcal{H}) :=$$
 independent sets in \mathcal{H} .

Definition

Let V be a (finite) set. A family $\mathcal{F} \subseteq \mathcal{P}(V)$ is increasing (an upset) if $A \in \mathcal{F}$ and $B \supseteq A$ imply $B \in \mathcal{F}$.

Sparse analogues of counting problems

Definition

For a hypergraph \mathcal{H} , let

$$\mathcal{I}(\mathcal{H}) :=$$
 independent sets in \mathcal{H} .

Definition

Let V be a (finite) set. A family $\mathcal{F} \subseteq \mathcal{P}(V)$ is increasing (an upset) if $A \in \mathcal{F}$ and $B \supseteq A$ imply $B \in \mathcal{F}$.

Definition

Let \mathcal{H} be a *k*-uniform hypergraph, $\mathcal{F} \subseteq \mathcal{P}(V(\mathcal{H}))$ an upset, and $\varepsilon > 0$. We say that \mathcal{H} is $(\mathcal{F}, \varepsilon)$ -dense if for every $A \in \mathcal{F}$,

 $e(\mathcal{H}[A]) \geq \varepsilon e(\mathcal{H}).$

Refined framework

Example

The following hypergraph is $(\mathcal{F}, \varepsilon)$ -dense:

- $V(\mathcal{H}) = [n]$,
- $E(\mathcal{H}) = k$ -term APs,
- $\mathcal{F} = \{A \subseteq [n] \colon |A| \ge \delta n\}.$

Refined framework

Example

The following hypergraph is $(\mathcal{F}, \varepsilon)$ -dense:

- $V(\mathcal{H}) = [n]$,
- $E(\mathcal{H}) = k$ -term APs,

•
$$\mathcal{F} = \{A \subseteq [n] \colon |A| \ge \delta n\}.$$

Example

The following hypergraph is also $(\mathcal{F}, \varepsilon)$ -dense:

- $V(\mathcal{H}) = E(K_n)$,
- $E(\mathcal{H}) = edge sets of copies of K_{k+1}$,
- $\mathcal{F} =$ graphs with at least $(1 1/k + \varepsilon) \binom{n}{2}$ edges.

Theorem (Balogh, Morris, Samotij)

For every k and ε , there is $m_0 = m_0(N)$ such that if \mathcal{H} is an N-vertex k-uniform hypergraph which

- is $(\mathcal{F}, \varepsilon)$ -dense for some upset $\mathcal{F} \subseteq \mathcal{P}(V(\mathcal{H}))$ and
- satisfies certain technical conditions, [bounds on degrees, co-degrees]

Theorem (Balogh, Morris, Samotij)

For every k and ε , there is $m_0 = m_0(N)$ such that if \mathcal{H} is an N-vertex k-uniform hypergraph which

- is $(\mathcal{F}, \varepsilon)$ -dense for some upset $\mathcal{F} \subseteq \mathcal{P}(V(\mathcal{H}))$ and
- satisfies certain technical conditions, [bounds on degrees, co-degrees]

then there are

- a family $\mathcal{S} \subseteq {V(\mathcal{H}) \choose \leq m_0}$ and
- functions $f:\mathcal{S}\to\mathcal{F}^c$ and $g\colon\mathcal{I}(\mathcal{H})\to\mathcal{S}$

Theorem (Balogh, Morris, Samotij)

For every k and ε , there is $m_0 = m_0(N)$ such that if \mathcal{H} is an N-vertex k-uniform hypergraph which

- is $(\mathcal{F}, \varepsilon)$ -dense for some upset $\mathcal{F} \subseteq \mathcal{P}(V(\mathcal{H}))$ and
- satisfies certain technical conditions, [bounds on degrees, co-degrees]

then there are

• a family
$$\mathcal{S} \subseteq {V(\mathcal{H}) \choose \leq m_0}$$
 and

• functions $f: \mathcal{S} \to \mathcal{F}^c$ and $g: \mathcal{I}(\mathcal{H}) \to \mathcal{S}$

such that for every $I \in \mathcal{I}(\mathcal{H})$

$$g(I) \subseteq I$$
 and $I \setminus g(I) \subseteq f(g(I))$.

Implies most results of Conlon-Gowers, and Schacht:

- Sparse Szemerédi Theorem.
- Sparse Turán Theorem.
- Sparse Erdős- Stone Theorem (for balanced graphs).
- Sparse stability theorem.

Proof is much shorter and simpler!

Corollaries – Turán problem

Theorem (Balogh, Morris, Samotij)

For every k and $\delta > 0$, if $m \ge C(k, \delta)n^{2-2/(k+2)}$, then almost every K_{k+1} -free n-vertex graph with m edges can be made k-partite by removing from it at most δm edges.

Corollaries – Szemerédi Theorem

Theorem (Balogh, Morris, Samotij)

For every $k \ge 3$ and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

#*m*-subsets of [*n*] with no *k*-term
$$AP \leq \binom{\delta n}{m}$$

Corollaries – Szemerédi Theorem

Theorem (Balogh, Morris, Samotij)

For every $k \ge 3$ and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

$$\#m$$
-subsets of [n] with no k-term AP $\leq \binom{\delta n}{m}$

Corollary

For every $k \ge 3$ and every $\delta' > 0$, if $p \ge C(k, \delta') \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ is (δ', k) -Szemerédi.

Corollaries – Szemerédi Theorem

Theorem (Balogh, Morris, Samotij)

For every $k \ge 3$ and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

$$\#$$
m-subsets of [n] with no k-term AP $\leq inom{\delta n}{m}$

Corollary

For every $k \ge 3$ and every $\delta' > 0$, if $p \ge C(k, \delta') \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ is (δ', k) -Szemerédi.

Proof.

$$\begin{split} m &:= \delta' pn, \delta := \delta'/e^2. \\ P\big([n]_p \text{ contains a } k\text{-term AP-free set of size } \delta' np\big) \\ &\leq {\binom{\delta n}{m}} \cdot p^m \leq \left(\frac{e\delta np}{\delta' np}\right)^{\delta' np} = o(1). \end{split}$$

For every
$$k \ge 3$$
 and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

#*m*-subsets of [*n*] with no *k*-term
$$AP \leq {\binom{\delta n}{m}}$$

Theorem (Balogh, Morris, Samotij)

For every
$$k \ge 3$$
 and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

#*m*-subsets of [*n*] with no *k*-term
$$AP \leq {\binom{\delta n}{m}}$$
.

• Form the hypergraph \mathcal{H} with $V(\mathcal{H}) = [n], E(\mathcal{H}) = \{k-AP\}.$

For every
$$k \ge 3$$
 and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

#*m*-subsets of [*n*] with no *k*-term
$$AP \leq {\binom{\delta n}{m}}$$

- Form the hypergraph \mathcal{H} with $V(\mathcal{H}) = [n], E(\mathcal{H}) = \{k-AP\}.$
- Check if it satisfies co-degree conditions. (easily).

For every
$$k \ge 3$$
 and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

#*m*-subsets of [*n*] with no *k*-term
$$AP \leq \begin{pmatrix} \delta n \\ m \end{pmatrix}$$

- Form the hypergraph \mathcal{H} with $V(\mathcal{H}) = [n], E(\mathcal{H}) = \{k-AP\}.$
- Check if it satisfies co-degree conditions. (easily).
- $\mathcal{F} := \{A \subseteq [n] \colon |A| \ge \delta n\}$. (upset)

For every
$$k \ge 3$$
 and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

#*m*-subsets of [*n*] with no *k*-term
$$AP \leq {\binom{\delta n}{m}}$$

- Form the hypergraph \mathcal{H} with $V(\mathcal{H}) = [n], E(\mathcal{H}) = \{k-AP\}.$
- Check if it satisfies co-degree conditions. (easily).
- $\mathcal{F} := \{A \subseteq [n] \colon |A| \ge \delta n\}.$ (upset)
- Averaging gives that every A ∈ F contains at least cn² k-AP's.

For every
$$k \ge 3$$
 and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

#*m*-subsets of [*n*] with no *k*-term
$$AP \leq {\binom{\delta n}{m}}$$

- Form the hypergraph \mathcal{H} with $V(\mathcal{H}) = [n], E(\mathcal{H}) = \{k-AP\}.$
- Check if it satisfies co-degree conditions. (easily).
- $\mathcal{F} := \{A \subseteq [n] \colon |A| \ge \delta n\}.$ (upset)
- Averaging gives that every A ∈ F contains at least cn² k-AP's.
- There are functions $g: \mathcal{I}(\mathcal{H}) \to \mathcal{S}$ and $f: \mathcal{S} \to \mathcal{F}^c$.
How to apply the meta-theorem?

Theorem (Balogh, Morris, Samotij)

For every
$$k \ge 3$$
 and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

#*m*-subsets of [*n*] with no *k*-term
$$AP \leq {\binom{\delta n}{m}}$$

- Form the hypergraph \mathcal{H} with $V(\mathcal{H}) = [n], E(\mathcal{H}) = \{k-AP\}.$
- Check if it satisfies co-degree conditions. (easily).
- $\mathcal{F} := \{A \subseteq [n] \colon |A| \ge \delta n\}.$ (upset)
- Averaging gives that every A ∈ F contains at least cn² k-AP's.
- There are functions $g: \mathcal{I}(\mathcal{H}) \to \mathcal{S}$ and $f: \mathcal{S} \to \mathcal{F}^c$.
- For given I independent set, $S = g(I) \subset I \subset f(S) \cup S$.

How to apply the meta-theorem?

Theorem (Balogh, Morris, Samotij)

For every
$$k \ge 3$$
 and $\delta > 0$, if $m \ge C(k, \delta)n^{1-\frac{1}{k-1}}$, then

#*m*-subsets of [*n*] with no *k*-term
$$AP \leq {\binom{\delta n}{m}}$$

- Form the hypergraph \mathcal{H} with $V(\mathcal{H}) = [n], E(\mathcal{H}) = \{k-AP\}.$
- Check if it satisfies co-degree conditions. (easily).
- $\mathcal{F} := \{A \subseteq [n] \colon |A| \ge \delta n\}.$ (upset)
- Averaging gives that every A ∈ F contains at least cn² k-AP's.
- There are functions $g: \mathcal{I}(\mathcal{H}) \to \mathcal{S}$ and $f: \mathcal{S} \to \mathcal{F}^c$.
- For given I independent set, $S = g(I) \subset I \subset f(S) \cup S$.
- |S| is small, |f(S)| is small, so number of ways of choosing I is small.

On the structure of subsets of [n] with no k-term AP:

Theorem (Balogh, Morris, Samotij)

For every $k \ge 3, \delta > 0$ there is a C such that for

$$t=2^{Cn^{1-1/k}\log n}.$$

there are $F_1, \ldots, F_t \subset [n]$, each of size at most δn , such that for **every** subset of [n] with no k-term AP there is an F_i containing it.

• Szemerédi Regularity Lemma useful with Embedding Lemma:

- Szemerédi Regularity Lemma useful with Embedding Lemma:
- $(V_1, V_2), (V_1, V_3), (V_2, V_3)$ regular dense pairs then there is a triangle $v_1v_2v_3$ with $v_i \in V_i$.

- Szemerédi Regularity Lemma useful with Embedding Lemma:
- $(V_1, V_2), (V_1, V_3), (V_2, V_3)$ regular dense pairs then there is a triangle $v_1v_2v_3$ with $v_i \in V_i$.
- Sparse Regularity Lemma [Kohayakawa 97, Rödl 97, Scott 11]

- Szemerédi Regularity Lemma useful with Embedding Lemma:
- $(V_1, V_2), (V_1, V_3), (V_2, V_3)$ regular dense pairs then there is a triangle $v_1v_2v_3$ with $v_i \in V_i$.
- Sparse Regularity Lemma [Kohayakawa 97, Rödl 97, Scott 11]
- Luczak: Embedding Lemma is false!

- Szemerédi Regularity Lemma useful with Embedding Lemma:
- $(V_1, V_2), (V_1, V_3), (V_2, V_3)$ regular dense pairs then there is a triangle $v_1v_2v_3$ with $v_i \in V_i$.
- Sparse Regularity Lemma [Kohayakawa 97, Rödl 97, Scott 11]
- Luczak: Embedding Lemma is false!
- KLR-Conjecture, BMS-Theorem: Counterexamples are rare!

- Szemerédi Regularity Lemma useful with Embedding Lemma:
- $(V_1, V_2), (V_1, V_3), (V_2, V_3)$ regular dense pairs then there is a triangle $v_1v_2v_3$ with $v_i \in V_i$.
- Sparse Regularity Lemma [Kohayakawa 97, Rödl 97, Scott 11]
- Luczak: Embedding Lemma is false!
- KLR-Conjecture, BMS-Theorem: Counterexamples are rare!
- Conlon, Gowers, Samotij, Schacht (2012++) Counterexamples even for the counting lemma are rare in random graphs!

• Max degree ordering of \mathcal{H} : v_1 max degree vertex in \mathcal{H} . v_2 max degree vertex in $\mathcal{H} - v_1 \dots$

- Max degree ordering of \mathcal{H} : v_1 max degree vertex in \mathcal{H} . v_2 max degree vertex in $\mathcal{H} - v_1$
- Given I independent set, find $S \subset I \subset f(S) \cup S$.

- Max degree ordering of *H*: v₁ max degree vertex in *H*.
 v₂ max degree vertex in *H* v₁....
- Given I independent set, find $S \subset I \subset f(S) \cup S$.
- Let $s_1 = v_i$ be first vertex of *I*. Remove $v_1, \ldots, v_{i-1}, N(s_1)$.

- Max degree ordering of *H*: v₁ max degree vertex in *H*.
 v₂ max degree vertex in *H* v₁....
- Given I independent set, find $S \subset I \subset f(S) \cup S$.
- Let $s_1 = v_i$ be first vertex of *I*. Remove $v_1, \ldots, v_{i-1}, N(s_1)$.
- Build S until |S| = Cpn, remaining alive vertices form f(S).

- Max degree ordering of \mathcal{H} : v_1 max degree vertex in \mathcal{H} . v_2 max degree vertex in $\mathcal{H} - v_1 \dots$
- Given I independent set, find $S \subset I \subset f(S) \cup S$.
- Let $s_1 = v_i$ be first vertex of *I*. Remove $v_1, \ldots, v_{i-1}, N(s_1)$.
- Build S until |S| = Cpn, remaining alive vertices form f(S).
- density conditions imply that always many vertices are removed, i.e. |f(S)| is small.