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Università di Roma ”La Sapienza”

Based on joint work with S. Frigio, and P. Maponi
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1. INTRODUCTION

The question whether the 3-dimensional incompressible
Navier-Stokes (NS) equations can become singular at finite
times for regular initial data, is one of the main open problems
of rigorous fluid mechanics.

Assuming that such singularities exist, how would they appear?

Could they describe some kind of physical phenomena?

These are relevant questions if we want to address the problem
of the NS singularities, either theoretically or by computer
evidence.
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Leray supposed that such singularities do exist and that they
are related to turbulence [Leray 1934].

Modern ideas on turbulence developed independently of the
problem of singularities.

For a long time there was little improvement on the subject.
A real breakthrough came only a few years ago, due to the work
of Li and Sinai (2003 - ).

They gave explicit examples of singularities at finite time for a
class of complex-valued solutions of the 3-d NS.

Their method also applies to other equations of fluid dynamics,
such as the Burgers equations [Li, Sinai 2010].
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The singularities appear as a concentration of the energy in a
small space region,

as it happens for some physical phenomena
(tornadoes).

The total energy diverges for the complex-valued solutions.

For real valued solution of the NS equations the energy is
bounded by the energy inequality.

The singular real solutions would show instead a divergence of
the enstrophy (the integral of the square of the vorticity).

One can expect that they also involve a concentration of the
energy in a finite region, and could provide a model of
tornado-like phenomena.
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A careful analysis of the exploding solutions found by Li and
Sinai can provide guidelines for the search of real valued
singularities, both by theoretical and computational methods.

I report the results of a study by computer simulations of the
complex solutions of the 2-dimensional Burgers equations with
no boundary conditions and no external forces.

I will also report some recent results on the complex-valued 3-d
NS equations.

Why Burgers?

It is the simplest model of classical fluid equations for which the
esistence of singularities is proved for suitable initial data [Li,
Sinai 2010].
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2. EXPLODING COMPLEX BURGERS
SOLUTIONS

The Burgers equations for the velocity field
u(x , t) = (u1(x, t), u2(x, t)) are

∂u

∂t
+

2∑
j=1

uj
∂

∂xj
u = ∆u, x = (x1, x2) ∈ R2.

We work with the Fourier transform (multiplied by i)
v(k, t) = (v1(k, t), v2(k, t)) :

v(k, t) =
i

2π

∫
R2

u(x, t)e i〈k,x〉dx, k =(k1, k2) ∈ R2

〈·, ·〉 denotes the scalar product in R2.
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v satisfies the integral equation

v(k, t) = e−tk2
v(k, 0) +

+

∫ t

0
e−(t−s)k2

ds

∫
R2

〈v(k− k
′
,s), k

′〉v(k
′
,s)dk

′
, (1)

with some initial condition v(k, 0).
(As usual k2 = k2

1 + k2
2 .)

We consider real solutions v(k,t), corresponding to complex
solutions in x-space.

The choice of the initial data for the explosion is done according
to the analysis of [Li, Sinai, 2010]: they are concentrated
around a point k(0) = (a, a), with a > 0 large enough:
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If |k− k(0)| ≤ R for some 0 < R < |k(0)|, we set

v1(k, 0) =
B

2πσ2
e
− (k−k(0))2

2σ2

(
B1(k) + φ(1)(k− k(0))

)
(2a)

v2(k, 0) =
B

2πσ2
e−

(k−k(0))2

2σ2

(
B2(k) + φ(2)(k− k(0))

)
(2b)

and v(k, 0) = 0 if |k− k(0)| > R.

Here
B1(k) = 1 + b0 + (b(1), k− k(0))

B2(k) = 1− b0 + (b(2), k− k(0)).

B ∈ R+, b0 ∈ R, b(1),b(2) ∈ R2, and
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φ(1), φ(2) are elements of the Hilbert space H with norm

‖φ‖2 =
1

2πσ2

∫
R2

|φ(k)|2e−
k2

2σ2 d2k (3)

and are orthogonal to the constants and to the linear functions
k1 − a, k2 − a.
For σ, a and φ(1), φ(2) fixed, the equations (2a,b) define a
6-parameter family of initial conditions.
The parameters are B and b = (b0,b(1),b(2)):
b(i) = (b

(i)
1 , b

(i)
2 ), i = 1, 2.

For b we use the norm ‖b‖ := max{|b0|, |b(i)
j |, i , j = 1, 2}.
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The following theorem is proved in [Li, Sinai, 2010].

Theorem. For any family of initial data (2a,b), one can find
ρ0 > 0, a time interval J = [τ1, τ2], 0 < τ1 < τ2 and functions
B(τ), and b(τ) on J , with ‖b(τ)‖ ≤ ρ0, such that the solution of
the Burgers equations with initial data specified by B(τ),b(τ),
τ ∈ J , develop a singularity of the energy at t = τ .

A sketch of the proof is necessary to understand the nature and
the behavior of the singularities.

The proof is based on a variant of the renormalization group
method.

Write the initial data as w(A)(k) = Aw(1)(k), where A is a
parameter, and w(1) is a function of the type (2a,b).
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The solution of the Burgers equation is written as a series

w(A)(k, t) = A e−tk2
w(1)(k)+

+

∫ t

0
e−k2(t−s)

∞∑
p=2

Apg (p)(k, s)ds. (4)

We find recursive relations in p for g (p)(k, t) which remind of
the famous BBGKY hierarchy of statistical physics:
Setting g(1)(k, t) = e−tk2

w(1)(k) and

g(2)(k, t) =

∫
R2

〈w(1)(k − k
′
, s), k

′〉w(1)(k
′
, s)e−t(k−k

′
)2−t(k

′
)2

dk
′
,

we find for p > 2 the recursive relations
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g(p)(k, t) =

∫ t

0
ds2·

·
∫

R2
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′
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dk
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The main contribution to the integrals in ds1, ds2 comes from a
small neighborhood of the upper bound t.

This is due to viscosity and would not apply to the Euler
system.

A scaling transformation of k and the function g(p) greatly
simplifies the asymptotics for large p of the recursive equations.
We set k = pk(0) +

√
pa Y and

h(p)(Y , t) = g(p)(pk(0) +
√

paY, s), Y ∈ R2. (6).

For large p the functions h(p) are concentrated around |Y| ≈ 1
and we can neglect the first and third term of the recursive
relation (5). We also neglect terms like Y

′
√

p in the exponent, and
introduce the adapted variables

sj = s(1− θj/p2
j ), j = 1, 2, γ = p1/p, p2/p = 1− γ.
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Setting k
′

= p2k(0) +
√

paY
′
, we finally get the simple recursive

relation

h(p)(Y, t) =
p2

4a2
· (7)

·
∑

p1+p2=p
p1,p2>1

1

p2
1p2

2

∫
R2

p2

p

2∑
j=1

h
(p1)
j

(
Y − Y

′

√
γ

, t

)
h(p2)

(
Y
′

√
1− γ

, t

)
dY

′
.

By induction, assume that there are nested time intervals
J (p+1) ⊆ J (p), such that for t ∈ J (p),

h(r)(Y, t) = r Z (t)(Λp(t))r e−
Y2

2σ2

2πσ2
(H(Y) + δr (Y, t)) , (8)

for some some σ > 0 and all r < p, where δr is small and Z ,Λp

are functions to be determined.
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As p →∞ the sum in (7) is a Riemann sum with step 1
p .

Assuming that near the critical time Z (t) = 4a2, we get for H
the equation

H(Y)
e−

Y2

2σ2

2πσ2
=

∫ 1

0
dγ(1− γ)

∫
R2

dY
′
H

(
Y
′

√
1− γ

)
· (9)

·

[
H1

(
Y − Y

′

√
γ

)
+ H2

(
Y − Y

′

√
γ

)]
e
− (Y−Y

′
)2

2σ2γ

2πσ2γ

e
− (Y

′
)2

2σ2(1−γ)

2πσ2(1− γ)
.

It is a fixed point equation, which, as usual in the
renormalization group method, is of fundamental importance.
(For the NS equations the corresponding equation is more
complicated.)

Equation (9) admits the constant solution H0(Y) = (1, 1).
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By linearizing around H0(Y) and expanding in the Hermite
polynomials one can see that there is a 2-dimensional unstable
subspace and a 4-dimensional neutral one.

All directions orthogonal to such subspaces in the L2 space H
with norm (3) are stable.

The parameters B and b in the initial data determine the
projection on the unstable and neutral subspaces.
The term with the vector function (φ1, φ2) is the stable
component.

Setting H = H0 in equation (8), we have to find intervals J (p)

with a nonempty interval J as intersection, such that for t ∈ J
the remainder δr tends to zero for large r .

We need to control the components of δr along the unstable and
neutral subspaces when we iterate in r . (The stable component
vanishes exponentially fast. )



By linearizing around H0(Y) and expanding in the Hermite
polynomials one can see that there is a 2-dimensional unstable
subspace and a 4-dimensional neutral one.
All directions orthogonal to such subspaces in the L2 space H
with norm (3) are stable.

The parameters B and b in the initial data determine the
projection on the unstable and neutral subspaces.
The term with the vector function (φ1, φ2) is the stable
component.

Setting H = H0 in equation (8), we have to find intervals J (p)

with a nonempty interval J as intersection, such that for t ∈ J
the remainder δr tends to zero for large r .

We need to control the components of δr along the unstable and
neutral subspaces when we iterate in r . (The stable component
vanishes exponentially fast. )



By linearizing around H0(Y) and expanding in the Hermite
polynomials one can see that there is a 2-dimensional unstable
subspace and a 4-dimensional neutral one.
All directions orthogonal to such subspaces in the L2 space H
with norm (3) are stable.

The parameters B and b in the initial data determine the
projection on the unstable and neutral subspaces.

The term with the vector function (φ1, φ2) is the stable
component.

Setting H = H0 in equation (8), we have to find intervals J (p)

with a nonempty interval J as intersection, such that for t ∈ J
the remainder δr tends to zero for large r .

We need to control the components of δr along the unstable and
neutral subspaces when we iterate in r . (The stable component
vanishes exponentially fast. )



By linearizing around H0(Y) and expanding in the Hermite
polynomials one can see that there is a 2-dimensional unstable
subspace and a 4-dimensional neutral one.
All directions orthogonal to such subspaces in the L2 space H
with norm (3) are stable.

The parameters B and b in the initial data determine the
projection on the unstable and neutral subspaces.
The term with the vector function (φ1, φ2) is the stable
component.

Setting H = H0 in equation (8), we have to find intervals J (p)

with a nonempty interval J as intersection, such that for t ∈ J
the remainder δr tends to zero for large r .

We need to control the components of δr along the unstable and
neutral subspaces when we iterate in r . (The stable component
vanishes exponentially fast. )



By linearizing around H0(Y) and expanding in the Hermite
polynomials one can see that there is a 2-dimensional unstable
subspace and a 4-dimensional neutral one.
All directions orthogonal to such subspaces in the L2 space H
with norm (3) are stable.

The parameters B and b in the initial data determine the
projection on the unstable and neutral subspaces.
The term with the vector function (φ1, φ2) is the stable
component.

Setting H = H0 in equation (8), we have to find intervals J (p)

with a nonempty interval J as intersection, such that for t ∈ J
the remainder δr tends to zero for large r .

We need to control the components of δr along the unstable and
neutral subspaces when we iterate in r . (The stable component
vanishes exponentially fast. )



By linearizing around H0(Y) and expanding in the Hermite
polynomials one can see that there is a 2-dimensional unstable
subspace and a 4-dimensional neutral one.
All directions orthogonal to such subspaces in the L2 space H
with norm (3) are stable.

The parameters B and b in the initial data determine the
projection on the unstable and neutral subspaces.
The term with the vector function (φ1, φ2) is the stable
component.

Setting H = H0 in equation (8), we have to find intervals J (p)

with a nonempty interval J as intersection, such that for t ∈ J
the remainder δr tends to zero for large r .

We need to control the components of δr along the unstable and
neutral subspaces when we iterate in r . (The stable component
vanishes exponentially fast. )



A delicate analysis shows that for large p we have Λp(t) ≈ Λ(t),
with Λ a monotonic positive function.

Therefore by choosing A = 1
Λ(τ) one gets a solution blowing up

at some time τ ∈ J .

In fact, the main contribution to the integral in (4) comes for
s ≈ t. Hence, by (8), the solution near the critical time τ is
approximately given by

∑
p

Apg(p)(k, t) ≈ C
∑
p

p

(
Λ(t)

Λ(τ)

)p e
− (k−pk(0))2

2apσ2

2πσ2
H0(Y), (10).

where C is a constant.

So we have divergence when t ↑ τ near the point k = p k(0).

The approximate expression (10) allows us to predict the main
features of the solution.
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For small τ − t we have Λ(t)
Λ(τ) ≈ 1− β(τ − t) for some β > 0.

Hence the main contribution to the series (10) comes from
p = p(t) ≈ c

τ−t : the support of the solution in k-space escapes
to infinity along the direction (1, 1) as t ↑ τ .

A simple analysis shows that the total energy

E (t) =

∫
R2

|v(k, t)|2dk

behaves near the critical time τ as

E (t) ∼ CE

(τ − t)5
, CE > 0. (11)

The inverse Fourier transform, i.e., the solution in x-space

u(x, t) = − i

2π

∫
R2

v(k, t)e−i〈k,x〉dk

converges as t ↑ τ for all x 6= 0, and diverges at x = 0.
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3. RESULTS OF COMPUTER SIMULATIONS

In computer simulations we had to face some characteristic
difficulties.
- Instability of the flow at large Reynolds numbers.
- The blow-up is very fast: for 2-d Burgers it takes place in a
time of the order of 10−4 − 10−5 time units.
- In Fourier space (where we work) the solution moves out to
infinity as we approach the critical time τ .

In the blow-up region the qualitative behavior of the total
energy, enstrophy, and other global characteristics is remarkably
stable, and does not depend on the mesh size in a rather wide
range. The precision, i.e., the control on the actual values of the
solutions becomes, as expected, worse, as we approach the
explosion time, due to large derivatives.
Nevertheless, in the first part of the explosion range we have
enough precision to allow a reasonable prediction on the value
of the explosion time.



3. RESULTS OF COMPUTER SIMULATIONS

In computer simulations we had to face some characteristic
difficulties.

- Instability of the flow at large Reynolds numbers.
- The blow-up is very fast: for 2-d Burgers it takes place in a
time of the order of 10−4 − 10−5 time units.
- In Fourier space (where we work) the solution moves out to
infinity as we approach the critical time τ .

In the blow-up region the qualitative behavior of the total
energy, enstrophy, and other global characteristics is remarkably
stable, and does not depend on the mesh size in a rather wide
range. The precision, i.e., the control on the actual values of the
solutions becomes, as expected, worse, as we approach the
explosion time, due to large derivatives.
Nevertheless, in the first part of the explosion range we have
enough precision to allow a reasonable prediction on the value
of the explosion time.



3. RESULTS OF COMPUTER SIMULATIONS

In computer simulations we had to face some characteristic
difficulties.
- Instability of the flow at large Reynolds numbers.

- The blow-up is very fast: for 2-d Burgers it takes place in a
time of the order of 10−4 − 10−5 time units.
- In Fourier space (where we work) the solution moves out to
infinity as we approach the critical time τ .

In the blow-up region the qualitative behavior of the total
energy, enstrophy, and other global characteristics is remarkably
stable, and does not depend on the mesh size in a rather wide
range. The precision, i.e., the control on the actual values of the
solutions becomes, as expected, worse, as we approach the
explosion time, due to large derivatives.
Nevertheless, in the first part of the explosion range we have
enough precision to allow a reasonable prediction on the value
of the explosion time.



3. RESULTS OF COMPUTER SIMULATIONS

In computer simulations we had to face some characteristic
difficulties.
- Instability of the flow at large Reynolds numbers.
- The blow-up is very fast: for 2-d Burgers it takes place in a
time of the order of 10−4 − 10−5 time units.

- In Fourier space (where we work) the solution moves out to
infinity as we approach the critical time τ .

In the blow-up region the qualitative behavior of the total
energy, enstrophy, and other global characteristics is remarkably
stable, and does not depend on the mesh size in a rather wide
range. The precision, i.e., the control on the actual values of the
solutions becomes, as expected, worse, as we approach the
explosion time, due to large derivatives.
Nevertheless, in the first part of the explosion range we have
enough precision to allow a reasonable prediction on the value
of the explosion time.



3. RESULTS OF COMPUTER SIMULATIONS

In computer simulations we had to face some characteristic
difficulties.
- Instability of the flow at large Reynolds numbers.
- The blow-up is very fast: for 2-d Burgers it takes place in a
time of the order of 10−4 − 10−5 time units.
- In Fourier space (where we work) the solution moves out to
infinity as we approach the critical time τ .

In the blow-up region the qualitative behavior of the total
energy, enstrophy, and other global characteristics is remarkably
stable, and does not depend on the mesh size in a rather wide
range. The precision, i.e., the control on the actual values of the
solutions becomes, as expected, worse, as we approach the
explosion time, due to large derivatives.
Nevertheless, in the first part of the explosion range we have
enough precision to allow a reasonable prediction on the value
of the explosion time.



3. RESULTS OF COMPUTER SIMULATIONS

In computer simulations we had to face some characteristic
difficulties.
- Instability of the flow at large Reynolds numbers.
- The blow-up is very fast: for 2-d Burgers it takes place in a
time of the order of 10−4 − 10−5 time units.
- In Fourier space (where we work) the solution moves out to
infinity as we approach the critical time τ .

In the blow-up region the qualitative behavior of the total
energy, enstrophy, and other global characteristics is remarkably
stable, and does not depend on the mesh size in a rather wide
range.

The precision, i.e., the control on the actual values of the
solutions becomes, as expected, worse, as we approach the
explosion time, due to large derivatives.
Nevertheless, in the first part of the explosion range we have
enough precision to allow a reasonable prediction on the value
of the explosion time.



3. RESULTS OF COMPUTER SIMULATIONS

In computer simulations we had to face some characteristic
difficulties.
- Instability of the flow at large Reynolds numbers.
- The blow-up is very fast: for 2-d Burgers it takes place in a
time of the order of 10−4 − 10−5 time units.
- In Fourier space (where we work) the solution moves out to
infinity as we approach the critical time τ .

In the blow-up region the qualitative behavior of the total
energy, enstrophy, and other global characteristics is remarkably
stable, and does not depend on the mesh size in a rather wide
range. The precision, i.e., the control on the actual values of the
solutions becomes, as expected, worse, as we approach the
explosion time, due to large derivatives.

Nevertheless, in the first part of the explosion range we have
enough precision to allow a reasonable prediction on the value
of the explosion time.



3. RESULTS OF COMPUTER SIMULATIONS

In computer simulations we had to face some characteristic
difficulties.
- Instability of the flow at large Reynolds numbers.
- The blow-up is very fast: for 2-d Burgers it takes place in a
time of the order of 10−4 − 10−5 time units.
- In Fourier space (where we work) the solution moves out to
infinity as we approach the critical time τ .

In the blow-up region the qualitative behavior of the total
energy, enstrophy, and other global characteristics is remarkably
stable, and does not depend on the mesh size in a rather wide
range. The precision, i.e., the control on the actual values of the
solutions becomes, as expected, worse, as we approach the
explosion time, due to large derivatives.
Nevertheless, in the first part of the explosion range we have
enough precision to allow a reasonable prediction on the value
of the explosion time.



The simulations was performed at the CINECA/SCS
(SuperComputingSolution) Center at Bologna on the
Supercomputer IBM SP6.

The computations were implemented by a trapezoidal
Crank-Nicholson Algorithm, both explicit and implicit.
Convolutions are computed by a discrete fast Fourier transform
algorithm.

The mesh of the space points was adapted in order to cover the
region with significant values of the solutions.
The results of our computer simulations are in full accordance
with the theoretical predictions.

They also give additional information on the behavior of the
solutions near the singular time τ .

For the initial condition (2a,b), we took σ2 = 5, k0 = (5, 5), or
a = 5, and

φ(1)(k) = φ(2)(k) = a1(k2
1 − 5) + a2(k2

2 − 5) + a3k1k2.
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region with significant values of the solutions.
The results of our computer simulations are in full accordance
with the theoretical predictions.
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We first did a rough screening of the solutions generated by
50,000 initial data, obtained by a random choice of the
parameters:

for the constant B in the interval (5, 50), and for
the five components of b and the constants a1, a2, a3 in a small
interval around the origin.

The solutions were followed up on a space-time mesh with space
step δk = 0.5 and time step δt = 10−4 for 100 time steps.

16 cases, with evidence of growing energy, were followed up
with a smaller time steps. Most of them did in fact show a
blow-up, with a very short explosion time ∆ ≈ 5 · 10−5.
We report the results for one particular case, corresponding to
the following choice of the parameters: B = 49.36 and

b0 = 0.02, b
(1)
1 = 0.09, b

(1)
2 = 0.02, b

(2)
1 = −0.12, b

(2)
2 = 0.09

a1 = 0.11, a2 = 0.12, a3 = 0.11.
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The solution explodes at a time τ ≈ 12 · 10−4.

The energy at
first decreases slowly, and then it explodes in a time of order ∆.

For convenience, we rotated the initial data so that the solution
moves out to infinity along the k1 axis.

The solution was followed up only as long as the range of the
significant data was within the computation region.
For a detailed study we used three values of the time step

δt = 2−7 · 10−4, δt = 2−8 · 10−4, δt = 2−9 · 10−4,

and three values of the space step

δk = 0.5, δk = 1, δk = 2.

As predicted by the theory, near the blow-up time τ the energy
behaves as (τ − t)−5, so that τ can be identified as the intercept
of the function (E (t))−

1
5 with the time axis.



The solution explodes at a time τ ≈ 12 · 10−4. The energy at
first decreases slowly, and then it explodes in a time of order ∆.

For convenience, we rotated the initial data so that the solution
moves out to infinity along the k1 axis.

The solution was followed up only as long as the range of the
significant data was within the computation region.
For a detailed study we used three values of the time step

δt = 2−7 · 10−4, δt = 2−8 · 10−4, δt = 2−9 · 10−4,

and three values of the space step

δk = 0.5, δk = 1, δk = 2.

As predicted by the theory, near the blow-up time τ the energy
behaves as (τ − t)−5, so that τ can be identified as the intercept
of the function (E (t))−

1
5 with the time axis.



The solution explodes at a time τ ≈ 12 · 10−4. The energy at
first decreases slowly, and then it explodes in a time of order ∆.

For convenience, we rotated the initial data so that the solution
moves out to infinity along the k1 axis.

The solution was followed up only as long as the range of the
significant data was within the computation region.
For a detailed study we used three values of the time step

δt = 2−7 · 10−4, δt = 2−8 · 10−4, δt = 2−9 · 10−4,

and three values of the space step

δk = 0.5, δk = 1, δk = 2.

As predicted by the theory, near the blow-up time τ the energy
behaves as (τ − t)−5, so that τ can be identified as the intercept
of the function (E (t))−

1
5 with the time axis.



The solution explodes at a time τ ≈ 12 · 10−4. The energy at
first decreases slowly, and then it explodes in a time of order ∆.

For convenience, we rotated the initial data so that the solution
moves out to infinity along the k1 axis.

The solution was followed up only as long as the range of the
significant data was within the computation region.

For a detailed study we used three values of the time step

δt = 2−7 · 10−4, δt = 2−8 · 10−4, δt = 2−9 · 10−4,

and three values of the space step

δk = 0.5, δk = 1, δk = 2.

As predicted by the theory, near the blow-up time τ the energy
behaves as (τ − t)−5, so that τ can be identified as the intercept
of the function (E (t))−

1
5 with the time axis.



The solution explodes at a time τ ≈ 12 · 10−4. The energy at
first decreases slowly, and then it explodes in a time of order ∆.

For convenience, we rotated the initial data so that the solution
moves out to infinity along the k1 axis.

The solution was followed up only as long as the range of the
significant data was within the computation region.
For a detailed study we used three values of the time step

δt = 2−7 · 10−4, δt = 2−8 · 10−4, δt = 2−9 · 10−4,

and three values of the space step

δk = 0.5, δk = 1, δk = 2.

As predicted by the theory, near the blow-up time τ the energy
behaves as (τ − t)−5, so that τ can be identified as the intercept
of the function (E (t))−

1
5 with the time axis.



The solution explodes at a time τ ≈ 12 · 10−4. The energy at
first decreases slowly, and then it explodes in a time of order ∆.

For convenience, we rotated the initial data so that the solution
moves out to infinity along the k1 axis.

The solution was followed up only as long as the range of the
significant data was within the computation region.
For a detailed study we used three values of the time step

δt = 2−7 · 10−4, δt = 2−8 · 10−4, δt = 2−9 · 10−4,

and three values of the space step

δk = 0.5, δk = 1, δk = 2.

As predicted by the theory, near the blow-up time τ the energy
behaves as (τ − t)−5,

so that τ can be identified as the intercept
of the function (E (t))−

1
5 with the time axis.



The solution explodes at a time τ ≈ 12 · 10−4. The energy at
first decreases slowly, and then it explodes in a time of order ∆.

For convenience, we rotated the initial data so that the solution
moves out to infinity along the k1 axis.

The solution was followed up only as long as the range of the
significant data was within the computation region.
For a detailed study we used three values of the time step

δt = 2−7 · 10−4, δt = 2−8 · 10−4, δt = 2−9 · 10−4,

and three values of the space step

δk = 0.5, δk = 1, δk = 2.

As predicted by the theory, near the blow-up time τ the energy
behaves as (τ − t)−5, so that τ can be identified as the intercept
of the function (E (t))−

1
5 with the time axis.



Evaluation of the explosion time τ :

δt 2−7 · 10−4 2−8 · 10−4 2−9 · 10−4

Exp δk = .5 12.666 · 10−4 12.387 · 10−4

Exp δk = 1 12.668 · 10−4 12.400 · 10−4 12.215 · 10−4

Imp δk = 1 12.132 · 10−4 12.028 · 10−4

Imp δk = 2 12.104 · 10−4 12.016 · 10−4

Table: Value of the “explosion” time τ for the different choices of δt , of
δk and the explicit (Exp) or implicit (Imp) integration method.

τ is remarkably stable: it decreases as we refine the mesh, and
tends to a limit around 12.0 · 10−4 time units.

As δt decreases, the total energy (at fixed time) increases, and τ
decreases, indicating that there are large time derivatives.
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Behavior of the total energy for different computational choices:
(R-square is always above 0.9973, up to 0.9993).
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Figure: (E (t))−1/5 versus t · 104 for the different choices of δt , of δk and
the explicit (Exp) or implicit (Imp) integration method.
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In the energy plot in k-space the blow-up appears as a fast
growing bump, moving away along the k1 axis.

As predicted by the theory, the bump has a peak (global
maximum) around some point KM(t) ≈ p(t)k(0), for
p(t) ≈ const

τ−t .

Time (τ − t) · |KM(t)|
11.9453 425.648

11.9688 406.982

12.0000 362.868

12.0313 300.739

12.0625 223.095

Table: δt = 2−7 · 10−4, δk = 1, implicit integration method.
(τ − t) · |KM(t)| versus t, τ = 12.132.
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The bump is stretched along the direction of motion, with
length of order 1/(τ − t), and transversal dimension is of the
order 1√

τ−t
.

The following slides show how the explosion begins in k-space
and in x-space.
The scale on the vertical axis is fixed in both cases. For the
x-space we plot not the energy e(k), but its logarithm.
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4. THE 3-d (COMPLEX) NS EQUATIONS

We present some preliminary results on the 3-d complex NS
equations on the whole space R3, which in k space reads

v(k, t) = e−tk2
v(k, 0) +

+

∫ t

0
e−(t−s)k2

ds

∫
R3

〈v(k− k
′
,s), k

′〉Pkv(k
′
, s)dk

′
.

It differs from the Burgers equations only for the orthogonal
projector

Pkv = v − 〈v, k〉
k2

k,

which expresses incompressibility.

As before, we consider real solutions which correspond to
complex solutions in k space.
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Following [Li, Sinai 2008], we again take initial data in the form
of a truncated gaussian bump, centered around a point
k(0) = (0, 0, a) for some a > 0 large enough, and modulated by
multiplying by a suitable polynomial depending on 10
parameters.

The choice of the parameters depends on the analysis of the
fixed point equation.

In [Li, Sinai 2008] it is proved that if the initial data are in an
open set of such 10-parameter families of functions, the solution
blows up at some finite time τ .

Setting k = k(0) +
√

a Y the form of the initial data looks as
follows
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i , b
n
j should be bounded by some constant.
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3-d integration of the convolution is much more onerous than
the 2-d integration.

In [Arnol’d, Kokhlov, 2009] some computational evidence of a
blow-up was found, but they could not check the divergence
rate of the total energy E (t).

We started a computational study of the 3-d NS equations,
both complex- and real-valued, at CINECA/SCS center of
Bologna and at the computer center CASPUR of the University
”La Sapienza” of Rome.

For complex-valued solutions we found many cases of blow-up.
As for the 2-d Burgers equations we have a very stable
qualitative behavior, in accordance with theoretical predictions,
but we could not yet obtain enough precision in the initial state
of the blow-up in order to have an estimate of the time tc .
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We are now working with a refined version of FFT (”pencil” in
jargon) which allows a more refined parallelization. We hope to
obtain conclusive results in a short time.

As for the 2-d Burgers equations, the blow-up takes place in a
time ∆ ≈ 10−5.

We found that if we consider initial data of the Sinai-Li type,
i.e., a gaussian bump at a certain distance from the origin, all
cases with energy large enough show a blow-up.
Moreover the blow-up time decreases as the energy E grows and
also decreases when we increase the distance a of the initial
bump from the origin.
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Behavior of the energy near the critical time for a typical case
(a = 5, on a space mesh of 100× 100× 200 points):

0 100 200 300 400 500 600

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure: (E (t))−1/5 versus t · 105 for δt = 10−5, δk = {1, 1, 1},
bu

i = bn
j = 0 ∀i , j , E (0) = 500.



We also started a preliminary study of the real solutions of the
3-d NS equations associated to the exploding complex solutions,

which are obtained by (anti)symmetrizing the initial conditions
of Li-Sinai type.
The computer simulations show that the solutions behave for
some time as real solutions, satisfying the energy inequality

E (t) +
ν

2

∫ t

0
En(s)ds ≤ E (0)

where En(t) is the enstrophy

En(t) =
1

2

∫
R3

k|k|2|v(k,t)|2.

But after some time, due to the round-off error, it loses
symmetry and starts exploding as the one-bump complex
solution.
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∑
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h(r)(Y, t) = r Z (t)(Λp(t))r e−
Y2

2σ2

2πσ2
(H(Y) + δr (Y, t)) , (8)
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2apσ2

2πσ2
H0(Y), (10).
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