Economic impact evaluation of the new European Union Cohesion policy: The case of the GMR-approach

Attila Varga

Regional growth, development and competitiveness workshop Szeged, April 25 2013

Introduction

- Economic impact vs. micro level (project) evaluation – the role of economic models
- Disappointment in traditional development policies and the emergence of new policy approaches
- Emerging awareness: regional development should be treated as integral part of national level structural policies
- Limited relevance of traditional macroeceonomic models

Introduction

- Search for new modeling approaches (MASST, GMR-type models (GMR-Hungary, GMR-Europe, RHOMOLO), system dynamic approach)
- This presentation:
 - relates modeling challenges to the emergence of new development policy approaches;
 - classifies the challenges towards economic modeling;
 - illustrates the reflection to the challenges by the GMR- Europe model.

- Limited success of traditional approaches in reducing disparities (subsidies to lagging regions in forms of tax reductions to firms, infrastructure investments, uncoordinated R&D and innovation support)
- Disappointment led to the emergence of "modern" approaches: space-neutral vs. place-based

- The space-neutral approach (World Bank 2009)
 - Strong influence of the new economic geography
 - Emphasis on the role of agglomeration in economic development
 - Key policy message: agglomeration forces should be strengthened by integration
 - Institutional development (public services)
 - Physical accessibility

- The space neutral approach (cont.)
 - In general: no need to space-specific policies, universal coverage in all territories
 - Agglomeration forces are strengthened by migration and increased market access
 - Policies targeting specific lagging places distract resources from their more efficient use
 - Partial support regarding regional innovation policy

- The place-base approach (OECD 2009)
 - Agglomeration forces are important but their strengths weaken with economic development
 - OECD countries: only one-third of growth is contributed by core regions (Garcilazo et al. 2013)
 - In more developed countries: regional institutional variation is not significantly large anymore
 - Space-neutral policy growth effect is marginal most probably (Barca et al. 2012)

- The place-based approach (cont.)
 - For more developed countries integrated, innovation-based regional development polices are suggested
 - "smart specialization"
 - integrated policy instruments
 - In target: place-specific industrial comparative advantages
 - multi-level governance
 - Participation (industry, universities, local organizations)

- The debate:
 - divergent assumptions
 - different weights on essentially the same instruments
- No theoretical solution seems possible
- Place-based vs. space neutral instruments: their effectiveness tends to vary by concrete country and regional settings
- The key role of correctly developed economic models in the evaluation of concrete policy instrument combinations by measuring their costs and benefits

New generation development policy impact modeling

- Geographic dimensions determining the growth effects of development policies to be incorporated in modeling:
 - Local specificities (industrial structure, research specialization)
 - Policy impact on local sources of growth (technology, investment, employment)
 - Agglomeration effects
 - Additional impacts (Keynesian demand effects, intersectoral linkages)
 - Interrregional impacts (spillovers, trade)
 - Intervention-specific macroeconomic impacts

- Step 1: Modeling policy impact on technological progress
 - Mechanisms discovered in the geography of innovation literature: local / global knowledge flows, different agglomeration effects (MAR or Jacobs, related variety), entrepreneurship
 - Modeling possibilities:
 - knowledge production function (Varga et al 2013)
 - evolutionary techniques (Faggiolo, Dosi 2003)

- Step 2: Modeling the transmission of the technology impact to economic variables
 - Productivity and variety impacts (Saviotti, Pyka 2003)
 - What growth theories offer:
 - Romer 1990 productivity impact at the end
 - Aghion, Howitt 1998: limited variety impact
 - Evolutionary theories get closer to formulating variety effects (Saviotti, Pyka 2003, Faggiolo, Dosi 2003)

- Technical difficulties, problems with regional data

- Step 3: Modeling spatiotemporal dynamics of economic growth
 - Spatiotemporal dynamics modeling: accounting for both the extension of production factors and their changing spatial patterns
 - Spatiotemporal dynamics both modeled at the level of regions
 - Forward looking expectations (Bröcker, Korzhenevych 2011)
 - Alternative investment and saving behavior (Ivanova et al 2007)
 - Spatiotemporal dynamics modeled separately in macro and regional models (Varga et al. 2011)

- Step 4: Macro impact integration
 - Impacts of macroeconomic framework conditions
 - New and open area of research (Varga et al. 2011)

The GMR approach: Antecedens and applications

• Antecedents:

- Links to theory: Acs-Varga 2002
- Empirical modeling framework (Varga 2006)
- The EcoRet model (Schalk, Varga 2004, Varga, Schalk 2004)
- The GMR-Hungary model (Varga, Schalk, Koike, Járosi, Tavasszy 2008; Járosi, Koike, Thissen, Varga 2010)
- Dynamic KPF model for EU regions (Varga, Pontikakis, Chorafakis, 2009)
- GMR-EU (Varga, Járosi, Sebestyén 2009; Varga, Törma 2011)
- Applications: Cohesion Policy impact studies for the European Commission (DG Regio) and the Hungarian government; FP6 impact study

Reflections to challenges in the GMR-Europe model

- Step 1: Modeling policy impact on technological progress
 - Spatialized extension of the Romer 1990 knowledge production model incorporating several elements of the findings in the geography of innovation literature (Varga et al 2013, Sebestyén, Varga 2013)
 - Dynamic agglomeration effects
 - Interregional knowledge flows (copatenting, copublication network effects)
 - Interregional spillovers with no specific mechanisms identified (spatial econometrics)

Figure 1: The estimated regional dynamics of innovation policies in the TFP block of the GMR-Europe model

Reflections to challenges in the GMR-Europe model

- Step 2. Modeling the transmission of the technology impact to economic variables
 - Technological ideas channeled through their TFP effects

$$TFP_{i,t} = \partial_{TFP0} HCAP_{i,t-k}^{\partial_{TFP1} SOCKAP_{i,t-k}} A_{i,t-k}^{\partial_{TFP2} \ln(L_{i,t-k}/AREA_i)} W_A_{i,t-k}^{\partial_{TFP3}}$$

Reflections to challenges in the GMR-Europe model

- Steps 3 and 4: Modeling spatiotemporal dynamics of economic growth and macro impact integration
 - Step 3a: Short run effects (given K and L, no migration) system of regional CGE models
 - Step 3b: Spatial dynamics with constant aggregate
 K and L but with their migration across regions –
 in the system of regional CGE models
 - Step 3c: Dynamic regional and macro impacts in a macro model

A policy impact analysis example: A place-based policy mix for a sustained aggregate GDP impact of the EU Framework Programs

Figure 3: The impact of FP 6 research subsidies (GRD) on patents (both on the left vertical axis) and GDP (right vertical axis) at the aggregate European level

A policy impact analysis example: A place-based policy mix for a sustained aggregate GDP impact of the EU Framework Programs

Figure 4: The impact of FP 6 research subsidies (GRD) on patents (both on the left vertical axis) and GDP (right vertical axis) at the aggregate European level: Quality redistribution of 5% of national research expenditures following the geographic patterns of FP 6 research support and a compensatory 0.5% annual increases of human capital over the period of 2003-2022