Adatelemzés statisztikai módszerekkel

Írta: Dr. Németh Anikó főiskolai docens

Tartalomjegyzék

Bevezetés	2
1. A tervezett módszerek kipróbálása (próbafelmérés – pilot study)	4
2. A kutatás során nyert adatok feldolgozása	6
2.1. Adatbázis tisztítása	6
2.2. Adatok kódolása	6
2.3. Adatbázis elkészítése	9
2.3.1. On-line kérdőív adatainak feldolgozása	
2.4. Műveletek változókkal	
3. Statisztikai eljárások	
3.1. Leíró statisztikai módszerek (alapstatisztika, egyváltozós elemzések).	
3.1.1. Csoportosítás, kategorizálás	
3.1.2. Megoszlási mutatók (százalékos megoszlás, diagram)	
3.1.3. Középérték-számítások (átlag, medián, modus)	
3.1.4. Szóródás számítás	
3.2. Matematikai (valószínűségi) statisztikai módszerek	
3.2.1. Különbözőségvizsgálatok	46
3.2.2. Összefüggés vizsgálatok	97
3.3. Excel program a statisztikában	
3.3.1. Adatbázis készítés Excel programmal	
3.3.2. Leíró statisztikai módszerek	
3.3.3. Matematikai statisztikai módszerek	115
4. Próbafeladatok megoldásokkal	
Önellenőrző kérdések megoldásai	
Felhasznált irodalom	

Bevezetés

Az egészségtudomány rohamos fejlődése miatt elengedhetetlen, hogy az empirikus kutatást végző leendő és már végzett gyakorló szakemberek statisztikai tudása is gyarapodjon. BSc képzésben a dentálhigiénikus és védőnő hallgatók már első évfolyamon megismerkedhettek a kutatómunka alapjaival, másod évfolyamon következik a statisztikai alapismeretek megszerzése.

Jelen felsőoktatási jegyzet a Kutatómunka alapjai dentálhigiénikusoknak I. folytatása, így annak alapos ismerete nélkülözhetetlen a statisztikában való jártasság megszerzéséhez. A Word szövegszerkesztő program ismeretén túl fel kell idézni az Excel program alkalmazását is, mivel az anyag egy része erre épül. Szükségesek bizonyos fokú matematikai ismeretek is a tananyag elsajátításához, ide értve a matematikai alapműveleteket, a reláció jelek ismeretét, és a tizedes jegyek értelmezését. A jegyzet segítséget nyújt a hallgatóknak a statisztika világának alapos és érthető megismerésében. Olyan információkat, részletes útmutatásokat közöl, melyekkel lehetőség nyílik a kutatás adatainak szakszerű, korszerű feldolgozására, majd az alkalmazandó statisztikai próbák kiválasztására és elvégzésére, az eredmények értékelésére, következtetések levonására. Alap statisztikát mutat be az SPSS és Excel programok használatával, közben megismerteti az olvasókat az SPSS for Windows statisztikai program használatával. Az útmutatások figyelmes végig olvasásával, és megfelelő mennyiségű gyakorlással a statisztikai végzettséggel nem rendelkező egyének is jártasságot szerezhetnek a műveletek elvégzésében. Példákkal és magyarázatokkal, valamint ezekhez kapcsolódó ábrákkal segíti az egyes statisztikai próbák elvégzését, és az eredmények értékelését. Az értékelésnél, következtetések levonásánál olyan terminusokat használ, melyek alkalmazásával a szakdolgozat, vagy akár egy publikáció tudományos értéke is növelhető. A jegyzetben található képernyőfotók kifejezetten a jegyzethez készültek, a szerző saját szellemi termékei. Ugyanígy az egyes példakérdések is saját munkák, amelyeket másoktól vettem át, azt lehivatkoztam.

A jegyzet végén egy példatár található, mely segítséget nyújt abban, hogy egy hipotézis vizsgálatát a lehető legnagyobb szakszerűséggel kezdjük meg, vagyis segít eldönteni az alkalmazandó statisztikai próbát, majd irányt mutat az eredmények megfelelő megfogalmazásához.

Tudás	Képesség	Attitűd	Autonómia/felelősség
Ismeri a próbafelmérés menetét és az adatbázis készítésének módját Excel és SPSS programokkal.	Képes próbafelmérést végezni kutatása során, valamint kódolni a mérőeszközt, illetve adatbázist elkészíteni Excel és SPSS programokban.	Motivált az egészségtudomány területén keletkezett új tudományos eredmények megismerésére, saját kutatásának statisztikai vizsgálatára.	Saját kutatásait, a kutatás során alkalmazott statisztikai próbákat felelősséggel végzi.
Ismeri a leíró és matematikai statisztikai módszereket, azok alkalmazásának kritériumait és menetét Excel és SPSS programokkal.	Képes leíró és matematikai statisztikai módszereket megválasztani és alkalmazni Excel és SPSS programokkal.		A statisztikai próbák eredményeit felelősséggel értékeli.
Ismeri a hipotézisvizsgálat menetét.	Képes a hipotéziseit statisztikai módszerekkel megvizsgálni, az eredményeket értelmezni.		Döntéseiért tudományosan megalapozott felelősséget vállal.

A tantárggyal a következő konkrét *tanulási eredmények* alakíthatók ki:

Szeged, 2018.06.18.

1. A tervezett módszerek kipróbálása (próbafelmérés – pilot study)

A tervezett módszerek kipróbálása a kutatási folyamat hetedik lépése. A mérőeszköz elkészítése után következik annak kipróbálása, vagyis a próbafelmérés. Jelen esetben a kérdőíves felmérést vesszük alapul. Kis mintán (kb. 10 fő) végezzük, könnyen elérhető alanyokkal. Fontos, hogy olyan embereket kell választani, akik a tervezett felmérés mintájába tartoznak, tehát, ha 16-17 éves serdülők körében szeretnénk majd a kérdőívet kiosztani, akkor a próbafelméréshez is ilyen korú fiatalokat kell választani. Kiosztjuk számukra a kérdőívet, és megkérjük, hogy minden kérdésre válaszolva töltsék ki, és mérjék le a kitöltéshez szükséges időt. A kitöltés során figyeljenek a kérdések érthetőségére, a megadott válaszlehetőségekre, elegendőt adtunk-e meg, kimaradt-e valamilyen válaszlehetőség, megkérdeztünk-e minden fontos dolgot. A visszajelzések alapján tudjuk módosítani, javítani még a kérdőívünket, mielőtt azt kiosztanánk a vizsgálni kívánt mintának. A visszajelzések alapján javítani lehet a kérdésfeltevés módját is, például a nyitott kérdésből zártat csinálunk (vagy fordítva).

Az előforduló hibákat három csoportra lehet osztani (Héra és Ligeti, 2005):

1. Formai hibák: elütési, helyesírási és szerkesztési hibák.

2. Tartalmi hibák: értelmetlen vagy felesleges kérdés, túl részletes kérdés, vagy éppen elnagyolt.

3. Logikai hibák: nem jó a kérdések számozása, nincsenek megadva megfelelő válaszlehetőségek, nem lehet választ megtagadni.

On-line végzett kutatás esetében is van lehetőség próbafelmérésre. Ebben az esetben a kérdőív linkjét küldjük el néhány személynek, és megkérjük őket a kitöltésre. Ilyenkor – az előbbieken kívül – azt is figyelniük kell, hogy a kérdőív megfelelően működik-e, például, ha van olyan kérdés, ami nem vonatkozik mindenkire, akkor azt nem tettük-e véletlenül kötelező kérdéssé.

Pl: Ön dohányzik-e?*

- □ igen
- □ nem
- 🗆 korábban dohányoztam, de már leszoktam

Hány szál cigarettát szív el egy nap?*

A két kérdés után a csillag jelzi, hogy kötelezően kitöltendő kérdésről van szó. Ezt On-line kutatásnál külön be lehet állítani. Ha véletlenül a naponta elszívott cigaretta számát taglaló kérdést is kötelezővé tesszük, akkor azok, akik nem dohányoznak, vagy már leszoktak, nem tudnak tovább haladni a kérdőív kitöltéssel, csak akkor, ha ide nullát írnak.

A próbafelmérés több szempontból is nagyon hasznos (Cseh-Szombathy és Ferge, 1971):

- ✓ megtudhatjuk, hogy az alkalmazni kívánt mintavételi eljárás megfelelő lesz-e a vizsgálat szempontjából;
- megbecsülhetjük a nem válaszolók arányát is, mivel a próbavizsgálat során szétküldött kérdőívekből nem nagy valószínűséggel kapjuk vissza mindet. Ebből a nem válaszolási arányból lehet majd következtetni arra, hogy a felmérésünkben milyen arányban lesznek a választ megtagadók;
- ✓ arra is fény derülhet, hogy a kiválasztott adatfelvételi mód megfelel-e a céljainknak, vagy másik módszert kell választanunk;
- ✓ ellenőrizni tudjuk, hogy a kérdőív kitöltési útmutatója, vagy az egyes kérdéseknél közölt utasítások egyértelműek-e;
- ✓ módosítani tudjuk a kérdéseket, illetve a válaszlehetőségeket is, mivel fény derülhet olyan válaszlehetőségekre, amelyekre a kérdőív szerkesztése során nem is gondoltunk;
- ✓ meg tudjuk állapítani a felmérés időtartamát, és várható költségeit is.

A próbafelmérés után lehetőség van, és kell is a kérdőíven változtatni, amennyiben a fent említett problémák valamelyike fennáll. Amikor a felmérés elkezdődött, akkor már nem szabad változtatni semmit a kérdéseken, mert az addig kitöltött kérdőívek, beérkezett válaszok használhatatlanok lesznek.

ÖNELLENŐRZŐ KÉRDÉSEK AZ 1. FEJEZETHEZ

1. A próbafelmérés során milyen jellegű hibákra derülhet fény?

2. Milyen előnyei vannak a próbafelmérésnek?

2. A kutatás során nyert adatok feldolgozása

Ebben a fejezetben a kérdőíves felmérésből származó adatok feldolgozásáról lesz szó, mivel az adatelemzés során végig a kérdőíves felmérésből származó adatokkal fogunk dolgozni.

2.1. Adatbázis tisztítása

Első lépésként a beérkezett kérdőívek áttekintése történik. Papír alapú kérdőívek esetében a visszaérkezett kérdőíveket egyesével át kell tekinteni. Meg kell vizsgálni, hogy minden kérdésre érkezett-e válasz, illetve az utasításoknak megfelelően töltötte-e ki a válaszadó, értelmezhető választ adott-e. Ha a kérdések több mint 10%-ára nem érkezett válasz, akkor a válaszadót (az adott kérdőívet) ki kell zárni a felmérésből. Ha valamelyik kérdésre nem az utasításnak megfelelően válaszolt a kitöltő (pl. azt kértük, hogy három válaszlehetőséget jelöljön be, de ő 4-et jelölt), akkor azt a kérdést is úgy kell tekinteni, mint ha nem érkezett volna rá válasz. Ha az összes kérdőívet átnéztük, akkor a helyesen kitöltötteket egyesével be kell számozni (célszerű a jobb felső sarokban). Ez biztosítja azt, hogy az adatbevitel során bármikor visszakereshető legyen az adott kérdőív. **On-line** kérdőíves kutatás esetén könnyebb dolgunk van, mivel ha beállítottuk azt, hogy a kérdésekre kötelező válaszolni, akkor nem lesz hiányosan kitöltött kérdőívünk. Azonban előfordulhat, hogy egy válaszadó többször is kitölti a kérdőívet, így duplikálja saját magát. Ezeket a válaszadókat szükséges kiszűrni, mely igen hosszadalmas, időigényes folyamat, de elengedhetetlen ahhoz, hogy adataink megbízhatóak legyenek. Legegyszerűbb az időbélyeg megtekintése, mert az önmagukat duplikáló válaszadók legtöbbször egymás után küldik be a válaszokat, és azonos választ adnak mindegyik kérdésre, így könnyen felismerhetők.

2.2. Adatok kódolása

Mielőtt a számítógépen létrehoznánk az adatbázisunkat, a kérdőívben számokká kell alakítanunk (kódokkal ellátni) az egyes válaszokat. Ezt nevezzük kódolásnak. Ez azért szükséges, mert a statisztikai program csak számokkal tud dolgozni. A kódoláshoz szükségünk lesz egy üres kérdőívre (on-line felmérés esetén is nyomtassunk egy üres kérdőívet), melyen elvégezzük a kódolást. Az üres, kódokkal ellátott kérdőív lesz a segítségünkre abban, hogy a kitöltött kérdőívek esetében milyen kódokat jelentenek az egyes szöveges válaszok. (Az adatbázis létrehozásáról a későbbiekben lesz szó.) Az alábbiakban különböző kérdéstípusok kódolását láthatjuk.

• Kérem, karikázza be a megfelelő választ!

Neme: férfi nő

Az üres kérdőíven 1-est írunk a férfi, és 2-t a nő szó fölé. A kitöltött kérdőívek esetében, ha a válaszadó a férfit karikázta be, akkor majd 1-est írunk az adatbázisba (a számítógépes statisztikai programba), ha a nő válaszlehetőséget, akkor 2-t.

• Mennyire ért egyet vagy nem ért egyet a következő állításokkal önmagára vonatkozóan?

		Teljes mértékben egyetért 4	Nagyjából egyetért 3	Kevésbé ért egyet 2	Nem ért egyet 1
Α.	Gyakran magamra hagyatottnak érzem	-			
	magam, amikor az élet problémáival kerülök szembe.	4	3	2	1
В.	Szinte mindent meg tudok tenni, amit komolyabban elhatározok.	4	3	2	1
C.	Sok olyan fontos dolog van az életemben, amin csak kismértékben vagyok képes változtatni.	4	3	2	1
D.	Időnként határozottan feleslegesnek érzem magam.	4	3	2	1
Е.	Bárcsak többre értékelném magamat.	4	3	2	1
F.	Úgy érzem, sok jó tulajdonságom van.	4	3	2	1
G.	Jobb nekem, ha csak az életem pozitív (jó) oldalára figyelek, a többivel nem törődöm.	4	3	2	1

Ebben az esetben egyszerű dolgunk van, mert a hét kérdésre válaszként egy számot kellett bekarikázni a válaszadónak. Ilyenkor a kód a bekarikázott szám.

• Egy átlagos héten hány órát fordíthat arra, hogy azt tegye, ami Önnek tetszik?

..... óra/hét

Ennél a kérdéstípusnál a kód az az óraszám lesz, amit a válaszadó beírt.

• Milyen településen él jelenleg?

tanya falu város

1-es kóddal jelöljük a tanya, 2-es kóddal a falu, 3-as kóddal a város válaszlehetőséget.

• Mindent figyelembe véve mennyire érzi magát elégedettnek ápolói munkájával?

Nagyon	Elégedett	Elégedett is és	Nem elégedett	Egyáltalán
elégedett		nem is		nem elégedett

Ennél a kérdésnél ugyanúgy járunk el, mint az előzőnél: a válaszlehetőségek fölé 1-5-ig írjuk a számokat.

• Milyen változást kellett átélnie az elmúlt években a munkahelyén? (Kérem, tegyen X-et a megfelelő állításhoz!)

Megélt változás	átéltem
A. Elbocsátották a munkahelyéről.	
B. Másik osztályra/részlegbe helyeztek át.	
C. Vezetőváltás történt a munkahelyén.	
D. Csökkent a fizetésem.	
E. Nőtt a fizetésem.	
F. Előléptettek.	
G. Vezetői állásból leváltottak.	
H. Kedvelt munkatársaimat bocsátották el.	
I. Feszültebbé vált a munkahelyi légkör.	
J. Csökkent a továbbképzéseken, kongresszusokon való részvételi lehetőségeim száma.	
K. Megakadályoztak továbbtanulási szándékomban.	
L. Nem a legmagasabb végzettségemnek megfelelő bérezésben részesültem.	
M. Más munkakörbe helyeztek át.	
N. Könnyebb lett a munkám.	
O. Új módszereket, eszközöket vezettek be munkahelyemen az ápolásban.	
P.A sok munkahelyi feszültség miatt romlott az egészségi állapotom	
Q. A sok munkahelyi feszültség miatt a családi kapcsolataim megromlottak.	
R. Több túlórát kellett vállalnom	
S. Egyéb, éspedig:	

Ennél a kérdésnél tetszőleges számú X-et tehet a válaszadó. Ilyen esetben a jelölte-nem jelölte kódolást alkalmazzuk majd, ami azt jelenti, hogy amelyik válaszlehetőséghez tett X-et a kitöltő, azt 1-el kódoljuk (jelölte), amelyikhez nem tett X-et, azt nullával (nem jelölte).

• Volt-e valami, amitől nagyon tartott az egészségügy átszervezése kapcsán, de nem következett be? Kérem, írja le!

.....

Ez egy nyitott kérdés, melyre tetszőleges választ adhat a kitöltő, vagy az is előfordul, hogy nem válaszol rá. Először azt kell kódolnunk, hogy válaszolt-e (1-es kód), vagy nem válaszolt (0-s kód). Ezek után a leírt válaszokból kategóriákat kell képezni, vagy kulcsszavakat kell gyűjteni (pl: elbocsátás, fizetéscsökkenés, osztály bezárása, stb.), és azokra alkalmazni az előző kérdéstípusnál használt jelölte-nem jelölte kódolást.

 Kérlek, számozd be hatékonyságuk szerint a következő fogamzásgátló módszereket 1-től 10-ig! (1- a legmegbízhatóbb módszer, legnagyobb valószínűséggel véd a nem kívánt terhesség ellen, 10- a legkockázatosabb módszer, írd a megfelelő számot a pontozott vonalra!) Gumióvszer
..... Fogamzásgátló tabletta
..... Sürgősségi tabletta
.... Naptár módszer
.... Hőmérőzéses módszer
.... Megszakított közösülés
.... Hüvelygyűrű
.... Pesszárium, méhszájsapka
.... Spirál
.... Spermicid anyagok (kúpok, habok)

Ennél a kérdésnél rangsort kellett felállítani a válaszadónak, tehát 1-10-ig számozni az válaszlehetőségeket. Ebben az esetben a kód az a szám lesz, amit a kitöltő az adott fogamzásgátlási módszer elé írt. Fontos megjegyezni, hogy ez a kérdés csak akkor értékelhető, ha az 1-10-ig terjedő rangsorban mindegyik szám csak egyszer szerepel! Ellenkező esetben a kérdést nem értékelhetjük az adott válaszadónál.

2.3. Adatbázis elkészítése

Az adatbázis mindig a kutatási eszköz – jelen esetben a kérdőív – alapján készül. Elkészítéséhez elengedhetetlen az előző pontban ismertetett kódolás elvégzése. Az adatbázis oszlopok és sorok összességéből áll. Változók szerint rendezett elemi információkat tartalmaz. Egy változó (pl: nem) egy oszlopban jelenik meg, minden egyes sor pedig egy válaszadó által adott összes választ tartalmazza *(Falus és Ollé, 2008)*. A továbbiakban az 1.2. fejezetben ismertetett példák alapján SPSS 22.0 for Windows statisztikai programmal láthatjuk az adatbázis elkészítését. Ez a program alkalmas arra, hogy leíró és matematikai statisztikai számításokat végezzünk egyszerűen, így elengedhetetlen ennek ismerete.

Először azonban essék néhány szó az SPSS kezelőfelületéről, azon fontosabb funkcióiról, parancsokról, amik számunkra elengedhetetlenek az alap statisztika elvégzéséhez. Mindegyik SPSS verzió felosztása hasonló, az azonban előfordulhat, hogy egy-egy funkció máshol található.

A menüsorban a File tartalmazza a mentés opciót (1. ábra), melyet először a Save As paranccsal tegyünk meg a kívánt helyre, majd minden módosítás után elegendő a Save gombot megnyomni. Az első mentést csak akkor tudjuk megtenni, ha már valamit dolgoztunk az adatbázisban.

1. ábra: SPSS File menüpont																						
🝓 *Untitled	1 [DataSet0]	- IBM SI	PSS Statistics	s Data Edito	r															-	٥	×
<u>File</u> Edit	View	Data	Transform	Analyze	Di	irect <u>M</u> arke	eting <u>G</u> r	raphs	Utilities	Add-ons	Window	Help										
New					•		Ч	<u>å</u> å	*		- 42	A A		ABC								
Open					•																	
Open D	ata <u>b</u> ase				•		1	1		ir	Y	ř	r	1	1	1	1	1	1	VISIDIE: *	1 of 1 va	riables
🐻 Rea <u>d</u> Te	ext Data					var	var		var	var	var	var	var	var	var	var	var	var	var	var	\	/ar
Read C	ognos Data	L																				
Close <u>C</u> lose				Ctrl+F4																		
H Save				Ctrl+S																	_	
S <u>a</u> ve As																						
띎 Save All	Data																					
🗟 Export to	Database.																					
Mar <u>k</u> Fil	e Read Only	y																				
Rename	e Dataset																					_
Display	Data File In	nformatio	on		•																_	_
🔯 Cac <u>h</u> e E)ata																					_
Collect	ariable Info	ormation																				-
Stop Pro	cessor			Ctrl+Perio	d																	
Switch S	erver																					
Reposit	ory																					
Set View	ver Output C	Options (Syntax)																			
C Print Pre	view																					
A Print				Ctrl+P																		
Welcom	e Dialog																					
Recent	v Used Data	а																				_
Recenti	- y Used File	s			•																	-1
Exit	-					-																-11
25		2,00																			-	
26	1	2,00																				
27		2,00																				
28		2,00																				
29		2,00																				-
	1											***										
Data View	Variable	View																				
Save As																IBM SPSS	Statistics Proc	essor is read	v Un	icode:ON		

A Transform menüpontban a Compute Variable segítségével tudunk változókkal műveleteket végezni (pl. összeadni azokat, vagy BMI-t számolni), a Recode into Different Variables menüponttal pedig meglévő változóinkból újakat hozhatunk létre (pl. életkorból életkori csoportokat 10 vagy 15 éves bontásban) (ld. később!). **(2. ábra)**

ta *Untitled1	[DataSet0] - IBN	1 SPSS Statistics Data Ec	litor													-	٥	\times
<u>File</u> Edit	<u>V</u> iew <u>D</u> ata	Transform Anal	yze Direct <u>M</u> arket	ing <u>G</u> raphs	Utilities	Add-ons	Window	Help										
😂 🖿		📑 🛅 <u>C</u> ompute Varia	ible		. *			III A		ABC								
		Programmabil	ity Transformation															
4 :	ļ	Count Values	within Cases													Visible: 1	of 1 Vari	ables
	Neme	Shift Values			var	var	var	var	var	var	var	var	var	var	var	var	va	ar
1	2,00	Deserve late O																-
2	2,00	Recode Into Sa	ame variables															
3	2,00	Recode into Di	fferent Variables															
4	2,00	Mutomatic Rec	ode															
5	2,00	Create Dumm	/ Variables															
6	2,00	Visual Binning																
7	2,00	提 Optimal Binnin	g															
8	2,00	Prepare Data 1	or Modeling															
9	2,00	Rank Cases																
10	2,00	Date and Time	Minered															
11	2,00	Date and time	wizaru															_
12	2,00	Create Time S	eries															
13	1,00	Replace Missi	ng <u>V</u> alues															
14	2,00	🍘 Random Numi	ber <u>G</u> enerators															
15	2,00	Run Pending <u>T</u>	ransforms	Ctrl+G														
16	2,00																	
17	2,00																	
18	2,00																	_
19	2,00																	_
20	2,00																	_
21	1,00																	_
22	2,00																	_
23	2,00																	-11
24	2,00																	-11
25	2,00																	
20	2,00																	
21	2,00																	
20	2,00																	
25	2,00																_	-
								***									_	
Data View	Variable View																	
Compute Va	riable											IBM SPSS	Statistics Pro	cessor is read	lv UI	nicode:ON		

2. ábra: SPSS Transform menüpont

Az Analyze menüpont tartalmazza a számunkra fontos statisztikai próbákat, melyekről később lesz szó. (3. ábra)

3. ábra: SPSS Analyze menüpont

A Graphs menüpontban van lehetőség ábrákat készíteni, azonban az itt készülő ábrák esztétikailag kevésbé mutatósak, így ehhez az Excel használata javasolt.

Ha egy sort vagy oszlopot törölni kell, akkor a jobb egérgombbal kattintsunk rá, majd Clear.

(4. ábra)

	4. ábra: Adatsor törlése																			
U *U	ntitled1 [DataSet0]	- IBM SP	PSS Statistic	s Data Editor														-	
Eile	Edit	View [Data	Transform	<u>A</u> nalyze	Direct Marke	ting <u>G</u> rap	hs <u>U</u> tilities	Add- <u>o</u> ns	Window	Help									
			Щ,		⊲ 🖁		Ч	AA 🔠		4	A	0	ABC							
5 : Ne	me		2,00																Visible: 1	of 1 Variables
		Neme		var	var	var	var	var	var	var	var	var	var	var	var	var	var	var	var	var
	1		2,00																	4
	2		2,00																	
	3	:	2,00																	
	4	:	2,00																	
	6 Cut		2.00																	
	Corr																			
	Copy																			
	Past	e																		
	Clea	r																		
	🏝 įnser	t Cases																		
-	12		2 00																	
	13		1 00																	
	14		2.00																	
	15		2.00																	
	16		2,00																	
	17	:	2,00																	
	18		2,00																	
	19	:	2,00																	
	20		2,00																	
:	21		1,00																	
	22		2,00																	
:	23		2,00																	
	24		2,00																	
	25	:	2,00																	
	26		2,00					_												
	27	:	2,00																	
	28		2,00																	
	29	1	2,00																	
		1																		1
Data	View	/ariable V	iew																	

Ha már egy számítást elvégeztünk, eredményünk az Output ablakban **(5. ábra)** jelenik meg. Első lépésként ezt is el kell menteni egy tetszőleges néven a File -> Save As paranccsal, majd utána elegendő lesz minden számítás után a Save gombra kattintani.

Tabia. Si SS Output ablaKa													
<u>File Edit View Data Tra</u>	ransform Insert Format Analyze Direct.Marketing Graphs Utilities Add-ons Window Help												
😑 🗄 🖨 👌 🎍	2 💷 🗠 🛪 🧝 🏜 🗐 🔕 🗣 👎 📄 🗟 🔲 🔶 🔶 👘 🖄												
Comput Comput	Image: Solution of the second secon												

5. ábra: SPSS Output ablaka

Innen egyszerűen másolhatunk át táblázatokat Word dokumentumba: kattintsunk jobb egérgombbal a táblázatra, majd Copy, a Word dokumentumban pedig Beillesztés. **(6. ábra)**

Ta *Output1 [Document1] - IBM SPSS Statistics Viewer													
<u>File Edit View Data Tran</u>	nsform Insert F <u>o</u> rmat <u>A</u> nalyze Direct <u>M</u> arketing <u>G</u> raphs <u>U</u> tilities Add- <u>o</u> ns <u>Wi</u> ndow <u>H</u> elp												
😑 🗄 🖨 🔕 🕹) 📖 🗠 🛪 🧝 📲 🚽 🕢 🌑 🧦 🎬 隆 🔊 🔳 🔶 🔶 🕂 🗖 🚺 🔂												
Cutput Dutput Dutput Dutput Frequencies Title	PREQUENCIES VARIABLES=Neme //order=analysis.												
Active Dataset	Frequencies												
→ Cân Neme	[DataSet0]												
	Statistics												
	Neme												
	N Valid 29 Missing 0												
	Ner												
	Cut lative												
	nő 27 9 Paste After 100,0												
	Totai 29 100 Create/Edit Autoscript												
	Style Output												
	Export												
	Edit Content												

6. ábra: Másolás Output ablakból

Adatbevitel megkezdéséhez nyissuk meg a programot! Megjelenik az üres sablon (**7. ábra**), mely még semmilyen adatot nem tartalmaz. A felső, vízszintes sorban egymás mellett a "var" rövidítéseket láthatjuk, ezek lesznek a változók (pl: nem). Az oldal alján a Data View fül sárga, ez mutatja, hogy adatnézetben vagyunk. Az adatbevitel után egy válaszadó által adott összes válasz egy sorban fog megjelenni ebben a Data View nézetben.

🕼 Untitled1 [[DataSet0] - IB	M SPSS Statisti	cs Data Editor														-	đ	×
<u>File</u> Edit	View Da	ata <u>T</u> ransfor	m <u>Analyze</u>	Direct Mark	ceting <u>G</u> rap	hs <u>U</u> tilities	Add-ons	Window	<u>H</u> elp										
i 😂 🔲						AA 1	*		5			BC.							
						. 88				1 শ 🔍		•							
1:																	Visible: () of 0 Var	iables
	var	var	var	var	var	var	var	var	var	var	var	var	var	var	var	var	var	va	r
1																			1
2																			
3																			
4																			
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			_
21																			
22																			_П
23																		<u> </u>	
24																		<u> </u>	_
25			ļ															<u> </u>	_
26																		<u> </u>	
27																		<u> </u>	
28																		<u> </u>	
29																			-
	1																	_	16
Data View	Variable Vie	w																	
														Clotictice Dro			nicodo:ON		_

7. ábra: Üres SPSS sablon

Ahhoz, hogy a változókat tartalmazó adatbázisunkat el tudjuk készíteni (vagyis az üres kérdőíven megjelenített kódokat be tudjuk írni a statisztikai programba), át kell állítani a sablont az alsó, Variable View fülre. Az így megjelenő felület lesz alkalmas arra, hogy elkészítsük az adatbázisunkat. Egy változó egy sorban fog szerepelni. (**8. ábra**)

Szükséges megismerkedni az egyes oszlopok jelentésével és beállításaival:

Name: a változó neve (pl: nem, lakóhely). A bevitelnél figyelni kell arra, hogy csak betűket, számokat és alsó vonást használhatunk, egyéb karaktereket nem fogad el a program. Rövid, egyértelmű változó neveket kell alkotni, hogy egyértelműen beazonosítható legyen a kérdőívben a kérdős.

Type: a változó típusa. Ez mindig "numeric" legyen, mivel a statisztikai program csak számokkal tud dolgozni!

Width: ez automatikusan 8-ra fog állni, nem kell módosítani.

Decimals: a tizedes jegyeket mutatja. Ez nullára célszerű állítani, kivéve abban az esetben, ha fontos a tizedes jegyek megjelenítése (pl: ha a testmagasságot méterben adjuk meg).

Label: ide általában a kérdőív kérdését szoktuk pontosan beírni, hogy egyértelműen beazonosítható legyen a változónk. Bármilyen hosszúságú mondatot írhatunk.

Values: ebben a cellában történik majd a kódok rögzítése.

Measure: ebben a cellában kell majd beállítani a változó típusát. A többi oszlopban nincs beállítandó paraméter.

🝓 Untitled1 [[DataSet0] - IBM S	SPSS Statistics D	ata Editor				10 - 10 10				-		- 0	×
File Edit	View Data	Transform	Analyze [Direct <u>M</u> arket	ing <u>G</u> raphs <u>L</u>	Jtilities Add-o	ns <u>W</u> indow	Help						
			7		- H	h 🔤 🛙	🛛 💻 4	\$2 1		A45				
	Name	Type	Width	Decimals	Label	Values	Missing	Columns	Alian	Measure	Role			
1		.,,,,,												-
2														
3														
4														
5														
6														
7														
8														
9														
10														
11														
12														
13														
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
24														
25														
26														
27														
28														
29														
30														-
24	1													
Data View	Variable View													
											UDU OF	an all it is a provident of the second		

8. ábra: SPSS Variable View nézete

Most nézzük meg egyesével az 1.2. fejezetben ismertetett példák bevitelét az adatbázisba.

• Kérem, karikázza be a megfelelő választ!

Neme: férfi nő

A "Name" oszlop első sorába beírjuk a "neme" szót, majd Enter-t ütünk. Ekkor az egész sor kitöltődik. A "Decimals"-t levisszük nullára, majd a "Values" oszlopban a "None" szó mögé kattintunk, ekkor megjelenik egy kis ablak. (9. ábra)

🚱 *Untitled1	[DataSet0] -	IBM SPSS Statistics	Data Editor			abrai	11 van	020 p		ter ennen	beame	usu	- 0 ×
<u>File</u> Edit	View D	ata <u>T</u> ransform	Analyze	Direct <u>M</u> arketi	ing <u>G</u> raphs <u>L</u>	tilities Add-or	ns <u>W</u> indow	Help					
😑 H		🛄 🗠 ʻ	7		i ip aa		- S	3 🎹		A		_	
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role		1
1	neme	Numeric	8	0		None	None	8) 🧮 Right	\delta Nominal	💊 Input		4
2]												
3													
4													
5													
6	ļ												
7													
8	ļ										1		
9						Value Labels				×			
10						-Value Labels							
11						Value				Spolling			
12	ļ									Spennig			
13													
14													
15						<u>A</u> dd						_	
16						Change							
17						Remove						-	
18												-	
19												-	
20	1						OF	Cancel	Help				
21	1							-		_			
22											-		
23	1		_									-	
24													
25]											-	
20												-	
21	1											-	
20	1											-	
30	1											-	
34	1												-
	1	_											
Data View	Variable Vi	w											

9. ábra: A változó paramétereinek beállítása

A "Value" mezőbe 1-est írunk, a "Label" mezőbe pedig a férfi szót, mivel az üres kérdőíven 1el kódoltuk a férfit. Ezután az "Add" gombra kattintunk. Ekkor bekerül a nagy ablakba az 1="férfi" jelölés. Majd ezután a "Value" mezőbe 2-t írunk, a "Label" mezőbe pedig a nő szót, mivel az üres kérdőíven 2-el kódoltuk a nőt. Ezután ismét az "Add" gombra kattintunk. majd az OK gombra, ezzel kész a változó értékeinek megadása. A "Measure" cellában pedig a "Nominal"-t állítjuk be, mivel kategorikus változóról van szó. (**10. ábra**)

🕼 *Untitled1	[DataSet0] - IBN	A SPSS Statistics I	Data Editor											- 0	×									
<u>File</u> Edit	View Data	<u>Transform</u>	Analyze	Direct <u>M</u> arket	ing <u>G</u> raphs	Jtilities Add-or	is <u>W</u> indow	Help																
				· 🖳 🖻	A N			. === .		ABS														
		• •	-		· · · · · · · · · · · · · · · · · · ·						-11													
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role													
1	neme	Numeric	8	0		None	None	8	I Right	& Nominal	💊 Input				-									
2																								
3																								
4																								
5																								
6																								
7																								
8						The Value Label				×	1													
9						value cabels	•			~														
10						Value Labels	;																	
11						Value:				Spelling														
12						Labelt																		
13																								
14							1 = "férfi"																	
15						Add	2 = "no"																	
16						Change																		
1/						Remove																		
18																								
19						. L					-													
20						-	ОК	Cancel	Help															
21						L																		
22																								
23			-																					
24		-	-							_	_													
20			-	-				-																
20																								
21																								
20																								
20																								
24															-									
	1						_																	
Data View	Variable View																							
-											IBM SE	QQ Statistics Processor is r	IDM SPSS Statistics Processor is rearty Injuryda / N											

10. ábra: A "neme" változó értékeinek megadása

		Teljes mértékben egyetért 4	Nagyjából egyetért 3	Kevésbé ért egyet 2	Nem ért egyet 1
А.	Gyakran magamra hagyatottnak érzem magam, amikor az élet problémáival kerülök szembe.	4	3	2	1
в.	Szinte mindent meg tudok tenni, amit komolyabban elhatározok.	4	3	2	1
C.	Sok olyan fontos dolog van az életemben, amin csak kismértékben vagyok képes változtatni.	4	3	2	1
D.	Időnként határozottan feleslegesnek érzem magam.	4	3	2	1
Е.	Bárcsak többre értékelném magamat.	4	3	2	1
F.	Úgy érzem, sok jó tulajdonságom van.	4	3	2	1
G.	Jobb nekem, ha csak az életem pozitív (jó) oldalára figyelek, a többivel nem törődöm.	4	3	2	1

• Mennyire ért egyet vagy nem ért egyet a következő állításokkal önmagára vonatkozóan?

Ennél a típusú kérdésnél az A-F-ig válaszlehetőségek hét külön változót fognak jelenteni, tehát a "Name" oszlopban az előző változó (neme) alá gépeljük be egyesével, mindegyik után Entert ütve. Az elnevezésben utalhatunk a kérdés számára (pl: k1_A). A "Decimals" oszlopban itt is nullát állítunk be. Mivel ez egy ordinális (rangsor) változó, így a "Measure" oszlopban mind a hét esetben az "Ordinal"-t állítjuk be. (**11. ábra**)

😭 *minta.sav	/ [DataSet0] - IBI	M SPSS Statistics D	Data Editor										-	٥	×
File Edit	View Data	Transform	Analyze I	Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u>	tilities Add-on	s <u>W</u> indow	Help							
😂 占			¥ 🗳		i i k) 🎹 I		ARG					
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role				
1	neme	Numeric	8	0		{1, férfi}	None	8) I Right	\delta Nominal	🦒 Input				
2	k1_A	Numeric	8	0		None	None	8	🗮 Right	Ordinal	🦒 Input				
3	k1_B	Numeric	8	0		None	None	8) I Right	Ordinal	🖒 Input				
4	k1_C	Numeric	8	0		None	None	8	🗮 Right	Ordinal	🦒 Input				
5	k1_D	Numeric	8	0		None	None	8	🚎 Right	Ordinal	🦒 Input				
6	k1_E	Numeric	8	0		None	None	8	📜 Right	d Ordinal	🦒 Input				
7	k1_F	Numeric	8	0		None	None	8	🚎 Right	Ordinal	🖒 Input				
8	k1_G	Numeric	8	0		None	None	8	🗮 Right	Grdinal	🖒 Input				
9															
10]														
11															
12]														
13															
14]														
15															
16]														
17]														
18]														
19]														
20]														
21]														
22]														
23]														
24]														
25]														
26]														
27]														
28															
29															
30]														
24	1														-
Data Marin															<u> </u>
Data view	Variable View	J													
		,									IDM OF	PS Statistics Processor is ready	Lipico do: ON	Т	

11. ábra: Ordinális változó kódolása

Ezután következik a "Values" oszlop kitöltése. A kódokat 1-4-ig írjuk be a kérdésben szereplő jelentéssel (nem ért egyet - teljes mértékben egyetért). (**12. ábra**)

🕼 *minta.sav	[DataSet0] - IBM	SPSS Statistics D	ata Editor										-	٥	\times		
<u>File</u> Edit	<u>View</u> <u>Data</u>	Transform	Analyze (Direct <u>M</u> arketii	ng <u>G</u> raphs <u>U</u> t	ilities Add- <u>o</u> n	s <u>W</u> indow	Help									
😂 H				* =	M M		- SZ) 🎹 I		ABG							
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role						
1	neme	Numeric	8	0		{1, férfi}	None	8	🚎 Right	\delta Nominal	💊 Input						
2	k1_A	Numeric	8	0		None	None	8) 居 Right	Ordinal	🔪 Input						
3	k1_B	Numeric	8	0		None	None	8)) I Right	Ordinal	💊 Input						
4	k1_C	Numeric	8	0		None	None	8)置 Right	Ordinal	🔪 Input						
5	k1_D	Numeric	8	0		None	None	8) I Right	Ordinal	🖒 Input						
6	k1_E	Numeric	8	0		None	None	8)置 Right	Ordinal	🔪 Input						
7	k1_F	Numeric	8	0		None	None	8)) I Right	Ordinal	💊 Input						
8	k1_G	Numeric	8	0		None	None	8)遭 Right	Ordinal	🔪 Input						
9																	
10																	
11											1						
12						Value Labels				×							
13						-Value Labels	Value Labels										
14						Maker											
15						vaiue:				Spelling							
16						Label:											
17							1 = "nem ért	egyet									
18						Add	2 = "kevésbé	ért egyet"									
19						Change	3 = "nagyjábó	ol egyetért									
20						Romov	4 = teijes mi	entekben egy	etert								
21						<u>I</u> Centove	9										
22																	
23							ОК	Cancel	Help								
24																	
25																	
26																	
27																	
28																	
29																	
30															Ļ		
24	1									-				_	- N		
Data View	Variable View																
											IBM SE	SS Statistics Processor is read	I Inicode:ON				

12. ábra: Ordinális változó értékeinek megadása

Ezt a műveletet nem kell külön elvégezni a másik hat változónál, hanem jobb egérgombbal belekattintunk az imént kitöltött mezőbe, majd "copy", és az alatta lévő mezőbe bemásoljuk a jobb egérgomb -> "paste"-re kattintva.

• Egy átlagos héten hány órát fordíthat arra, hogy azt tegye, ami Önnek tetszik?

..... óra/hét

Ennél a kérdéstípusnál a kód az az óraszám lesz, amit a válaszadó beírt, tehát csak egy változó nevet kell beírni (szabadidő). A "Decimals"-t itt 1-re állítjuk, mivel elképzelhető, hogy valaki pl. 2,5 órát ad majd meg. A "Measure" oszlopban pedig a "Scale"-t állítjuk be, mivel az óra folytonos változó lesz. Ennél a változónál mást nem szükséges beállítani.

• Milyen településen él jelenleg?

tanya falu város

Ezt a kérdés szintén úgy kell bevinni az adatbázisba, mint az elsőt (neme), csak itt a "Values" mezőben 1-es kóddal jelöljük a tanya, 2-es kóddal a falu, 3-as kóddal a város válaszlehetőséget. (13. ábra)

13. ábra: Lakóhely értékeinek megadása

🍓 *minta.sav	[DataSet0] - IBM	SPSS Statistics D	ata Editor												-	٥	×
Eile Edit	View Data	Transform	Analyze D	Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u> t	ilitie	s Add- <u>o</u> r	is <u>W</u> indow	Help								
🔁 H				* 1	i i i i i i i i i i i i i i i i i i i	1000		- SZ) 🎹 (6	ABG					
	Name	Туре	Width	Decimals	Label	L	Values	Missing	Columns	Align	L	Measure	Role				
1	neme	Numeric	8	0		{1,	férfi}	None	8) I Right	R	Nominal	🦒 Input				-
2	k1_A	Numeric	8	0		{ 1,	nem ért	None	8	遭 Right	4	Ordinal	💊 Input				
3	k1_B	Numeric	8	0		{ 1,	nem ért	None	8) I Right	4	Ordinal	🦒 Input				
4	k1_C	Numeric	8	0		{ 1,	nem ért	None	8	遭 Right	4	Ordinal	🖌 Input				
5	k1_D	Numeric	8	0		{ 1,	nem ért	None	8) I Right	4	Ordinal	🔪 Input				
6	k1_E	Numeric	8	0		{ 1,	nem ért	None	8	遭 Right	4	Ordinal	🖌 Input				
7	k1_F	Numeric	8	0		{ 1,	nem ért	None	8	疆 Right	4	Ordinal	N Input				
8	k1_G	Numeric	8	0		{1 ,	nem ért	None	8	遭 Right	4	Ordinal	Input				
9	szabadidő	Numeric	8	1		Nor	ne	None	8	I Right	1	Scale	➤ Input				
10	település	Numeric	8	0		No	ne	None	8	遭 Right	R	Nominal	🖌 Input				
11						_											
12						_											
13																	
14							Value L	abels					×				
15							-Value La	abels									
16							Volue:		-								
1/							vaiue.					Spelling	/ I				
18						_	Label:					J					
19								1 = "tany	a"]					
20						_	4	dd 2 = falu									
21							Ch	ange 3 = 'Varo	S-								
22						-	Re	move									
23																	
24											-	-					
26						\vdash			OK Ca	ncel Help							
20						-											
28						-					-						
29						-					+						
30						-					+						
24																	T
	1					_	_		_				_				
Data View	Variable View																
						_					-		IBM SP	SS Statistics Processor is ready	Unicode:ON		

• Mindent figyelembe véve mennyire érzi magát elégedettnek ápolói munkájával?

Nagyon	Elégedett	Elégedett is és	Nem elégedett	Egyáltalán
elégedett		nem is		nem elégedett

Ennél a kérdésnél ugyanúgy járunk el, mint az előzőnél, csak itt a "Values oszlopban 1-5-ig adjuk meg az értékeket (1=nagyon elégedett; 5=egyáltalán nem elégedett), és ordinális változó lesz. (14. ábra)

🕼 *minta.sav	[DataSet0] - IBN	SPSS Statistics D	ata Editor										-	σ	×
<u>File</u> Edit	<u>View</u> Data	Transform	Analyze (Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u> t	ilities Add- <u>o</u> r	is <u>W</u> indow	<u>H</u> elp							
😑 H				* *	P M		- S	i 🎹 i		B	ABG				
	Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align		Measure	Role			
1	neme	Numeric	8	0		{1, férfi}	None	8	遭 Right	2	Nominal	S Input			-
2	k1_A	Numeric	8	0		{1, nem ért	None	8	遭 Right	4	Ordinal	S Input			
3	k1_B	Numeric	8	0		{1, nem ért	None	8	遭 Right	4	Ordinal	S Input			
4	k1_C	Numeric	8	0		{1, nem ért	None	8	理 Right	4	Ordinal	S Input			
5	k1_D	Numeric	8	0		{1, nem ért	None	8	遭 Right	4	Ordinal	S Input			
6	k1_E	Numeric	8	0		{1, nem ért	None	8	遭 Right	4	Ordinal	S Input			
7	k1_F	Numeric	8	0		{1, nem ért	None	8	理 Right	-	Ordinal	S Input			
8	k1_G	Numeric	8	0		{1, nem ért	None	8	遭 Right	4	Ordinal	N Input			
9	szabadidő	Numeric	8	1		None	None	8	遭 Right	4	Scale	S Input			
10	település	Numeric	8	0		{1, tanya}	None	8	疆 Right		Nominal	S Input			
11	elégedettség	Numeric	8	0		None	None	8	遭 Right	4	Ordinal	S Input			
12															
13															
14					t	Value Labels					×				
15						Malua I abata									
16						value Labels				0					
17						Value:					Spelling				
18						Label:]					
19							1 = "nagyon el	égedett		1					
20						Add	2 = "elégedett"	-							
21						Change	3 = "elégedett	is meg nem	is"						
22						Demana	4 = "nem elége 5 - "equátalán	eaett"	ott"						
23						remove	5 - egyanaian	nem eleged	ou						
24							L			1					
25							ОК	Cancel	Help						
20															
2/															
20															
29															
30															-
	1														
Data View	Variable View														

14. ábra: Öt fokozatú Likert-skála kódolása

Milyen változást kellett átélnie az elmúlt években a munkahelyén? (Kérem, tegyen X-٠ et a megfelelő állításhoz!)

Megélt változás	átéltem
A. Elbocsátották a munkahelyéről.	
B. Másik osztályra/részlegbe helyeztek át.	
C. Vezetőváltás történt a munkahelyén.	
D. Csökkent a fizetésem.	
E. Nőtt a fizetésem.	
F. Előléptettek.	
G. Vezetői állásból leváltottak.	
H. Kedvelt munkatársaimat bocsátották el.	
I. Feszültebbé vált a munkahelyi légkör.	
J. Csökkent a továbbképzéseken, kongresszusokon való részvételi lehetőségeim	
száma.	
K. Megakadályoztak továbbtanulási szándékomban.	
L. Nem a legmagasabb végzettségemnek megfelelő bérezésben részesültem.	
M. Más munkakörbe helyeztek át.	
N. Könnyebb lett a munkám.	
O. Új módszereket, eszközöket vezettek be munkahelyemen az ápolásban.	
P.A sok munkahelyi feszültség miatt romlott az egészségi állapotom	
Q. A sok munkahelyi feszültség miatt a családi kapcsolataim megromlottak.	
R. Több túlórát kellett vállalnom	
S. Egyéb, éspedig:	

Ez a kérdés A-R-ig 18 külön változó lesz, illetve ahány féle válasz került az egyéb kategóriához, azok további változók lesznek, melyeket a "Name" oszlopba egymás alá viszünk be (k2_A-R). A "Values" cellában 0=nem jelölte, 1=jelölte kódokat alkalmazzuk, és copy-paste paranccsal másoljuk a többi változóhoz. Nominális változók lesznek. (15. ábra)

The American and IDeter Setting IDEA SDSS Statistics Data Editor

🕼 *minta.sav	[DataSet0] - IBN	SPSS Statistics D	ata Editor			,, , , , , , , , , , , , , , , , , , , ,		//4		•		- 0	×
<u>File Edit</u>	<u>View</u> <u>D</u> ata	Transform	Analyze D	Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u> t	ilities Add- <u>o</u> n	s <u>W</u> indow	<u>H</u> elp					
😑 H				* =	M M		- SZ						
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role		
4	k1_C	Numeric	8	0		{1, nem ért	None	8) I Right	Ordinal	🖌 Input		
5	k1_D	Numeric	8	0		{1, nem ért	None	8	遭 Right	Grdinal	🖌 Input		
6	k1_E	Numeric	8	0		{1, nem ért	None	8	這 Right	I Ordinal	🦒 Input		
7	k1_F	Numeric	8	0		{1, nem ért	None	8	這 Right	Crdinal	🦒 Input		
8	k1_G	Numeric	8	0		{1, nem ért	None	8) 居ight	Crdinal	🦒 Input		
9	szabadidő	Numeric	8	1		None	None	8	這 Right	🖋 Scale	🥆 Input		
10	település	Numeric	8	0		{1, tanya}	None	8	遭 Right	🖧 Nominal	🖌 Input		
11	elégedettség	Numeric	8	0		{1, nagyon	None	8	·≡ Right	Grdinal	🦒 Input		
12	k2_A	Numeric	8	0		{0, nem jelöl	None	8) I Right	Nominal	🦒 Input		
13	k2_B	Numeric	8	0		{0, nem jelöl	None	8	這 Right	🗞 Nominal	🦒 Input		
14	k2_C	Numeric	8	0		{0, nem jelöl	None	8	這 Right	& Nominal	🖌 Input		
15	k2_D	Numeric	8	0		{0, nem jelöl	None	8	這 Right	& Nominal	💊 Input		
16	k2_E	Numeric	8	0		{0, nem jelöl	None	8) I Right	Nominal	🦒 Input		
17	k2_F	Numeric	8	0		{0, nem jelöl	None	8	這 Right	🗞 Nominal	🦒 Input		
18	k2_G	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	🗞 Nominal	💊 Input		
19	k2_H	Numeric	8	0		{0, nem jelöl	None	8	這 Right	& Nominal	💊 Input		
20	k2_l	Numeric	8	0		{0, nem jelöl	None	8	這 Right	Nominal	🦒 Input		
21	k2_J	Numeric	8	0		{0, nem jelöl	None	8) I Right	🗞 Nominal	🦒 Input		
22	k2_K	Numeric	8	0		{0, nem jelöl	None	8	這 Right	🗞 Nominal	🦒 Input		
23	k2_L	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	& Nominal	💊 Input		
24	k2_M	Numeric	8	0		{0, nem jelöl	None	8	這 Right	Nominal	🔪 Input		
25	k2_N	Numeric	8	0		{0, nem jelöl	None	8) I Right	Nominal	🔪 Input		
26	k2_0	Numeric	8	0		{0, nem jelöl	None	8	這 Right	🗞 Nominal	🥆 Input		
27	k2_P	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	🗞 Nominal	💊 Input		
28	k2_Q	Numeric	8	0		{0, nem jelöl	None	8	這 Right	& Nominal	🔪 Input		
29	k2_R	Numeric	8	0		{0, nem jelöl	None	8	這 Right	🗞 Nominal 💌	💊 Input		
30													
31													
32													
33													÷
24	1								-			_	
Data View	Variable View												

15. ábra: "Nem jelölte" – "jelölte" típusú kérdések kódolása

IRM SPSS Statistics Processor is ready

Amennyiben az egyéb kategóriára is érkeztek válaszok, úgy azokat tartalmuk alapján kategóriákba kell rendezni (vagyis megtalálni azt a kulcsszót, ami ezeket jellemzi), és minden egyes kulcsszó új változó lesz, és azt is a jelölte – nem jelölte kódolással kell ellátni.

• Volt-e valami, amitől nagyon tartott az egészségügy átszervezése kapcsán, de nem következett be? Kérem, írja le!

.....

Ez egy nyitott kérdés, melyre tetszőleges választ adhat a kitöltő, vagy az is előfordul, hogy nem válaszol rá. Először azt kell kódolnunk, hogy válaszolt-e (1-es kód), vagy nem válaszolt (0-s kód). K3 lesz a változó neve, majd a "Values" mezőbe beírjuk a 0-s és 1-es kód jelentését. Nominális változó lesz.

Ezek után a leírt válaszokból kategóriákat kell képezni, vagy kulcsszavakat kell gyűjteni [pl: elbocsátás (K3_elbocsátás), fizetéscsökkenés (K3_fizetéscsökkenés), osztály bezárása, stb.], és azokra alkalmazni az előző kérdéstípusnál használt jelölte (1) - nem jelölte (0) kódolást. Nominális változók lesznek. (**16. ábra**)

🍓 *minta.sav	[DataSet0] - IBN	1 SPSS Statistics D	ata Editor										- ć	ð	×
Eile Edit	<u>View</u> Data	Transform	Analyze (Direct <u>M</u> arketii	ng <u>G</u> raphs <u>U</u> t	tilities Add- <u>o</u> r	ns <u>W</u> indow	Help							
🔁 H							- SZ) 🎹 I		ABS					
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role				
13	k2_B	Numeric	8	0		{0, nem jelöl	None	8	를 Right	\delta Nominal	🔪 Input				1
14	k2_C	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	\delta Nominal	💊 Input				
15	k2_D	Numeric	8	0		{0, nem jelöl	None	8	I Right	🙈 Nominal	🦒 Input				
16	k2_E	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	\delta Nominal	🦒 Input				
17	k2_F	Numeric	8	0		{0, nem jelöl	None	8	I Right	🙈 Nominal	🦒 Input				
18	k2_G	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	\delta Nominal	🦒 Input				
19	k2_H	Numeric	8	0		{0, nem jelöl	None	8)	\delta Nominal	🔪 Input				
20	k2_l	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	🙈 Nominal	🦒 Input				
21	k2_J	Numeric	8	0		{0, nem jelöl	None	8)	\delta Nominal	🔪 Input				
22	k2_K	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	\delta Nominal	🦒 Input				
23	k2_L	Numeric	8	0		{0, nem jelöl	None	8	I Right	💦 Nominal	🦒 Input				
24	k2_M	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	\delta Nominal	🦒 Input				
25	k2_N	Numeric	8	0		{0, nem jelöl	None	8)	\delta Nominal	🖌 Input				
26	k2_0	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	\delta Nominal	🦒 Input				
27	k2_P	Numeric	8	0		{0, nem jelöl	None	8)	\delta Nominal	🖌 Input				
28	k2_Q	Numeric	8	0		{0, nem jelöl	None	8) I Right	🖧 Nominal	🥆 Input				
29	k2_R	Numeric	8	0		{0, nem jelöl	None	8)	🗞 Nominal	🖌 Input				
30	К3	Numeric	8	0		{0, nem vála	None	8	遭 Right	🗞 Nominal	🥆 Input				
31	K3_elbocsá	Numeric	8	0		{0, nem jelöl	None	8	遭 Right	🖧 Nominal	🖒 Input				
32	K3_fizetésc	Numeric	8	0		{0, nem jelöl	None	8	를 Right	\delta Nominal	🦒 Input				
33															
34															
35															
36															
37															
38											-				
39															
40															
41															
42															÷
12	1	1		-					-						
Data View	View Variable View														
											IDM OD	DO Olatialias Deservas is seats		_	_

16. ábra: Nyitott kérdés kódolása

 Kérlek, számozd be hatékonyságuk szerint a következő fogamzásgátló módszereket 1től 10-ig! (1- a legmegbízhatóbb módszer, legnagyobb valószínűséggel véd a nem kívánt terhesség ellen, 10- a legkockázatosabb módszer, írd a megfelelő számot a pontozott vonalra!)

Gumióvszer	Megszakított közösülés
Fogamzásgátló tabletta	Hüvelygyűrű
Sürgősségi tabletta	Pesszárium, méhszájsapka
Naptár módszer	Spirál
Hőmérőzéses módszer	Spermicid anyagok (kúpok, habok)

A tíz fogamzásgátlási eszköz tíz külön ordinális változó lesz. A "Values" mezőbe nem írunk kódokat, mivel az adatbevitelnél majd azt a számot kell beírni, amit a válaszadó az adott fogamzásgátlási módszer elé írt. (**17. ábra**)

🕼 *minta.sav	[DataSet0] - IBM	SPSS Statistics D	ata Editor													-	٥	×
<u>File</u> Edit	<u>View</u> <u>Data</u>	Transform	Analyze D	Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u> f	ilities Add- <u>o</u> r	s <u>W</u> indow	Help										
😑 H				*	Tr M		- SZ			All	6							
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Me	easure	Role						
16	k2_E	Numeric	8	0		{0, nem jelöl	None	8) I Right	🖧 Nor	ninal	🦒 Input						1
17	k2_F	Numeric	8	0		{0, nem jelöl	None	8) 温 Right	🖧 Nor	ninal	🦒 Input						
18	k2_G	Numeric	8	0		{0, nem jelöl	None	8) I Right	🖧 Nor	ninal	🦒 Input						
19	k2_H	Numeric	8	0		{0, nem jelöl	None	8) and Right	🖧 Nor	ninal	🦒 Input						
20	k2_l	Numeric	8	0		{0, nem jelöl	None	8)	🖧 Nor	ninal	🦒 Input						
21	k2_J	Numeric	8	0		{0, nem jelöl	None	8)温 Right	🖧 Nor	ninal	🦒 Input						
22	k2_K	Numeric	8	0		{0, nem jelöl	None	8)	🖧 Nor	ninal	🔪 Input						
23	k2_L	Numeric	8	0		{0, nem jelöl	None	8)) Right	🖧 Nor	ninal	🦒 Input						
24	k2_M	Numeric	8	0		{0, nem jelöl	None	8)) Right	🗞 Nor	ninal	🖌 Input						
25	k2_N	Numeric	8	0		{0, nem jelöl	None	8	🔳 Right	🗞 Nor	ninal	🔪 Input						
26	k2_0	Numeric	8	0		{0, nem jelöl	None	8)) Right	🖧 Nor	ninal	🔪 Input						
27	k2_P	Numeric	8	0		{0, nem jelöl	None	8	🔳 Right	🗞 Nor	ninal	🔪 Input						
28	k2_Q	Numeric	8	0		{0, nem jelöl	None	8)) Right	🖧 Nor	ninal	🔪 Input						
29	k2_R	Numeric	8	0		{0, nem jelöl	None	8) 居 Right	🗞 Nor	ninal	🔪 Input						
30	K3	Numeric	8	0		{0, nem vála	None	8	≡ Right	🖧 Non	ninal	🔪 Input						
31	K3_elbocsá	Numeric	8	0		{0, nem jelöl	None	8	■ Right	🖧 Non	ninal	🔪 Input						
32	K3_fizetésc	Numeric	8	0		{0, nem jelöl	None	8)温 Right	💦 Nor	ninal	🖌 Input						
33	óvszer	Numeric	8	0		None	None	8	≣ Right	- Ord	inal	🔪 Input						
34	fogamzásgá	Numeric	8	0		None	None	8	≣ Right	d Ord	linal	🖌 Input						
35	sürgősségi	Numeric	8	0		None	None	8) I Right	ord 🔒	linal	🔪 Input						
36	naptár	Numeric	8	0		None	None	8)温 Right	🗗 Ord	inal	🖌 Input						
37	hõmérõ	Numeric	8	0		None	None	8	■ Right	d Ord	linal	🔪 Input						
38	megszakítás	Numeric	8	0		None	None	8	遭 Right	- Ord	linal	🔪 Input						
39	hüvelygyűrű	Numeric	8	0		None	None	8) I Right	ord 🔒	linal	🔪 Input						
40	pesszárium	Numeric	8	0		None	None	8	遭 Right	- Ord	inal	🔪 Input						
41	spirál	Numeric	8	0		None	None	8) I Right	Ord	linal	🔪 Input						
42	spermicid	Numeric	8	0		None	None	8) I Right	- Ord	linal 💌	🖌 Input						
43																		
44																		
45																		
10	4									_					_			
Data Many																		
Data View	variable View																	
												IBM SF	SS Statistics Pro	ocessor is r	adv	Unicode:Of	4	

17. ábra: Ordinális változó kódolása

Láthatjuk, hogy a példának megjelenített nyolc kérdésből 42 változónk lett. Az így létrejött adatbázist más néven adatsablonnak is nevezzük. Ha átállunk a "Data View" fülre, láthatjuk, hogy ebben még nincsenek benne a válaszadók által adott válaszok. A kérdőívekről történő adatbevitel ebben a nézetben lehetséges. Egy kérdőív adatai vízszintesen jelennek meg. Ha az 1. kérdőív kitöltője férfi, akkor az 1 kódot gépeljük az első mezőbe, majd folytatjuk a kitöltést. Ha 150 kérdőívünk van, akkor az adatok 150 sorban jelennek meg. (**18. ábra**)

🕼 *minta.sav	[DataSet0]	- IBM S	SPSS Statistic	s Data Editor		101 4		uiusz	uuon	un 1020		og2ite	50				- 0	×
<u>File</u> Edit	View 1	Data	Transform	Analyze	Direct Marketin	g <u>G</u> raphs	Utilities Add	-ons Windo	w <u>H</u> elp									
🔁 H		Ξ,		~ 📱	1 📥 🗐	r H	* 🛛		، 🔳 🕻	14	6 46							
1 : k1_A																Vis	sible: 42 of 42 \	Variables
	neme	,	k1_A	k1_B	k1_C	k1_D	k1_E	k1_F	k1_G	szabadidő	település	elégedettség	k2_A	k2_B	k2_C	k2_D	k2_E	Π
1		1		ĺ														
2																		
3																		
4																		
5																		
6																		
7																		
8																		
9																		
10																		
12																		
13																		
14																	-	
15																		
16																		
17																		
18																		
19																		
20																		
21																		
22																		
23																		
24																		
25																		
26																	<u> </u>	+1
2/																		$+ \parallel$
28																	<u> </u>	-
																	_	
Data View	Variable V	iew																
		-											IBM SPSS :	Statistics Proce	ssor is readv	Unico	de:ON	_

18. ábra: Válaszadók válaszainak rögzítése

A **19. ábrán** 13 válaszadó válaszait tartalmazó adatbázist láthatjuk. Ebben tudjuk majd a statisztikai próbákat elvégezni.

tar minta.sav (DataSet0) - IBM SPSS Statistics Data Editor File _Edit _View _Data _Transform _Analyze Direct Marketing _Graphs _Utilities Add-gns _Window _Help ٥ \times 13: k2_F Visible: 42 of 42 Variables k2_A k2_B k2_C k2_D k1 B k1 C k1 D k1 E k1 F k1 G szabadidő település elégedettség neme k1 A k2 E 16,5 1 2 ,0 100,0 0 12,0 4 33,0 2,0 22,0 50,0 0 5 6 7 8 0 30,0 10,0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 5,0 4,0 0 20,0 0 28 4 Data View Variable View Unir Ide:ON is ready

19. ábra: Kitöltött adatbázis

2.3.1. On-line kérdőív adatainak feldolgozása

Ha kérdőívünket a Google Drive, vagy valamilyen más kérdőív szerkesztő programmal készítjük el, és kutatásunkat on-line módon végezzük, akkor a beérkező válaszok egy Excel táblázatban fognak megjelenni. (**20. ábra**)

FÁJL	KEZDŐ	LAP BESZÚRÁS	LAPELRENI	DEZÉS KÉP	LETEK	ADATO	DK VÉLEMÉNYE	ZÉS	NÉZET											Bejelentkezés
Beilleszt		Arial - 10 F <u>D A</u>	о т А́ А́	= = =	%⁄- €≣ +≣	🔐 Sor	töréssel több sorba laegyesítés 👻	Általá	nos % 000 5%	*	eltételes	Formázás	Cellastiluso	k Beszúrás	Törlés Fo	ormátum	AutoSzum	A Rendezés	Keresés és	
¥		P-+5+(9.6 -		_	6-6-	fo	ormázás *	táblázatként *	*	*	·	Ŧ	e iones ·	és szűrés *	kijelölés *	
vago	нар ы	Betutipus	14		Ig	azitas		8	Szam	19		SUIUSOK			Cellak		54	erkesztes		~
A1	Ŧ	: × ✓ f,	dőbély	/eg																*
	А		в		С		D			E		F			G		н		1	
1 Idől	bélyeg	Neme:		Életkora:			Melyik megyéber	1 dolgozi	Mi a legmag	asabb is	skolai Ké	irem, pontos	an nevezze.	Jelenlegi há	ny kg?	Test	magassága?	Az eg	észségüg	/iellátás (Milye
2	4.7.201	5 22:30:47 Nő				21	Csongrád		Gimnázium		let	nel				62		170 Alape	llátásban (háziorvos Belgy
3	4.8.201	5 16:17:23 Nõ				23	csongrád		Gimnázium		ére	ettségi				57		174 Alape	llátásban (háziorvos Házic
4	4.8.201	5 17:40:18 Nő				49	Győr-Moson Sop	ron	Főiskola/eg	yetem	Áp	oló Bsc				69		158 Alape	llátásban (háziorvos Rend
5	4.8.201	5 19:44:22 Nő				36	Csongrád		Főiskola/eg	yetem	ok	leveles ápoló				69		175 Fekvő	beteg ellát	ásban (fe Gyerr
6	4.9.201	5 11:22:01 Nõ				32	Csongrád		OKJ		OF	KJ-s ápoló				88		168 Fekvő	beteg ellát	ásban (fe Szülé
7	4.9.201	5 12:29:53 Nő				25	Győr-Moson-Sop	ron	Főiskola/eg	vetem	Bs	c Ápoló				65		168 Fekvő	beteg ellát	ásban (fe Intenz
8	4.9.201	5 19:07:39 Nő				38	csongrád		Főiskola/eg	, vetem	áp	oló MSc				108		165 Fekvő	beteg ellát	ásban (fe Inten;
9	4.9.201	5 20:02:35 Nõ				46	Győr- Moson-Sor	oron	Szakközépi	skola	ère	ettsègi				64		175 Járób	eteg ellátá	sban (aml Házic
10	4.9.201	5 21:40:36 Nő				41	Csongrad		Főiskola/eg	vetem	dip	olomas apolo				72		168 Fekvő	beteg ellát	ásban (fe szoci
11	4.10.201	5 15:40:00 Nő				34	csongrád		Főiskola/eg	, vetem	fői	skola				70		173 Fekvő	beteg ellát	ásban (fe Inten;
12	4.14.201	5 15:25:30 Nő				46	Budapest		Főiskola/eg	, vetem	Ec	észségügyi	szakoktató			92		165 Fekvő	beteg ellát	ásban (fe intéze
13	4.14.201	5 16:01:14 Nő				60	Főváros		OKJ		Oł	(J ápoló)				84		178 Járób	etec ellátá	sban (amt Belov
14	4.14.201	5 20:17:36 Férfi				35	Pest		окј		Ár	oló 54				81		174 Fekvő	beteg ellát	ásban (fe Belgy
15	4.15.20	15 7:28:08 Nő		57 év			Budsapest		OKJ		sz	akközépisko	lai érettséc			80		158 Alape	llátásban (háziorvos foglal
16	4.15.201	5 11:02:35 Nő				47	Budapest		Főiskola/egy	vetem	Sz	akoktató	Ì			85		162 Fekvő	beteg ellát	ásban (fe Intenz
17	4.15.201	5 11:19:41 Nő				39	Budapest		OKJ .	,	OF	tatásszervez	ő			54		156 Fekvő	beteg ellát	ásban (fe Inten;
18	4.15.201	5 11:50:03 Nő				39	Pest		Főiskola/egy	vetem	Fő	iskola				78		168 Fekvő	beteg ellát	ásban (fe szem
19	4.15.201	5 12:41:10 Nõ				53	Budapest		Főiskola/eg	, vetem	Fő	iskola				58		162 Fekvő	beteg ellát	ásban (fe Intenz
20	4.15.201	5 12:41:53 Nő				56	Pest		OKJ .	,	air	nnázium				66		165 Fekvő	beteg ellát	ásban (fe Műtő
21	4.15.201	5 13:54:02 Nő				43	BAZ		Főiskola/egy	vetem	dir	olomás ápoló				61		175 Fekvő	beteg ellát	ásban (fe Inten;
22	4.15.201	5 14:00:57 Férfi				34	Baranya		Főiskola/eg	, vetem	fői	skola				80		181 Alape	llátásban (háziorvos Ottho
23	4.15.201	5 14:29:02 Nő				49	pest		Szakközépi	, skola	Ér	ettséai				55		164 Fekvő	beteg ellát	ásban (fe anes;
24	4.15.201	5 16:02:20 Nő				59	Budapest		Főiskola/eg	vetem	Fő	iskola				80		172 Fekvő	beteg ellát	ásban (fe Króni
25	4.15.201	5 18:34:48 Nõ				43	Csongrád		OKJ	,	Di	abetológiai s:	zakápoló			60		162 Fekvő	beteg ellát	ásban (fe Belov
26	4.15.201	5 18:37:01 Nő				63	Csongrád		Főiskola/eg	vetem	Fő	iskola				86		167 Fekvő	beteg ellát	ásban (fe Sebé
27	4.15.201	5 18:42:28 Nő				38	Csongrád		Szakközépi	skola	sü	rgősségi sza	kápoló			120		163 Fekvő	beteg ellát	ásban (fe sürgő
28	4.15.201	5 19:15:34 Nõ				45	Nógrád		Főiskola/eg	vetem	dir	olomás ápoló				68		169 Fekvő	beteg ellát	ásban (fe Belov
29	4 15 201	5 19·29·47 Nő		52év			Budapest		Főiskola/em	vetem	M	Sc. ápoló				85		165 Fekvő	betea ellát	ásban (fe reum: 👻
4	•	A(z) 1. lapon lévő v	álaszok	\oplus									4							Þ
v£57				-														ล แก		1 1000/

20. ábra: On-line kutatás beérkezett válaszai

Az első oszlop az időbélyeg (az az időpont, amikor a válasz beérkezett), a többi oszlopban találhatók a válaszadók válaszai. Mint ahogy a fenti ábrán is látszik, előfordulhat, hogy az életkort valaki nem csak számmal adja meg. Ezeket egyesével ki kell javítani. Minden kérdést át kell nézni ilyen szempontból. Ezután következhet az adatbázis tisztítása, vagyis ki kell törölni azokat a válaszadókat, akik nem felelnek meg a beválasztási kritériumnak, illetve a dupla válaszadókat. Ez utóbbiak kiszűrése nem egyszerű, de a kérdőív kitöltésénél ugyanazokat a "hibákat" szokták elkövetni (pl. életkor után évet is írnak, vagy valamilyen jellegzetes megjegyzést tesznek valamelyik kérdésre), vagy egymás után többször kitöltik a kérdőívet ugyanazokkal a válaszokkal. Az ilyen válaszadók kiszűrése időigényes folyamat, de időt kell rá szánni, mivel esetleges bent maradásuk torzíthatja az eredményeket.

Ha kész vagyunk az adatbázis tisztításával, akkor a szöveges válaszokat át kell alakítani számokká (előzetesen egy üres kérdőíven már bekódoltuk a szöveges válaszokat, most azokat fogjuk itt alkalmazni). Egy példa: 1=férfi; 2=nő

Nyomjuk meg a Ctrl és F billentyűket egyszerre. Megjelenik egy kis ablak, kattintsunk a "Csere" fülre. A "Keresett szöveg" mezőbe írjuk be a Férfi-t (pontosan úgy kell írni, ahogy az adatbázisban szerepel!!!), a "Csere erre" mezőbe pedig az 1-t, majd nyomjuk meg az "Összes cseréje) gombot. (**21. ábra**)

FÁJL KEZDŐLAP BESZÚRÁS LAPELRENDEZ	ZÉS KÉPLETEK ADATOK VÉLEMÉNYEZÉS	NÉZET		Bejelentkezés
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	= >> · ⇒' Sortöréssel több sorba Alt = = ← ⊭ E Cellaegyesítés · ♀	alános ~ % 000 * % 001 Feltételes Formázás Cellastilus formázás táblázatként ~	kok Beszúrás Törlés Formátum ℓ Törlés • V	n • A Z • A Rendezés Keresés és és szűrés • kijelölés •
Vágólap 🖙 Betűtípus 🖙	lgazítás 🖙	Szám 🖙 Stílusok	Cellák	Szerkesztés
A1 • : × ✓ Jx Idobelyeg	g			÷
AB	C D	E F	G H	I
1 Időbélyeg Neme:	Életkora: Melyik megyében dolgo	zi Mi a legmagasabb iskolai Kérem, pontosan nevezze	Jelenlegi hány kg? Testmagassága?	Az egészségügyi ellátás (Milye
2 4.7.2015 22:30:47 Nő	21 Csongrád	Gimnázium lehel	62	170 Alapellátásban (háziorvos Belgy
3 4.8.2015 16:17:23 Nő	23 csongrád	Gimnázium érettségi	57	174 Alapellátásban (háziorvos Házic
4 4.8.2015 17:40:18 Nõ	49 Győr-Moson Sopron	Főiskola/egyetem Ápoló Bsc	69	158 Alapellátásban (háziorvos Rend
5 4.8.2015 19:44:22 Nő	36 Csongrád	Főiskola/egyetem okleveles ápoló	69	175 Fekvőbeteg ellátásban (fe Gyerr
6 4.9.2015 11:22:01 Nõ	32 Csongrád	OKJ OKJ-s ápoló	88	168 Fekvőbeteg ellátásban (fe Szülé
7 4.9.2015 12:29:53 Nõ	25 Győr-Moson-Sopron	Főiskola/egyetem Bsc Ápoló	65	168 Fekvőbeteg ellátásban (fe Inten:
8 4.9.2015 19:07:39 Nő	38 csongrád	Főiskola/egyetem ápoló MSc	108	165 Fekvőbeteg ellátásban (fe Intenz
9 4.9.2015 20:02:35 Nõ	46 Győr- Moson-Sopron	Szakközépiskola èrettségi	64	175 Járóbeteg ellátásban (aml Házic
10 4.9.2015 21:40:36 Nõ	41 Csongrad		2	168 Fekvőbeteg ellátásban (fe szoci
11 4.10.2015 15:40:00 Nõ	34 csongrád	kereses es csere	r A	173 Fekvőbeteg ellátásban (fe Inten;
12 4.14.2015 15:25:30 Nõ	46 Budapest	Keresés Csere		165 Fekvőbeteg ellátásban (fe intéz∉
13 4.14.2015 16:01:14 Nõ	60 Főváros			178 Járóbeteg ellátásban (aml Belgy
14 4.14.2015 20:17:36 Férfi	35 Pest	Keresett szöve <u>g</u> : Ferfi	~	174 Fekvőbeteg ellátásban (fe Belgy
15 4.15.2015 7:28:08 Nő	57 év Budsapest	Csege erre: 1	~	158 Alapellátásban (háziorvos foglal
16 4.15.2015 11:02:35 Nő	47 Budapest		Egygbek >>	162 Fekvőbeteg ellátásban (fe Inten:
17 4.15.2015 11:19:41 Nő	39 Budapest			156 Fekvőbeteg ellátásban (fe Intena
18 4.15.2015 11:50:03 Nő	39 Pest	Az összes cseréje Csere Listába mind Ki	ö <u>v</u> etkező Bezárás	168 Fekvőbeteg ellátásban (fe szem
19 4.15.2015 12:41:10 Nõ	53 Budapest	i oiskolaregyeteni i oiskola	30	162 Fekvőbeteg ellátásban (fe Inten:
20 4.15.2015 12:41:53 Nő	56 Pest	OKJ gimnázium	66	165 Fekvőbeteg ellátásban (fe Műtő
21 4.15.2015 13:54:02 Nő	43 B.A.Z	Főiskola/egyetem diplomás ápoló	61	175 Fekvőbeteg ellátásban (fe Inten:
22 4.15.2015 14:00:57 Férfi	34 Baranya	Főiskola/egyetem főiskola	80	181 Alapellátásban (háziorvos Ottho
23 4.15.2015 14:29:02 Nő	49 pest	Szakközépiskola Érettségi	55	164 Fekvőbeteg ellátásban (fe anesz
24 4.15.2015 16:02:20 Nő	59 Budapest	Főiskola/egyetem Főiskola	80	172 Fekvőbeteg ellátásban (fe Króni
25 4.15.2015 18:34:48 Nõ	43 Csongrád	OKJ Diabetológiai szakápoló	60	162 Fekvőbeteg ellátásban (fe Belgy
26 4.15.2015 18:37:01 Nő	63 Csongrád	Főiskola/egyetem Főiskola	86	167 Fekvőbeteg ellátásban (fe Sebé
27 4.15.2015 18:42:28 Nő	38 Csongrád	Szakközépiskola sürgősségi szakápoló	120	163 Fekvőbeteg ellátásban (fe sürgő
28 4.15.2015 19:15:34 Nõ	45 Nógrád	Főiskola/egyetem diplomás ápoló	68	169 Fekvőbeteg ellátásban (fe Belgy
29 4 15 2015 19:29:47 No	52év Budapest	Főiskola/egyetem MSc ápoló	85	165 Fekvőbeteg ellátásban (fe reum: 💌
A(z) 1. lapon lévő válaszok	•	: (×
ĸÉsz			Ħ	□

21. ábra:	Szöveges	válasz	cserélése	számra
-----------	----------	--------	-----------	--------

Ekkor a Neme oszlopban a Férfi helyén 1-es jelenik meg. Ugyanígy járjunk el a Nő esetében is, csak kettessel kódolva. Láthatjuk, hogy a Neme oszlopban már csak számok szerepelnek. (22. ábra)

22. ábra: Átkódolt "Neme" oszlop

A	1 • E ×	✓ f _x Időbélyeg		
	Α	В	С	D
1	ldőbélyeg	Neme:	Életkora:	Melyik megyéber
2	4.7.2015 22:30:47	2	21	Csongrád
3	4.8.2015 16:17:23	2	23	csongrád
4	4.8.2015 17:40:18	2	49	Győr-Moson Sop
5	4.8.2015 19:44:22	2	36	Csongrád
6	4.9.2015 11:22:01	2	32	Csongrád
7	4.9.2015 12:29:53	2	25	Győr-Moson-Sop
8	4.9.2015 19:07:39	2	38	csongrád
9	4.9.2015 20:02:35	2	46	Győr- Moson-Sop
10	4.9.2015 21:40:36	2	41	Csongrad
11	4.10.2015 15:40:00	2	34	csongrád
12	4.14.2015 15:25:30	2	46	Budapest
13	4.14.2015 16:01:14	2	60	Főváros
14	4.14.2015 20:17:36	1	35	Pest
15	4.15.2015 7:28:08	2	57 év	Budsapest
16	4.15.2015 11:02:35	2	47	Budapest
17	4.15.2015 11:19:41	2	39	Budapest
18	4.15.2015 11:50:03	2	39	Pest
19	4.15.2015 12:41:10	2	53	Budapest
20	4.15.2015 12:41:53	2	56	Pest
21	4.15.2015 13:54:02	2	43	B.A.Z

Ezek után figyeljünk arra, hogy amelyik későbbi válaszban szerepel a férfi vagy a nő szó, azokban az adott szó helyén a most kódolt szám fog szerepelni (pl. nőgyógyászat helyett 2gyógyászat), de ez a későbbiekben nem okoz problémát, mivel a számmá alakításban akkor ezt kell beírni a "Keresett szöveg" mezőbe. Ilyen módszerrel kell az összes szöveges választ számmá átalakítani.

Többszörös feleletválasztós kérdések esetében, amikor a válaszadó tetszőleges számú választ bejelölhet az adott kérdésnél, akkor a válaszok egy cellában fognak megjelenni egymás mellett. Előfordulhat, hogy egy kérdésen belül 7-8 válaszlehetőséget is felsoroltunk, illetve megadtuk az egyéb választási lehetőséget is, ahová a válaszadónak lehetősége volt bármilyen választ adni, így nagyon hosszú cellák jönnek létre. Ezekben a cellákban nem lehet egyszerűen számokká alakítani a szöveges választ, több lépésben kell ezt végrehajtani manuálisan, mely hosszadalmas, pláne akkor, ha több ilyen kérdésünk is van a kérdőívben. (**23. ábra**)

23. ábra: Többszörös feleletválasztós kérdések on-line kutatásban

Ebben az esetben úgy járunk el helyesen, ha az egész oszlopot átmásoljuk egy új munkalapra (az eredeti így megmarad), mivel itt a 0=nem jelölte; 1=jelölte kódolást kell alkalmazni, és az oszlopok címének a válaszlehetőségeket adjuk meg. Az egyes válaszokhoz tartozó sorszámokat is másoljuk át, mivel csak így lesz azonosítható, hogy melyik válasz melyik válaszadóhoz tartozik! Esetünkben az "Elismerés, megbecsülés hiánya" lesz az első változó. (**24. ábra**)

24. ábra: Többszörös feleletválasztós kérdés kódolása 1.

Beillesztés	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sés és
Vácólar	E Batřířova E lozníža E Száve S Stave Keleni	nes *
vagoia	izi olunipus izi nguliuz izi oluni izi olunok i olink i olunkozece	
B1	• : $\times \checkmark f_x$ Elismerés, megbecsülés hiánya	
		9
1 Sorsz		
2	1 Elismerés medbecsülés hiánya Nagy személyes felelősség. Magánélet-munka egyensúlya	
3	2 Nary személyes felelőssén. Nem isztávott feledatok szerenkör Mindennaj munkahelyi bosszúsánok	
4	3 Munkaternek Munkakarcsolatok Elismerés merdecsülés biánya Rossz munkabelyi lédkör Nagy személyes felelősség Nem tisztázott feladatok szerepkör Mindennani munkabelyi bosszúságok	
5	4 Munkaterhek Elismerés medbecsülés hiánya	
6	5 Munkaterhek Elismerés medecsülés hiánya Rossz munkahelyi légkör. Mindennani munkahelyi bosszúságok	
7	6 Naov személyes felelősség. Mindennapi munkahelvi bosszúságok	
8	7 Munkaterhek. Nem tisztázott feladatok, szerenkör, Mindennari munkahelvi bosszúságok	
9	8 Nagy személyes felelősség	
10	9 Munkaterhek. Nagy személyes felelősség. Magánélet-munka egyensúlya. Mindennagi munkahelyi bosszúságok	
11	10 Munkaterhek, Elismerés, megbecsülés hiánya, Nagy személyes felelősség, Nem tisztázott feladatok, szeregkör	
12	11 Munkaterhek, Nagy személyes felelősség, Mindennapi munkahelvi bosszúságok	
13	12 Munkaterhek. Elismerés, megbecsülés hiánva. Nem tisztázott feladatok, szerepkör, Mindennapi munkahelvi bosszúságok	
14	13 Munkaterhek Nagy személyes felelősség	
15	14 Elismerés, medbecsülés hiánya Rossz munkahelvi légkör. Mindennapi munkahelvi bosszúságok	
16	15 Munkaterhek, Naov személyes felelőssén, Mindennani munkahelvi hosszúságok	
17	16 Munkakaocsolatok Maoánélet-munka egyensúlya Mindennapi munkahelyi bosszúságok	
18	17 Munkaterhek Filismerés menhecsülés highya Nany személyes felelőssén Nem tisztázott feladatok szerenkör Mindennani munkahelyi bosszúságok	
19	18 Munkaterhek Elismerés medbecsülés hiánya Nagy személyes felelősség Mindennani munkahelvi boszrúságok	
20	19 Filsmerés neobecsílés biánya Roszz mularjo, rady i česnějce holocový filadatok szerenkör	
21	2 Dunneto, megocodo manya, rossi mananenya, osta za nanosta stranovana, osta por seneral ve selelossán	
22	21 Munkakan solatok Nem tisztázott feladatok szerenkör	
23		
24	23 Mindennani munkabelvi bosszúsánok	
25	24 Munkaterhek Munkakan solatok Nany személyes felelősség Mindennani munkahelvi hosszúságok	
26	25 Munkaterbek Elismenés medlezsülés hánva személyes felelősség Nem tisztázott feladatok szerenkör Manánélet-munka envensúlva	
27	26 Munkaterhek Elismerés medecsülés hiánya Nem tisztázott feladatok szerenkör	
28	27 Munkaterhek Munkakarcsolatok Rossz munkahelvi lénkör Nem tisztázott feladatok szerenkör Mindennani munkahelvi bosszúságok	
29	28 Flismerés menhesülés hidnus Mindennari munkahelvi hosszí sánk	
30	29 Munkaterhek Elismerés medbecsülés biánya Nagy személyes felejősség. Nem tisztázott feladatok szerenkör Mindennani munkahelyi bosszúságok	
31	30 Munkakanosolatok Elismerés menbersüljés hiánya Rossz munkahelvi lénkör. Manánélet-munka egyensúlva	
32	31 Munkaterbek Munkakaposolatok Elismerés megbecsülés hiánya Rossz munkabelyi légkör Magánélet-munka egyensúlya	
33	32 Munkaterhek. Elismerés, medbecsülés hiánya, Mindennadi munkahelvi bosszúsádok	
34	33 Elismerés, megbecsülés hiánva	
35	34 martes medecsülés hánya	
36	36 Entrekanosolatak Elizmatás menhasellás hjánus Naru szamálusz falalásság	
	Add been by the descent Market	

Ezek után nyomjuk meg a Ctrl és F billentyűket egyszerre, és végezzük el a cserét az előbb már ismertetett módon! (25. ábra)

A	В	С	D	E	F	G	H	- I	J	K	L	M
Sorszám	Elismerés, megbecsülés hiánya											
1	Elismerés, megbecsülés hiánya, Na	gy személ	yes felelős	ség, Magán	élet-munka	a egyensúly	/a					
2	Nagy személyes felelősség, Nem ti	sztázott fel	adatok, sz	erepkör, Mir	ndennapi m	nunkahelyi l	bosszúságo	ok 🛛				
3	Munkaterhek, Munkakapcsolatok, E	lismerés, r	negbecsül	és hiánya, F	Rossz mun	kahelyi légl	kör, Nagy s	zemélyes f	elelősség,	Nem tisztá:	zott feladate	ok, szerep
4	Munkaterhek, Elismerés, megbecsü	lés hiánya										
5	Munkaterhek, Elismerés, megbecsü	lés hiánya	, Rossz mi	unkahelyi lé	gkör, Mind	ennapi mun	ikahelyi bos	sszúságok				
6	Nagy személyes felelősség, Minder	napi munk	ahely	(- (2			
7	Munkaterhek, Nem tisztázott felada	tok, szerep	kör, I Kere	eses es csere					ſ	· ·		
8	Nagy személyes felelősség											
9	Munkaterhek, Nagy személyes felel	ősség, Ma	gánél <u>K</u> e	resés <u>C</u> ser	e							
10	Munkaterhek, Elismerés, megbecsü	lés hiánya	Nag _{Ke}	resett szöveg:	Elismerés	meabersülé	és hiánva			\sim		
11	Munkaterhek, Nagy személyes felel	ősség, Min	denn							-		
12	Munkaterhek, Elismerés, megbecsü	lés hiánya	, Nem ^{Cs}	ere erre:	1					\sim		
13	Munkaterhek, Nagy személyes felel	ősség							East	haless		
14	Elismerés, megbecsülés hiánya, Ro	ssz munka	ahelvi						Egy	EDEK >>		

16 Munkakapcsolatok, Magánélet-munka egyensúlya, Ι Az összes cseréje Csere Listába mind Következ 17 Munkaterhek, Elismerés, megbecsülés hiánya, Nagy 18 Munkaterhek, Elismerés, megbecsülés hiánya, Nagy személyes felelősség, Mindennapi munkahelyi bosszúságok

20 Munkaterhek, Munkakapcsolatok, Elismerés, megbecsülés hiánya, Rossz munkahelyi légkör, Nagy személyes felelősség

19 Elismerés, megbecsülés hiánya, Rossz munkahelyi légkör, Nem tisztázott feladatok, szerepkör

1 2 3

5

20 21

15 Munkaterhek, Nagy személyes felelősség, Mindenn

25. ábra: Többszörös feleletválasztós kérdés kódolása 2.

Láthatjuk, hogy a sok szöveg között néhol elrejtve vannak az 1-ek. (26. ábra) Sajnos ilyenkor egyesével kell végigmenni a sorokon, és manuálisan törölni a szöveget, és amelyik sorban nincs 1-es, oda beírni a nullát. Ez nagyon időigényes folyamat, hiszen az összes válaszlehetőség esetében meg kell tenni.

C<u>s</u>ere

Listába mind Kö<u>v</u>etkező

Bezárás

bosszúságok

26. ábra: Átkódolt válasz

	Α	В	С	D	E	F	G	H
1	Sorszám	Elismerés, megbecsülés hiánya						
2	1	1, Nagy személyes felelősség, Mag	ánélet-mu	nka egyens	úlya			
3	2	Nagy személyes felelősség, Nem ti	sztázott fe	ladatok, sz	erepkör, M	indennapi n	nunkahelyi b	osszúságok
4	3	Munkaterhek, Munkakapcsolatok, 1	, Rossz m	unkahelyi l	égkör, Nag	y személye	es felelősség	, Nem tisztá
5	4	Munkaterhek, 1						
6	5	Munkaterhek, 1, Rossz munkahelyi	légkör, Mi	ndennapi m	nunkahelyi	bosszúságo	ok	
7	6	Nagy személyes felelősség, Minder	napi munk	ahelyi bos	szúságok			
8	7	Munkaterhek, Nem tisztázott felada	tok, szere	pkör, Minde	nnapi mun	kahelyi bos	szúságok	
9	8	Nagy személyes felelősség						
10	9	Munkaterhek, Nagy személyes felel	ősség, Ma	igánélet-mu	ınka egyen	súlya, Mind	lennapi mun	kahelyi boss
11	10	Munkaterhek, 1, Nagy személyes fe	elelősség,	Nem tisztá:	zott feladat	ok, szerepk	xör	
12	11	Munkaterhek, Nagy személyes felel	ősség, Mi	ndennapi m	unkahelyi l	osszúságo	ok	
13	12	Munkaterhek, 1, Nem tisztázott fela	datok, sze	erepkör, Mir	ndennapi m	unkahelyi b	osszúságok	C
14	13	Munkaterhek, Nagy személyes felel	ősség					
15	14	1, Rossz munkahelyi légkör, Minder	nnapi munl	kahelyi bos	szúságok			
16	15	Munkaterhek, Nagy személyes felel	ősség, Mi	ndennapi m	unkahelyi l	osszúságo	ok	
17	16	Munkakapcsolatok, Magánélet-mun	ka egyens	úlya, Minde	ennapi mun	kahelyi bos	szúságok	
18	17	Munkaterhek, 1, Nagy személyes fe	elelősség,	Nem tisztá:	zott feladat	ok, szerepk	kör, Mindenn	api munkahe
19	18	Munkaterhek, 1, Nagy személyes fe	elelősség,	Mindennapi	munkahel	/i bosszúsá	ágok	
20	19	1, Rossz munkahelyi légkör, Nem ti	sztázott fe	ladatok, sz	erepkör			
21	20	Munkaterhek, Munkakapcsolatok, 1	, Rossz m	unkahelyi l	égkör, Nag	y személye	es felelősség	1
22	21	Munkakapcsolatok, Nem tisztázott	feladatok,	szerepkör				
23	22	Mindennapi munkahelyi bosszúságo	ok					
24	23	Mindennapi munkahelyi bosszúságo	ok					
25	24	Munkaterhek, Munkakapcsolatok, N	lagy szem	élyes felelő	sség, Mind	lennapi mur	nkahelyi bos	szúságok
26	25	Munkaterhek, 1, Nagy személyes fe	elelősség,	Nem tisztá:	zott feladat	ok, szerepk	kör, Magáné	et-munka eg
27	26	Munkaterhek, 1, Nem tisztázott fela	datok, sze	erepkör				
28	27	Munkaterhek, Munkakapcsolatok, F	lossz mun	kahelyi légl	kör, Nem ti	sztázott fel:	adatok, szei	epkör, Minde
29	28	1, Mindennapi munkahelyi bosszús	ágok					
30	29	Munkaterhek, 1, Nagy személyes fe	elelősség,	Nem tisztá:	zott feladat	ok, szerepk	kör, Mindenn	api munkahe
31	30	Munkakapcsolatok, 1, Rossz munk	ahelyi légk	ör, Magáné	let-munka	egyensúlya	1	
32	31	Munkaterhek, Munkakapcsolatok, 1	, Rossz m	unkahelyi l	égkör, Mag	ánélet-mun	ika egyensú	ya
22	0	war in a mini a war in in the second	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1.1.1				

Ezzel a Ctrl+F módszerrel kell az összes szöveges választ számokká átalakítani, mivel csak így tudunk statisztikai próbákat végezni. Ha a statisztikai számításokat SPSS-ben szeretnénk végezni, akkor a fentebb már ismertetett módon létre kell hozni az adatbázist, és Excelből átmásolni a számokká alakított adatokat. Ez a művelet nagyon egyszerű, mivel Excelben csak ki kell jelölni az adott oszlopot és a másolás gombra kattintani (**27. ábra**), majd az SPSS adattáblára átállva, a megfelelő változó oszlopára kattintunk a jobb egérgombbal, majd Paste. (**28-29. ábra**)

				·				
B2	▼ ± ×	√ <i>f</i> _x 2	Aria	I - 10 - A* A* E	- % ∞ ⊑			
	А	В	F		 مر ور)	E	F
1	ldőbélyeg	Neme:			,00 - ,0 -,-	yében dolgozi	Mi a legmagasabb iskola	i Kérem, pontosan
2	4.7.2015 22:30:47		V	Visitata	[°] songrád		Gimnázium	lehel
3	4.8.2015 16:17:23		<u>ф</u>	NI <u>v</u> agas	songrád		Gimnázium	érettségi
4	4.8.2015 17:40:18		LD.	Máso <u>l</u> ás	yőr-Moso	on Sopron	Főiskola/egyetem	Ápoló Bsc
5	4.8.2015 19:44:22		B	Beillesztés beállításai:	songrád		Főiskola/egyetem	okleveles ápoló
6	4.9.2015 11:22:01			ĥ	songrád		OKJ	OKJ-s ápoló
7	4.9.2015 12:29:53			Iránvított beillesztés	yőr-Moso	on-Sopron	Főiskola/egyetem	Bsc Ápoló
8	4.9.2015 19:07:39				songrád		Főiskola/egyetem	ápoló MSc
9	4.9.2015 20:02:35			<u>b</u> eszuras	yőr- Mos	on-Sopron	Szakközépiskola	èrettsègi
10	4.9.2015 21:40:36			<u>T</u> örlés	songrad		Főiskola/egyetem	diplomas apolo
11	4.10.2015 15:40:00			Tartalom t <u>ö</u> rlése	songrád		Főiskola/egyetem	főiskola
12	4.14.2015 15:25:30		/雪	<u>G</u> yorselemzés	udapest		Főiskola/egyetem	Egészségügyi sza
13	4.14.2015 16:01:14			Szűr <u>ő</u>	šváros		OKJ	OKJ ápoló
14	4.14.2015 20:17:36			Rendezés	▶ est		OKJ	Ápoló 54
15	4.15.2015 7:28:08		*-	Maniana fa basa fa fa	udsapest		OKJ	szakközépiskolai
16	4.15.2015 11:02:35		لات	Megjegyzes beszuras <u>a</u>	udapest		Főiskola/egyetem	Szakoktató
17	4.15.2015 11:19:41		8- 0-	Cella <u>f</u> ormázás	udapest		OKJ	Oktatásszervező
18	4.15.2015 11:50:03			Legörd <u>ü</u> lő választéklista	est		Főiskola/egyetem	Főiskola
19	4.15.2015 12:41:10			<u>N</u> év megadása	udapest		Főiskola/egyetem	Főiskola
20	4.15.2015 12:41:53		æ	Hivatkozás,	est		OKJ	gimnázium
21	4.15.2015 13:54:02		2	43	D.A.Z		Főiskola/egyetem	diplomás ápoló
22	4.15.2015 14:00:57		1	34	Baranya		Főiskola/egyetem	főiskola
23	4.15.2015 14:29:02		2	49	pest		Szakközépiskola	Érettségi
24	4.15.2015 16:02:20		2	59	Budapest		Főiskola/egyetem	Főiskola

27. ábra: Átkódolt változó másolása SPSS-be

1 : Neme											
	Neme	var	var	var	var	var	var	var	var	var	vai
1											
2	Cut										
3	<u>C</u> opy										
4	Paste										
5	Clear										
6	Descrit	ntives Statistics									
7	<u>D</u> 00000										
8		nt									
9	Spellin Spellin	g									
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											

28. ábra: Átkódolt változó másolása Excel-ből SPSS-be

29. ábra: Excel-ből átmásolt adatok az SPSS-ben

	Neme	var							
1	2,00								
2	2,00								
3	2,00								
4	2,00								
5	2,00								
6	2,00								
7	2,00								
8	2,00								
9	2,00								
10	2,00								
11	2,00								
12	2,00								
13	1,00								
14	2,00								
15	2,00								
16	2,00								
17	2,00								
18	2,00								
19	2,00								
20	2,00								
21	1,00								
22	2,00								
23	2,00								
24	2,00								
25	2,00								
26	2,00								
27	2,00								
28	2,00								
29	2,00								
	4								
Data View	Variable View								

Ugyanígy járunk el az összes változó esetén!

2.4. Műveletek változókkal

Előfordulhat, hogy szükségünk lesz olyan adatra, amit nem kérdeztünk meg a kérdőívben. Ilyen például a Body Mass Index (BMI). Megkérdeztük a testsúlyt és a méterben mért testmagasságot, ebből az SPSS program segítségével ki tudjuk számolni a BMI-t, és egy külön változóként létrehozni: Transform -> Compute Variable. Az így megjelenő nagy ablak "Target Variable" cellájába beírjuk a létrehozni kívánt változó nevét (BMI), majd a "Numeric Expression" cellába a BMI kiszámítási képletének megfelelően bevisszük az adatokat a bal oldali változólistából: *súly/(magasság*magasság)*, közben alkalmazzuk a megfelelő matematikai jeleket, majd az OK gombra kattintunk. (A változók a kis nyíllal mozgathatók.) (**30. ábra**)

30. ábra: Meglévő adatokból BMI kiszámítása SPSS-ben

Ugyanezen menüpont alkalmazásával van lehetőség változókat összeadni is. Például a pszichoszomatikus tünetek meglétét vizsgáló kérdés hét tünetet sorol fel, melyek meglétét 0-3ig lehet pontozni. Minél több pontot ér el valaki a pszichoszomatikus tüneti skálán, annál rosszabb állapotban van. Ahhoz, hogy a pszichoszomatikus tüneti skálán elért pontszámot megkapjuk, össze kell adni a hét tünet pontszámait. (**31. ábra**)

Cilla Call	APOLOK.sav [Data	Transform	PSS Statistics Da	ta Editor	Oracha											- 5 ^
File Fait	view Data	Iransform	Analyze U	pirect Marketing	Graphs	Utilities Add	ons <u>w</u> indo	w <u>H</u> eip								
			∼ 📲	' 📥 🗐	F A		4 📰 4	2		A						
1 : fejfájás	rejtájás 2 Visible: 178 of 178 Variables															
	K18 autoimm K	18 szembel	K18 immunol	Krónikus bet	fejfájás	alvási problé	gyomorégés	szívdobogás	hátfájás	gyengeség	hasmenés	pszichoszom	K20	K21	K22 indokola	altatószedés nyu
	un	egség	ógiai	egségszám		mák						atikus_összp			tlan_gyógysz	
			-									ontszám			erszedés	
1	0	0	0	1	-	2	0	1	1	1	(1	1	0	2	1
2	0	0	0	1	(0	0	0	(0	(0	1	0	1	1
	0	0	0	4	-	1	3	2	2	3	1	15	10	12	2	1
4	0	0	0	0		3	2	0	(2	4	11	1	0	2	
6	0	0	0	0		0	0	1					1	0	1	
7	0	0	0	2	4			2	-	2		15	2	0	1	
8	0	0	0			3	2	3	-	2		18	2	0	2	
9	0	0	0	3		1	3	2		3	2	10	2	0	2	
10	0	0	0	0			0	1		2		6	0	0	2	
11	0	0	0	0		0	1	0	3	3		9	0	0	1	1
12	0	0	0	1		2	0	1	2	2		9	0	0	1	1
13	0	0	0	0		3	3	1	3	3	2	17	1	0	2	1
14	0	0	0	0	:	2 2	3	1	3	2	0	13	0	0	2	1
15	0	0	0	0	2	2 2	0	1	2	2	3	12	0	0	2	1
16	0	0	0	2	1	2 2	0	2	3	3	0	12	1	40	1	1
17	0	0	0	0	1	2 1	1	0	1	1	C	6	0	0	2	2
18	0	0	0	0	3	2	1	0	1	2	0	9	0	0	2	1
19	0	0	0	1	1	2 3	1	0	3	3	0	12	6	0	2	1
20	0	0	0	3	2	2 3	1	2	3	3	1	15	4	0	2	2
21	0	0	0	2	2	2 3	3	1	3	3	2	17	0	0	2	1
22	0	0	0	5	1	2 3	2	1	2	2	0	12	0	0	2	2
23	0	0	0	0	2	2 1	3	0	3	3	C	12	0	0	2	1
24	0	0	0	2	3	2	1	1	3	3	C	13	0	5	2	1
25	0	0	0	2	1	2	1	0	3	3	0	10	1	0	1	1
26	0	0	0	2	3	1	3	2	2	1	2	14	0	0	2	1
27	0	0	0	0	:	1	0	2	2	2	0	10	0	0	2	1
- 20	4	^	•			-	1		-	-	-	0	2	^	2	
Data View	Variable View															
Data View																
												IBM SPSS St	atistics Proces	sor is readv	Unicode	ON

31. ábra: Összeadni kívánt változók

Az összeadáshoz nyissuk meg a Transform -> Compute Variable menüt. A megjelenő ablak Target Variable mezőjébe nevezzük el a létrehozni kívánt változónkat: pszichoszom_összpont. A kis nyíllal a bal oldali oszlopból mozgassuk át a hét tünetet egyesével a Numeric Expression ablakba, közéjük tegyünk + jelet **(32. ábra)**, majd OK.

🍓 adatbazi	s_APO	OLOK.sa	av [DataSe	et1] - IBM S	SPSS Statist	ics Data	Editor																	_	o ×	
<u>F</u> ile <u>E</u> dit	Vie	iew	Data 🔅	Iransform	Analyze	Dire	ect <u>M</u> arke	eting	Grap	hs U	tilities /	\dd- <u>o</u> ns	Wind	ow <u>H</u> elp												
🔁 I				5	2	i 🔁			ч	ΔÅ	*,	2		sta 📰	1	A 📀	•	ABG	1							
1 : fejfájás			2																					Visible: 178	of 178 Variable	es
	K1	18_auto un	oimr K1	8_szembe egség	et K18_imr ógia	nunol K ii ((rónikus egségsz	_bet ám	fejfá	jás	alvási_pro mák	blé gyo	morégé	s szívdobo	gás	hátfájás	gyer	ngeség	hasmenés	pszichoszom atikus_összp	K20	K21	K22 tlan	_indokola altató _gyógysz szedés	szedés nyuj	
1	1		0		0	0		1		2		2		0	1		1	1	0	7		1	0	2	1	4
2		-	•		0	0		-		0		0		0	0		0	0	0				0	1	1	
3		6	Compute	Variable																		×	2	2	1	
4		Та	arget Vari	able:						Numeri	c Expressi	on:											0	2	1	
5	_	ps	szichoszo	m_összp	ont				=	fejfájás	+ alvási_p	roblémá	k + gyorr	orégés + sz	ívdobog	jás + hátfá	ijás + gy	engeség	+ hasmenés				0	1	1	
7	-	- F	ype & La	bel																			0	1	1	
8	-		К18 h	aematoló	niai			_	4														0	2	1	
9	1		K18_n	eurológiai	i														unction group				0	2	1	
10			K18_b	őrbetegsé	ġ													į,	All			-	0	2	1	
11			K 18_p	utoimmur	וו ז					+	<	>	7 8	9				/	Arithmetic				0	1	1	
12			6 K18_s	zembeteg	ség					-	<= :	=	4 5	6					CDF & Noncer	tral CDF			0	1	1	
13		-	Krónik	nmunológ	jiai ségszám							T C	1 2					, in the second s	Current Date/T	ime			0	2	1	
14	-		fejfájá:	3 3	309320m								<u> </u>					1	Date Arithmetic	2			0	2	1	
16	-		alvási_	problémá	ik					- 1	&		0					Ľ	Date Creation			•	.0	1	1	
17	-		gyomo szívdo	reges bogás						**	~	0	Dele	te				* E	unctions and	Special Variable	IS:		0	2	2	
18			hátfájá	is														·					0	2	1	
19		4	gyeng	eség																			0	2	1	
20			pszich	enes oszomatik	us_összpo	ontszám	1																0	2	2	
21			Betegs	ség esetér	n hányszor	volt orvo	osnál?																0	2	1	
22	_	- 4	🖋 Táppé 🔍 Kaa iii	nzes napo Idokolatia	ok száma (H	(21] arczadó																	0	2	2	
23	-		0 1/22_11	luokolalla	n_gyogysz	erszede	5																5	2	1	
24	-		IF (opti	onal case	selection	conditio	n)																0	1	1	
26	-		<u></u>																				0	2	1	
27	Ĩ										0	K P	aste	Reset Ca	ncel	Help							0	2	1	
0	1																						0	2	1	
Data View	Var	ariable \	/iew																							

32. ábra: Változók összeadásának menete

Az új változó a legutolsó oszlopban fog megjelenni. (33. ábra)

tadatbazis_	APOLOK.sav [DataSet1	1] - IBM SPSS Statistics D	ata Editor										-	٥	\times
Eile Edit	<u>V</u> iew <u>D</u> ata <u>T</u> ra	nsform <u>A</u> nalyze D	Direct Marketing Grap	ohs Utilities Add-ons Window H	Help										
😑 H	🖨 🛄 I	r 🤉 🎬	📥 📰 🃭	🗕 🚟 🖾 🚍 🐴 🗄				ò							
1 : fejfájás	2				-								Visible: 179	of 179 Var	riables
	DEV_3	DFB0_3	DFB1_3	pszichoszom_összpont	var	var	var	var	var	var	var	var	var	var	
1	,69322	,02493	-,01247	7,00											
2	-1,69948	,00955	-,00955	.00											
3	,73366	-,00295	,00295	15,00											
4	,69322	,02493	-,01247	11,00											
5	,73366	-,00295	,00295	2,00											
6	,73366	-,00295	,00295	15,00											
7	,69322	,02493	-,01247	8,00											
8	,73366	-,00295	,00295	18,00											- 11
9	,69322	,02493	-,01247	17,00											_ 1
10	,73366	-,00295	,00295	6,00											
11	,69322	,02493	-,01247	9,00											- 11
12	,69322	,02493	-,01247	9,00											- 11
13	,73366	-,00295	,00295	17,00											
14	,69322	,02493	-,01247	13,00											_]]
15	-1,69948	,00955	-,00955	12,00											_
16	,73366	-,00295	,00295	12,00											- 11
17	-1,69948	,00955	-,00955	6,00											-11
18	-1,69948	,00955	-,00955	9,00											- 11
19	,73366	-,00295	,00295	12,00											-11
20	,73366	-,00295	,00295	15,00											- 11
21	,73366	-,00295	,00295	17,00											-11
22	-1,75709	-,09180	,04590	12,00											
23	,73366	-,00295	,00295	12,00											-11
24	,73366	-,00295	,00295	13,00											-11
25	-1,69948	,00955	-,00955	10,00											-11
26	-1,75709	-,09180	,04590	14,00											-11
27	,73366	-,00295	,00295	10,00											
28	,73366	-,00295	,00295	8,00											_
29	,69322	,02493	-,01247	13,00											-
								_							
Data View	Variable View														
									IBM SPS	SS Statistics P	rocessor is re	adv	Unicode:ON		

33. ábra: Összeadással létrehozott új változó

Ha kész vagyunk az összes adat bevitelével, átkódolásával, és az új változók létrehozásával, akkor az Analyze -> Frequencies parancs segítségével végezzük el az adatbázisunk ellenőrzését. Az összes változót átmásoljuk a jobb oldali ablakba, majd OK gombot nyomunk. Ennek az a célja, hogy az esetleges elgépeléseket észrevegyük. Ilyen eset például, amikor 1=férfi; 2=nő volt a kódolás, és az ellenőrzés során találunk egy 3-ast. Ilyenkor elütésről van szó. Meg kell keresni a nem változó oszlopában azt a sort, ahol a 3-as szerepel, és meg kell nézni, hogy hányas sorszámú kérdőívről van szó. Kikeressük a papír alapú kérdőívek közül az adott sorszámút, és megnézzük a válaszadó nemét, majd a megfelelő kódszámra javítjuk.

Előfordulhat az az eset is, hogy a válaszadó egy kérdésre nem válaszolt. Ekkor az adatbázisba nem viszünk be adatot, üresen hagyjuk a cellát. Másik megoldás, hogy a hiányzó adatot 99-el jelölik, viszont ekkor egyéb beállításokra is szükség van az SPSS-ben. Ha üresen hagyjuk a cellát, akkor minden számításnál Missing jelöléssel fognak szerepelni a hiányzó adatok, és ezeket természetesen az SPSS nem veszi bele a számításokba. Például egy 342 fős adatbázisban az egyik kérdésre 12 fő nem válaszolt, akkor Missing 12 fog megjelenni pl. a relatív gyakoriságnál, és elemszámként a 330. Ha egy kérdésnél vannak hiányzó adatok, akkor ezt az eredmények szöveges értékelése során fel kell tüntetni, pl: "a kérdésre 12 fő nem válaszolt".

ÖNELLENŐRZŐ KÉRDÉSEK A 2. FEJEZETHEZ

1. Mit jelent a kódolás?

2. Miért van jelentősége a kódolásnak?

3. Statisztikai eljárások

A statisztikai eljárások közé a leíró (csoportosítás, kategorizálás, megoszlási mutatók, középérték-számítások, szóródás-számítás) és a matematikai (különbözőség-, és összefüggés vizsgálatok) statisztikai módszerek tartoznak.

3.1. Leíró statisztikai módszerek (alapstatisztika, egyváltozós elemzések)

A leíró statisztika nem alkalmas a hipotézisek vizsgálatára. Feladata a numerikus információk összegyűjtése, összegzése, tömör jellemzése. Ide tartozik az adatgyűjtés, az adatok ábrázolása, csoportosítása, osztályozása, adatokkal végzett egyszerűbb műveletek és az eredmények megjelenítése is. Ezek helyzetképet adnak a minta jellemzőiről (*Falus és Ollé, 2008; Ács, 2014*).

3.1.1. Csoportosítás, kategorizálás

Ezen eljárás során nagyszámú adatot néhány adattá vonunk össze. Ez azért szükséges, mert ha túl sok adatunk van, akkor átláthatatlanná válik egy idő után az adatbázis. Egy adatot csak egyetlen csoportba lehet elhelyezni, viszont minden adatnak elhelyezhetőnek kell lenni valamelyik csoportban. Ezt úgy érhetjük el, hogy mérhető adatoknál a szélső csoportokat kinyitjuk, megállapítható adatoknál "egyéb" kategóriát hozunk létre. A csoportok terjedelmét egyformára kell szabni, kivétel a két szélső. Követelmény, hogy csak feltétlenül szükséges mennyiségű csoportot hozzunk létre! *(Elekes 2007; Falus és Ollé 2008; Ács 2014)*

Nézzünk egy konkrét példát:

Kérdés: Kérem, adja meg havi nettó jövedelmét! Ft

A válaszadók beírják az összeget. Előfordulhat, hogy pl. 150 válaszadó 150 különböző összeget ír be. Ezekből kell nekünk csoportokat képezni a fentebb említett szabályok betartásával.

HIBÁS megoldás:

50-100.000 Ft 100.000-150.000 Ft 150.000-200.000 Ft 200.000-300.000 Ft 300.000-500.000 Ft 500.000-700.000 Ft

Miért lesz ez a megoldás hibás??? Mert nincs nyitva a két szélső csoport, túl sok csoport van, illetve a csoportok nem azonos nagyságúak (50, 100, 200 ezres eltérések vannak). Probléma az is, hogy a pontosan 100.000, 150.000, 200.000, 300.000, 500.000 Ft-ot kereső egyének két

csoportba is besorolhatók. Ezen hibák kiküszöbölésére alkalmazandó az alábbi HELYES megoldás:

<-100.000 Ft

100.001-200.000 Ft

200.001-300.000 Ft

300.001 Ft -<

Miért lesz ez a megoldás helyes??? A két szélső csoport nyitva van, kevés számú csoportot tartalmaz, a két zárt csoport egyforma nagyságú (100.000-es egységet tartalmaz), biztosan csak egy csoportba sorolható be minden válaszadó.

Ezt a műveletet SPSS programmal is könnyedén elvégezhetjük az alábbi algoritmust követve: Transform -> Recode into Different Variables

Az életkor változót a kis nyíllal átmozgatjuk a középső üres ablakba, majd az Output Variable Name mezőjébe beírjuk az új változó nevét, jelen esetben életkor_10bontás, mivel a válaszadókat szeretnénk életkor szerint csoportosítani. (**34. ábra**)

Ezután az Old and New Values gombra kattintunk. Az így megjelenő új ablak Range cellájába a nullát, a through cellába a 20-at írjuk (ez jelenti a 20 év, és az alatti korosztályt), a value mezőbe pedig az 1-et írjuk (első csoport), majd az Add gombra kattintunk. (**35. ábra**)

35. ábra: Első életkori csoport létrehozása

Ezt megismételjük az alábbi korosztályokkal: 21-35 év, 36-50 év, 51 évnél idősebbek. (36. ábra)

36. ábra: Többi életkori csoport létrehozása

Ezután a Continue gombra kattintunk, és visszatérünk a **34. ábrán** látható ablakhoz, ahol a jobb oldalon megnyomjuk a Change gombot, majd alul OK. Így az adatbázisunkban létrejött az új változó oszlopa.

3.1.2. Megoszlási mutatók (százalékos megoszlás, diagram)

A megoszlási mutatók azt mutatják meg, hogy az adatok milyen arányban oszlanak meg az egyes kategóriák, csoportok között.

Abszolút gyakorisági eloszlás: egy-egy csoportba összesen hány vizsgált személyt soroltunk be. Fő-vel fejezzük ki (pl: a gimnáziumi tanulók közül 34 fő reggelizik minden nap). Az abszolút gyakoriság nem alkalmas két minta összehasonlítására (kivéve, ha a két minta pontosan ugyanannyi elemszámot tartalmaz!) a relatív gyakoriságnál ismertetett példa miatt!

Relatív gyakorisági eloszlás: egy-egy csoportba tartozó egyének az összes válaszadó hány százalékát teszik ki. Ezt szükséges akkor alkalmazni, ha két, eltérő elemszámú csoportot szeretnénk összehasonlítani. Pl.: a felmérésünkben szerepel 78 fő gimnazista, és 112 fő szakmunkás tanuló. Arra vagyunk kíváncsiak, hogy melyik iskolatípusba járó tanulók rendelkeznek pontosabb ismerettel az alkohol káros hatásairól. Ha az eredményeket abszolút gyakorisággal adjuk meg (a gimnazisták közül 60 főnek, a szakmunkás tanulók közül 65 főnek pontos az ismerete), akkor téves következtetéseket vonhatunk le az eredményeinkből, mert ez alapján azt látjuk, hogy a szakmunkás tanulók valamivel többen rendelkeznek helyes ismerettel. Viszont ha ezt relatív gyakorisággal ábrázoljuk, akkor azt látjuk, hogy a gimnazisták 76,9%-a, a szakmunkás tanulók 58%-a rendelkezik helyes ismerettel, tehát a gimnazistáknak pontosabb a tudásuk *(Elekes 2007; Falus és Ollé 2008)*!

Kumulatív gyakorisági eloszlás: Az adott csoport abszolút gyakoriságának, és a nála kisebb csoportok abszolút gyakoriságának az összege (*Elekes 2007; Falus és Ollé 2008*).

SPSS-ben az alábbi algoritmus követésével tudjuk mindhárom gyakorisági eloszlást kiszámolni: Analyze -> Descriptive Statistics -> Frequencies, majd a kívánt kategorikus változót (jelen esetben az előző példában létrehozott életkori bontást) a kis nyíllal átmozgatjuk a jobb oldali ablakba, majd OK. Az így létrejött táblázatban láthatjuk mindhárom eloszlási mutatót. (**37. ábra**)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	21-35 év	68	37,8	37,8	37,8
	36-50 év	90	50,0	50,0	87,8
	51 év felett	22	12,2	12,2	100,0
	Total	180	100,0	100,0	

37. ábra: Gyakorisági eloszlások

A "Frequency" oszlop mutatja az abszolút gyakoriságot, a "Percent" a relatív-, a "Cumulative Percent" pedig a kumulatív gyakoriságot. Láthatjuk, hogy 20 éves, vagy annál fiatalabb nincs
a mintában. 21-35 éves korcsoportba tartozik 68 fő (ami a válaszadók 37,8%-a), 36-50 éves korcsoportba 90 fő (50%), az 51 éves, vagy annál idősebb csoportba 22 fő (12,2%).

Diagram

A kutatás során nyert adatok szemléltetéséhez elengedhetetlen a grafikus ábrázolás. Segítségével összefüggéseket, arányokat is szemléltethetünk. Egy jó diagramnak egyértelmű címe van, mely utal az ábrázolt tartalomra. Tartalmazza a mértékegységeket, az értékeket, a tengelyek el vannak nevezve, és van jelmagyarázata. Egy jó diagramra ha ránézünk, akkor a kísérőszöveg elolvasása nélkül tudjuk értelmezni azt. A függőleges tengelyen mindig az elemszám mértékegysége szerepel, ami lehet fő vagy %. Jelen példában – annak ellenére, hogy összehasonlító vizsgálat – azért szerepel fő-ben feltüntetve a mértékegység, mert a kutatást végző személy pontosan 50-50 főt vett be a vizsgálatba a két iskolatípusból, így összehasonlíthatók az abszolút gyakoriságok. Ellenkező esetben a relatív gyakoriságot kell feltüntetni! A vízszintes tengely az egyes kategóriákat tartalmazza, de van címe is: "Tünetek". Ezen kívül szerepel még egy mindent kifejező cím, megjelölve zárójelben a válaszadók számát is, illetve a jelmagyarázat *(Elekes 2007; Ács 2014).* **(38. ábra)**

Ezt az oszlopdiagramot nominális (kategorikus) változó esetén célszerű alkalmazni. Kis eltéréseket is jól ábrázol, viszont sok kategória megnehezítheti az értékelést, illetve a feliratozás is olvashatatlanná válna *(Elekes 2007; Ács 2014)*.

A vonaldiagram (**39. ábra**) időbeli változások szemléltetésére alkalmas. Az adatpontokat egy folytonos vonallal kötjük össze. Jelen példában a gyermek születési súlyát vetjük össze a terhességi idővel. Azt láthatjuk, hogy minél idősebb volt a terhesség a szülés időpontjában, annál nagyobb volt az újszülött születési súlya. Mindkettő folytonos változó, ezért tudjuk az egyes adatpontokat folytonos vonallal összekötni *(Elekes 2007; Ács 2014)*.

39. ábra: Vonaldiagram

Gyermekek születési súly változásának átlaga a terhesség időtartamának tekintetében

A sávdiagramot (40. ábra) nagyszámú kategória esetén használjuk. A kategóriák függőlegesen, az értékek vízszintesen helyezkednek el. Ez a diagram is ugyanabból a kutatásból származik, mint a **38. ábra**, vagyis összehasonlító vizsgálatról van szó. Ugyanúgy megtalálható a két iskolatípus, csak most nem jelmagyarázatban, hanem közvetlenül a cím alatt vannak elhelyezve. A jelmagyarázat most a három válaszlehetőséget tartalmazza (igen, nem, nem tudom), a függőleges tengelyen pedig a dohányzás okozta betegségek helyezkednek el. Ezek a betegségek a mellettük lévő tengelycím és a diagram címe nélkül értelmezhetetlenek lennének, hiszen nem tudjuk, hogy mivel kapcsolatban kérdezte a kutató. Ezek a betegségek egyesével vannak felsorolva, a három válaszlehetőség pedig külön színnel jelezve (benne a válaszadók számával), így az eredmények könnyen leolvashatók, összehasonlíthatók. A barna sávokban a feliratok eredetileg feketék voltak, ami megnehezítette volna a leolvasásukat, így fehérre lettek színezve *(Elekes 2007; Ács 2014)*.

40. ábra: Sávdiagram

A kör (**41. ábra**) és a tortadiagram (**42. ábra**) az adatsokaság szerkezetének, összetételének ábrázolására szolgál, a részeknek az egészhez való viszonyát, arányait szemlélteti. Csak relatív gyakoriságot ábrázol egy változó esetében. Akkor célszerű alkalmazni, ha nagy eltérések vannak az egyes kategóriába tartozó adatmennyiségek között, mert kis különbségeket nem szemléltet jól. Egy kategóriát kiemelhetünk vele. Ez a diagram is tartalmazza az adott válaszlehetőséget megjelölők arányát, a jelmagyarázatot, és egy kifejező címet a válaszadók számával. Szerkesztésénél arra kell figyelni, hogy az egyes cikkelyek színe egymástól jól elkülönüljön, mert attól, hogy a képernyőn különbözőnek látjuk, nyomtatásban még lehetnek színösszemosódások (*Elekes 2007; Ács 2014*).

41. ábra: Kördiagram

A perec diagram (**43. ábra**) több minta esetén hasonlítja össze a relatív gyakoriságot. Látványos, bár az oszlop diagram ugyanezt a célt szolgálja, és jobban áttekinthető (*Elekes 2007; Ács 2014*).

43. ábra: Perec diagram

Kiégés előfordulása

■ Örökös eufória (1,9 pont alatt) ■ Jól csinálja (2-2,9 pont)

Változtatás szükséges (3-3,9 pont) Kezelés szükséges (4 pont felett)

Belülről kifelé haladva: intenzív osztály, belgyógyászat, gyermekosztály

A hisztogram (**44. ábra**) egy változó eloszlását mutatja meg, csak metrikus skálák (folytonos változó) esetében alkalmazható! Az adatok csoportosítva találhatók. Egy oszlop szélessége változhat, területe az adott csoportba tartozó adatok mennyiségét mutatja meg. A hisztogramra egy Gauss-görbét is rajzol az SPSS program, mely a normál eloszlást szemlélteti. Jelen esetben a BMI értékek kettesével vannak ábrázolva. Láthatjuk, hogy az ábrázolt változó csúcsa (a

legmagasabb oszlop) kissé balra helyezkedik el (20-22-es BMI-vel többen rendelkeznek, mint a többi értékkel) (*Elekes 2007; Ács 2014*).

44. ábra: Hisztogram

3.1.3. Középérték-számítások (átlag, medián, modus)

A középértékek a nagyságszint mérésére alkalmasak. A középérték-számítások csak mérhető (folytonos eloszlású) adatok esetében alkalmazhatóak. Azt fejezik ki, hogy egy skála melyik szakaszán helyezkednek el az adataink *(Elekes 2007; Falus és Ollé 2008)*.

Átlag (számtani közép): az adatok összegét elosztjuk azok számával, vagyis összeadjuk a változó összes értékét, és elosztjuk az összeget az adatok számával. Nem alkalmazható ordinális (sorrendi) és nominális változóknál. Nem szabad abba a hibába esni, hogy egy minta jellemzésénél csak az átlagot adjuk meg (medián, szórás nélkül), mivel félrevezető is lehet. Ilyen eset például, ha egy 100 főt felölelő kutatásban megkérdezzük az ápolókat, hogy a kérdőív kitöltését megelőző egy évben hány napot voltak táppénzen. Előfordulhat, hogy 3-4 válaszadó egészen sok napot ad meg, mert pl. műtéte, súlyosabb betegsége volt, de a többiek nem voltak táppénzen, vagy csak néhány napot. Ha átlagoljuk a táppénzes napok számát, akkor nagy számot kapunk, mivel volt néhány kiugróan magas érték. Emiatt téves következtetéseket vonhatunk le a kérdőívet kitöltő ápolókra *(Elekes 2007; Takács és mtsai. 2013)*.

Medián (középső érték): a közepe a mintának. Az az érték, amelynél ugyanannyi kisebb, mint amennyi nagyobb érték fordul elő. Az átlagnál pontosabb, mert ha van a mintában kiugróan magas vagy alacsony adat, akkor az elviszi az átlagot. Medián esetében a kiugró adatok megmaradnak, de nem torzítanak. Ordinális adatoknál is alkalmazható, hiszen ott nagyság szerint sorba tudjuk rendezni az adatokat. Kiszámítás menete: az adatokat nagyságuk szerint sorba rendezzük, majd megkeressük a középsőt (páros számú adat esetén a két középső átlagát vesszük). Jele: M *(Elekes 2007; Takács és mtsai. 2013)*

Pl: 8, 28, 34, 35, 37, 47, 48, 56, 57, 59, 74 számsor esetében 11 adatot látunk. A medián a középen elhelyezkedő érték lesz: 47.

Modus (módusz, leggyakoribb érték): az az adat, ami a leggyakrabban fordul elő. Pontatlan! Legalább 50 fős mintánál alkalmazható. Pl: ha egy 50 fős osztályban 22-en írtak 80 pontos dolgozatot, nyolcan 90 pontosat, kilencen 94 pontosat, hárman 99 pontosat és nyolcan 100 pontosat, akkor a 80 lesz a modus. Viszont az évfolyam átlaga ennél valamivel jobb. Jele: m *(Elekes 2007; Takács és mtsai. 2013)*.

Ezeket a mérőszámokat SPSS programban a következőképpen számolhatjuk ki (a válaszadók életkorával dolgozunk): az Analyze -> Descriptive Statistics -> Frequencies parancssort követve az életkor változót átmozgatjuk a kis nyíllal a nagy üres ablakba, majd a Statistics fülre kattintunk. Pipát teszünk a Mean, Median és Mode felíratok elé (**45. ábra**), majd a Continue gombra kattintunk. Visszatérünk az előző nagy ablakhoz, ahol az OK gombra kattintunk.

A 46. ábrán látható kimeneti ablakot kapjuk: átlag 41,59; median 42; modus 40.

46. ábra: Átlag, medián, módusz kiszámított értékei

életkor		
N	Valid	116
	Missing	0
Mean		41,59
Median		42,00
Mode		40

3.1.4. Szóródás számítás

Előfordulhat, hogy az átlag és a középérték nem elegendő egyes adatsorok összehasonlításához, mivel két azonos átlagú adatsor is lényegesen különbözhet egymástól abban, hogy az egyes adatok milyen távolságra helyezkednek el a közös átlaguktól, vagyis mennyire szóródnak körülötte (*Elekes 2007; Falus és Ollé 2008*).

Pl: a 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 adatsor átlaga és az 1, 3, 5, 5, 6 adatsor átlaga is 4, viszont nagyban különböznek egymástól. Az első adatsor homogén, a másik heterogén, de ez az átlagukból nem tűnik ki.

Terjedelem (Range): az átlag körüli szóródást mutatja meg, vagyis a skálának a legnagyobb és a legkisebb adatot tartalmazó pontja közötti távolságot (az előforduló legnagyobb és legkisebb érték különbsége). Nem mutatja meg viszont, hogy mennyi adat helyezkedik el a skála szélein, és mennyi a közepéhez közel eső területen *(Elekes 2007; Falus és Ollé 2008)*.

Az **átlagos eltérés** olyan mérőszám, amely a minta minden egyes elemének a minta átlagától való eltérését veszi figyelembe, s ennek az eltérésnek az átlagát számolja ki. Vagyis először a minta átlagát kell kiszámolni, majd vesszük az egyes adatok átlagtól való elérését (a különbséget minden esetben pozitívnak tekintjük), majd összeadjuk őket, és az eredményt elosztjuk a különbségek számával *(Elekes 2007; Falus és Ollé 2008)*.

A variancia (variance) vagy szórásnégyzet vagy átlagos négyzetes eltérés az eloszlásokat jellemző paraméter. Megmutatja, hogy egy valószínűségi változó milyen mértékben szóródik a várható értéktől (középérték), más szóval mennyire kenődik el. Más megfogalmazásban az átlagtól való négyzetes eltérést jelenti *(Elekes 2007; Falus és Ollé 2008)*

Szórás (Standard Deviation, SD): az egyes adatok átlaguktól való eltérésének átlaga (vagyis a variancia négyzetgyöke) *(Elekes 2007; Falus és Ollé 2008)*. A szóródást jellemző mérőszámokat a **47. ábra** szemlélteti.

Ezeket a mérőszámokat SPSS-ben is kiszámolhatjuk az alábbi algoritmus követésével:

Analyze -> Descriptive Statistics -> Descriptives

A tetszőleges folytonos változót (jelen esetben életkort) átmozgatjuk a kis nyíllal a jobb oldali üres ablakba, majd az Options gombra kattintunk. A Dispersion ablakban pipát teszünk az S.E. mean kivételével mindenhova (**48. ábra**), majd a Continue, azután pedig az OK gombra kattintunk.

48. á	bra: (Szóródás	számítás	SPSS-ben
--------------	--------	----------	----------	----------

🚱 Dori_adatb	azis.sav [Data	Set1] - IBM SPS	S Statistics Data Ed	litor										-	o ×
File Edit	View Da	ta <u>T</u> ransform	n <u>A</u> nalyze D	irect <u>M</u> arketing	Graphs L	Jtilities Add-ons	Window Help								
2		. r	~	*		N 👬 🔛		0	ABG						
														Visible:	62 of 62 Variables
	nem	életkor	iskolai végze	súly	magasság	BMI B	MI kategori mun kahelvi s stressz ka	teellá	itási terüle mu	nkaterület	eü évek	munkarend	egészségi áll	nincs stessz	elismerés m ı
			ttség				a tressz goria		t				apot	_munkahelye n	egbecsülés_h iánya
1		2	46 4	90	1,75	29,4	3 1	1	3	1	6	4	3	0	1 🚔
2		2	39 5	86	1,52	37,2	5 1	1	3	1	5	1	3	1	0
3		1	59 4	68	1,56	27,9	Descriptives: Ontions	1	1	10	6	2	3	0	1
4		2	42 2	61	1,63	23,0	vescriptives: options ×		1	10	5	2	3	0	0
5		2	47 3	130	1,70	45,0	Mean 🖸 Sum	4	1	10	6	2	3	1	0
6		2	52 2	64	1,60	Descriptives	Dispersion		×	10	6	1	4	1	0
7		2	43 5	104	1,72		Std. deviation V Minimum			10	5	1	3	1	0
8		2	59 5	80	1,72	🙈 nem	Variance Maximum		Options	19	6	1	3	0	0
9		2	56 1	60	1,55	liskolai_végzet	Range S.E. mean		Style	3	6	4	1	0	0
10		2	5/ 4	90	1,60	🧳 súly			Bootstrap	8	4	4	3	U	
11		2	50 5	75	1,60	BMI	Distribution			21	6	3	3	1	
12		1	d 10	01	1,03	BMI_kategoria	Kurtosis Skewness			12	0	3	4	1	
14		2	+5 5 30 4	102	1,73	🖉 munkahelyi_st	Display Order			26	2	1	3	0	0
15		2	58 5	67	1,04	Stressz_kateg	O Variable list			5	6	4	4	1	
16		2	49 2	73	1 70	E Save standardia	O Alphabetic			11	6	4	3	0	1
17		2	55 2	60	1,54		O Ascending means			26	6	4	3	0	1
18		2	46 4	60	1,56		© Descending means	p		16	6	4	3	0	1
19		2	34 2	100	1,70	34,6			3	1	1	4	3	0	0
20		2	59 2	79	1,54	33,3	Continue Cancel Help		3	1	5	4	3	0	1
21		2	50 4	70	1,60	27,3	Z	-	3	1	6	4	4	0	0
22		2	55 4	70	1,55	29,1	3 2	1	3	1	6	1	3	0	1
23		2	40 5	90	1,70	31,1	4 2	1	3	1	5	4	3	0	0
24		2	42 5	100	1,70	34,6	4 2	1	3	1	2	1	3	0	0
25		2	20 4	62	1,57	25,2	3 2	1	3	1	1	4	3	0	0
26		2	42 4	110	1,77	35,1	5 2	1	2	1	5	1	3	0	0
27		2	47 3	106	1,67	38,0	5 2	1	2	1	6	1	2	0	1
00	1	0		305	4 70	22.0	1 2		2	4	r	,	2	•	1
Data View	Variable Vie	N					***								

Az output ablakban (**49. ábra**) a következőket láthatjuk balról jobbra: 556 válaszadó esetében a terjedelem 43, a legfiatalabb válaszadó 20, a legidősebb 63 éves. Átlag életkoruk 43,68 év, a szórás 9,378 év, a variancia 87,945.

49. ábra: Kiszámított szóródási mérőszámok

Descriptive officialities									
	N	Range	Minimum	Maximum	Mean	Std. Deviation	Variance		
életkor	556	43	20	63	43,68	9,378	87,945		
Valid N (listwise)	556								

Descriptive Statistics

3.2. Matematikai (valószínűségi) statisztikai módszerek

Ezek alkalmazása elengedhetetlen a hipotézisek vizsgálatához, azonban mintánknak legalább 30 fősnek kell lenni ahhoz, hogy statisztikai próbát végezhessünk. Ennél kevesebb számú mintákat speciális statisztikai próbákkal vizsgálnak, melyek alkalmazásához elengedhetetlen a statisztikusi képzettség. A próbákat két nagy csoportra oszthatjuk: különbözőség-, és összefüggés-vizsgálatok (*Falus és Ollé 2008*) Az **50. ábrán** láthatók rendszerezve a statisztikai módszerek, a pirossal kiemeltek azok, melyek részletes ismertetése történik.

KÜLÖNBÖZŐSÉGVIZSGÁLATOK Jelentős-e a különbség? adatfajták intervallum ordinális nominális minták száma egymintás t-próba Wilcoxon-próba Khi-négyzet-próba egy kétmintás t-próba Mann-Whitneykettő Khi-négyzet-próba és F-próba próba varianciaanalízis Kruskal-Wallis-Khi-négyzet-próba több (ANOVA) próba ÖSSZEFÜGGÉS-VIZSGÁLATOK Van-e szoros összefüggés? adatfajták intervallum ordinális nominális változók száma Spearman-féle kettő korrelációszámítás rangkorreláció-Khi-négyzet-próba számítás kettő vagy több, regresszióanalízis mint kettő parciális korrelációszámítás több, mint kettő faktoranalízis klaszteranalízis

50. ábra: Statisztikai módszerek

A statisztikai próbák bemutatása előtt meg kell ismerkedni a **nullhipotézis** és a **szignifikancia** fogalmával.

Nullhipotézis: a két minta megállapítható tulajdonságai között nincs szignifikáns különbség. Ennek vizsgálatára használjuk a statisztikai próbákat, így el tudjuk dönteni, hogy a nullhipotézis fennáll-e, vagy el kell vetnünk (*Elekes 2007*).

Példa:

Hipotézis: Feltételezem, hogy az intenzív osztályon dolgozó ápolóknak magasabb az iskolai végzettsége, mint a belgyógyászaton dolgozó ápolóknak (tehát a két minta iskolai végzettségében jelentős különbség van).

Nullhipotézis: Az intenzív osztályon és belgyógyászaton dolgozó ápolók iskolai végzettségét tekintve nincs jelentős különbség a két csoport között.

Szignifikancia: egyezményes határa az 5%-os (0,05) véletlen valószínűség. Jele: p

Ha p>0,05: nem jelentős (szignifikáns) a különbség/változás, vagy nincs összefüggés két változó között (a nullhipotézist elfogadjuk);

ha p<0,05: jelentős a különbség/változás, vagy összefüggés van két változó között. A különbség igazolhatóan nem a véletlen műve, tehát a hipotézisünket igazoltnak tekinthetjük, és a nullhipotézist elvetjük (*Elekes 2007*).

A szignifikancia értékét minden publikációban fel kell tüntetni három tizedes jegy pontossággal! A statisztikai program a következőképpen jelenítheti meg az értéket:

,000: ebben az esetben a következőt írjuk: p<0,000; mégpedig azért, mert a szignifikancia értéke soha nem nulla. Ha ez a három nulla jelenik meg, akkor azt jelenti, hogy a p értéke még ennél is kisebb. Erről úgy győződhetünk meg, ha az SPSS output ablakában duplán kattintunk a számra, ekkor megjelenik a többi tizedes jegy is (pl: 0,00007365).

,001: itt a szignifikancia értéke pontosan 0,001, ezért így jelenítjük meg: p=0,001.

,028: itt a szignifikancia értéke pontosan 0,028, ezért így jelenítjük meg: p=0,028.

,324: itt a szignifikancia értéke pontosan 0,324, ezért így jelenítjük meg: p=0,324.

Értelmezésre egy példa: p=0,001-> minden ezer esetből csak egyszer fordul elő valami véletlenül, a többi előfordulás nem a véletlen műve, hanem a beavatkozásomnak tudható be (pl: egy regenerációs tréning csökkenti a kiégés mértékét).

A statisztikai próbák során kétféle hibát véthetünk:

 A nullhipotézist elutasítjuk annak ellenére, hogy igaz (elsőfajú hiba). Következménye, hogy hibás állítások kerülnek be egy tudományba.

2. A nullhipotézist megtartjuk annak ellenére, hogy nem igaz (másodfajú hiba). Következménye az lehet, hogy nem fedezünk fel valamilyen új, eddig ismeretlen összefüggést, hatást. Főleg akkor fordul elő, ha a kutató kevés elemszámmal dolgozik (*Vargha 2000*). Ilyen eset lehet például, amikor a kiégés és a pszichoszomatikus tünetek közötti összefüggést vizsgáljuk. Vizsgálatok kimutatták ápolók körében az összefüggést, azonban a kutató úgy dönt, hogy szeretné védőnők körében is megvizsgálni ezt egy 100 fős mintán. Az összefüggés az ő esetükben is valószínűsíthető, de mégsem ez az eredmény született. Ilyen esetben téves lenne levonni azt a következtetést, hogy nincs összefüggés a védőnőknél ezen két változó között. Helyette nagyobb mintán kell megismételni a vizsgálatot, és a következtetéseket azután levonni.

Azonban a túl nagy minta is okozhat gondot. Általában az 5%-os szignifikancia szintet használjuk döntéseinkhez, de nagy elemszám esetén előfordulhat, hogy a nullhipotézist elutasítjuk, így szakmailag nem lényeges eredményekhez jutunk. Ilyen esetben érdemes a szignifikancia szintet 1%-ra levinni, és újból elvégezni a statisztikai próbát (*Vargha 2000*).

A statisztikai próbák megismerése előtt még egy fontos módszert kell megemlíteni, ez a **dichotomizálás**. Egy kutatás során előfordulhat, hogy a mintánkat (a kérdőívet kitöltőket) két részmintára szeretnénk felosztani valamilyen változó alapján. Például ilyen lehet az életkor szerinti felosztása a mintának: a válaszadóinkat az életkoruk alapján két csoportra szeretnénk osztani. Ilyenkor a teendő, hogy kiszámoljuk az SPSS segítségével az életkor mediánját az előzőekben ismertetett módon. Mondjuk, ez az érték 37 lett. Ez lesz a csoportképzés szempontja: első csoportba tartoznak azok, akik 37 évnél fiatalabbak, a második csoportba a 37 évesek, vagy annál idősebbek. Ez a felosztási mód követendő minden intervallumskálán mért változó esetében. Lehetőség van azonban például egy Likert-skála válaszai alapján is ketté osztani a mintánkat. Pl: Mennyire érzi stresszesnek munkahelyét? Jelölje 1-4-ig terjedő skálán! (1=egyáltalán nem; 4=teljes mértékben). Az egyes (alacsony stresszes) csoportot fogják alkotni azok a válaszadók, akik az 1 és 2 válaszlehetőséget, a kettes (magas stresszes) csoportot pedig azok, akik a 3 és 4 válaszlehetőséget jelölték be. Ilyenkor a dochotomizált csoportok külön változóként fognak megjelenni az adatbázisunkban. Az új változó kialakítása a 2.1.1. fejezetben leírtak szerint történik.

3.2.1. Különbözőségvizsgálatok

Azt vizsgálják, hogy egy változót tekintve kettő vagy több részminta között van-e jelentős különbség. Minden kutatásban lehetőség van arra, hogy a mintánkat bármelyik változó alapján két vagy több részmintára osszuk fel (pl: az életkor alapján csoportokat képezünk) (*Falus és Ollé 2008*).

A vizsgálat típusa alapján a következő különbözőségvizsgálatokat ismerjük:

 Önkontrollos vizsgálat: egy minta vizsgálata két különböző időpontban. A kutatási folyamat elején és végén ugyanazoknál a személyeknél vizsgáljuk ugyanazokat az adatokat (egymintás t-próba, Wilcoxon-próba, Khi-négyzet-próba). A kutatás elején és végén ugyanazoknak a személyeknek ugyanazokat a kérdéseket tesszük fel. Fontos, hogy a személyek beazonosíthatóak legyenek (pl. jelszó, szimbólum), mert csak így tudjuk a vizsgálat elején és végén kitöltött kérdőíveket összepárosítani. Ilyen kutatás például a kiégés elleni tréning elején és végén történő, a kiégés mértékét vizsgáló kérdőív kitöltése.

- 2. Kontrollcsoportos vizsgálat: két egymástól független részminta vagy minta összehasonlítása ugyanazon változó alapján egy adott időpontban (kétmintás t-próba, F-próbával; Mann-Whitney-próba, Khi-négyzet-próba). Egy adott időpontban alkalmazzuk ugyanazt a mérőeszközt a két mintánál vagy részmintánál. Nem szükséges a két mintának azonos elemszámúnak lennie! Pl: a belgyógyászati és intenzív osztályon dolgozó ápolók kiégettségének mértékében van-e különbség?
- 3. Összetett kontrollcsoportos vizsgálat: kettőnél több részminta összehasonlítása ugyanazon változó alapján (varianciaanalízis, Kruskal-Wallis-próba, Khi-négyzet-próba). Azt szeretnénk megtudni, hogy a részminták között van-e jelentős különbség ugyanazon változó alapján. Pl: belgyógyászaton, intenzív osztályon, sebészeten és gyermekosztályon dolgozó ápolók kiégésének mértékében van-e különbség? (Falus és Ollé 2008).

Intervallumskálán értelmezett adatok esetében először azt kell megvizsgálni, hogy a minta normál eloszlású-e az adott változót tekintve. Ezt **normalitásvizsgálat**nak nevezzük. Erre alkalmas a Kolmogorov-Smirnov- és a Shapiro-Wilk-teszt, melyet a következő algoritmus segítségével tudunk elvégezni: Analyze -> Descriptive Statistics -> Explore. A megjelenő ablak Dependent List mezőjébe mozgatjuk az életkor változót, majd a Plots gombra kattintunk, ahol pipát teszünk a Normality plots with test elé, és a Continue gombra kattintunk. Ekkor visszatérünk az előző ablakhoz, ahol az OK gombra kattintunk. Ekkor az output ablakban a következők jelennek meg:

Az **51. ábra** első táblázatában látjuk, hogy 116 válaszadót vizsgált a program. A második táblázatban a pszichoszomatikus tünetek változó különböző statisztikai paraméterei láthatók, a harmadik táblázat tartalmazza a Kolmogorov-Smirnov- és a Shapiro-Wilk-teszt eredményét, mely p=0,160 és p=0,396, tehát egyik próba sem szignifikáns, így a pszichoszomatikus tünetek változót normál eloszlásúnak tekintjük, vagyis az egymintás t-próba elvégezhető. Ellenkező esetben ennek a próbának a nemparaméteres változatát (Wilcoxon-próba) kellene végezni. Ezt a normalitásvizsgálatot minden intervallumskálán értelmezett változó esetében külön-külön el kell végezni.

51. ábra: Normalitásvizsgálat eredménye

Az output ablakban láthatunk még egy nagyon fontos ábrát (52. ábra):

Ez az ábra is azt bizonyítja, hogy a pszichoszomatikus tünetek változó normál eloszlású, mivel a pontok az egyeneshez nagyon közel helyezkednek el.

Az **53. ábrán** szintén egy normalitás görbe látható, azonban ez a változó nem normál eloszlású (amit mindkét statisztikai próba igazolt), mivel a pontok az egyenes két végénél távolabb helyezkednek el az egyenestől.

53. ábra: Normalitás görbe (nem normál eloszlás)

A különbözőségvizsgálatok típusai az **50. ábrán** láthatók, a továbbiakban ezek részletes ismertetése történik.

Egymintás t-próba (Student-féle t-próba, Student-próba)

Intervallumskálán értelmezett adatok esetén alkalmazzuk (pl: életkor, testsúly, kiégés pontszám). A vizsgálat során azt szeretnénk megtudni, hogy egy normál eloszlású folytonos változó értékszintje megváltozik-e két helyzet vagy időpont között.

Mivel ugyanazt a változót vizsgáljuk (az egyének változásait vizsgáljuk), ezért pontosan ugyanazt kell kérdezni a két időpontban, és ugyanazoknak a személyeknek kell a mintában szerepelnie. Tudnunk kell, hogy mely kérdőíveket töltötte ki ugyanaz a személy a felmérés elején és végén, ezért egy jeligével vagy szimbólummal kell azonosítani, amit a válaszadó választ. Természetesen ebben az esetben is rejtve marad a válaszadó személyazonossága (*Falus és Ollé 2008*).

Jelen estben a kiégés változót már megvizsgáltuk előzetesen, és normál eloszlást mutatott, így elvégezhetjük az egymintás t-próbát. Amennyiben az eloszlás nem normál, úgy a próba nem paraméteres párját (Wilcoxon-próba ld. később!) kell alkalmazni! SPSS-ben a következő algoritmus segítségével érhetjük el a t-próbát: Analyze -> Compare Means -> Paired-Samples T Test. Az alábbi ablak jelenik meg (**54. ábra**):

T.OIA_PELI	UAI	isav [Databet i]	* IDIVI 3P 33 3td	usues Data Eulu	01													
<u>F</u> ile <u>E</u> dit	Vie	ew <u>D</u> ata	Transform	Analyze Dire	ect <u>M</u> arketing	<u>G</u> raphs <u>U</u> til	ities Add- <u>o</u>	ns <u>W</u> i	ndow	<u>H</u> elp								Kis méret
2		🔒 🛄	10.0	¥ 🖺 i	▙ᆿ┃	P #	*, 🖬		4	1	4	AB6						
3 : iskvégzett	ség_	szintje 3															Visible: 1	04 of 104 Variables
		értéktelen	elkopott	bajban_van	visszautasítot tság_érzése	gyenge_mag árahagyatott	reménytelens ég_érzése	elveszt úzi	ette_ill t óit	estileg_kime rült	felmorzsolták	csapdában_é rzi_magát	i lejárt_rugó	energikus	boldogtalan	optimista	kiégésátlag	kiégés_kateg e ória
1	4	4	4	2	2	4	4		3	5	2	2	1	4	3	3	3,4	3 📥
2	4	3	4	2	2	2	3		2	2	3	3	2	5	2	3	2,7	2
3	1	1	3	1	1	1	1		4	3	1	1	1	6	4	7	2,0	2
4	2	2	2	1	2	1			- 4		4		4	5	3	5	2,0	2
5	2	1	1	2		Paired-Sam	ples T Test						,	5	2	6	2,0	2
6	2	2	2	2					Paired	Variables:				2	2	5	2,6	2
7	1	1	1	2		🛷 Életkor [l	(or]		Pair	Variable1	Variable2		Options	5	2	4	1,8	1
8	3	2	4	2		💑 Nem			1			_	Bootstrap	4	4	5	3,3	3
9	2	1	1	1		Egészsé	gügyben állanot							4	1	5	1,8	1
10	1	1	1	1		akhely	anapot					†		5	1	7	1,2	1
11	3	4	1	1		💑 Legmag	asabb is							6	4	7	2,1	2
12	1	1	1	3		💑 apolo_va	agy_nem					+		5	4	6	1,7	1
13	2	2	1	2		Kilven to	eosztású							5	4	5	1,9	1
14	3	1	2	2		a munkare	and					\leftrightarrow		6	3	7	2,6	2
15	3	3	3	3		📕 fejfájás						_		3	4	3	3,4	3
16	5	2	3	4		alvási n	rohlémák 🔳							3	4	4	4,1	4
17	3	3	3	2			Í	OK	Paste	Reset	Cancel Help	>		6	3	5	2,8	2
18	5	1	2	2	L					· · · ·				6	1	6	2,2	2
19	1	1	1	2	1	1	1		1	3	1	1	1	7	1	6	1,5	1
20	4	1	2	2	2	1	2		2	4	2	2	2	5	2	6	2,2	2
21	4	1	2	2	1	2	2		2	4	3	2	2	5	1	5	2,4	2
22	3	2	3	3	3	1	1		3	4	3	3	3	5	2	5	2,7	2
23	1	1	1	1	1	1	1		1	3	1	1	1	6	1	6	1,3	1
24	2	2	2	1	2	2	1		2	3	2	1	1	4	2	5	2,2	2
25	2	1	1	1	1	1	1		1	2	1	1	1	6	2	7	1,4	1
26	1	1	1	2	1	1	1		1	2	2	1	1	4	2	4	2,0	2
27	3	4	4	4	3	4	£		5	5	5	4	4	3	4	3	4,4	4
	1				Concession of the second se													
Data View	Var	iable View																
														000000				
														IBM SPSS Sta	usucs Processo	r is ready	Unicode:O	N

54. ábra: Egymintás t-próba kezelőfelülete

A Variable 1 mezőbe a kis nyíllal bemozgatjuk a "kiégésátlag" változót. Ekkor automatikusan a Variable 2 mező sárga lesz. Ide bemozgatjuk a "kiégésátlag-utána" változót. Lehetőség van egymás alá több változópárt is bemozgatni, ekkor mindegyik változópárra külön elvégzi a program a próbát. A bemozgatásnál arra kell figyelni, hogy először mindig az "előtte" majd a hozzá tartozó "utána" változót mozgassuk be, mert egymás mellé rendezi a program automatikusan. Arra nincs lehetőség, hogy először bemozgatjuk az összes "előtte" változót, majd utána az összes "utána" változót. Ha kész vagyunk a kívánt változók átmozgatásával, az OK gombra kattintunk. Az output ablakban a következők jelennek meg (**55. ábra**):

	55. ábra: T-próba eredménye															
ta *Output1 [Document1] - IBM SPS	SS Stat	tistics Viev	ver				-		-					-		\times
<u>File Edit View Data Tran</u>	nsform	n <u>I</u> nse	rt F <u>o</u> rmat <u>A</u> nalyz	ze Dire	ct <u>M</u> arketin	g <u>G</u> raphs	Utilities Add-on	s <u>W</u> indow <u>H</u>	lelp							
) 🚍 🔚 🖨 🔕			🖛 🛥 🎽	1	* 📥 E	- O	🍉 🚑	P 🖻 🗟) 📰	•	19 13	- 🔯	📔 🗖 👩			
La Active Dataset		2,0													-	1
Descriptives																
Tests of Normality																
Eletkor																
Stem-and-Leaf Plot		1.0-														
Normal Q-Q Plot																
🚡 Detrended Normal Q-Q F						kiégésátlag										
🛱 Boxplot																
.0g							(017000)									
Explore Title		1-1E51 /CDT	PAIRS-Riegesau	stag wi	in kieg	satiag_uta	na (PAIRED)									
R Notes		/MTS	SINGENNLYSIS													
ase Processing Summary		/ 1110	51NG-ANAD1515.													
Descriptives																
Elettor		T-Tes	t													
Elector Title																
Stem-and-Leaf Plot				Paired S	amples St	atistics										
🏠 Normal Q-Q Plot				1			Std. Erro	u I								
Detrended Normal Q-Q F				Mear	N	Std. Devi	ation Mean									
Boxplot	1	Pair 1	kiégésátlag	2,46	5	77 .	8948 ,1	020								
Explore			kiégésátlag_utána	2,31	0	77 ,	9001 ,1	026								
🖄 Title	· ·															
R Notes	l r		Doirod	Complete	Corrolatio											
Case Processing Summary			Fairea	Jampies	Correlatio	Genelation	01-									
Tests of Normality		Deltad	liifafaftaa 0		IN	Correlation	Sig.									
📕 kiégésátlag		Pairi	kiégésátlag utána		77	,872	,000									
🛅 Title	L I	L														
Stem-and-Leaf Plot	. r												-			
Detrended Normal Q-Q F							Paired Sample	s Test								
Boxplot							Paired Differen	ces								
.og								95% Confidence	e Interval of the							
-Test	-						Std. Error	Differ	ence			Oin (2 trillant)	1			
um Notes		Dain 4	kiágápátlag		mean	Sid. Deviation	mean	Lower	opper	i.	at	sig. (2-tailed)	-1			
Paired Samples Statistics		Pair 1	kiégésátlag_utána		,1545	,4538	,0517	,0515	,2575	2,988	76	.004				
Paired Samples Correlations	l l	L	J			1	1	1		L I		1	<u>-</u>			
🗃 Paired Samples Test 🔍																
											(~

Az első táblázatban láthatjuk, hogy a tréning elején a kiégés átlag 2,465, míg utána 2,310 volt. A második táblázat adatait figyelmen kívül hagyhatjuk (csak azt mutatja meg, hogy a két változó kapcsolatban van egymással, mivel a p értéke 0,000). Az egymintás t-próba eredménye a 3. táblázatban látható, az utolsó oszlopban: p=0,004. A próba a t értéket is megadja (ha negatív, akkor a későbbi állapot mutat nagyobb értéket, ha pozitív, akkor a korábbi állapotnál jelentkezik nagyobb átlagérték). Jelen esetben t=2,988. Láthatjuk is, hogy a kiégés átlag az első időpontban volt magasabb (2,465). Szakdolgozatban, folyóirat közleményben és előadáson (pl: kongresszus, szakdolgozat védés, TDK) mindig fel kell tüntetni a t és p értékeket egymintás t-próba alkalmazása során!

Nézzük meg a gyakorlatban, hogyan alkalmas ez a statisztikai próba a hipotézisek vizsgálatára. Előzetesen az összes vizsgált változó esetében elvégeztük a normalitás vizsgálatot, és mindegyik esetben normál eloszlást kaptunk, így az egymintás t-próbák elvégezhetők.

H1: Feltételezem, hogy a regenerációs tréning hatására jelentős különbség van a testi tünetek összpontjában, mégpedig a tréning után csökkent értéket mutat.

Az egymintás t-próbát a fent leírt módon elvégeztük, és a következő eredményeket kaptuk (**56. ábra**): A kérdőív 9. kérdése vizsgálta a testi tüneteket. A tréning előtt 8,65, a tréning után 7,13 volt a testi tünetek átlaga, p<0,000; t=4,583. Hipotézisünk ezek alapján igazolódott. Azt mondhatjuk, hogy jelentős különbség van a tréning előtti és utáni össz pontszámban, a tréning hatására csökkent a résztvevők testi tünete.

56.	ábra:	1.	hipotézis	vizsgálata
-----	-------	----	-----------	------------

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	9. kérdés	8,65	77	4,630	,528
	9. kérdés	7,13	77	4,238	,483

Paired	Samples	Test
--------	---------	------

				Paired Differen	ces				
					95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	9. kérdés - 9. kérdés	1,519	2,909	,332	,859	2,180	4,583	76	,000

H2: Feltételezem, hogy a regenerációs tréning hatására jelentősen csökkent a kiégés mértéke a válaszadók körében.

Az egymintás t-próbát a fent leírt módon elvégeztük, és a következő eredményeket kaptuk (**57. ábra**): A kiégés átlagpontszáma a tréning előtt 2,465, a tréning után 2,310. Már ebből is láthatjuk, hogy valamekkora csökkenés bekövetkezett. A statisztikai próba eredménye: p=0,004; t=2,988. Ez azt jelenti, hogy jelentős (szignifikáns) különbség van a kiégés tréning előtti és utáni átlagpontszámaiban, mégpedig csökkent, tehát a hipotézis igazolást nyert.

57. áb	ora: 2.	hipotézis	vizsgálata
--------	---------	-----------	------------

Paired	Samples	Statistics
--------	---------	------------

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	kiégésátlag	2,465	77	,8948	,1020
	kiégésátlag_utána	2,310	77	,9001	,1026

Paired Samples Test

		Paired Differences							
					95% Confidenc Differ				
		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	kiégésátlag - kiégésátlag_utána	,1545	,4538	,0517	,0515	,2575	2,988	76	,004

H3: Feltételezem, hogy a regenerációs tréning hatására csökkent a negatív jól-lét érzése, a pozitív jól-lét érzése pedig nőtt.

Ez egy összetett hipotézis, mind a két tagmondat teljesülését meg kell vizsgálnunk. Ez két darab egymintás t-próba elvégzését jelenti a fent ismertetett módon. A **58. ábrán** láthatóak a következő eredmények: a pozitív jól-lét átlaga a tréning előtt 9,94; utána 10,45 pont volt. A negatív jól-lét esetében ez 5,78 és 5,52. Láthatjuk, hogy a pozitív jól-lét nőtt, a negatív pedig csökkent, de még nem tudjuk, hogy ezek a változások jelentősek-e. A statisztikai próba eredményeit áttekintve látható, hogy a pozitív jól-lét esetében p=0,001; t=3,523. A negatív jól-lét esetében p=0,128; t=1,538. Tehát csak a pozitív jól-lét esetében jelentős a változás, mégpedig növekedés, így hipotézisünket részben igazoltnak tekintjük.

58. ábra: 3. hipotézis vizsgálata

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	pozitív_jóllét_értéke	9,94	77	1,742	,199
	pozitív_jóllét_értéke_után a	10,45	77	1,483	,169
Pair 2	negatív_jóllét_értéke	5,78	77	1,603	,183
	negatív_jóllét_értéke_ utána	5,52	77	1,510	,172

Paired Samples Statistics

Paired Samples Test

				Paired Differen	ces				
					95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	pozitív_jóllét_értéke - pozitív_jóllét_értéke_után a	-,519	1,294	,147	-,813	-,226	-3,523	76	,001
Pair 2	negatív_jóllét_értéke - negatív_jóllét_értéke_ utána	,260	1,481	,169	-,077	,596	1,538	76	,128

H4: Feltételezem, hogy a regenerációs tréning hatására jelentősen csökkent a munkahelyi bizonytalanság érzése.

A statisztikai próba elvégzése után a következő eredményt kaptuk (**59. ábra**): a munkahelyi bizonytalanság átlaga a tréning előtt 11,25 pont, míg utána 11,40 pont (emelkedés látható!). Azonban a statisztikai próba eredményei (p=0,724; t=-0,354) nem jelentősnek ítélték a változást, így a hipotézist elvetjük. Azt mondhatjuk, hogy a munkahelyi bizonytalanság nem változott jelentős mértékben a tréning hatására.

59. ábra: 4. hipotézis vizsgálata

Paired San	ples Statistic	S
------------	----------------	---

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Bizonytalanság összpontszám	11,25	77	3,877	,442
	Bizonytalanság összpontszám utána	11,40	77	4,363	,497

			Paired Differences						
					95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	Bizonytalanság összpontszám - Bizonytalanság összpontszám utána	-,156	3,860	,440	-1,032	,720	-,354	76	,724

Paired Samples Test

Kétmintás t-próba F-próbával

Két független minta átlagának összehasonlítására szolgál intervallumskálán mért adatok esetén. Alkalmazhatóságának egyik feltétele a normál eloszlás, így a normalitásvizsgálat elvégzése az első lépés. A másik feltétel, hogy a változó varianciája legyen ugyanakkora a két vizsgált mintában (szóráshomogenitási feltétel). A szóráshomogenitás vizsgálatára a Fisher-féle F-próba alkalmas (röviden F-próba, ld. később!). Amennyiben a vizsgált változó nem normál eloszlású, vagy a szóráshomogenitás nem teljesül, úgy a próba nem paraméteres párját (Mann-Whitney-próba ld. később!) kell alkalmazni! A két különböző csoport egyetlen kutatáson belül is kialakítható (pl: intenzív osztályon és belgyógyászaton dolgozók összehasonlítása). Nem szükséges, hogy az összehasonlított csoportok azonos elemszámúak legyenek, és nem használja fel az egyes személyek esetén kimutatható változást sem. Nem szükséges a vizsgált személyek beazonosíthatósága sem (*Falus és Ollé 2008*).

A kétmintás t-próbát tehát csak akkor végezhetjük el, ha a két csoport eredményei alapján meghatározható varianciák között nincs jelentős különbség, vagyis az F-próba nem szignifikáns, és a vizsgált változó normál eloszlású. Az F-próbát az SPSS program automatikusan elvégzi a kétmintás t-próbával egyszerre. Amennyiben az F-próba szignifikáns (tehát a két minta varianciája különbözik), úgy Welch-féle d-próbát kell végezni (ez a kétmintás t-próba robosztus változata), azonban az SPSS ezt is automatikusan végzi a kétmintás t-próbával *(Falus és Ollé 2008)*.

SPSS-ben a következő algoritmus követésével tudjuk ezeket a próbákat elvégezni: Analyze -> Compare Means -> Independent-Samples T Test

A megjelenő kis ablak Test Variable ablakába bemozgatjuk a kis nyíllal a vizsgálni kívánt normál eloszlású változót. Több változót is bemozgathatunk egymás alá, ekkor a program mindegyikre külön elvégzi a statisztikai próbákat. Jelen esetben a BMI-vel (Body Mass Index) dolgozunk. A Grouping Variable mezőbe pedig bemozgatjuk a kis nyíllal azt a változót, ami a csoportképzés alapja. Jelen esetben a munkahelyi stressz mértéke alapján osztottuk két csoportra a válaszadókat: alacsony és magas stresszes csoport (stressz kategória). Ezt a két csoportot fogjuk megvizsgálni, hogy van-e különbség közöttük a BMI-ben. (60. ábra)

🤹 Dori_adatt	bazis.sav [DataSe	t1] - IBM SPSS S	Statistics Data Ec	ditor				1							_	0 ×
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze D	Direct <u>M</u> arketing	<u>G</u> raphs <u>L</u>	<u>I</u> tilities Add- <u>o</u> ns	s <u>W</u> indow	<u>H</u> elp								Bezárás
😑 🛯			~		PA H) 👬 📈	5	1	A 🕢 🌗	AB6						
															Visible	62 of 62 Variables
	nem	életkor	iskolai_végze	súly	magasság	BMI	BMI_kategori	munkahelyi_s	stressz_kate	ellátási_terüle	munkaterület	eü_évek	munkarend	egészségi_áll	nincs_stessz	elismerés_m r
			ttség				а	tressz	goria	t				apot	_munkahelye	egbecsülés_h
1	2	46	6 4	90	1,75	29,4	3	1	1	3	1	6	4	3	0	1 🖆
2	2	39	5	86	1,52	37,2	5	1	1	3	1	5	1	3	1	0
3	1	59	9 4	68	1,56	27,9	3	1	1	1	10	6	2	3	0	1
4	2	42	2 2	61	1,63	23,0	2	1	1	1	10	5	2	3	0	0
5	2	47	3	130	1,70	45,0	6	1	1	1	10	6	2	3	1	0
6	2	62	2 2	64	1,60	ta Independent-	Samples T Test				× 10	6	1	4	1	0
7	2	43	8 5	104	1,72			TestVerie	bladati		10	5	1	3	1	0
8	2	59	9 5	80	1,72	🖉 súly		RMI	ble(s).	Options	. 19	6	1	3	0	0
9	2	56	6 1	60	1,55	🖋 magasság		V Dim		Bootstrap		6	4	1	0	0
10	2	57	4	90	1,60	\delta BMI_katego	ria 📕 🚺	4			8	4	4	3	0	0
11	2	50	5	75	1,60	sili fi da	_stre				21	6	3	3	1	0
12	2	51	5	/0	1,63	munkaterül	et				2	6	3	4	1	0
13	1	45	5	96	1,79	💑 Egészségü	gyben	Grouping	Variable:		12	6	1	3	1	0
14	2	50) 4) 5	102	1,74	anunkarend		stressz k	ategoria(??)		20	2	1	4	1	0
16	2	30) J	73	1,05	Egészségi : pince stock	állapo	Define G	TOUDS		11	6	4	4	0	1
17	2	45	2	60	1.54	an mines_stess	52_111 T		oupo	_	26	6	4	3	0	1
18	2	46	· 2	60	1,54	L	OK Past	Reset C	Cancel Help	p	16	6	4	3	0	1
19	2	34	2	100	1.70	34.6	4	2	1	3	1	1	4	3	0	0
20	2	59	2	79	1.54	33.3	4	2	1	3	1	5	4	3	0	1
21	2	50) 4	70	1,60	27,3	3	2	1	3	1	6	4	4	0	0
22	2	55	5 4	70	1,55	29,1	3	2	1	3	1	6	1	3	0	1
23	2	40) 5	90	1,70	31,1	4	2	1	3	1	5	4	3	0	0
24	2	42	2 5	100	1,70	34,6	4	2	1	3	1	2	1	3	0	0
25	2	20) 4	62	1,57	25,2	3	2	1	3	1	1	4	3	0	0
26	2	42	2 4	110	1,77	35,1	5	2	1	2	1	5	1	3	0	0
27	2	47	3	106	1,67	38,0	5	2	1	2	1	6	1	2	0	1
0	1	50		405	4.70	22.0		2		2		· · · · · · · · · · · · · · · · · · ·		2	^	1 N
Data Viow	Variable View															
Data view	Conduct view															
											1	RM SPSS Stati	etice Processon	ric ready	Unicode:O	N N

60. ábra: Kétmintás t-próba kezelőfelülete

A bemozgatott stressz kategória változó után két kérdőjel látható (60. ábra), ez azt jelenti, hogy meg kell adnunk a két stressz kategória elnevezését. Ehhez Define Groups gombra kell kattintani, és megjelenik egy kis ablak. A Group 1 mezőbe az 1-t, a Group 2 mezőbe a 2-t írjuk, mivel az alacsony stresszeseket egyessel, a magas stresszeseket kettessel kódoltuk. **(61. ábra)**

🤹 Dori_ada	tbazis.sav [Da	ataSet1]	- IBM SPSS S	tatistics Data Ec	ditor		01. 40	. a. C50	sporte	, in ine	Budu st	•				_	- 0 ×
<u>F</u> ile <u>E</u> dit	View [<u>D</u> ata	Transform	<u>A</u> nalyze E	Direct <u>M</u> arketing	<u>G</u> raphs <u>L</u>	<u>I</u> tilities Add- <u>o</u> ns	<u>W</u> indow	<u>H</u> elp								
🔁 I		Ξ.		~		4	1 👬 🖬	- 4	1	4 🖉 🌗	-						
																Visible	62 of 62 Variables
	nem		életkor	iskolai_végze ttség	súly	magasság	BMI E	3MI_kategorin a	nunkahelyi_s tressz	stressz_kate goria	ellátási_terüle t	munkaterület	eü_évek	munkarend	egészségi_áll apot	nincs_stessz _munkahelye	elismerés_m r egbecsülés_h
1	-	2	46	4	90	1,75	29,4	3	1	1	3	1	6	4	3	0	1 📥
2	1	2	39	5	86	1,52	37,2	5	1	1	3	1	5	1	3	1	0
3	1	1	59	4	68	1,56	27,9	3	1	1	1	10	6	2	3	0	1
4		2	42	2	61	1,63	23,0	2	1	1	1	10	5	2	3	0	0
5		2	47	3	130	1,70	45,0	6	1	1	1	10	6	2	3	1	0
6		2	62	2	64	1,60	🝓 Independent-S	amples T Test				× 10	6	1	4	1	0
7	_	2	43	5	104	1,72						10	5	1	3	1	0
8	_	2	59	5	80	1,72	🖋 súly	– 🍓 Define G	roups	×	Options.	19	6	1	3	0	0
9	_	2	56	1	60	1,55	🖋 magasság				Bootstrap	3	6	4	1	0	0
10	_	2	57	4	90	1,60	BMI_kategori	a O <u>U</u> se spe	cified values			8	4	4	3	0	0
11	-	2	50	5	75	1,60	munkahelyi_	st Group	1 I			21	6	3	3	1	0
12		2	10	5	01	1,03	an munkaterüle	e Group	2: 2			12	6	3	4	1	0
14	-	2	40	3	102	1,73	💰 Egészségüg	yt 🔘 <u>C</u> ut poin	it:			26	2	1	3	0	0
15	-	2	58	5	67	1.65	Reference de la constante de l					5	6	4	4	1	0
16	-	2	49	2	73	1.70	A nincs stess	z	Cancel	нер		11	6	4	3	0	1
17	-	2	55	2	60	1,54						26	6	4	3	0	1
18	1	2	46	4	60	1,56		OK Paste	Reset	ancel Hel	P	16	6	4	3	0	1
19	1	2	34	2	100	1,70	34,6	4	2	1	3	1	1	4	3	0	0
20		2	59	2	79	1,54	33,3	4	2	1	3	1	5	4	3	0	1
21		2	50	4	70	1,60	27,3	3	2	1	3	1	6	4	4	0	0
22		2	55	4	70	1,55	29,1	3	2	1	3	1	6	1	3	0	1
23		2	40	5	90	1,70	31,1	4	2	1	3	1	5	4	3	0	0
24		2	42	5	100	1,70	34,6	4	2	1	3	1	2	1	3	0	0
25	_	2	20	4	62	1,57	25,2	3	2	1	3	1	1	4	3	0	0
26	_	2	42	4	110	1,77	35,1	5	2	1	2	1	5	1	3	0	0
27		2	47	3	106	1,67	38,0	5	2	1	2	1	6	1	2	0	1
	4				407	4.70				1	1	1		^		^	<u> </u>
Data View	Variable V	iew															
												1	BM SPSS Stati	stics Processo	r is ready	Unicode:O	N

61. ábra: Csoportok megadása

Ezek után a Continue gombra kattintunk, és visszatérünk az előző ablakhoz. Mást nem szükséges beállítani, kattinthatunk az OK gombra. A **62. ábrán** látható output ablak jelenik meg.

Az első táblázatban látható, hogy az alacsony stresszesek csoportjában az átlag BMI 27,472 (SD=5,1958). A magas stresszesek csoportjában az átlag BMI 27,562 (SD=5,5985). A második táblázat első két oszlopában láthatjuk az F-próbát, és annak szignifikanciáját. Mivel az F-próba nem szignifikáns (p=0,446), így értelmezhetjük a kétmintás t-próba eredményét, mely a felső sorban található: t=-0,148; p=0,882. Ez azt jelenti, hogy az alacsony és magas munkahelyi stressz csoport között nincs jelentős különbség a BMI-t tekintve. Ha az F-próba szignifikáns lenne, akkor a Welch-próba eredményét kellene figyelembe venni, mely a kétmintás t-próba alatti sorban található. Az alsó sor mindig a Welch-próba!

Nézzük meg a gyakorlatban, hogyan alkalmas ez a statisztikai próba a hipotézisek vizsgálatára. Előzetesen az összes vizsgált változó esetében elvégeztük a normalitás vizsgálatot, és mindegyik esetben normál eloszlást kaptunk, így a kétmintás t-próbák elvégezhetők.

H1: Feltételezem, hogy a magas munkahelyi stressz csoportba tartozók jelentősen több cigarettát szívnak el naponta, mint az alacsony munkahelyi stressz csoportba tartozó válaszadók.

A fentebb ismertetett módon elvégeztük a kétmintás t-próbát F-próbával, és a **63. ábrán** látható eredményt kaptuk. Az első táblázatban látható, hogy az alacsony munkahelyi stressz csoport

válaszadói naponta átlag 3,17; míg a magas munkahelyi stressz csoportba tartozók átlag 3,63 szál cigarettát szívnak el. Látjuk, hogy a második csoport esetében valamivel több az átlagérték, de azt, hogy jelentős-e ez a különbség, csak a statisztikai próbák eredménye alapján tudjuk meg. Először az F-próbát kell értékelni (1), ami nem szignifikáns (p=0,630), így értékelhetjük a kétmintás t-próba eredményét (2), ami szintén nem szignifikáns (p=0,515; t=-0,651). Az eredmények alapján azt mondhatjuk, hogy az alacsony és magas munkahelyi stresszesek csoportja között nincs jelentős különbség a naponta elszívott cigaretták számában, így a hipotézist elvetjük.

63. ábra: 1. hipotézis vizsgálata

Group	Statisti	cs
-------	----------	----

	stressz_kategoria	N	Mean	Std. Deviation	Std. Error Mean
cigiszám	alacsony munkahelyi stressz	102	3,17	6,343	,628
	magas munkahelyi stressz	316	3,63	6,272	,353

Inde	pendent	Samples	Test
	Polition	oampioo	1000

		Levene's Test Varia	t for Equality of nces		t-test for Equality of Means									
						2.			95% Confidenc Differ	e Interval of the ence				
		F	Sig.	t	dif	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper				
cigiszám	Equal variances assumed	,233	,630	-,651	416	,515	-,466	,716	-1,874	,942				
	Equal variances not assumed			-,647	169,402	,518	-,466	,720	-1,888	,956				

H2: Feltételezem, hogy jelentős különbség van az alacsony és a magas munkahelyi stressz csoportba tartozók pszichoszomatikus tüneteinek és kiégésének mértékében.

Ez egy összetett hipotézis, mivel két változó (pszichoszomatikus tünetek és kiégés) különbözőségét kívánja vizsgálni az alacsony és magas munkahelyi stressz csoport között. Elvégeztük a kétmintás t-próbát a fent ismertetett módon, és a **64. ábrán** látható táblázatokat kaptuk.

Az első táblázatban látjuk, hogy az alacsony munkahelyi stresszesek esetében a pszichoszomatikus tünetek átlaga 9,07; míg a magas munkahelyi stresszesek esetében ez 11,93 (tehát magasabb majdnem három egésszel). A kiégés átlagpontszámaiban is hasonló tendenciájú eltérést figyelhetünk meg a két csoport között. Az alacsony stresszesek átlag 2,422;

míg a magas stresszesek átlag 3,194 pontot értek el a kiégést vizsgáló skálán. Azt, hogy ezek a különbségek jelentősek-e (szignifikánsak-e), a második táblázatból tudhatjuk meg.

A második táblázatban először az F-próbát kell értelmeznünk (1), mely mindkét változó esetében szignifikáns (p<0,000). Ebben az esetben a kétmintás t-próba nem értelmezhető, hanem a Welch-próba (2) (alsó sor) eredményeit kell figyelembe venni a hipotézis vizsgálatához. A pszichoszomatikus tünetek esetében a különbség a két csoport között szignifikáns (p<0,000; t=-4,534), mégpedig a magas munkahelyi stresszesek jelentősen több pontot értek el a pszichoszomatikus tüneti skálán, mint az alacsony munkahelyi stressz csoport válaszadói, így a hipotézis első fele igazolódott. A kiégés esetében is szignifikáns különbséget láthatunk a két csoport között (p<0,000; t=-4,392). Azt mondhatjuk, hogy a magas munkahelyi stresszes csoport válaszadói jelentősen több pontot értek el a kiégést vizsgáló skálán, mint az alacsony munkahelyi stressz csoport válaszadói, így a hipotézis első több pontot értek el a kiégést vizsgáló skálán, mint az alacsony munkahelyi stressz csoport válaszadói, így a hipotézis első setében térke el a kiégést vizsgáló skálán, mint az alacsony munkahelyi stressz csoport válaszadói, így a hipotézis első setében az egész hipotézis igazolódott.

64.	ábra:	2.	hipotézis	vizsgálata
-----	-------	----	-----------	------------

Group	Statistics
-------	------------

	stressz_kategoria	N	Mean	Std. Deviation	Std. Error Mean
pszichoszomatikus_ összpont	alacsony munkahelyi stressz	102	9,07	5,897	,584
	magas munkahelyi stressz	316	11,93	4,258	,240
kiégés_átlag	alacsony munkahelyi stressz	102	2,422	1,6280	,1612
	magas munkahelyi stressz	316	3,194	1,2465	,0701

Independent Samples Test

		Levene's Tes Varia	t-test for Equality of Means								
			1			2.			95% Confidenc Differ	e Interval of the ence	
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper	
pszichoszomatikus_ összpont	Equal variances assumed	23,480	,000	-5,337	416	,000	-2,862	,536	-3,916	-1,808	
	Equal variances not assumed			-4,534	36,608	,000	-2,862	,631	-4,110	-1,614	
kiégés_átlag	Equal variances assumed	12,250	,001	-5,026	416	,000	-,7721	,1536	-1,0741	-,4701	
	Equal variances not assumed			-4,392	41,221	,000	-,7721	,1758	-1,1196	-,4246	

Varianciaanalízis (ANOVA)

A vizsgálatot más néven egy szempontos varianciaanalízisnek nevezzük. Kettőnél több csoportot/mintát hasonlít össze egy közös folytonos változó (intervallumskálán mért adat) alapján. A csoportok száma nincs megszabva, bármennyi lehet. Azt vizsgálja, hogy az adott változó átlagában van-e különbség a csoportok között (pl: a kiégés átlaga különbözik-e az egyes alvásminőségi csoportok között). Itt is érvényes az, hogy a részmintáknak nem kell azonos elemszámúnak lenniük. A független változó lesz a csoportosítás szempontja (factor). A kérdés tehát az, hogy egy független változó (pl: a betegellátó osztályok típusai) hogyan befolyásolja egy függő változó (kiégés) alakulását. Ha az adatbázis nem tartalmazza a csoportosítás szempontját, akkor létre kell hozni. Pl. ha az egyes életkori csoportok között szeretnénk megnézni valamilyen folytonos változó különbözőségét, akkor az életkor alapján 10 vagy 15 éves bontásban kell létrehozni csoportokat (ld. 2.1.1. fejezet!). Itt is érvényes az, hogy a függő változónak (az intervallumskálán mért adatnak) normál eloszlásúnak kell lennie! Amennyiben a vizsgált változó nem normál eloszlást követ, úgy a próba nem paraméteres változatát (Kruskal-Wallis-próba ld. később!) kell alkalmazni! A próba elvégzésének másik feltétele a varianciahomogenitás. Erről a Levene-teszttel győződhetünk meg (bemutatása a varianciaanalízissel együtt történik lentebb) (Sajtos és Mitev 2007; Falus és Ollé 2008).

SPSS-ben az alábbi algoritmus követésével végezhetjük el a próbát: Analyze -> Compare Means -> One-Way ANOVA

Varianciaanalízisnél bármelyik változó lehet a csoportképzés szempontja, csak arra kell figyelni, hogy legalább három csoportunk legyen. Létre lehet hozni csoportokat például intervallumskálán mért adatokból is, de dönthetünk úgy, hogy egy ordinális változó válaszlehetőségei lesznek a csoportképzés szempontjai.

A megjelenő kis ablak Factor mezőjébe mozgatjuk az alvásminőség változót (most ez lesz a csoportképzés szempontja: 1=nagyon rossz; 2=rossz; 3=jó; 4=kiváló). A Dependent List ablakba pedig a kiégés átlag változót mozgatjuk, mivel arra vagyunk kíváncsiak, hogy a különböző alvásminőségi csoportok között van-e különbség a kiégés átlagpontjában (hipotézis). (65. ábra)

🝓 8.ora_FELA	DAT(ketmintas	T_Variancia).sav	[DataSet1] - IBN	1 SPSS Statistics	Data Editor											-	o ×
<u>File</u> Edit	View Data	a <u>T</u> ransform	<u>A</u> nalyze D	irect <u>M</u> arketing	<u>G</u> raphs <u>U</u> tili	ties Add- <u>o</u> ns	Window	<u>H</u> elp									
2		,	~	* **	R H	* 😰	- S		(1.⇔	0	ABG						
																Visible: 2	2 of 22 Variables
	életkor	iskolai végze	súlv	magasság	BMI	munkahelvi str	stressz kate	stresszforr	rás C	igiszám a	lkoholfogvas	altatószedés	nyugtatószed	alvásmennvis	alvásminőség	napi étkezés	heti sport
		ttség				essz	goria	ok_szám	a		ztás		és	ég		szám	
1	4	6 4	90	1,75	29,4	1	1		4	0	1	1	1	2	3	3	1 🚔
2	3	9 5	86	1,52	37,2	1	1		0	0	2	1	1	3	4	4	2
3	5	9 4	68	1,56	27,9	1	1		1	0	2	1	1	2	3	4	2
4	4:	2 2	61	1,63	23,0		One-Way AN	AVC				3	× 1	2	3	3	1
5	4	7 3	130	1,70	45,0					Dependent	List	(2	2	4	5	1
6	6	2 2	64	1,60	25,0		🍵 nyugtatosze	des 🔺		🔗 kiégés	átlag	Contrasts	1	2	4	4	1
7	4:	3 5	104	1,72	35,2		alvásmenny	iség				Post Hoc	2	2	2	3	1
8	5	9 5	80	1,72	27,0		napi_etkeze	sszam	-			Options	1	3	4	3	2
9	5	5 1	60	1,55	25,0		a élvezet kika	pcsol				Bootstrap	1	3	4	4	1
10	5	7 4	90	1,60	35,2		Súlycsökker	ités				(<u> </u>	2	2	3	2	2
11	5) 5	75	1,60	29,3		Stressz_lev	zetés					1	2	4	3	2
12	5	1 5	70	1,63	26,3		🖒 versenyre_k	észül	-	Factor:			1	2	4	3	2
13	4	5 5	96	1,79	30,0		psziciloszoi	Iduk 💌	<u> </u>	aivasm	inoseg		1	2	4	2	2
14	3	4	102	1,74	33,7			ОК Ра	iste	Reset Ca	ancel Help		1	2	4	4	3
15	5	3 5	67	1,65	24,6				•		-		1	3	4	3	2
16	4	9 2	73	1,70	25,3	1	1		6	6	2	1	1	1	2	3	2
17	5	5 2	60	1,54	25,3	2	1		2	0	2	1	1	3	3	3	1
18	4	6 4	60	1,56	24,7	2	1		3	0	1	1	2	1	2	3	3
19	3	1 2	100	1,70	34,6	2	1		1	15	2	1	1	2	3	2	1
20	5	9 2	79	1,54	33,3	2	1		1	0	2	1	1	3	4	5	1
21	5) 4	70	1,60	27,3	2	1		1	0	2	1	1	2	4	3	1
22	5	5 4	70	1,55	29,1	2	1		6	0	2	2	3	1	2	3	1
23	4) 5	90	1,70	31,1	2	1		2	0	2	1	1	2	4	3	1
24	4:	2 5	100	1,70	34,6	2	1		1	15	2	1	1	2	3	5	2
25	2) 4	62	1,57	25,2	2	1		1	0	2	1	1	2	3	3	3
26	4:	2 4	110	1,77	35,1	2	1		1	0	2	1	1	1	2	4	1
27	4	7 3	106	1,67	38,0	2	1		4	0	2	1	1	2	2	5	1
0	1		407	4 70	22.0	0	•		2	0					2		
Data View	Variable View																

65. ábra: Varianciaanalízis kezelőfelülete

Ezután az Options gombra kattintunk, ahol pipát teszünk a Descriptive, Homogenety of variance test (ez vizsgálja a szóráshomogenitást, ez a Levene-teszt) és a Means plot elé. (66. ábra)

🝓 8.ora_FELA	DAT(ketminta	sT_Variancia).sav	[DataSet1] - IBN	A SPSS Statistics E	ata Editor										-	ō ×
<u>File</u> Edit	View Dat	a <u>T</u> ransform	Analyze D)irect <u>M</u> arketing	Graphs Utili	ties Add- <u>o</u> ns	Window	<u>H</u> elp								
			~	· 📥 🗐		*	- 4			A96						
		•					<u> </u>								Minible: 0	2 of 22 Voriables
		1		r , r						1					VISIDIE. 2	2 01 22 Valiables
	eletkor	iskolai_vegze ttség	suly	magassag	BIMI	munkahelyi_str essz	stressz_kate goria	ok_száma	cigiszam	alkoholfogyas ztás	altatoszedes	nyugtatoszec és	ég	aivasminoseg	napi_etkezes szám	neti_sport
1	4	6 4	90	1,75	29,4	1	1	4		0 1	1	1	2	3	3	1🚄
2	3	9 5	86	1,52	37,2	1	1	0		0 2	1	1	3	4	4	2
3	5	9 4	68	1,56	27,9	1	1	1		0 2	1	1	2	3	4	2
4	4	2 2	61	1,63	23,0	4	One-Way ANG	AVA				× 1	2	3	3	1
5	4	7 3	130	1,70	45,0		🔄 One-Way A	NOVA: Options	×	attict		2	2	4	5	1
6	6	2 2	64	1,60	25,0	П				s átlag	Contrasts	1	2	4	4	1
7	4	3 5	104	1,72	35,2		Statistics				Post Hoc	2	2	2	3	1
8	5	9 5	80	1,72	27,0		Descripti	ve			Options	1	3	4	3	2
9	5	6 1	60	1,55	25,0		E Fixed and	I random effects	3		Bootstrap	1	3	4	4	1
10	5	7 4	90	1,60	35,2		Homoger	neity of variance	test		<u></u>	2	2	3	2	2
11	5	0 5	75	1,60	29,3		Brown-Fo	orsythe		-		1	2	4	3	2
12	5	1 5	70	1,63	26,3		Welch					1	2	4	3	2
13	4	5 5	96	1,79	30,0	L	Means pl	of		minoseg		1	2	4	2	2
14	3	0 4	102	1,74	33,7		All a share Make			Cancel Help		1	2	4	4	3
15	5	8 5	67	1,65	24,6		-Missing valu	les				1	3	4	3	2
16	4	9 2	73	1,70	25,3		Exclude c	ases analysis i	oy analysis	2	1	1	1	2	3	2
17	5	5 2	60	1,54	25,3	1	O Exclude o	ases listwise		2	1	1	3	3	3	1
18	4	6 4	60	1,56	24,7	1	Continue	Cancel	Help	1	1	2	1	2	3	3
19	3	4 2	100	1,70	34,6	1				2	1	1	2	3	2	1
20	5	9 2	79	1,54	33,3	2	1	1		0 2	1	1	3	4	5	1
21	5	0 4	70	1,60	27,3	2	1	1		0 2	1	1	2	4	3	1
22	5	5 4	70	1,55	29,1	2	1	6		0 2	2	3	1	2	3	1
23	4	0 5	90	1,70	31,1	2	1	2		0 2	1	1	2	4	3	1
24	4	2 5	100	1,70	34,6	2	1	1	1	5 2	1	1	2	3	5	2
25	2	0 4	62	1,57	25,2	2	1	1		0 2	1	1	2	3	3	3
26	4	2 4	110	1,77	35,1	2	1	1		0 2	1	1	1	2	4	1
27	4	7 3	106	1,67	38,0	2	1	4		0 2	1	1	2	2	5	1
0	4	<u> </u>	407	4 70	22.0	^	1	-		∩			1	2	1	4
Data View	Variable View															
											101	0000 0005			Linian day ON	

66. ábra: Varianciaanalízis Options menüpontja

A Continue gombra kattintunk, így visszatérünk az előző ablakhoz és az OK gombra kattintunk. Az output ablakban a következő táblázatok jelennek meg (**67. ábra**):

67. ábra: Varianciaanalízis output ablaka

Az első táblázatban láthatjuk, hogy a kiváló alvók esetében a kiégés átlaga 2,492; a másik három csoport (rosszabb alvók) esetében a kiégés átlagpontszáma három felett van. A második táblázat a Levene-tesztet mutatja, mely nem szignifikáns (p=0,375), így a szóráshomogenitás feltétele teljesül, tehát a varianciaanalízis eredménye értelmezhető. Ez a harmadik táblázatban látható: p=0,006; F=4,226). Az F értéket mindig fel kell tüntetni a p mellett. Ezen eredmény alapján a következőt mondhatjuk: a kiválóan alvók esetében a kiégés átlagpontszáma jelentősen alacsonyabb, mint a rosszabbul alvók esetében. Ezt alátámasztja a **68. ábra** is, mely a statisztikai próbával együtt készült el. Ezen az ábrán látható, hogy a negyedik csoport (azaz a kiválóan alvók) átlagpontszáma jelentősen különbözik (alacsonyabb) a másik három csoportétól.

Már csak egy lépés van hátra, a post hoc teszt elvégzése, mely ellenőrzésre szolgál. Ezt a következő algoritmus követésével végezhetjük el: Analyze -> Compare Means -> One-Way ANOVA.

Újra megjelenik a **65. ábrán** látható ablak, mely tartalmazza az előzőleg beállított összes változót, paramétert. Most a jobb oldalon a Post Hoc gombra kell kattintani. Mivel a szóráshomogenitás feltétele teljesült (Levene-teszt nem szignifikáns), így a felső ablakból (Equal Variances Assumed) kell választanunk post hoc tesztet. A Scheffe-próba az egyik legkonzervatívabb és legbiztosabb, illetve a Tukey-próbát érdemes még alkalmazni, ha a kategóriák száma több háromnál (legkevésbé ellentmondásos és legszélesebb körben használt próba) (*Ács 2014*). (**69. ábra**)

🝓 8.ora_FEL4	ADAT(ketmintas	F_Variancia).sav	[DataSet1] - IBN	A SPSS Statistics I	Data Editor										-	o ×
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze D)irect <u>M</u> arketing	Graphs Utili	ities Add- <u>o</u> ns	Window	Help								
			~ 17	• •		*				ABC						
		•) <u> </u>								
															Visible: 2	2 of 22 Variables
	életkor	iskolai_végze	súly	magasság	BMI	munkahelyi_s	r stressz_kate	e stresszforrás	cigiszám	alkoholfogyas	altatószedés ny	rugtatószed	alvásmennyis	alvásminőség	napi_étkezés	heti_sport
		ttség				essz	goria	ok_száma		ztás		és	ég		szám	
1	46	4	00	1 75	20.4		1 .		0	1	1		2	2	2	1 🛋
2	30		86	1,15	37.2	ta On	-Way ANOVA: I	Post Hoc Multiple	- Comparisons			X 1	3	3	4	2
3	59	4	68	1.56	27.9			ost not manipit	e companisons			1	2	3	4	2
4	42	2	61	1,63	23.0	Equa	I Variances Ass	umed				1	2	3	3	1
5	47	3	130	1 70	45.0		3D	<u>В-N-К</u>	Waller	Duncan		2	2	4	5	1
6	62	2	64	1.60	25.0	E B	onferroni	🖌 Tukey	Type I/T	ype II Error Rat	io: 100	1	2	4	- 4	1
7	43	5	104	1.72	35.2	S S	dak	Tukey's-b	🔲 Dunne	tt		2	2	2	3	1
8	59	5	80	1.72	27.0	🖌 S	cheffe	Duncan	Control	Category : Las	st	- 1	3	4	3	2
9	56	1	60	1,55	25,0	B	E-G-W F	🔲 Hochberg's G	GT2 Test-			1	3	4	4	1
10	57	4	90	1,60	35,2	R	E-G-WQ	Gabriel	@ <u>2</u> -s	ided © < C <u>o</u> n	itrol ⊚ > Co <u>n</u> trol	2	2	3	2	2
11	50	5	75	1,60	29,3							1	2	4	3	2
12	51	5	70	1,63	26,3	Equa	I Variances Not	Assumed				1	2	4	3	2
13	45	5	96	1,79	30,0	Ta	a <u>m</u> hane's T2	🔲 Dunnett's T3	🔄 🔝 Games	-Howell	Dunnett's C	1	2	4	2	2
14	30	4	102	1,74	33,7	01-01			_			1	2	4	4	3
15	58	5	67	1,65	24,6	Signin	cance rever: 0,0)5				1	3	4	3	2
16	49	2	73	1,70	25,3			Continue	Cancel	Help		1	1	2	3	2
17	55	2	60	1,54	25,3		-	4		4		1	3	3	3	1
18	46	4	60	1,56	24,7		2 .	3	0	1	1	2	1	2	3	3
19	34	2	100	1,70	34,6	:	2 .	1	15	2	1	1	2	3	2	1
20	59	2	79	1,54	33,3	1	2 .	1	0	2	1	1	3	4	5	1
21	50	4	70	1,60	27,3	:	2 .	1	0	2	1	1	2	4	3	1
22	55	4	70	1,55	29,1		2	6	0	2	2	3	1	2	3	1
23	40	5	90	1,70	31,1	:	2 .	2	0	2	1	1	2	4	3	1
24	42	5	100	1,70	34,6		2	1	15	2	1	1	2	3	5	2
25	20	4	62	1,57	25,2	:	2 .	1	0	2	1	1	2	3	3	3
26	42	4	110	1,77	35,1	:	2 .	1	0	2	1	1	1	2	4	1
27	47	3	106	1,67	38,0	:	2 .	4	0	2	1	1	2	2	5	1
- 20	1		407	4 70	22.0		.	-	-			1		2	1	<u>م</u>
Data View	Variable View							***								
Data View	- and - o them															
											IBM S	SPSS Statis	tics Processor i	s ready	Unicode:ON	

69.	ábra:	Post	Hoc	teszt	elvégzés	ének	menete
-----	-------	------	-----	-------	----------	------	--------

Kattintsunk a Continue majd az OK gombra. Az előzőekben megjelent kimeneti táblázatok ismét elkészülnek, de alattuk megjelenik a post hoc vizsgálat eredménye is. (**70-71. ábra**)

70. ábra: Post Hoc teszt output ablaka 1.

ia Output [Document] - IBM SPSS Statistics Viewer – 🗌 🗙									
<u>File Edit View Data Transform Insert Format Analyze D</u>	Direct Marketing <u>G</u> raphs <u>U</u> tilitie	es Add- <u>o</u> ns	Window	<u>H</u> elp					
😑 H 🖨 🖻 🤌 💷 🖛 🛥 🧮 🗄	🕈 📥 🗐 💊 🍉	J 🖓	P 🖻	N	+ +	+ $-$		T 🗗 🔁	
Post Hoc Tests									*
Notes	Multiple Compari	sons							
Test of Homogeneity of Vari	Mean			95% Confide	ence Interval				
ANOVA (Dialvásminősán (Difference (I-	Std. Error	Sia.	Lower Bound	Upper Bound				
Means Plots Tukey HSD 1	2 -,0402	.3778	1,000	-1,015	.934				
kiécés átlag	3 -,0776	,3661	,997	-1,022	,867				
1 Log	4 ,5614	,3885	,472	-,441	1,564				
Coneway 2 1	1 ,0402	,3778	1,000	-,934	1,015				
Notes	3 -,0373	,1607	,996	-,452	,377				
Descriptives	4 ,6017	,2066	,020	,069	1,135				
Test of Homogeneity of Vari	7 ,0778	1607	997	-,807	452				
Post Hoc Tests	4 .6390	.1844	.003	.163	1.115				
@ Title 4 1	1 -,5614	,3885	,472	-1,564	,441				
+	2 -,6017	,2066	,020	-1,135	-,069				
Homogeneous Subset	3 -,6390	,1844	,003	-1,115	-,163				
kiégés_átlag Scheffe 1	2 -,0402	,3778	1,000	-1,101	1,020				
E Means Plots	3 -,0776	,3661	,997	-1,105	,950				
Le litte 2	4 ,5614	,3885	,555	-,529	1,652				
	30373	.1607	.997	488	.414				
	4 ,6017	2066	,038	,022	1,182				
3 1	1 ,0776	,3661	,997	-,950	1,105				
	2 ,0373	,1607	,997	-,414	,488				
	4 ,6390	,1844	,008	,122	1,157				
4	1 -,5614	,3885	,555	-1,652	,529				
	2 -,6017	,2066	,038	-1,182	-,022				
*. The mean difference is significan	t at the 0.05 level	1 11044	,000	1,137	,144				
						1			
Users and a sub-									
Homogeneous Subsets	5								
									 T

A **70. ábra** az egyes párok átlagát hasonlítja össze. Az első oszlopban találhatók a viszonyítás alapját (alvásminőség I), a második oszlopban pedig a viszonyítás tárgyát (alvásminőség J) képező változók. Mind a két post hoc teszt ugyanazt az eredményt adta: szignifikáns különbség van a kettessel jelölt rossz alvásminőség és a négyessel jelölt kiváló között (p_{Tukey}=0,020; p_{Scheffe}=0,038); a hármassal jelölt jó alvásminőség és a kiváló között (p_{Tukey}=0,003; p_{Scheffe}=0,008).

71. ábra: Post Hoc teszt output ablaka 2.

kiégés_átlag										
			Subset for alpha = 0.05							
	alvásminőség	N	1							
Tukey HSD ^{a,b}	4	74	2,492							
	1	15	3,053							
	2	109	3,094							
	3	220	3,131							
	Sig.		,139							
Scheffe ^{a,b}	4	74	2,492							
	1	15	3,053							
	2	109	3,094							
	3	220	3,131							
	Sia	1 P	203							

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 42,599.

Az **71. ábrán** pedig az egyes csoportokba tartozó válaszadók számát látjuk (N), illetve mind a két post hoc teszttel kiszámított kiégés átlagok szerint sorba rendezve az egyes alvásminőség kategóriákat. E szerint a kiváló alvásminőségűeknek (N=74) a legalacsonyabb a kiégés átlagpontja (2,492), őket követik a nagyon rossz alvásminőségűek (1) 3,053-as átlaggal, majd a rossz alvásminőségűek (2) 3,094-es és a jó alvásminőségűek (3) 3,131-es kiégés átlaggal. A post hoc tesztek alapján megállapítható, hogy a varianciaelemzés helyes volt.

Nézzük meg a gyakorlatban, hogyan alkalmas ez a statisztikai próba a hipotézisek bizonyítására. Előzetesen az összes vizsgált változó esetében elvégeztük a normalitás vizsgálatot, és mindegyik esetben normál eloszlást kaptunk, így a varianciaanalízis elvégezhető.

H1: *Feltételezem, hogy a jó alvásminőség kevesebb elszívott cigaretta mennyiséggel jár együtt.* A varianciaanalízist és a post hoc tesztet a fent ismertetett módon elvégeztük, és a következő eredményt kaptuk (**72. ábra**): az első táblázat az egyes alvásminőségi csoportba tartozó válaszadók által elszívott átlag cigarettamennyiséget mutatja. A nagyon rossz alvásminőséget (1) megjelölők 3,73; a rosszat (2) megjelölők 3,37; a jót (3) megjelölők 3,59; a kiválót (4) megjelölők pedig 3,5 szál cigarettát szívnak el naponta. A második táblázatban látható a szignifikancia és az F érték (p=0,991; F=0,035). Ezek alapján azt mondhatjuk, hogy az egyes alvásminőségi csoportok között nincs jelentős különbség a naponta elszívott cigaretták számában, így a hipotézis elvetődött.

72.	ábra:	1. hipotézis	vizsgálata
		Descriptives	

cigiezóm

cigiszám

orgrozan								
					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
1	15	3,73	6,419	1,657	,18	7,29	0	20
2	109	3,37	6,274	,601	2,18	4,56	0	23
3	220	3,59	6,189	,417	2,76	4,41	0	25
4	74	3,50	6,675	,776	1,95	5,05	0	25
Total	418	3,52	6,285	,307	2,91	4,12	0	25

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4,233	3	1,411	,035	,991
Within Groups	16470,114	414	39,783		
Total	16474,347	417			

H2: *Feltételezem, hogy jelentős különbség van a pszichoszomatikus tünetek súlyosságában az egyes alvásminőségi csoportok között.* A varianciaanalízist és a post hoc tesztet a fent ismertetett módon elvégeztük, és a következő eredményt kaptuk (**73. ábra**): az első táblázatban az egyes alvásminőségi csoportok esetében láthatjuk a pszichoszomatikus tünetek átlag pontszámát, mely a kiváló alvásminőséget megjelölők csoportjánál (4) a legalacsonyabb (9,55). A második táblázat eredményei (p=0,009; F=3,923) alapján megállapítható, hogy a kiváló alvásminőségűek jelentősen (szignifikánsan) kevesebb pszichoszomatikus tünettel rendelkeznek, mint a rosszabbul alvók, így a hipotézis igazolódott.

73. ábra: 2. hipotézis vizsgálata Descriptives

<u> </u>								
					95% Confider Me	ice Interval for an		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
1	15	11,60	3,397	,877	9,72	13,48	4	18
2	109	11,94	4,773	,457	11,03	12,84	0	21
3	220	11,42	4,518	,305	10,82	12,02	0	20
4	74	9,55	5,841	,679	8,20	10,91	0	19
Total	418	11,23	4,861	,238	10,76	11,70	0	21

ANOVA

pszichoszomatikus_összpont

nezichnezomatikus öseznont

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	272,370	3	90,790	3,923	,009
Within Groups	9582,121	414	23,145		
Total	9854,490	417			

Wilcoxon-próba

Ordinális (rangsorolt) adatok esetén alkalmazzuk önkontrollos vizsgálatoknál, amikor egy beavatkozás előtti és utáni állapotot hasonlítunk össze ugyanannál a személynél (a mediánt vizsgálja) (*Falus és Ollé 2008*). Ezt a próbát alkalmazzuk akkor is, ha az egymintás t-próba előtt elvégzett normalitásvizsgálat az adott változó esetében negatív, tehát a minta nem normál eloszlású. Itt is ugyanazok érvényesek, mint az egymintás t-próbánál: egy jelszó vagy szimbólum segítségével kell az ugyanahhoz a válaszadóhoz tartozó kérdőíveket összepárosítani; mindkét felmérés idején ugyanazoknak az egyéneknek kell részt venni a vizsgálatban.

A próbát SPSS-ben a következő algoritmus segítségével végezhetjük el: Analyze -> Nonparametric Tests -> Legacy Dialogs -> 2 Related Samples.

Hasonló ablak jelenik meg, mint az egymintás t-próbánál, vagyis változópárokat kell átmozgatni egy kis nyíllal. Jelen esetben arra vagyunk kíváncsiak, hogy a regenerációs tréning hatására csökkent-e a hátfájás és a gyengeségérzés előfordulása a válaszadók körében. Ennek a két pszichoszomatikus tünetnek az előfordulási gyakoriságát egy négyfokozatú Likert-skálán kellett értékelni a válaszadóknak (0=soha; 1=ritkán; 2=időnként; 3=gyakran). A Likert-skála mindig ordinális változó! Először a hát-derékfájás, majd a hát_derékfájás_utána változót mozgatjuk át a kis nyíllal a jobb oldalra, majd ugyanígy járunk el a gyengeség-fáradtság és a gyengeség_fáradtság_utána változókkal. Itt is figyelni kell arra, hogy változópárokat tudunk átmozgatni, tehát először mindig az "előtte" változót mozgatjuk át, majd utána közvetlenül a párját, az "utána változót. Tetszőleges számú változópárt mozgathatunk át, a program mindegyikre külön fogja elvégezni a statisztikai próbát. (**74. ábra**)

File Edit	View Data	Transform	Analyze D	irect Marketing	or Granhs Ultili	ities Add-ons	Window Help								- 6 ^
		-	1000							800					
		J 🗠 .	́∼ 🖪			- 🏝 🔛		14 4	2 🌑						
														Vi	sible: 104 of 104 Variables
	kor	Nem	eüévek	családi_állapot	lakhely	iskvégzettség	apolo_vagy_nem	beosztás2	munkaterület	munkarend	fejfájás	alvási_problé	gyomorégés	gyors_szívdo	hát_derékfájá gyenge
						_szintje						mák		bogás	s radt:
1	52	1	11,0	3	2	3	3	1	2	1		1 1	1	1	2 1
2	58	1	40,0	1	3	2	1	1	1	1	(0 0	0	0	1
3	63	1	44,0	3	3	3	1	1	2	3	(0 1	0	2	2
4	5/	1	16,0	3	2	2	2	1	t	1		1 1	1	0	2
0	00	4	10,0	4	2	2	3					1 2	1	0	
7	28	1	5.0	CH IW	o-Kelated-Sam	ples lests				×		2 1	1	0	0
8	49	1	31.0				Test Pairs:			Exact		1 2	0	1	3
9	43	1	23.0		negatív_jóllét_é	árt 🖆	Pair Variable1	Variable2		Ontiono		1 0	1	0	2
10	41	1	23,0		Jelenleg fél-e a	tt	2 _1 [qvenge	r 📕 (nat_de e 📲 (gyeng)	ſ	Options	(0 0	0	0	1
11	38	1	15,0		eifáiás utána	sn 🖌 🖊	3		÷			1 0	2	0	1
12	24	1	1,0	1	alvási_problém	ná	← Test Type					1 0	0	0	2
13	35	2	1,0		gyomorégés_u	tá					(0 0	0	0	1
14	47	1	29,0		gyors_szivdobo nát deréktájás)g						1 0	1	0	3
15	42	1	25,0		gyengeség_fár	ad	Wilcoxon				2	2 2	1	1	3
16	47	1	30,0		nasmenés_utá	ina	Sign				2	2 3	3	2	3
17	58	1	40,0		9. kérdés (testi_	_t	McNemar					1 3	2	2	1
18	53	1	35,0		aradisag_ulari depresszió utá	a ina 👻	🛅 Marginal <u>H</u> omog	eneity			:	3 3	0	2	3
19	27	2	1,0						_			1 1	0	0	0
20	47	1	30,0			[ок]	Paste Reset C	ancel Help			3	3 2	3	3	3
21	50	1	32,0									2 1	1	1	3
22	29	2	4,0	2	2	4	3	2		1		s 0	1	1	2
23	40	1	20,0	3	2	4	2	1	2	1		1 1	1	0	3
24	40	1	17.0	3	2	*	2	1	2	. 1		1 2	2	2	2
26	45	2	3.0	3	2	4	3	2		1		1 1	0	2	1
27	40	- 1	22.0	3	- 3	3	1	2	2	1		3 2	1	- 1	2
28	42	1	24.0	3	2	4	3	1	-	1		1 0	0	0	0
	1														
Detallin	Variable View							**							
Data View	variable view														
											IBM SP	SS Statistics Pro	cessor is read	v Uni	code:ON

74.	ábra:	Wilcoxon-	nróha	kezelőfelülete
/	avia.	VI IICOAOII-	proba	REZCIOICIUICIC

Ezután a jobb oldalon lévő Options gombra kattintunk, majd pipát teszünk a Descriptives elé, és Continue. Visszatérünk az **74. ábrán** látható ablakhoz, ahol az OK-ra kattintunk. A megjelenő három táblázat mindegyike fontos információt hordoz. Az első táblázatban (**75. ábra**) láthatjuk a négy változó rangpontszámátlagait (mean), az ehhez tartozó szórást (Std. Deviation) és a minimum és maximum értékeket. A hát- és derékfájás rangpontszámátlaga 1,82-ről 1,47-re csökkent a regenerációs tréning után, a gyengeség és fáradtság pedig 1,60-ról

1,31-re, tehát ezen két pszichoszomatikus tünet előfordulási gyakorisága csökkent. Azt azonban nem tudjuk, hogy ezek a csökkenések jelentősek-e.

	N	Mean	Std. Deviation	Minimum	Maximum
hát_derékfájás	77	1,82	1,010	0	3
gyengeség_fáradtság	77	1,60	1,091	0	3
hát_derékfájás_utána	77	1,47	1,033	0	3
gyengeség_fáradtság_ utána	77	1,31	,907	0	3

75. ábra: Wilcoxon-próba első táblázata

Descriptive Statistics

A második táblázat (76. ábra) a rangpontszámaik (Mean Rank) alapján pozitív (positive ranks) és negatív irányba (negative ranks) változó vizsgált személyek részmintáira kiszámolt átlagos rangpontszámokat (Mean Rank) és ezen részminták elemszámát mutatja mindkét változó esetében.

76. ábra: Wilcoxon-próba rangpontszám átlagai

	Rank	s		
		N	Mean Rank	Sum of Ranks
hát_derékfájás_utána -	Negative Ranks	30ª	19,68	590,50
rial_derekiajas	Positive Ranks	8p	18,81	150,50
	Ties	39°		
	Total	77		
gyengeség_fáradtság_	Negative Ranks	27 ^d	20,52	554,00
gyengeség_fáradtság	Positive Ranks	11 ^e	17,00	187,00
	Ties	39 ^f		
	Total	77		

a. hát_derékfájás_utána < hát_derékfájás b. hát_derékfájás_utána > hát_derékfájás c. hát_derékfájás_utána = hát_derékfájás

d. gyengeség_fáradtság_utána < gyengeség_fáradtság e. gyengeség_fáradtság_utána > gyengeség_fáradtság f. gyengeség_fáradtság_utána = gyengeség_fáradtság

A harmadik táblázat (77. ábra) a Wilcoxon-próba szignifikancia értékeit mutatja. Látható, hogy a hát- és derékfájás esetében p=0,001; a gyengeség- és fáradtság esetében p=0,004; tehát mindkét pszichoszomatikus tünet előfordulási gyakorisága szignifikánsan (jelentősen) csökkent a regenerációs tréning hatására, így a feltételezés is igazolódott. Szakdolgozatban, és minden publikációban a p értékek mellett fel kell tüntetni a Z értéket (pl: p=0,001; Z=-3,448).

77. ábra: Wilcoxon próba szignifikanciája

hát_ deréktájás_ utána - hát_ deréktájás	gyengeség_ fáradtság_ utána - gyengeség_ fáradtság
-3,448ª	-2,899ª
,001	,004
	hát_ derékfájás_ utána - hát_ derékfájás -3,448ª ,001

a. Based on positive ranks. b. Wilcoxon Signed Ranks Test

Nézzük meg a gyakorlatban, hogyan alkalmas ez a statisztikai próba a hipotézisek vizsgálatára.

H1: *Feltételezem, hogy a regenerációs tréning hatására jelentősen csökkent a fejfájás és az alvási problémák mennyisége.* Ez egy összetett hipotézis, a változás irányát is megadja: csökkenést várunk. A statisztikai próbát elvégeztük a fent ismertetett módon, és a következő eredményt kaptuk (az átlagos rangpontszámokat – Mean Rank – tartalmazó táblázatokat nem tüntetem fel). A fejfájás rangpontszámátlaga 1,45-ről 1,21-re csökkent, az alvási problémáké 1,29-ről 1,08-ra. Mindkét csökkenés jelentős: a fejfájás esetében p=0,003; Z=-2,968; az alvási problémák esetében p=0,019; Z=-2,351, tehát a hipotézis igazolást nyert. (**78. ábra**)

78. ábra: 1. hipotézis vizsgálata Descriptive Statistics

		•			
	N	Mean	Std. Deviation	Minimum	Maximum
fejfájás	77	1,45	,836	0	3
alvási_problémák	77	1,29	1,110	0	3
fejfájás_utána	77	1,21	,894	0	3
alvási_problémák_utána	77	1,08	1,073	0	3

Test	Statistic	sb
1650	Stausut	э

	fejfájás_utána - fejfájás	alvási_ problémák_ utána - alvási _problémák
Z	-2,968ª	-2,351ª
Asymp. Sig. (2-tailed)	,003	,019

a. Based on positive ranks. b. Wilcoxon Signed Ranks Test

H2: Feltételezem, hogy a regenerációs tréning hatására jelentős különbség van a fáradtság és a depresszió előfordulási gyakoriságának megítélésében. Összetett hipotézis! Ezen két tünet előfordulási gyakoriságát egy hétfokozatú Likert-skálán kellett bejelölni a válaszadóknak (1=soha; 7=mindig). A statisztikai próbát az előzőekben ismertetett módon elvégeztük, és a következő eredményeket kaptuk. A fáradtság rangpontszámátlaga 3,83-ról 3,32-re csökkent, a depresszióé 1,86-ról 1,78-ra. A fáradtság esetében a változás jelentős (p<0,000; Z=-3,628), a depresszió esetében azonban nem beszélhetünk szignifikáns változásról (p=0,329; Z=-0,976), így a hipotézis részben igazolódott. (79. ábra)

	N	Mean	Std. Deviation	Minimum	Maximum								
fáradtság	77	3,83	1,361	1	7								
depresszió	77	1,86	1,274	1	7								
fáradtság_utána	77	3,32	1,332	1	6								
depresszió_utána	77	1,78	1,177	1	5								

79. ábra: 2. hipotézis vizsgálata Descriptive Statistics

Test 9	Statistics ^b
--------	-------------------------

	fáradtság_ utána - fáradtság	depresszió_ utána - depresszió
Z	-3,628ª	-,976 ^a
Asymp. Sig. (2-tailed)	,000	,329

a. Based on positive ranks. b. Wilcoxon Signed Ranks Test

H3: Feltételezem, hogy a regenerációs tréning hatására jelentősen javult a saját egészségi állapot megítélése. Ez a hipotézis javulást vár. A statisztikai próbát az előzőekben ismertetett módon elvégeztük, és a következő eredményt kaptuk. Az egészségi állapotot egy ötfokozatú Likert-skálán kellett értékelni (1=nagyon rossz; 5=kiváló). A tréning előtt átlag 3,58-ra, a tréning után 3,77-re értékelték a válaszadók saját egészségüket, ami jelentős javulást mutat (p=0,020; Z=-2,324), így a hipotézis igazolódott. (80. ábra)

80. ábra: 3. hipotézis vizsgálata

Descriptive Statistics

	N	Mean	Std. Deviation	Minimum	Maximum
Egészségi állapot önértékelése	77	3,58	,817	1	5
Egészségi állapot önértékelése	77	3,77	,667	2	5

Test Stati	stics
	Egészségi állapot önértékelése - Egészségi állapot önértékelése
Z	-2,324ª
Asymp. Sig. (2-tailed)	,020

a. Based on negative ranks. b. Wilcoxon Signed Ranks Test

H4: Feltételezem, hogy a regenerációs tréning hatására jelentősen csökkent a munkavesztéstől való félelem. Itt is csökkenést várunk. A munkavesztéstől való félelmet egy ötfokozatú Likertskálán kellett értékelni (1=egyáltalán nem félek; 5=nagyon félek). A statisztikai próba elvégzése után azt láthatjuk, hogy a munkahely elveszítésétől való félelem rangpontszámátlaga 2,49-ről 2,13-ra csökkent, és ez a csökkenés jelentős (p<0,000; Z=-3,490), tehát a hipotézis igazolódott. (81. ábra)

81. ábra: 4. hipotézis vizsgálata

Descriptive Statistics

	N	Mean	Std. Deviation	Minimum	Maximum
Jelenleg fél-e attól, hogy elveszítheti munkáját?	77	2,49	,995	1	5
Jelenleg fél-e attól, hogy elveszítheti munkáját?	77	2,13	1,056	1	5

	0.0								
	Jelenleg fél-e attól, hogy elveszítheti munkáját? - Jelenleg fél-e attól, hogy elveszítheti munkáját?								
Z	-3,490 ^a								
Asymp. Sig. (2-tailed)	,000								
a. Based on positive ranks.									

Tost Statistics^b

b. Wilcoxon Signed Ranks Test

Mann-Whitney-próba

Ordinális (rangsorolt) adatok esetén a mediánokat hasonlítja össze. Kontrollcsoportos vizsgálatnál alkalmazzuk, amikor két részmintát vagy mintát hasonlítunk össze nagyságszintjük alapján. Arra vagyunk kíváncsiak, hogy a két minta rangsora jelentős mértékben eltér-e egymástól. Ezt a próbát alkalmazzuk akkor is, ha folytonos változó esetén a változó nem normál eloszlású (kétmintás t-próba helyett). Ha p<0,05 -> jelentős különbség van a két részminta/minta között. Ennél a vizsgálatnál a rangpontszámok átlagának (Mean Ranks) is jelentősége van, sok információt hordoz: a kisebb átlagérték az adott részminta/minta rangsorban elfoglalt jobb helyzetére utal (Falus és Ollé 2008).

SPSS-ben a következő algoritmus követésével tudjuk elvégezni a próbát: Analyze -> Nonparametric Tests -> Legacy Dialogs -> 2 Independent Samples.

Jelen esetben arra vagyunk kíváncsiak, hogy a hátfájás, valamint a gyengeségérzés és fáradtság gyakrabban fordul-e elő az éjszakai műszakban is dolgozóknál, mint azoknál az ápolóknál, akik nem dolgoznak éjszakai műszakban (a két tünet előfordulási gyakoriságát egy négyfokozatú Likert-skálán kellett értékelni: 0=soha; 3=mindig). A bal oldali változó oszlopból a hátfájás és gyengeség_fáradtság változókat átmozgatjuk a kis nyíllal a Test Variable List ablakba (ide tetszőleges számú ordinális változó átmozgatható), a Grouping Variable mezőbe pedig a Műszakozik-e változót (ez lesz a csoportképzés alapja). (82. ábra)

9.018_PELA	ADAT_Wann_win	triey_proba.sav	(Dataset1) - Ibi	vi araa ataustics	Data Editor												
<u>File</u> Edit	View Data	Transform	<u>A</u> nalyze D	irect <u>M</u> arketing	<u>G</u> raphs <u>U</u>	tilities Add- <u>o</u>	ns <u>W</u> indow	Help									
2	🖨 🗉		~	· 📥 🗐	H	*,	i 🔚 🖧)						
															Visi	ble: 42 of 42 Va	riables
	sorszám	neme	életkora	BMI	BMI_kategóri a	munkarend N	lüszakozik_ egé e apo	szségi_áll króni t_önérték e elése	kus_bet gség	fejfájás	alvási_probl mák	é gyomorésé_g yomorfájás	gyors_szívdo bogás	hátfájás	gyengeség_fá radtság	hasmenés	psz atik
1	1	1	1 38	37,6	5	3	2	2	1	3		3 3	3	3	3	3	-
2	8	1	1 49	29,6	3	3	2	4	1	0		1 0	0	0	0	0	
3	9	1	1 40	26,9	3	3	2	3	1	1		0 0	2	3	2	0	
4	10	2	2 27	22.3	2	3	2	3	0	1	_	2 2	1	2	2	0	
5	11	1	1 2:	tian Two-Indep	endent-Samples	Tests					×	2 0	1	2	3	2	
6	12	1	1 35				TestVaria	hle List		_		2 2	2	3	3	2	
7	13	1	1 34	. DML koto	- Ária	-	- hátfái	ás		Exa	zt	0 0	0	0	1	0	
8	14	1	1 34	anunkarer	nd		gyeng	eség_fáradtság		Optio	ns	1 2	2	3	3	0	
9	15	1	1 34	📕 egészség	i_állapot_önért	ékelése	~					2 1	1	3	3	0	
10	16	1	1 38	💑 krónikus_	betegség							D 1	1	1	0	0	
11	25	1	1 35	fejfájás	ablámák		Grouping	Variable:				2 0	1	3	2	0	
12	26	1	1 36	avasi_pr	é avomorfálás		Müszakoz	ik_e(? ?)				3 1	1	1	3	0	
13	27	1	1 21	gyors_szi	vdobogás	-	Define G	oups				2 2	1	2	3	3	
14	28	1	1 49				(=					2 2	2	3	2	0	
15	29	1	1 34	Test Type								2 0	2	1	3	2	
16	30	1	1 36	Mann-Wh	itney U	Kolmogorov	-Smirnov Z					1 0	0	0	1	0	
17	31	1	1 4	Mo <u>s</u> es ex	treme reactions	Wald-Wolfo	witz runs					2 1	0	2	1	1	
18	32	1	1 42			OK Past	Reset C	ancel Help				3 1	3	3	3	1	
19	33	2	4	00.5					0			3 2	3	3	3	1	
20	34	1	37	22,5	2	3	2	2	0	0		2 3	0	3	3	3	
21	35		43	22,4	2	3	2	3	0	2		3 2	1	3	1	0	
22	30		1 32	23,9	2	3	2	3	1	2			2	3	3	0	
23	37		40	20,0	3	3	2	3	0	1		2 1	1	3	2	2	
24	30		45	25,1	3	2	2	3	0	2			2	3	3	0	
20	40		43	24,0	2	2	2	3	0			1 0	0	3	2	0	
27	40	1	46	32.0	4	2	1	3	1	2		2 2	2	2	3	1	
	41			40.0		2		2	-	4			2				-
	1				_			***									
Data View	Variable View																
												IBM SPSS S	statistics Proces	sor is ready	Unicod	NON	

82. ábra: Mann-Whitney-próba kezelőfelülete

Ezután a Define Groups gombra kattintunk, és a megjelenő Group 1 mezőbe 1-t, a Group 2 mezőbe 2-t írunk (mivel 1-el kódoltuk a nem éjszakázókat, 2-vel az éjszakázókat), és a Continue gombra kattintunk. **(83. ábra)**

9.ora_FELA	DAT_Mann_W	/hitney_pr	oba.sav	[DataSet1] - IBN	A SPSS Statistics	s Data Editor			•		8							- 0	\times
Eile Edit	View Dat	ta <u>T</u> rar	nsform	<u>A</u> nalyze E	irect <u>M</u> arketing	<u>G</u> raphs	Utilities Add	l- <u>o</u> ns <u>W</u> indo	w <u>H</u> elp										
2		II 1		∼ 🖁	* 📥 🗐	E E	*	¥	<i>≤</i> <u>∖</u>			5							
																	Visi	ble: 42 of 42 V	ariables
	sorszám	ne	me	életkora	BMI	BMI_kategóri	munkarend	Müszakozik	egészségi_á	II krónikus_bet	fejfájás	alvási_p	roblé g	gyomorésé_g	gyors_szívdo	hátfájás	gyengeség_fá	hasmenés	psz
]					а		e	apot_önérték elése	c egség		mál	¢	yomorfájás	bogás		radtság		atik
1		1	1	38	37,6	5	3	2	2	2 1		3	3	3	3	3	3	3	3 👚
2		8	1	49	29,6	3	3	2	4	1	1	D	1	0	0	0	0	C)
3		9	1	40	26,9	3	3	2	3	3 1		1	0	0	2	3	2	0)
4	1	10	2	27	22.3	2	3	2	1	3 0		1	2	2	1	2	2	C)
5	1	11	1	23	1wo-Indep	endent-Sample	s Tests					~	2	0	1	2	3	2	2
6	1	12	1	39				Test	/ariable List:			art	2	2	2	3	3	2	2
/	1	13	1	35	BMI kate	odória	4	- 1	iátfájás			acc	0	0	0	0	1		,
8	1	14	1	38	are munkare	ind			yengeség_fár	adtság	Opt	ions	1	2	2	3	3	0	
9	1	15	1	3:	egészsé	gi_állapot_önér	tékelése 🗕	🛄 Тм	o Independent	Samples: >	<	-	2	1	1	3	3		
10		16	1	30	kronikus	_betegseg				_		-	0	1	1	1	0		
10		25	1	3:	alvási_p	roblémák		Group	1 1				2	0	1	3	2		<u></u>
12	-	20	4	30	gyomoré	sé_gyomorfájá:	5	Group	2: 2			-	2	1	1	1	3		
14	4	20		10	gyors_sz	úvdobogás	~	Con				-	2	2	2	2	3		
14	4	20	1	4:	-Test Type-				Cand	ei Heip		-	2	2	2	1	2		
16	4	20	1	36	Monn W	hitnov II	- Kolmogo	rou Smirnou 7				-		0	2			4	·
17		21	1	14	Moses e	vtreme reaction	e III Wald-Wo	Ifowitz nuns					2	1	0	2	1	1	
18		32	1	45	El moges e	Areme reaction	3 <u>11</u> <u>11</u> 11 0 11 0	nowie runa				-	3	1	3	3	3	-	
19		33	2	44			OK P	aste <u>R</u> eset	Cancel	Help		-	3	2	3	3	3	1	
20		34	1	37	22.5	2	3	2		,		0	2	- 3	0	3	3	3	3
21	3	35	1	43	22,4	2	3	2	3	3 0		2	3	2	1	3	1	0	
22	3	36	1	32	23,9	2	3	2	1	3 1		2	1	0	2	3	3	0	<u>ر</u>
23	3	37	1	48	28,8	3	3	2	3	3 0		1	3	1	1	3	2	C	<u>ر</u>
24	3	38	1	45	29,7	3	2	! 1	3	8 0		2	3	1	2	3	3	3	3
25	3	39	1	49	24,8	2	3	2	3	3 0		2	0	1	1	3	1	C) I
26	4	10	1	52	27,8	3	2	! 1	3	8 0		1	1	0	0	3	2	C)
27	4	11	1	46	32,0	4	2	! 1	3	3 1		2	2	2	2	2	3	1	
0	1				40.0			· · · · ·				•	2		2				
	Mariable Minu								***										
Data View	variable viev	~																	
														IBM SPSS St	atistics Proces	sor is ready	Unicod	e'ON	

83. ábra: Csoportok megadása
Visszajutunk a 82. ábrán látható ablakba, ahol az Options gombra kattintunk, és pipát teszünk a Descriptive elé (**84. ábra**), majd a Continue, ez után pedig az OK gombra kattintunk.

84. ábra: Mann-Whitney-próba Options menüje

Az output ablakban a 85. ábrán látható három táblázat jelenik meg. Az első táblázat a hátfájás, valamint a gyengeség és fáradtság változók átlagait mutatja a teljes mintára, de nem tudjuk meg belőle az éjszakázók és nem éjszakázók csoportjára vonatkozó átlagokat. Ezt külön kell kiszámolnunk (ld. később!). A második táblázat a két csoport esetében mutatja az elemszámokat (N) és a rangpontszámok átlagát (Mean Rank). Azt láthatjuk, hogy a nem éjszakázóknál (nem műszakozók) a hátfájás MR=119,21; míg az éjszakázóknál MR=143,42. A gyengeség és fáradtság esetében a nem éjszakázóknál MR=126,93; az éjszakázóknál MR=140,92. Ezekből az átlagokból láthatjuk, hogy a nem éjszakázóknál a két tünet ritkábban fordul elő, de nem tudjuk még, hogy a két csoport között jelentős-e a különbség. Ezt a harmadik táblázatban lévő szignifikanciákból olvashatjuk le. A hátfájás esetében p=0,019; U=5709,0; a gyengeség és fáradtság esetében p=0,182; U=6226,5. Ez azt jelenti, hogy a hátfájás jelentősen (szignifikánsan) gyakrabban fordul elő az éjszakai műszakban is dolgozóknál, a gyengeség és fáradtság előfordulási gyakoriságában nincs jelentős különbség, így a hipotézis csak részben igazolódott. Mindenféle publikációban fel kell tüntetni a következő értékeket: p; MR, U. Figyelem!!! Az MR értékelésénél figyelembe kell venni a Likert-skála irányát! Nem mindegy, hogy a skálán a legkisebb érték a legjobb vagy legrosszabb állapotot jelenti! (pl. az egészségi állapot önértékelésénél az ötös jelentheti a kiválót, de a nagyon rosszat is. Tehát MR értékelése attól függ, hogy a kérdőívben hogyan szerepel a Likert-skála.)

🌆 *Output1 [Document1] - IBM SPSS Statistics Viewer										-	×						
<u>File Edit View Data T</u>	ransform Insert Format	Analyze Dir	rect <u>M</u> arketing	Graphs	Utilities Ac	dd- <u>o</u> ns <u>W</u> indo	w <u>H</u> elp	2									
😑 🗄 🖨 🗟 🤞	🕑 🛄 🖛 🛥	X	1 📥 =		•				+	•	+ $-$	- 1					
Output Output	➡ NPar Tests																 -
Notes	[DataSet1] F:\Ku	tatómunka	alapjai\S	tatisztikai	i adatelem	nzés\Adatbáz	isok, k	kérdőive	k\9.ora	_FELAD	AT_Mann_V	Whitney	proba.s	av			
Descriptive Statis	st	De	scriptive Stat	istics													
inanii-windley re		Ν	Mean	Std. Deviation	Minimum	Maximum											
Ranks	hátfájás	274	2,16	,941	0	3											
Len Test Statisti	gyengeség_fáradtság	274	2,08	,936	0	3											
	mustanozn_c	2/4	1,70	,451		2											
	Mann-Whitney	Test															
	manney	1001															
			Rank	5													
		Műezakozik		N	Mean Rank	Sum of Ranks											
	hátfájás	nem műsza	akozik (de vag	y 67	119,21	7987,0	0										
		műszakozik		207	143,42	29688,0	0										
		Total		274													
	gyengeség_fáradtság	nem műsza nappal)	akozik (de vag	y 67	126,93	8504,5	0										
		műszakozik		207	140,92	29170,5	0										
		Total		274													
	·	C1-41-43															
	lest	statistics-	auspasséa														
		hátfájás	áradtság														
	Mann-Whitney U	5709,000	6226,50	0													
	Wilcoxon W	7987,000	8504,50	0													
	Asymp. Sig. (2-tailed)	.019	-1,33	2													
	a. Grouping Variable:	Müszakozik_e	1.5														
4																	-

85. ábra: Mann-Whitney-próba output ablaka

Ezek után ki kell számítanunk mindkét változó esetében az egyes csoportokra vonatkozó átlagokat és a csoport mediánokat. Ezt a következő algoritmus követésével tehetjük meg: Analyze -> Reports -> Case Summaries

Gyakorlatban bevett szokás, hogy ezt a lépést kihagyják, mivel az eredmények közléséhez elegendő a rangpontszámok átlagainak közlése. Azonban, ha pontosak, és alaposak szeretnénk lenni, akkor a csoportmediánokat is közöljük, mert ez az eredmények jobb megértését teszi lehetővé, és támpont, összehasonlítási alap lehet más kutatók számára, akik esetleg a mi témánkban szeretnének kutatást végezni.

A megjelenő kis ablak Variables mezőjébe bemozgatjuk a kis nyíllal a hátfájás és a gyengeség és fáradtság változókat, a Grouping Variable mezőbe pedig a Műszakozik-e változót, és kivesszük a pipát a Display Cases elől. Ezzel a módszerrel csak az általunk kiszámolni kívánt eredmények jelennek meg majd az output ablakban, mellékes eredmények, számítások nem. **(86. ábra)**

ta 9.0	ora_FELAI	DAT_Mann_V	Vhitney_p	roba.sav	[DataSet1] - I	BM SPSS Statistics	s Data Editor	0.50	por	t met	nanor	11.152.4	mu	.5411		enece				- 0	\times
File	Edit	<u>View</u> Da	ita <u>T</u> ra	nsform	Analyze	Direct Marketing	Graphs	Utilities	Add-o	ns <u>W</u> indo	w <u>H</u> elp										
2			II ,		~	1 📥 重	ų	H 🕴	5		sta 🛄			ABC							
															1				Vis	ible: 42 of 42 V	/ariables
		sorszám	ne	eme	életkora	BMI	BMI kateg	iri munk	arend N	lüszakozik	egészségi a	áll krónikus be	t fejfája	ás al	vási problé	avomorésé a	avors szívdo	hátfájás	avenaeséa fá	hasmenés	DSZ
							a			е	apot_önérté elése	k egség			mák	yomorfájás	bogás		radtság		atik
	1		1	1	3	8 37,6		5	3	2	2	2	1	3	3	3	3	3	3	3	3 📥
	2		8	1	4	9 29,6		3	3		2	4	1	0	1	0	0 0	0	0	0)
	3		9	1	4	0 26,9		1 +0 0		· · · · · ·		2	4	4	0	0	2	3	2	C)
	4		10	2	2	22,3		i 🖬 Sun	nmarize C	ases					^ 2	2	2 1	2	2	0)
	5		11	1	2	23,6		1			V	ariables:		Statisti	2	0) 1	2	3	2	2
	6		12	1	3	9 24,5		sc 🖉 sc	rszám		-	hátfájás		Gransu	2	2	2 2	3	3	2	2
	7		13	1	3	19,5		🛔 🗞 ne	me			gyengeség_	fáradtság	Option	IS 0	0	0 0	0	1	C)
	8		14	1	3	15 29,4		el 💉 el	etkora		•				1	2	2 2	3	3	0)
	9		15	1	3	18,7		1 🍒 BI	" II kateod	iria					2	1	1	3	3	C	J
1	10		16	1	3	8 27,7		🕴 💑 m	unkarend						0	1	1	1	0	0)
1	11		25	1	3	9 26,4		🕴 📲 eg	észségi_	állapot	G	rouning Variabl	e(s)		2	0) 1	3	2	C)
1	12		26	1	3	6 26,3		kr	ónikus_b	etegség		Müszakozik	e		3	1	1	1	3	0)
1	13		27	1	2	22,9			rajas /ási nrot	lémák			,°		2	2	2 1	2	2 3	3	3
1	14		28	1	4	9 29,0			omorésé	avomorf					2	2	2 2	3	2	0)
1	15		29	1	3	15 21,9		1 🗖 Di	splay cas	es					2	0	2	1	3	2	2
1	16		30	1	3	6 22,1			imit cas	es to first	100				1	0	0 0	0	1	0)
1	17		31	1	4	5 25,3			Show onl	v valid case					2	1	0	2	! 1	1	1
1	18		32	1	4	2 25,2			Show cas	e numbers					3	1	3	3	3	1	
1	19		33	2	4	5 24,2		1							3	2	2 3	3	3	1	1
2	20		34	1	3	37 22,5		1		OK	Paste Res	et Cancel	Help		2	3	8 0	3	3	3	3
2	21		35	1	4	3 22,4		2	J			J	U	2	3	2	2 1	3	1	0)
2	22		36	1	3	2 23,9		2	3	1	2	3	1	2	1	0	2	3	3	C)
2	23		37	1	4	8 28,8		3	3		2	3	0	1	3	1	1	3	2	0)
2	24		38	1	4	5 29,7		3	2		1	3	0	2	3	1	2	3	3	3	3
2	25		39	1	4	9 24,8		2	3		2	3	0	2	0	1	1	3	1	0	J
2	26		40	1	6	27,8		3	2		1	3	0	1	1	0	0 0	3	2	C)
2	27		41	1	4	6 32,0		4	2			3	1	2	2	2	2 2	2	3	1	
	10	1	40	1		40.0		0	2			2	4	4					2		
Data	View	Variable Vie									***										_
Data	VIEW	vanable vie																			
																IBM SPSS 9	Statistics Proces	sor is ready	Unicod	e:ON	

86. ábra: Csoport mediánok kiszámításának menete 1.

Ezután a Statistics gombra kattintunk. Bal oldalon találhatók a kiszámítandó értékek, ezek közül visszük át a kis nyíllal a jobb oldalra azokat, amiket szeretnénk kiszámolni: Mean (átlag), Median, Grouped Median (csoport medián), Standard Deviation (szórás). A Number of Cases (az adott csoportba tartozó válaszadók száma) automatikusan kiszámításra kerül. **(87. ábra)**

🤹 9.ora_FELA	DAT_Mann_W	/hitney_prob	a.sav [DataSet1] - IBN	A SPSS Statistics	Data Editor												- 0	\times
<u>File</u> Edit	View Dat	ta <u>T</u> ransf	orm	Analyze D	irect <u>M</u> arketing	Graphs	Utilities Ad	d- <u>o</u> ns <u>W</u> indov	v <u>H</u> elp										
😂 🖿			~ >	-	J	L A	4 X.	👿 💷 J				ABC							
		-								1									
																	Visi	ble: 42 of 42 V	ariables
	sorszám	nem	e	életkora	BMI	BMI_kategór	munkarend	Müszakozik_	egészségi_ál	krónikus_bet	fejfájás	s alvás	i_problé	gyomorésé_g	gyors_szívdo	hátfájás	gyengeség_fá	hasmenés	psz
						а		е	apot_önérték	egség			mák	yomorfájás	bogás		radtság		atik
1	-	1	1	38	37.6	6		3 2	2	1		3	3	3	3	3	3	3	-
2		8	1	49	29,6	3		3 2	4	1		0	1	0	0	0	0	0	
3		9	1	40	26,9	3		o o	2	4		4	0	0	2	3	2	0	
4	1	10	2	27	22,3	1	🤹 Summariz	e Cases				1	× 2	2	1	2	2	0	
5	1	11	1	23	23,6	2		🔚 Summary Re	port: Statistics		×		2	0	1	2	3	2	
6	1	12	1	39	24,5	2	🔗 sorszái	Statistics:		Cell Statistics	:	Statistics.	2	2	2	3	3	2	
7	1	13	1	35	19,5	2	💑 neme	Std. Error of Me	an 📥	Number of ca	ises	Options	0	0	0	0	1	0	
8	1	14	1	35	29,4		életkor:	Sum		Mean			1	2	2	3	3	0	
9	1	15	1	35	18,7	2	BMI ka	Minimum		Median			2	1	1	3	3	0	
10	1	16	1	38	27,7	1	💑 munka	Range		Standard Dev	viation		0	1	1	1	0	0	
11	2	25	1	39	26,4		egészs	First					2	0	1	3	2	0	
12	2	26	1	36	26,3		króniku	Last					3	1	1	1	3	0	
13	2	27	1	22	22,9	2	alvási	Variance					2	2	1	2	3	3	
14	2	28	1	49	29,0		. avomo	Std. Error of Ku	rtor				2	2	2	3	2	0	
15	2	29	1	35	21,9	2	C Display	Skewness					2	0	2	1	3	2	
16	3	30	1	36	22,1	2	Limit	Std. Error of Sk	ew				1	0	0	0	1	0	
17	3	31	1	45	25,3	1	Show	Harmonic Mea	n 🔽				2	1	0	2	1	1	
18	3	32	1	42	25,2		Show						3	1	3	3	3	1	
19		33	2	45	24,2	3	_	Cont	nue Cance	el Help			3	2	3	3	3	1	
20	2	54 56	1	3/	22,5	2					Telp	·	2	3	0	3	3	3	
21		35 20	1	43	22,4	2		2	3	1		2	3	2	1	3	1	0	
22	-	90 97	- 1	32	23,9	2		2	3	1		2	2	1	2	3	3	0	
23		20	- 1	40	20,0			2	3	0		2	3	1	۱ د	3	2	2	
24		20	1	40	23,1	-		2 2	3	0		2	0	1		3	1	0	
26		10	1	43	24,0			2 1	3	0		1	1	0	0	3	2	0	
27			1	46	32.0	4		2 1	3	1		2	2	2	2	2	3	1	
					10.0			- 				-	2				2		-
			_						***			-	_						
Data View	Variable Viev	N																	
														IBM SPSS S	latistics Proces	sor is ready	Unicode	NON	

87.	ábra:	Csoport	mediánok	kiszámításánal	x menete 2.
••••		Coopere	meanunon	11.52.4 HILL CALSALINA	· menere z.

Ezután a Continue, majd az OK gombra kattintunk, és a **88. ábrán** látható táblázat jelenik meg. Az első sorban a nem műszakozók (nem éjszakázók) csoportjának adatai láthatók: válaszadók száma 67; a hátfájás átlaga 1,94; mediánja 2,0; a csoport medián is 2,0, a szórás 0,967. Mellette a gyengeség és fáradtság változóra vonatkozó adatok. Ha összehasonlítjuk a két csoport csoportmediánját, láthatjuk, hogy a nem éjszakázóknál a hátfájás esetében 2,0; a gyengeség esetében 2,08; míg az éjszakai műszakban is dolgozóknál 2,38 és 2,25; tehát mindkét változó csoportmediánja magasabb az utolsó csoportnál, ami azt jelenti, hogy ezek a tünetek gyakrabban fordulnak elő náluk. Ezeket az értékeket is fel kell tüntetni minden publikációban (előadás, szakdolgozat, cikk).

Müszakozik_e			hátfájás	gyengeség_ fáradtság
nem műszakozik (de vagy	Mean		1,94	1,94
nappai)	N	•	67	67
	Std. Dev	iation	,967	,998
	Median		2,00	2,00
	Grouped	l Median	2,00	2,08
műszakozik	Mean		2,24	2,13
	N		207	207
	Std. Dev	iation	,923	,912
	Median		3,00	2,00
	Grouped	l Median	2,38	2,25
Total	Mean		2,16	2,08
	Ν		274	274
	Std. Dev	iation	,941	,936
	Median		2,00	2,00
	Grouped	l Median	2,30	2,21

88.	ábra:	Eredmények
	F	Report

Nézzük meg konkrét példákon keresztül, hogy hogyan alkalmas ez a statisztikai próba a hipotézisek vizsgálatára.

H1: Feltételezem, hogy az éjszakai műszakban is dolgozók körében gyakrabban fordul elő a fejfájás és az alvási problémák pszichoszomatikus tünetként. Ezen két tünet előfordulási gyakoriságát egy négyfokozatú Likert-skálán kellett bejelölni a válaszadóknak (0=soha; 3=gyakran). A statisztikai próbát, és a csoportmediánok kiszámítását a fent ismertetett módon elvégeztük, és a **89-90. ábrán** látható eredményt kaptuk. A fejfájás rangpontszámainak átlaga az éjszakai műszakban (műszakozik) is dolgozóknál alacsonyabb (MR=134,93), tehát ritkábban észlelik ezt a tünetet, mint az éjszakai műszakban nem dolgozók (MR=145,43). Az alvási problémánál fordított a helyzet, az éjszakai műszakban nem dolgozók ritkábban észlelik ezt a tünetet, mivel a rangpontszámok átlaga alacsonyabb (MR=124,78) az éjszaka is dolgozók csoportjánál (MR=141,62) (ne felejtsük a Likert-skála irányát nézni: 0=soha nem fordul elő az

adott tünet!!! -> tehát ez a jobb állapot). Azonban ezek a különbségek nem jelentősek, mivel a második táblázatban látható szignifikanciák nagyobbak 0,05-nél: fejfájás esetében p=0,323; U=6403,5; alvási problémák esetében p=0,115; U=6082,5.

A hipotézis elvetését a 90. ábrán látható átlagok és csoport mediánok is alátámasztják. A nem éjszakázóknál a fejfájás esetében az átlag 1,96, a csoport medián 2,09, míg az éjszakai műszakban is dolgozóknál az átlag 1,85; a csoport medián 1,89. Az alvási problémák esetében az éjszakai műszakban nem dolgozóknál az átlag és a csoport medián is 1,7; míg az éjszakai műszakban is dolgozóknál az átlag 1,9; a csoport medián 2,07. Ezek alapján azt mondhatjuk, hogy a fejfájás gyakrabban fordul elő az éjszakai műszakban nem dolgozóknál, az alvási problémák pedig az éjszakázóknál, de a különbség a két csoport között egyik esetben sem jelentős, így a hipotézist elvetjük.

89.	ábra:	1.	hipotézis	vizsgálata
-----	-------	----	-----------	------------

	T dinis			
	Müszakozik_e	N	Mean Rank	Sum of Ranks
fejfájás	nem műszakozik (de vagy nappal)	67	145,43	9743,50
	műszakozik	207	134,93	27931,50
	Total	274		
alvási_problémák	nem műszakozik (de vagy nappal)	67	124,78	8360,50
	műszakozik	207	141,62	29314,50
	Total	274		

Ranks

Test	Statistics ^a
------	-------------------------

	fejfájás	alvási_ problémák
Mann-Whitney U	6403,500	6082,500
Wilcoxon W	27931,500	8360,500
Z	-,988	-1,576
Asymp. Sig. (2-tailed)	,323	,115

a. Grouping Variable: Müszakozik_e

Case Summaries								
Müszakozik_e	alvási_problémák							
nem műszakozik	Ν	67	67					
(de vagy nappal)	Mean	1,96	1,70					
	Median	2,00	2,00					
	Grouped Median	2,09	1,70					
	Std. Deviation	1,007	,969					
műszakozik	Ν	207	207					
	Mean	1,85	1,90					
	Median	2,00	2,00					
	Grouped Median	1,89	2,07					
	Std. Deviation	,915	1,072					
Total	Ν	274	274					
	Mean	1,88	1,85					
	Median	2,00	2,00					
	Grouped Median	1,93	1,97					
	Std. Deviation	,937	1,050					

90. ábra: 1. hipotézis csoport mediánjai

H2: *Feltételezem, hogy az éjszakai műszakban nem dolgozók jobbnak ítélik meg saját egészségi állapotukat.* Az egészségi állapot önértékelése egy ötfokozatú Likert-skálán történt (1=nagyon rossz; 5=kiváló). A statisztikai próbát, és a csoportmediánok kiszámítását a fent ismertetett módon elvégeztük, és a **91-92. ábrán** látható eredményt kaptuk. A rangpontszámok átlaga az éjszakai műszakban is dolgozóknál (műszakozik) alacsonyabb (MR=133,51), mint az éjszaka nem dolgozóké (MR=149,81), tehát az éjszakázók rosszabban értékelik saját egészségi állapotukat (ne felejtsük a Likert-skála irányát nézni: 1=nagyon rossz egészség!!! -> tehát ez a rosszabb állapot). A szignifikanciát megnézve (p=0,081; U=6109,5) azonban azt látjuk, hogy az egészségi állapot önértékelésében nincs jelentős különbség a két csoport között. Az átlag a nem éjszakázóknál 3,01; az éjszakázóknál 2,85; viszont a csoport medián mindkét csoportban 3,0, tehát ez alátámasztja a szignifikanciát, hogy valóban nincs jelentős különbség az egészségi állapot önértékelésében a két csoport között, így a hipotézis megdőlt.

91.	ábra:	2.	hipotézis	vizsgálata
-----	-------	----	-----------	------------

Ranks

	Müszakozik_e	N	Mean Rank	Sum of Ranks
egészségi_állapot_ önértékelése	nem műszakozik (de vagy nappal)	67	149,81	10037,50
	műszakozik	207	133,51	27637,50
	Total	274		

	egészségi_ állapot_ önértékelése
Mann-Whitney U	6109,500
Wilcoxon W	27637,500
Z	-1,746
Asymp. Sig. (2-tailed)	,081

Test Statistics^a

a. Grouping Variable: Müszakozik_e

92. ábra: 2. hipotézis csoport mediánjai

Case Summaries												
egészségi_állapot_önértékelése												
Müszakozik_e	N	Mean	Median	Grouped Median	Std. Deviation							
nem műszakozik (de vagy nappal)	67	3,01	3,00	3,02	,615							
műszakozik	207	2,85	3,00	2,86	,617							
Total	274	2,89	3,00	2,89	,619							

H3: *Feltételezem, hogy a két csoport között jelentős különbség van az optimizmus és a boldogság érzetében.* A két érzés gyakoriságát egy hétfokozatú Likert-skálán kellett értékelni a válaszadóknak (1=soha; 7=mindig). A statisztikai próbát, és a csoportmediánok kiszámítását a fent ismertetett módon elvégeztük, és a **93-94. ábrán** látható eredményt kaptuk. A rangpontszámok átlagában mindkét változó esetében csak néhány tizedes eltérés van, mely nem tekinthető különbségnek. Ezt alátámasztják a szignifikanciák is. A boldogság esetében p=0,976; U=6918,0; az optimizmus esetében p=0,965; U=6910,0. A p értékek majdnem elérik az egy egészet, mely teljes egyezőséget jelent. Ugyanez a néhány tizedes eltérés figyelhető meg a két változó esetében az átlagoknál és a csoport mediánoknál is. Ezen eredmények alapján kijelenthetjük, hogy a boldogság és az optimizmus érzésének gyakoriságában nincs szignifikáns különbség a két csoport között, így a hipotézist elvetjük.

93.	ábra:	3.	hipotézis	vizsgálata
-----	-------	----	-----------	------------

	Ranks												
	Müszakozik_e	N	Mean Rank	Sum of Ranks									
boldog	nem műszakozik (de vagy nappal)	67	137,25	9196,00									
	műszakozik	207	137,58	28479,00									
	Total	274											
optimista	nem műszakozik (de vagy nappal)	67	137,87	9237,00									
	műszakozik	207	137,38	28438,00									
	Total	274											

	boldog	optimista
Mann-Whitney U	6918,000	6910,000
Wilcoxon W	9196,000	28438,000
Z	-,030	-,044
Asymp. Sig. (2-tailed)	,976	,965

Test Statistics^a

a. Grouping Variable: Müszakozik_e

Case Summaries									
Müszakozik_e	Müszakozik_e								
nem műszakozik	N	67	67						
(de vagy nappal)	Mean	4,46	4,34						
	Median	5,00	4,00						
	Grouped Median	4,55	4,39						
	Std. Deviation	1,418	1,638						
műszakozik	Ν	207	207						
	Mean	4,47	4,32						
	Median	4,00	4,00						
	Grouped Median	4,47	4,37						
	Std. Deviation	1,420	1,723						
Total	Ν	274	274						
	Mean	4,47	4,33						
	Median	4,00	4,00						
	Grouped Median	4,49	4,37						
	Std. Deviation	1,417	1,699						

94. ábra: 3. hipotézis csoport mediánjai

H4: *Feltételezem, hogy a két csoport között jelentős különbség van a depresszió és a szorongás érzetében.* A két érzés gyakoriságát egy hétfokozatú Likert-skálán kellett értékelni a válaszadóknak (1=soha; 7=mindig). A statisztikai próbát, és a csoportmediánok kiszámítását a fent ismertetett módon elvégeztük, és a **95-96. ábrán** látható eredményt kaptuk. A depresszió esetében a rangpontszámok átlaga a nem éjszakázóknál 130,99; az éjszaka is dolgozóknál 139,61; tehát az éjszaka nem dolgozóknál ritkábban fordul elő ez a tünet. A szorongás esetében is hasonló irányú eltérést találtunk: a tünet rangpontszám átlaga a nem éjszakázóknál 133,17; az éjszakázóknál 138,9 (ne felejtsük a Likert-skála irányát nézni: 1=soha nem fordul elő az adott tünet!!! -> tehát ez a jobb állapot). Mind a két tünet ritkábban fordul elő az éjszaki műszakban egyáltalán nem dolgozóknál, azonban a szignifikanciák nem jeleznek jelentős különbséget a két csoport között (p=0,423; U=6498,5 és p=0,601; U=6644,5). Az átlagokban és a csoport mediánokban is minimális különbség figyelhető meg, így az eredmények alapján a hipotézist elvetjük.

95. ábra: 4. hipotézis vizsgálata

	Müszakozik_e	N	Mean Rank	Sum of Ranks								
depresszió	nem műszakozik (de vagy nappal)	67	130,99	8776,50								
	műszakozik	207	139,61	28898,50								
	Total	274										
szorong	nem műszakozik (de vagy nappal)	67	133,17	8922,50								
	műszakozik	207	138,90	28752,50								
	Total	274										

Ranks

Test Statistics^a

	depresszió	szorong
Mann-Whitney U	6498,500	6644,500
Wilcoxon W	8776,500	8922,500
Z	-,801	-,523
Asymp. Sig. (2-tailed)	,423	,601

a. Grouping Variable: Müszakozik_e

96. ábra: 4. hipotézis csoport mediánjai

Case Summaries									
Müszakozik_e		depresszió	szorong						
nem műszakozik	N	67	67						
(de vagy nappal)	Mean	2,37	3,03						
	Median	2,00	3,00						
	Grouped Median	1,95	2,78						
	Std. Deviation	1,565	1,687						
műszakozik	Ν	207	207						
	Mean	2,54	3,15						
	Median	2,00	3,00						
	Grouped Median	2,19	2,94						
	Std. Deviation	1,566	1,708						
Total	Ν	274	274						
	Mean	2,50	3,12						
	Median	2,00	3,00						
	Grouped Median	2,12	2,90						
	Std. Deviation	1,565	1,701						

Case Summaries

Kruskal-Wallis-próba

Összetett kontrollcsoportos vizsgálatoknál alkalmazzuk, mivel három, vagy annál több részmintát hasonlít össze. Ordinális (rangsorolt) adatok esetén használjuk, a mediánt hasonlítja össze. Ezt a próbát alkalmazzuk akkor is, ha folytonos változó esetén a változó nem normál eloszlású (varianciaanalízis helyett). Ha p<0,05 -> a részminták jelentősen különböznek

egymástól az adott rangpontszám tekintetében. Ennél a vizsgálatnál is értelmezni kell a rangpontszám átlagokat. Minél kisebb ez az érték, annál inkább a lista elején helyezkednek el a részmintába tartozó egyének (*Falus és Ollé 2008*). Az eredmények értelmezésénél itt is figyelembe kell venni a Likert-skála irányát!

Példaként nézzük meg, hogy az egyes műszakbeosztású csoportok között jelentős különbség van-e a fejfájás és az alvási problémák előfordulásának gyakoriságában A két tünet előfordulásának gyakoriságát egy négyfokozatú Likert-skálán kellett bejelölni a válaszadóknak (0=soha; 3=gyakran).

SPSS-ben a következő parancssor követésével végezhetjük el a próbát: Analyze -> Nonparametric Tests -> Legacy Dialogs -> K Independent Samples

A megjelenő kis ablak bal oldalából mozgassuk át a kis nyíllal a fejfájás és az alvási problémák változókat a jobb oldali Test Variable List mezőbe (ide tetszőleges számú ordinális változót mozgathatunk át egyszerre), majd a Grouping Variable mezőbe a munkarend változót, mivel ez mutatja meg, hogy a vizsgálatban résztvevő személyek milyen műszakbeosztásban dolgoznak. (97. ábra)

ta *10.ora_FEI	LADAT_Kruskal_V	Vallis_proba.sav	[DataSet1] - I	BM SPSS Statis	tics Data Editor									- 0	×
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze	Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u>	tilities Add- <u>o</u> r	ns <u>W</u> indow	Help						Kis méret	1
😂 H			¥ 🌃		le H			1	M 🕗 🌑	ABG					
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role				
1	sorszám	Numeric	8	0		None	None	8	🚎 Right	🛷 Scale	🔪 Input				-
2	neme	Numeric	8	0		{1, nő}	None	8	遭 Right	\delta Nominal	💊 Input				
3	életkora	Numeric	8	0		None	None	8	疆 Right	🛷 Scale	🔪 Input				
4	BMI	Numeric	8	1		None	None	8	遭 Right	🛷 Scale	💊 Input				
5	BMI_kategória	Numeric	8	0		{1, sovány (None	8	端 Right	\delta Nominal	🔪 Input				
6	munkarend	Numeric	8	0		{1, állandó d	None	8	遭 Right	\delta Nominal	💊 Input				
7	Müszakozik	Numeric	8	0		{1, nem mũ	None	8	疆 Right	🙈 Nominal	🔪 Input				
8	egészségi	Numeric	8	0		None	None	8	遍 Right	📲 Ordinal	S Input				
9	krónikus_be	Numeric	8 🛃	Tests for Seve	ral Independent San	nples						×			
10	fejfájás	Numeric	8												
11	alvási_probl	Numeric	8						Test Variable List			Exact			
12	gyomorésé	Numeric	8	BMI BMI kete sé				_	fejfájás	(Options			
13	gyors_szívd	Numeric	8	bmi_kalego	na				alvasi_proble	STITAK			·		
14	hátfájás	Numeric	8	Müszakozik	e										
15	gyengeség	Numeric	8	egészségi_	állapot_önértékelé:	se									
16	hasmenés	Numeric	8	krónikus_be	tegség				Grouping Variable	9:					
17	pszichoszo	Numeric	8	gyomorese	_gyomortajas			¥	munkarend(? ?)						
18	stressz_öss	Numeric	8	hátfájás	obogas			*	Define Range						
19	kiégés_átlag	Numeric	8												
20	kiégés_kate	Numeric	8	est Type											
21	testsúly_me	Numeric	8	Kruskal-Wa	llis H 📃 Media	in									
22	fáradtság	Numeric	8	<u>Jonckheere</u>	-Terpstra										
23	depresszió	Numeric	8				OK	Paste	Reset Cancel	Help					
24	jonapja_volt	Numeric	8				OK		Cost Conter	Trop					
25	kiégett	Numeric	8	0		None	None	8	端 Right	Ordinal	🔪 Input				
26	érzelmileg	Numeric	8	0		None	None	8	這 Right	Ordinal	S Input				
27	boldog	Numeric	8	0		None	None	8	端 Right	Ordinal	S Input				
28	szorong	Numeric	8	0		None	None	8	遭 Right	Ordinal	S Input				
29	értéktelen	Numeric	8	0		None	None	8	端 Right	Ordinal	🦒 Input				
30	elkopott	Numeric	8	0		None	None	8	遭 Right	Ordinal	S Input				
24	4	Montesia	0	0		Mana	Mana	0	TE Dista	d Outinal	A land				•
Data View	Variable View														

97. ábra: Kruskal-Wallis-próba kezelőfelülete

Ezután kattintsunk a Define Range gombra. Itt kell megadni az összehasonlítandó csoportok számát. Nézzük meg a Variable View nézetben, hogy a munkarend változónál hány kategóriát kódoltunk be. Láthatjuk, hogy összesen öt féle műszakbeosztás van, így ez az öt fogja képezni

az összehasonlítandó csoportokat. A Minimum mezőbe írjunk egyest, a Maximum-ba 5-t (**98. ábra**), majd kattintsunk a Continue gombra.

🍓 *10.ora_FE	LADAT_Kruskal_W	/allis_proba.sav [[DataSet1] - II	BM SPSS Statis	itics Data Editor								-	- 0	\times
<u>F</u> ile <u>E</u> dit	⊻iew <u>D</u> ata	Transform	<u>A</u> nalyze I	Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u> t	ilities Add- <u>o</u> r	ns <u>W</u> indow	<u>H</u> elp							
🔁 H			<u>المجار</u>	* =	M		- S	1	4 📀 🌑	ABG					
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role				
1	sorszám	Numeric	8	0		None	None	8	🗃 Right	🛷 Scale	🦒 Input				
2	neme	Numeric	8	0		{1, nő}	None	8	🚟 Right	\delta Nominal	🦒 Input				
3	életkora	Numeric	8	0		None	None	8	🗃 Right	🛷 Scale	🔪 Input				
4	BMI	Numeric	8	1		None	None	8	🗮 Right	🛷 Scale	🦒 Input				
5	BMI_kategória	Numeric	8	0		{1, sovány (None	8	🗃 Right	\delta Nominal	🔪 Input				
6	munkarend	Numeric	8	0		{1, állandó d	None	8	🗮 Right	\delta Nominal	🦒 Input				
7	Müszakozik	Numeric	8	0		{1, nem mű	None	8	Right	\delta Nominal	🔪 Input				
8	egészségi	Numeric	8	0		None	None	8	■ Right	J Ordinal	🦒 Input				
9	krónikus_be	Numeric	8 t 🔁	Tests for Seve	ral Independent Sam	ples						×	1		
10	fejfájás	Numeric	8												
11	alvási_probl	Numeric	8				- D		Toot Voriable List			Exact			
12	gyomorésé	Numeric	8	BMI			Several	Independent	Sample X			Ontions			
13	gyors_szívd	Numeric	8	BMI_Katego	na		Range for	Grouping Va	riable	imak		Optonom			
14	hátfájás	Numeric	8 🏅	Müszakozik	e		Minimum	1							
15	gyengeség	Numeric	8	egészségi	állapot_önértékelés	e									
16	hasmenés	Numeric	8 🤳	krónikus_b	etegség		Maximum	5	IE	e:					
17	pszichoszo	Numeric	8 4	gyomorésé	_gyomorfájás		Continue	Cancel							
18	stressz_öss	Numeric	8	gyors_szivu hátfájás	obogas		Contand	Cancer	Theip						
19	kiégés_átlag	Numeric	8						Donno ridingo						
20	kiégés_kate	Numeric	8	est Type											
21	testsúly_me	Numeric	8	Kruskal-Wa	llis H 📃 <u>M</u> edia	n									
22	fáradtság	Numeric	8	Jonckheere	-Terpstra										
23	depresszió	Numeric	8				OK	Booto	Concel	Hala					
24	jonapja_volt	Numeric	8				UK	Paste	Cancer Cancer	Help					
25	kiégett	Numeric	8	0		None	None	8	🗃 Right	Ordinal	🔪 Input				
26	érzelmileg	Numeric	8	0		None	None	8	Right	Ordinal	🦒 Input				
27	boldog	Numeric	8	0		None	None	8	🗃 Right	J Ordinal	🦒 Input				
28	szorong	Numeric	8	0		None	None	8	Right	Ordinal	🦒 Input				
29	értéktelen	Numeric	8	0		None	None	8	🗃 Right	J Ordinal	S Input				
30	elkopott	Numeric	8	0		None	None	8	🚎 Right	Ordinal	🦒 Input				
24	4	Museeda	0	0		Mana	Mana	0	The lat	- Continued	A land				•
Data View	Variable View														
											IDM OD	OO Olafiation Descent and in seath	Oreheader	141	

98. ábra: Csoportok definiálása

Ha tudni szeretnénk, hogy a két változónak mennyi volt az átlaga az egész mintában, akkor az Options gombra kattintsunk, és tegyünk pipát a Descriptives elé, majd Continue. Most ennek a műveletnek nincs jelentősége, így a lépést kihagyva kattintsunk az OK gombra. Két táblázat jelenik meg. (99. ábra) Az első táblázatban az öt műszakbeosztás csoportra külön ki van számolva az abba a csoportba tartozó válaszadók elemszáma (N), és a rangpontszám átlag (Mean Rank). Mivel tudjuk, hogy a Likert-skálán a nulla jelentette az adott tünet hiányát, így ebből következik, hogy alacsonyabb rangpontszám átlag azt jelenti, hogy az adott műszakbeosztás csoportban ritkábban fordul elő az adott tünet. A fejfájás esetében a legalacsonyabb rangpontszám átlagot (114,83) az állandó éjszakások csoportjánál találjuk, utánuk következnek az állandó nappalosok (128,5), őket követik a többműszakosok (134,48), majd az állandó délelőttösök és a délelőttös-délutános műszakban dolgozók (160,08). Tehát a fejfájás ennél az utóbbi két csoportnál fordul elő a leggyakrabban. Ilyen módszerrel végig elemezve az alvási problémákat, elmondhatjuk, hogy leggyakrabban a többműszakosoknál fordul elő, mivel az ő rangpontszám átlaguk a legmagasabb (141,71). Azt, hogy van-e jelentős különbség a két tünet előfordulási gyakoriságában az öt csoport között, csak a kis táblázatban lévő szignifikanciákból tudhatjuk meg. A fejfájás esetében p=0,494; Chi-Square=3,396; az alvási problémák esetében p=0,547; Chi-Square=3,065. Ezek alapján elmondhatjuk, hogy a két

előfordulási tünet gyakoriságát tekintve jelentős különbség nincs az egyes műszakbeosztásokban dolgozó ápolók között. A rangpontszám átlagokat, a p és Chi-Square értékeket minden publikációban fel kell tüntetni!

	munkarend	N	Mean Rank
fejfájás	állandó délelőtt	46	153,15
	állandó nappal	21	128,50
	többműszakos	198	134,48
	de és du	6	160,08
	állandó éjszaka	3	114,83
	Total	274	
alvási_problémák	állandó délelőtt	46	129,53
	állandó nappal	21	114,38
	többműszakos	198	141,71
	de és du	6	139,42
	állandó éjszaka	3	139,50
	Total	274	

99. ábra: Kruskal-Wallis-próba eredménye

Ranks

Test Statistics^{a,b}

	fejfájás	alvási_ problémák
Chi-Square	3,396	3,065
df	4	4
Asymp. Sig.	,494	,547

a. Kruskal Wallis Test b. Grouping Variable: munkarend

Mivel ez a statisztikai próba is a mediánok összehasonlításán alapul, így a Mann-Whitneypróbánál ismertetett módon ki kell azokat is számolni. Az eredmények a 100. ábrán láthatók. Részletes elemzéstől eltekintek, de a csoportmediánok (Grouped Median) esetében csak minimális különbség látható, melyet a statisztikai próba szignifikanciája is alátámaszt.

100. ábra: Mediánok

Case Summaries				
munkarend		fejfájás	alvási_problémák	
állandó délelőtt	N	46	46	
	Mean	2,04	1,76	
	Median	2,00	2,00	
	Grouped Median	2,20	1,79	
	Std. Deviation	,988	,993	
állandó nappal	Ν	21	21	
	Mean	1,76	1,57	
	Median	2,00	1,00	
	Grouped Median	1,75	1,53	
	Std. Deviation	1,044	,926	
többműszakos	Ν	198	198	
	Mean	1,84	1,90	
	Median	2,00	2,00	
	Grouped Median	1,88	2,07	
	Std. Deviation	,918	1,076	
de és du	N	6	6	
	Mean	2,17	1,83	
	Median	2,50	2,00	
	Grouped Median	2,25	1,80	
	Std. Deviation	,983	1,329	
állandó éjszaka	N	3	3	
	Mean	1,67	2,00	
	Median	2,00	2,00	
	Grouped Median	1,67	2,00	
	Std. Deviation	,577	,000	
Total	Ν	274	274	
	Mean	1,88	1,85	
	Median	2,00	2,00	
	Grouped Median	1,93	1,97	
	Std. Deviation	,937	1,050	

Most nézzük meg a gyakorlatban, hogyan alkalmas ez a próba a hipotézisek vizsgálatára.

H1: Feltételezem, hogy az egyes munkarendi csoportok között jelentős különbség van a saját egészségi állapot megítélésében. A saját egészségi állapot értékelésére ebben az esetben egy négyfokozatú Likert-skálát alkalmaztunk (1=nagyon rossz; 4=kiváló). A statisztikai próbát, és a mediánok kiszámítását a fent ismertetett módon elvégeztük, és a következő eredményt kaptuk. (101-102. ábra) A rangpontszám átlagok alapján megállapítható, hogy a legjobbnak az állandó éjszakások (185,83), utánuk az állandó délelőttösök (157,61), majd a délelőtt és délután dolgozók (148,33) értékelték egészségi állapotukat, de a szignifikancia (p=0,121; Chi-Square=7,303) alapján nincs jelentős különbség a csoportok között az egészségi állapot önértékelésében. Ezt alátámasztják a csoport mediánok is (102. ábra), így a hipotézist elvetjük.

	Raiks		
	munkarend	N	Mean Rank
egészségi_állapot_	állandó délelőtt	46	157,61
onenekelese	állandó nappal	21	132,74
	többműszakos	198	132,27
	de és du	6	148,33
	állandó éjszaka	3	185,83
	Total	274	

101. ábra: 1. hipotézis vizsgálata 1.

Danke

Test Statistics^{a,b}

	egészségi_ állapot_ önértékelése
Chi-Square	7,303
df	4
Asymp. Sig.	,121

a. Kruskal Wallis Test b. Grouping Variable: munkarend

102. ábra: 1. hipotézis vizsgálata 2.

Case Summaries

ogóczcógi állapot öpórtókolóco

				Grouped	
munkarend	N	Mean	Median	Median	Std. Deviation
állandó délelőtt	46	3,09	3,00	3,11	,661
állandó nappal	21	2,86	3,00	2,85	,478
többműszakos	198	2,84	3,00	2,84	,616
de és du	6	3,00	3,00	3,00	,632
állandó éjszaka	3	3,33	3,00	3,33	,577
Total	274	2,89	3,00	2,89	,619

H2: Feltételezem, hogy az egyes munkarendi csoportok között jelentős különbség van az optimizmus és a boldogság érzetében. Az optimizmus és a boldogság érzetet egy hétfokozatú Likert-skálán kellett bejelölni a válaszadóknak (1=soha; 7=mindig). A statisztikai próbát, és a mediánok kiszámítását a fent ismertetett módon elvégeztük, és a következő eredményt kaptuk. (103-104. ábra) A rangpontszám átlagok alapján megállapítható, hogy a boldogságot leggyakrabban az állandó éjszakások érzik (206,5), legritkábban pedig az állandó nappalosok (118,19). Az optimizmus leginkább a délelőtt és délután dolgozók csoportjánál figyelhető meg (193,17), legkevésbé az állandó éjszakásoknál (115,5). A szignifikanciák alapján megállapítható, hogy sem a boldogság (p=0,319; Chi-Square=4,706), sem az optimizmus (p=0,401; Chi-Square=4,038) érzetében nincs jelentős különbség az egyes műszakbeosztásban dolgozó ápolók csoportja között. Ezt alátámasztják a csoport mediánok is: a boldogság az állandó délelőttösöknél 4,79; az állandó nappalosoknál 4,10; a több műszakosoknál 4,43; a délelőtti és délutáni műszakban dolgozóknál 4,75; az állandó éjszakásoknál 5,67. Láthatjuk, hogy vannak eltérések, de a statisztikai próba nem szignifikáns eredményt hozott. Ennek az lehet az oka, hogy nagyon kevesen vannak az alcsoportokban, és aránytalanul sokan a több műszakosok csoportjában, ami torzíthatja az eredményeket. Ezt az értékelésnél figyelembe kell venni! Az optimizmus esetében a csoport mediánok alakulása: állandó délelőttösök 4,71; állandó nappalosok 3,92; több műszakosok 4,33; délelőtt és délután dolgozók 6,0; állandó éjszakások 4,0. Itt is ugyanaz a megjegyzés érvényes, mint a boldogság esetében! Az előzőek alapján hipotézisünket elvetjük.

	Ranks			
	munkarend	N	Mean Rank	
boldog	állandó délelőtt	46	145,96	
	állandó nappal	21	118,19	
	többműszakos	198	135,93	
	de és du	6	157,50	
	állandó éjszaka	3	206,50	
	Total	274		
optimista	állandó délelőtt	46	143,20	
	állandó nappal	21	126,19	
	többműszakos	198	136,02	
	de és du	6	193,17	
	állandó éjszaka	3	115,50	
	Total	274		

103. ábra:	2.	hipotézis	vizsgálata	1.
------------	----	-----------	------------	----

Test	Statistics ^{a,b}	
------	---------------------------	--

	boldog	optimista
Chi-Square	4,706	4,038
df	4	4
Asymp. Sig.	,319	,401

a. Kruskal Wallis Test b. Grouping Variable:

munkarend

Case Summaries					
munkarend		boldog	optimista		
állandó délelőtt	N	46	46		
	Mean	4,61	4,43		
	Median	5,00	5,00		
	Grouped Median	4,79	4,71		
	Std. Deviation	1,437	1,655		
állandó nappal	Ν	21	21		
	Mean	4,14	4,14		
	Median	4,00	4,00		
	Grouped Median	4,10	3,92		
	Std. Deviation	1,352	1,621		
többműszakos	Ν	198	198		
	Mean	4,44	4,30		
	Median	4,00	4,00		
	Grouped Median	4,43	4,33		
	Std. Deviation	1,434	1,703		
de és du	Ν	6	6		
	Mean	4,83	5,50		
	Median	4,50	6,00		
	Grouped Median	4,75	6,00		
	Std. Deviation	,983	1,871		
állandó éjszaka	N	3	3		
	Mean	5,67	3,67		
	Median	6,00	4,00		
	Grouped Median	5,67	4,00		
	Std. Deviation	,577	2,517		
Total	Ν	274	274		
	Mean	4,47	4,33		
	Median	4,00	4,00		
	Grouped Median	4,49	4,37		
	Std. Deviation	1,417	1,699		

104. ábra: 2. hipotézis vizsgálata 2	ı 2	2
--------------------------------------	-----	---

H3: Feltételezem, hogy az egyes munkarendi csoportok között jelentős különbség van a depresszió és a szorongás érzetében. Ezt a két érzést szintén egy hétfokozatú Likert-skálán kellett bejelölni a válaszadóknak (1=soha; 7=mindig). A statisztikai próbát, és a mediánok kiszámítását a fent ismertetett módon elvégeztük, és a következő eredményt kaptuk. (**105-106. ábra**) A rangpontszám átlagokat megvizsgálva azt látjuk, hogy a depressziót leginkább a többműszakosok érzik (140,1), de magas a délelőtt és délután dolgozók rangpontszám átlaga is (139,08). Legkevésbé az állandó éjszakások szenvednek ettől (108,0). A szorongás leginkább a délelőtt és délután dolgozók életében van jelen (158,0), legkevésbé pedig az állandó éjszakások életében (101,67). Azonban egyik érzés előfordulási gyakorisága sem különbözik jelentős mértékben az egyes műszakbeosztásban dolgozó ápolók csoportjai között (depresszió: p=0,882; Chi-Square=1,178); szorongás: p=0,545; Chi-Square=3,077). A csoport mediánok a következőképpen alakulnak: a depresszió az állandó délelőttösöknél 1,93; az állandó nappalosoknál, a délelőtt és délután, valamint az állandó éjszakásoknál 2,0; a több

műszakosoknál 2,21. A szorongás az állandó délelőttösöknél 2,95; az állandó nappalosoknál 2,38; a több műszakosoknál 2,95; a délelőtt és délután dolgozóknál 4,0; az állandó éjszakásoknál 2,0. (**106. ábra**) Mind a két tünetnél érvényes az előző hipotézisnél is olvasható megállapítás: a csoport mediánok között van ugyan szemmel látható különbség, de a statisztikai próba szignifikanciája alapján elvetjük a hipotézist. Érdemes lenne nagyobb elemszámú csoportokkal is megvizsgálni a kérdést.

Ebből a példából is láthatjuk, hogy az SPSS program elvégzi ennyire eltérő elemszámú csoportok esetében is a próbát, ami értékelhető is, azonban az eredmények közlésénél az ennyire különböző elemszámot meg kell jegyeznünk. Vizsgálatunk ennek ellenére nem hibás, pusztán az eredményeket, és az abból levont következtetéseket kell óvatosabban kezelni!

	munkarend	N	Mean Rank
depresszió	állandó délelőtt	46	130,17
	állandó nappal	21	132,79
	többműszakos	198	140,10
	de és du	6	139,08
	állandó éjszaka	3	108,00
	Total	274	
szorong	állandó délelőtt	46	141,71
	állandó nappal	21	114,48
	többműszakos	198	138,89
	de és du	6	158,00
	állandó éjszaka	3	101,67
	Total	274	

105.	ábra:	3.	hipotézis	vizsgálata	1.
------	-------	----	-----------	------------	----

Ranks

Test Statistics^{a,b}

	depresszió	szorong
Chi-Square	1,178	3,077
df	4	4
Asymp. Sig.	,882	,545

a. Kruskal Wallis Test

b. Grouping Variable: munkarend

Case Summaries									
munkarend		depresszió	szorong						
állandó délelőtt	N	46	46						
	Mean	2,39	3,22						
	Median	2,00	3,00						
	Grouped Median	1,93	2,95						
	Std. Deviation	1,666	1,725						
állandó nappal	Ν	21	21						
	Mean	2,33	2,62						
	Median	2,00	2,00						
	Grouped Median	2,00	2,38						
	Std. Deviation	1,354	1,564						
többműszakos	Ν	198	198						
	Mean	2,55	3,15						
	Median	2,00	3,00						
	Grouped Median	2,21	2,95						
	Std. Deviation	1,569	1,697						
de és du	Ν	6	6						
	Mean	2,50	3,67						
	Median	2,00	3,50						
	Grouped Median	2,00	4,00						
	Std. Deviation	1,643	2,251						
állandó éjszaka	Ν	3	3						
	Mean	2,00	2,33						
	Median	1,00	2,00						
	Grouped Median	2,00	2,00						
	Std. Deviation	1,732	1,528						
Total	Ν	274	274						
	Mean	2,50	3,12						
	Median	2,00	3,00						
	Grouped Median	2,12	2,90						
	Std. Deviation	1,565	1,701						

106. ábra: 3. hipotézis vizsgálata 2.

Khi-négyzet-próba (χ^2 -próba)

Nominális (megállapítható) adatok esetén alkalmazzuk különbözőség és összefüggés vizsgálatára is, más néven kereszttábla-elemzésnek hívjuk. Nominális adatoknál ez az egyetlen (kontrollcsoportos, próba, amit alkalmazhatunk, bármilyen kutatásról összetett kontrollcsoportos) legyen is szó. Azonban arra figyelni kell, hogy legfeljebb hatértékű nominális változónk legyen, mivel ennél több megnehezíti a próba kiértékelését. Több feltételnek kell teljesülnie ahhoz, hogy ezt a próbát elvégezhessük. A megfigyeléseknek függetlennek kell lenniük, ami azt jelenti, hogy egyik válaszadó sem szerepelhet egyszerre két vagy több kategóriában/cellában. Minden cellában legalább egy főnek szerepelnie kell. A cellák maximum 20%-ában lehet a várható érték ötnél kisebb. A kereszttáblának több mint öt cellából kell állnia. Ha egy 2*2-es kereszttáblánál az egyik cella elvárt értéke 5 alatt van, akkor az SPSS automatikusan Fisher Exact tesztet végez (ld. később!). Az egyes cellák elvárt értékeit úgy számoljuk ki, hogy a sorösszesen-t megszorozzuk az oszlopösszesen-nel, majd elosztjuk a teljes elemszámmal [pl. a bal felső cellára: (6x5):11=2,7]. Ugyanilyen módon kiszámoljuk az összeset *(Sajtos és Mitev 2007)*. Az eredmények zárójelben láthatók. (**107. ábra)** Mindig a független változó szerint számítjuk a százalékokat a függő változóra. Például a munkahelyi stressz mértéke (független változó) szerint vizsgáljuk a krónikus betegség, mint függő változó megoszlását.

Stressz/ Kiégés	Krónikus betegség nincs	Krónikus betegség van	Összesen
Alacsony	1 (2,7)	5 (3,3)	6
Magas	4 (2,3)	1 (2,7)	5
Összesen	5	6	11

107. ábra: Példa kereszttáblára

Azt, hogy a krónikus betegség előfordulása különbséget mutat-e az alacsony és magas munkahelyi stressz csoport között, a Khi-négyzet-próbával tudjuk megállapítani. SPSS-ben a következő útvonal követésével jutunk el a próbához: Analyze -> Descriptive Statistics -> Crosstabs.

Vizsgáljuk meg, hogy az alacsony és magas munkahelyi stressz csoport között van-e különbség a krónikus betegségek tekintetében! A fenti algoritmus követésével nyissuk meg a statisztikai próbát! A megjelenő ablak bal oszlopából mozgassuk át a kis nyíllal a kronikus_betegség változót a Row(s) cellába (sorok), majd a stressz_kategoria változót a Column(s) cellába (oszlop) (**108. ábra**), majd kattintsunk a Statistics gombra, és tegyünk pipát a Chi-square elé (**109. ábra**), végül kattintsunk a Continue gombra.

108. ábra: Khi-négyzet-próba kezelőfelülete

tan 10.ora_FEI	LADAT_Khi_pro	ba.sav [DataSet1]	- IBM SPSS Stat	tistics Data Editor	07. at	/1 a. 1	in neg	Syzer P	1004	Juan	seres me	nuje				- 0 ×
<u>File</u> Edit	<u>View</u> Dat	ta <u>T</u> ransform	Analyze D	Direct Marketing	Graphs	Utilities Ad	d-ons <u>W</u> indo	ow <u>H</u> elp								
			~		L A	*					ABC					
		•						~\equiv	14 🔍		•					
	1	1	1	11 11		1	1r	1			2	ř	ř		Visib	le: 29 of 29 Variables
	nem	életkor	iskolai_végze ttség	e BMI_kategori : a	stressz_kate goria	kronikus_be egség	t dohányzás	alkoholfogya ztás	s altatószedés	nyugtatós: és	zed alvásmennyis ég	Nyugodt	Kipihenten_é bred	Többször_felé bred	Nehéz_elalvá I s	Fáradtan_ébr renc ed
1		2 46	4				-	-						0	0	0 📥
2	1	2 39	5	Crosstabs									~	0	0	0
3		1 59	4	-				F	R <u>o</u> w(s):				Exact	1	0	0
4		2 56	1	nem 💫 nem			to Creataba	Chastiation	A	· · · é	ge? [kronikus_bete	egség]	Claticities	0	0	0
5		2 57	4	életkor			Clossians:	Statistics		^			Stausucs	0	1	0
6		2 50	5	BMI kat	vegzeuseg egoria		Chi-squa	re	Correlatio	ons			C <u>e</u> lls	0	0	0
7		2 51	5	💫 Ön doha	ányzik? [dohár	nyzás]	Nominal		Ordinal				Eormat	0	0	0
8		1 45	5	🥚 💰 alkoholf	ogyasztás		Conting	ency coefficient	Gamma				Style	0	0	0
9		2 30	4	altatószi	edés		Phi and	Cramer's V	Somers'	d			Bootstr <u>a</u> p	0	0	0
10		2 58	5	alvásme	ennviséa		Lambda		Kendall'	s tau-h				0	0	0
11		2 49	2	Nyugodi	t		Uncertai	intv coefficient	Kendall'	s tau-c		Next		1	1	1
12		2 55	2	🔋 💰 Kipihent	ten_ébred		<u></u>							0	0	0
13		2 46	4	Többszó	or_felébred		-Nominal by	Interval	📃 <u>K</u> appa					1	0	1
14	_	2 34	2	E Fáradta	elaivas n ébred		🛄 Eta		Risk					1	0	0
15	_	2 59	2						McNemar					1	0	0
16		2 50	4	Disalau a			Cochran's	s and Mantel-H	aenszel statistic	S B)	yers			0	0	0
1/		2 55	4	Display C	austered <u>p</u> ar t	anans	Test com	mon odds ratio	equals: 1					1	1	1
18	_	2 40	5	Suppres:	siables		_							0	0	1
19	_	2 42	5				Cor	Cano	el Help					0	1	0
20	-	2 20	4											0	0	
21		2 42	4	5	1		2		2 1		1 1		0		0	
22		2 47	3) D	1		3 10		2 1		1 2		1 1	1	0	
23		2 50	4	4	1		4		2 1		1 2			0	0	0
24	-	2 40		2	1		1 .	1 4	- I I I		1 2		1	0	0	0
25	-	2 42			1		1 3	2	, i , ,		2 2			0	1	1
20		2 35		2	1		1 1	1 1	1 1		1 2			1	0	1
20		2 24		2							4 0			-	0	
		_			_	_		***		_						4
Data View	Variable Viev	v														
												IBM SPSS	Statistics Proce	ssor is readv	Unicode	ON

109. ábra: Khi-négyzet-próba Statistics menüje

Ezután visszatérünk a **108. ábrán** látható ablakhoz. Most kattintsunk a Cells gombra, és tegyünk pipát a Row, Column és Total elé. (**110. ábra**) Ez fogja megmutatni az abszolút és relatív gyakoriságokat.

tan 10.ora_FEL	ADAT_Khi_proba	.sav [DataSet1] -	IBM SPSS Stati	stics Data Editor												- 0	\times
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze Di	irect <u>M</u> arketing	Graphs Utili	ties Add- <u>o</u> n	s <u>W</u> indow	Help									
e			- 17	<u>↓</u> <u></u>		*				ARC							
									14 🔍 '		1						
															Visib	le: 29 of 29 Vari	ables
	nem	életkor i	skolai_végze	BMI_kategori s	tressz_kate kro	onikus_bet o	dohányzás alko	oholfogyas a	ltatószedés ny	yugtatószed a	Ivásmennyis	Nyugodt	Kipihenten_é	Többször_felé	Nehéz_elalvá l	Fáradtan_ébr re	enc
			ttség	а	goria	egség		ztás		és	ég		bred	bred	s	ed	
1	2	46	4	Crosstahs		-							×	0	0	0	
2	2	39	5	Crosscabs										0	0	0	
3	1	59	4			Crossta	bs: Cell Display			×			Exact	1	0	0	
4	2	56	1	an em							onikus_bete	gség]	Platiation	0	0	0	
5	2	57	4	eletkor		-Counts-	2	e-test						0	1	0	
6	2	50	5	BMI kate	ooria	✓ Obse	rved [Compare	column proporti	ions			Cells	0	0	0	
7	2	51	5	💫 Ön dohái	nyzik? (dohányzá	s] 🔲 Expec	ted	🔲 Adjust p	-values (Bonfen	roni method)			<u>F</u> ormat	0	0	0	
8	1	45	5	alkoholfo 🗞	gyasztás	Hide :	small counts						Style	0	0	0	
9	2	30	4	altatósze	dés	Less	than 5						Bootstr <u>a</u> p	0	0	0	
10	2	58	5	 A alvásmer 	nviséa	-Barcanta		Desiduala						0	0	0	
11	2	49	2	💫 Nyugodt	1.1	Fercenta	yes r					Next		1	1	1	
12	2	55	2	🔒 💑 Kipihente	n_ébred	Row		Unstandar	dized					0	0	0	
13	2	46	4	Többszöl	_felébred	Colur	nn [<u>S</u> tandardiz	ea teo deodine d					1	0	1	
14	2	34	2	Eáradtan	ébred	I total		<u>A</u> djusted s	tandardized					1	0	0	
15	2	59	2			Noninteg	er Weights							1	0	0	
16	2	50	4			Roun	d cell counts (Round cas	e weights					0	0	0	
17	2	55	4	Display ci	ustered <u>b</u> ar char	C Trunc	ate cell counts (Truncate care	ase weights					1	1	1	_
18	2	40	5	Suppress	tables	O No ad	just <u>m</u> ents							0	0	1	_1
19	2	42	5	_										0	1	0	-11
20	2	20	4				Continue	Cancel	Help					0	0	0	_1
21	2	42	4	5	1			-			1	0	0	0	0	1	_11
22	2	47	3	5	1	3	1	2	1	1	2	0	0	1	0	1	_
23	2	50	4	4	1	2	1	2	1	1	2	1	1	0	0	0	_
24	2	46	4	2	1	1	1	2	1	1	2	1	0	0	0	0	_
25	2	42	5	3	1	1	1	1	1	1	3	1	1	0	0	0	-11
26	2	35	4	2	1	1	2	2	2	2	2	0	0	0	1		-11
27	2	24	5	2	1	1	1	1	1	1	2	0	0	1	0	1	
Data View	Variable View																

110. ábra: Abszolút és relatív gyakoriságok kiszámítása Khi-négyzet-próbához

Ezután kattintsunk a Continue, majd az OK gombra. Az Output ablakban megjelenik a statisztikai próba eredménye. (**111. ábra**)

			stressz_l	kategoria	
			alacsony munkahelyi stressz	magas munkahelyi stressz	Total
Van-e krónikus	Nincs krónikus	Count	52	111	163
belegseger	peregsegern	% within Van-e krónikus betegsége?	31,9%	68,1%	100,0%
		% within stressz_kategoria	65,8%	66,1%	66,0%
	lgen, egy krónikus	Count	21	33	54
	belegsegem van	% within Van-e krónikus betegsége?	38,9%	61,1%	100,0%
		% within stressz_kategoria	26,6%	19,6%	21,9%
	lgen, több krónikus	Count	6	24	30
	betegsegem van	% within Van-e krónikus betegsége?	20,0%	80,0%	100,0%
		% within stressz_kategoria	7,6%	14,3%	12,1%
Total		Count	79	168	247
		% within Van-e krónikus betegsége?	32,0%	68,0%	100,0%
		% within stressz_kategoria	100,0%	100,0%	100,0%

111. ábra: Khi-négyzet-próba eredménye

Van-e krónikus betegsége? * stressz_kategoria Crosstabulation

Chi-Square Tests

	Value	df	Asymp, Sig. (2-sidea)
Pearson Chi-Square	3,165ª	2	,206
Likelihood Ratio	3,301	2	,192
Linear-by-Linear Association	,452	1	,501
N of Valid Cases	247		

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 9,60.

Az első táblázat az abszolút és relatív gyakoriságokat mutatja, azonban az értékelésre nagyon figyelni kell! Mivel az alacsony és magas munkahelyi stressz csoportokat kívánjuk összehasonlítani, így a következőképpen végezzük az elemzést: az alacsony munkahelyi stresszesek 65,8%-nak nincs krónikus betegsége, 26,6%-nak van egy, míg 7,6%-nak több krónikus betegsége (tehát az alsó % sort kell nézni!). A Count az abszolút gyakoriságot jelenti (fő). A második kis táplázat tartalmazza a szignifikancia értéket, ami jelen esetben p=0,206 (a felső sort – Pearson Chi-Square – kell nézni), tehát a krónikus betegségek előfordulásának gyakorisága nem különbözik jelentős mértékben az alacsony és magas munkahelyi stressz csoport között. Publikációban elegendő a p értékek feltüntetése, és a relatív gyakoriságokról pedig diagramot kell készíteni a szemléltetés végett! A kis táblázat alatt megjelenik egy fontos mondat: "0 cells (0,0%) have expected count less than 5. The minimum expected count is 9,60.", tehát egyik cella sem tartalmaz 5-nél kevesebb elemszámot, és az elvárt legkisebb mennyiség

9,6; így a Khi-négyzet-próba értelmezhető, elfogadható, és nem került elvégzésre automatikusan a Fisher Exact teszt.

Nézzük meg konkrét példákon keresztül, hogy hogyan alkalmas a statisztikai próba hipotézisek vizsgálatára! Összefüggés- és különbözőségvizsgálatok is szerepelnek a példák között.

H1: *Feltételezem, hogy a munkahelyi stressz mértéke és a dohányzás összefüggést mutat a vizsgált személyek körében.* A statisztikai próbát elvégeztük a fent ismertetett módon, és a következő eredményt kaptuk. (**112. ábra**) Az alacsony munkahelyi stresszesek 46,8%-a, és a magas munkahelyi stresszesek 39,9%-a soha nem dohányzott. Már leszokott az alacsony stresszesek 26,6%-a, a magas stresszesek 25,6%-a. Alkalmanként dohányzik az alacsony stresszesek 11,4%-a, a magas stresszesek 9,5%-a. Rendszeres dohányos az alacsony stresszesek 15,2%-a, a magas stresszesek 25%-a. Ezen eltérések ellenére a Pearson Chi-Square (p)=0,364, tehát nincs jelentős különbség a dohányzás gyakoriságát tekintve a két csoport között. Ennél a vizsgálatnál sincs olyan cella, ami öt elemszámnál kevesebbet tartalmaz.

112.	ábra:	1.	hipotézis	vizsgálata
------	-------	----	-----------	------------

Ön (dohányzik?	* stressz_	_kategoria	Crosstabulation
------	------------	------------	------------	-----------------

	on donali		Stabulation		
			stressz_k	ategoria	
			alacsony munkahelyi stressz	magas munkahelyi stressz	Total
Ön dohányzik?	Nem, soha nem is	Count	37	67	104
	donanyoztam	% within Ön dohányzik?	35,6%	64,4%	100,0%
		% within stressz_kategoria	46,8%	39,9%	42,1%
	Nem, már leszoktam	Count	21	43	64
		% within Ön dohányzik?	32,8%	67,2%	100,0%
		% within stressz_kategoria	26,6%	25,6%	25,9%
	lgen, alkalmanként	Count	9	16	25
		% within Ön dohányzik?	36,0%	64,0%	100,0%
		% within stressz_kategoria	11,4%	9,5%	10,1%
	lgen, rendszeresen	Count	12	42	54
		% within Ön dohányzik?	22,2%	77,8%	100,0%
		% within stressz_kategoria	15,2%	25,0%	21,9%
Total		Count	79	168	247
		% within Ön dohányzik?	32,0%	68,0%	100,0%
		% within stressz_kategoria	100,0%	100,0%	100,0%

Chi-Square	Tests
------------	-------

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3,188 ^a	3	,364
Likelihood Ratio	3,334	3	,343
Linear-by-Linear Association	2,362	1	,124
N of Valid Cases	247		

 a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 8,00. A szemléltetés végett ennél a hipotézisnél bemutatok egy, a relatív gyakoriságokból készített diagramot. (**113. ábra**)

113. ábra: Dohányzási gyakoriság megoszlása (N=247)

H2: *Feltételezem, hogy a munkahelyi stressz mértéke összefügg a napi alvásmennyiséggel és altatószedéssel.* Ez egy összetett hipotézis. Külön vizsgáljuk az alvásmennyiséget és az altatószedést. A **114. ábrán** láthatjuk, hogy naponta öt vagy annál kevesebb órát alszik az alacsony munkahelyi stresszesek 7,6%-a, a magas munkahelyi stresszesek 23,2%-a. Naponta 6-7 órát alszik az alacsony stresszesek 74,7%-a, a magas stresszesek 69,6%-a. Nyolc óránál többet alszik az alacsony stresszesek 17,7%-a, a magas stresszesek 7,1%-a. A p=0,001; tehát a hipotézis ezen fele igazolódott: a munkahelyi stressz összefügg a napi alvásmennyiséggel.

Crosstab					
			stressz_ł	ategoria	
			alacsony munkahelyi stressz	magas munkahelyi stressz	Total
alvásmennyiség	5 órát, vagy annál	Count	6	39	45
L]	Keveseppel	% within alvásmennyiség	13,3%	86,7%	100,0%
		% within stressz_kategoria	7,6%	23,2%	18,2%
	6-7 órát	Count	59	117	176
		% within alvásmennyiség	33,5%	66,5%	100,0%
		% within stressz_kategoria	74,7%	69,6%	71,3%
	8 órát, vagy annál többet	Count	14	12	26
		% within alvásmennyiség	53,8%	46,2%	100,0%
		% within stressz_kategoria	17,7%	7,1%	10,5%
Total		Count	79	168	247
		% within alvásmennyiség	32,0%	68,0%	100,0%
		% within stressz_kategoria	100,0%	100,0%	100,0%

114. ábra:	2.	hipotézis	vizsgálata	1.
------------	----	-----------	------------	----

94

Chi-Square	Tests
------------	-------

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13,099 ^a	2	,001
Likelihood Ratio	13,871	2	,001
Linear-by-Linear Association	13,046	1	,000
N of Valid Cases	247		

 a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 8,32.

Az altatószedést vizsgálva azt találtuk (**115. ábra**), hogy az alacsony munkahelyi stresszesek 93,7%-a soha nem szed altatót, a magas stresszeseknél ez az arány 87,5%. Ritkán szed altatót az alacsony stresszesek 5,1%-a, a magas stresszesek 10,1%-a; és rendszeresen az alacsony stresszesek 1,3%-a és a magas stresszesek 2,4%-a. A szignifikancia alapján (p=0,337) megállapíthatjuk, hogy nincs összefüggés a munkahelyi stressz mértéke és az altatószedés között. A hipotézis ezen fele nem nyert igazolást. Mivel a hipotézis első fele igaz, a második fele nem, így a hipotézis részben igazolódott.

Crosstab					
			stressz_k	ategoria	
	1		alacsony munkahelyi stressz	magas munkahelyi stressz	Total
altatószedés	soha	Count	74	147	221
		% within altatószedés	33,5%	66,5%	100,0%
		% within stressz_kategoria	93,7%	87,5%	89,5%
	ritkán	Count	4	17	21
		% within altatószedés	19,0%	81,0%	100,0%
		% within stressz_kategoria	5,1%	10,1%	8,5%
	rendszeresen	Count	1	4	5
		% within altatószedés	20,0%	80,0%	100,0%
		% within stressz_kategoria	1,3%	2,4%	2,0%
Total		Count	79	168	247
		% within altatószedés	32,0%	68,0%	100,0%
		% within stressz_kategoria	100,0%	100,0%	100,0%

115. ábra: 2.	. hipotézis	vizsgálata	2.
---------------	-------------	------------	----

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2,174 ^a	2	,337
Likelihood Ratio	2,360	2	,307
Linear-by-Linear Association	1,891	1	,169
N of Valid Cases	247		

 a. 2 cells (33,3%) have expected count less than 5. The minimum expected count is 1,60. H3: *Feltételezem, hogy a munkahelyi stressz csoportok között különbség van a heti sport mennyiségét tekintve*. A statisztikai próbát a fent ismertetett módon elvégeztük, és a következő eredményt kaptuk. (**116. ábra**) Az alacsony munkahelyi stresszesek 45,6%-a, a magas munkahelyi stresszesek 57,7%-a nem sportol semennyit. Heti 1-2 órát sportol az alacsony stresszesek 39,2%-a, a magas stresszesek 26,8%-a. Heti 3-4 órát sportol az alacsony stresszesek 13,9%-a, a magas stresszesek 10,7%-a. Hetente 5, vagy annál több órát sportol az alacsony stresszesek 1,3%-a, a magas stresszesek 4,8%-a. A szignifikancia értéke p=0,091, így a hipotézist elvetjük. Azt mondhatjuk, hogy a heti sport mennyiségét tekintve nincs szignifikáns különbség az alacsony és a magas munkahelyi stressz csoport között.

110. abra. 5. mpotezis vizsgalata

			stressz_k	kategoria	
			alacsony munkahelyi stressz	magas munkahelyi stressz	Total
heti_sport	Nem sportolok 1 órát	Count	36	97	133
	sem	% within heti_sport	27,1%	72,9%	100,0%
		% within stressz_kategoria	45,6%	57,7%	53,8%
	Heti 1-2 órát	Count	31	45	76
		% within heti_sport	40,8%	59,2%	100,0%
		% within stressz_kategoria	39,2%	26,8%	30,8%
	Heti 3-4 órát	Count	11	18	29
		% within heti_sport	37,9%	62,1%	100,0%
		% within stressz_kategoria	13,9%	10,7%	11,7%
	Heti 5, vagy annál több	Count	1	8	9
	Ulat	% within heti_sport	11,1%	88,9%	100,0%
		% within stressz_kategoria	1,3%	4,8%	3,6%
Total		Count	79	168	247
		% within heti_sport	32,0%	68,0%	100,0%
		% within stressz_kategoria	100,0%	100,0%	100,0%

heti_s	port * stress	z_kategoria	Crosstabulation
--------	---------------	-------------	-----------------

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6,460 ^a	3	,091
Likelihood Ratio	6,748	3	,080,
Linear-by-Linear Association	,553	1	,457
N of Valid Cases	247		

a. 1 cells (12,5%) have expected count less than 5. The minimum expected count is 2,88.

A Fisher Exact tesztet minden 2*2-es kereszttáblánál automatikusan elvégzi az SPSS! Ha ez kiszámításra kerül, akkor a Pearson Chi-Square helyett ennek az értékét kell feltüntetni publikációban, mivel ez pontosabb szignifikancia érték. Az érthetőség kedvéért példának szerepeljen itt az, hogy a nemek között van-e jelentős különbség a munkahelyi stressz mértékét

tekintve? A statisztikai próbát elvégezve látjuk, hogy egy 2*2-es kereszttáblát kaptunk (**117. ábra**), ahol azt látjuk, hogy a férfiak 30,8%-a tartozik az alacsony, míg 69,2%-a a magas munkahelyi stressz csoportba. A nőknél ez az arány 32,1% és 67,9%. A Fisher Exact tesztből automatikusan elkészül az egy- (Exact Sig 1-sided) és a kétoldali (Exact Sig 2-sided) teszt. Mindkettő értéke (p=0,595 és p=1,000) alapján azt mondhatjuk, hogy a nemek között nincs jelentős különbség a munkahelyi stressz mértékét tekintve, így a hipotézist elvetjük. Ha megnézzük a Pearson Chi-Square értékét (p=0,923), az alapján is elvethető lenne a hipotézis.

			ne	m	
			férfi	nő	Total
stressz_kategoria	alacsony munkahelyi	Count	4	75	79
	stressz	% within stressz_kategoria	5,1%	94,9%	100,0%
		% within nem	30,8%	32,1%	32,0%
		% of Total	1,6%	30,4%	32,0%
	magas munkahelyi	Count	9	159	168
	stressz	% within stressz_kategoria	5,4%	94,6%	100,0%
		% within nem	69,2%	67,9%	68,0%
		% of Total	3,6%	64,4%	68,0%
Total		Count	13	234	247
		% within stressz_kategoria	5,3%	94,7%	100,0%
		% within nem	100,0%	100,0%	100,0%
		% of Total	5,3%	94,7%	100,0%

117. ábra: Khi-négyzet-próba Fisher Exact tesztje

stressz_kategoria * nem Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	,009 ^a	1	,923		
Continuity Correction ^b	,000	1	1,000		
Likelihood Ratio	,009	1	,923		
Fisher's Exact Test				1,000	.595
Linear-by-Linear Association	,009	1	,923		
N of Valid Cases	247				

a. 1 cells (25,0%) have expected count less than 5. The minimum expected count is 4,16.

b. Computed only for a 2x2 table

3.2.2. Összefüggés vizsgálatok

Legalább két, azonos adatfajtába tartozó változó között lehetséges összefüggést vizsgálni egy minta vagy részminta esetén. Már a hipotézisből lehet következtetni arra, hogy melyik az a két változó, amelyek között az összefüggés meglétét keressük. Arra azonban figyelni kell, hogy ne

evidens összefüggést állítsunk fel újra, vagyis olyan változókkal dolgozzunk, amik között nincs eleve meglévő összefüggés.

Összesen hét összefüggés-vizsgálat lézeik (**118. ábra**), azonban ezek közü csak a korrelációszámítással és a Spearman-féle rangkorreláció számítással foglalkozunk, mivel a Khi-négyzet próbát az előző fejezetben már tárgyaltuk, a többi elemzés pedig nem képezi a tananyag részét BSc képzésben.

ÖSSZEFÜGGÉS-VIZSGÁLATOK Van-e szoros összefüggés?									
adatfajták	intomuallum	andinália	nominália						
változók száma	intervalium	orumans	nominalis						
kettő	korrelációszámítás	Spearman-féle rangkorreláció- számítás	Khi-négyzet-próba						
kettő vagy több, mint kettő	regresszióanalízis								
több, mint kettő	parciális korrelációszámítás								
The second s	faktoranalízis								
	klaszteranalízis								

118. ábra: Összefüggés-vizsgálatok

Korreláció számítás

Két – mért, intervallumskálán értelmezett – változó közötti összefüggés vizsgálatára alkalmazzuk. Azt mutatja meg, hogy milyen mértékben határozza meg az egyik változó nagysága a másik változó nagyságát, illetve az összefüggés irányát és erősségét is. Ok-okozati összefüggések feltárására azonban nem alkalmas, tehát csak azt tudjuk megmondani, hogy a két vizsgált változó összefügg-e, de arra nem tudunk választ kapni, hogy mi minek a következménye (pl: a kiégésből következik a munkahelyi stresszforrások magas száma, vagy fordítva) *(Falus és Ollé 2008)*.

Fő mérőszáma a **korrelációs együttható** (jele: r), melynek értéke mínusz 1 és plusz 1 között változik. Ha ezen a tartományon kívüli együtthatót kapunk számításaink során, az hibát jelez! A korrelációs együttható minél közelebb van a két szélső értékhez, annál erősebb az összefüggés. A nulla közeli érték az összefüggés hiányát (korrelálatlanságot) jelenti. Pozitív előjelű korrelációs együttható (pl: r=0,765) azonos irányú, pozitív összefüggést, míg negatív előjelű (pl: r=-0,534) korrelációs együttható a két változó közötti ellentétes összefüggést jelez *(Falus és Ollé 2008)*.

Az eredmények értelmezéséhez itt is elengedhetetlen a szignifikancia kiszámítása. Minél inkább közelít a nullához az értéke, annál nagyobb valószínűségi szintet kapunk, és minél

inkább közelít az egyhez, annál biztosabbak lehetünk benne, hogy a tapasztalt összefüggés a véletlen műve.

Három eset lehetséges az összefüggések vizsgálata során:

- a két változó ugyanannál a vizsgált személynél közel azonos értéket vesz fel, vagyis ha az egyik változó pontszámai magasak, akkor a másiké is (pozitív korrelációs összefüggés);
- az egyik változó magas pontszáma a másik változónál alacsony pontszámmal jár együtt (ellentétes vagy negatív korrelációs összefüggés);
- a két változó között nincs semmilyen kapcsolat (korrelálatlanság) (Falus és Ollé 2008).

SPSS-ben az alábbi útvonal követésével tudjuk elvégezni a próbát: Analyze -> Correlate -> Bivariate

Nézzük meg, hogy az életkor összefüggést mutat-e a BMI-vel (Body Mass Index). A megjelenő ablak bal oldalán található az összes változó felsorolva, amit az adatbázisunk tartalmaz. Mozgassuk át a kis nyíllal a jobb oldali Variables mezőbe az életkor és a BMI változókat (ide tetszőleges számú intervallumskálán mért változót átmozgathatunk, a program automatikusan elvégzi mindegyik között az elemzést). (**119. ábra**)

🍓 11.ora_FEL	ADAT_Korrelac	io.sav [DataSe	t1] - IBM	SPSS Statis	tics Data Edito	r												-	0 X
<u>File</u> Edit	View Data	a <u>T</u> ransfor	m <u>A</u> na	alyze Dir	rect <u>M</u> arketing	<u>G</u> raphs <u>I</u>	tilities Add	ons <u>W</u> indo	w <u>H</u> elp										
								7	At 11	A		ABC							
	Visible: 11 of 11 Variables																		
	sorszám	neme	él	etkora	testsúly	testmagas	BMI	pszichoszom	stressz_ö	ssze kiégé	s_átlag v	végzettség cigi	mennyisé						
								atikus_összp	S				9	var	var	var	var	var	var
1		1	1	20	100	162	27.6	0nt 21		6	4.2	4	2						
2		2	1	52	70	166	25.4	21		3	4,2		0						
3		2	1	27	62	174	23,4	5		J	1,5	5							
4		1	1	39	130	160	🖬 Bivariate	Correlations				×	0						
5			1	63	86	167			Va	ariables:			0						
6	(5	1	37	63	180	🖋 sorszán	n 🛃		👂 életkora		Options	1						
7	2	1	1	49	75	164	💑 neme		6	🖻 BMI		Style	0						
8	22	2	1	40	100	170	testsúly					Bootstrap	0						
9	23	3	1	50	80	170	pszicho.	assag szomatik	-				2						
10	24	1	1	36	60	167	🖋 Hány do	logtól str					0						
11	25	5	1	39	66	158	🖋 kiégés_	átlag					0						
12	26	6	1	36	70	163	legmag	asabb isk 🔤					0						
13	2	7	1	22	58	159	- Correlation					_	0						
14	28	3	1	49	93	179							1						
15	29	9	1	35	64	171	Pearso	i 🔄 Kendali s	tau-o 🔄 Sp	earman			1						
16	30)	1	36	67	174	Test of Sig	nificance					0						
17	3	1	1	45	68	164	<u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> wo-tail </u>	ed 🔘 One-tai <u>l</u>	ed				0						
18	32	2	1	42	80	178							2						
19	33	3	2	45	80	182	✓ Flag sigr	ificant correlati	ons				4						
20	34	1	1	37	65	170		OK F	aste <u>R</u> e	set Can	el Help		1						
21	35	5	1	43	67	173						_	0						
22	30	6	1	32	65	165	23,9	11		4	3,6	4	0						
23	37	7	1	48	72	158	28,8	11		6	4,2	4	0						
24	30	3	1	45	80	164	29,7	17		5	4,6	4	0						
25	39	9	1	49	75	174	24,8	8		1	1,4	2	2						
26	40)	1	52	85	175	27,8	7		3	2,6	2	4						
27	4.		1	46	85	163	32,0	14		4	2,9	4	0						
	4				PR			40											۱.
Data View	Variable View																		
															Intintion Desce			and a Obl	

119. ábra: Korreláció számítás kezelőfelülete

Ha az Options gombra kattintunk, és pipát teszünk a Means and standard deviations elé (majd Continue), akkor a program ezeket is ki fogja számolni. Más beállításra nincs szükség, nyomjuk

meg az OK gombot. Az output ablakban két táblázat jelenik meg. (**120. ábra**) Az első tartalmazza a két változó átlagait: életkor (41,47 év), BMI (26,562), valamint a szórásokat 229 főre. A második táblázat az ún. korrelációs mátrix, benne a korrelációs együtthatóval (Pearson Correlation) és a szignifikancia értékkel. Jelen esetben r=0,267; p<0,000. Láthatjuk, hogy az r előjele pozitív, ez azt jelenti, hogy minél nagyobb az életkor, annál magasabb a BMI. Két csillagot látunk az együttható értéke után, ez azt jelenti, hogy nagyon erős az összefüggés a két változó között (egy csillag gyengébb összefüggést jelent). Ezt az erős összefüggést a szignifikancia értéke is alátámasztja, tehát a feltételezés igazolódott. Láthatjuk, hogy mindkét változó esetében a program elvégezte a saját magával való összefüggés elemzését is, de ennek nincs jelentősége (nem is szerepel ott szignifikancia érték), nem kell értelmezni. Az r és p értékeket minden publikációban fel kell tüntetni, és értelmezni szükséges!

120. ábra: Korreláció	számítás	eredménye
-----------------------	----------	-----------

	Mean	Std. Deviation	Ν
életkora	41,47	9,003	229
BMI	26,562	5,4911	229

Descriptive	Statistics
-------------	------------

Correlatio	ons

		életkora	BMI
életkora	Pearson Correlation	1	,267
	Sig. (2-tailed)		,000
	Ν	229	229
BMI	Pearson Correlation	,267**	1
	Sig. (2-tailed)	,000	
	N	229	229

**. Correlation is significant at the 0.01 level (2-tailed).

Most nézzük meg, hogy kettőnél több intervallumskálán mért változó között hogyan végzi el a program a statisztikai próbát. Nyissuk meg újból a korreláció elemzést a fent megadott útvonal alapján (az előzőleg számolt két változó a Variables mezőben megjelenik), és mozgassuk át a kis nyíllal az életkor és a BMI alá a pszichoszomatikus_összpont és a kiégés_átlag változókat, majd nyomjunk OK gombot. (**121. ábra**)

🖼 11.ora_FEL	11.ors_HELADAI_Korrelacio.sav [DataSet1] - IBM SPSS Statistics Data Editor — U X																		
<u>File</u> Edit	File Edit View Data Transform Analyze Direct Marketing Graphs Utilities Add-ons Window Help																		
2	😑 🖩 🖨 💷 🖛 🛥 📓 🏪 📲 🃭 🏦 🚟 📓 📟 🐴 🚟 🔐 ⊘ 🧠 🥗																		
3 : BMI	20,	5																Visible: 11 of	11 Variables
	sorszám	neme	életkora	testsúly	testmagas	BMI	pszichoszon atikus_összp ont	stressz_č s	issze kiéç	gés_átlag	végzettség	cigime !	ennyisé 9	var	var	var	var	var	var
1	1	1	38	100	163	37,6	21		6	4,2	4		3						4
2	2	1	52	70	166	25,4	3		3	1,5	5		0						
3	3	1	27	62	174	Bivariate	Correlations					×	0						
4	4	1	39	130	160								0						
5	5	1	63	86	167			_ <u>×</u>	ariables:		Option	s	0						
6	6	1	37	63	180	🖋 sorszár	n	•	🖉 életkora	3	Style		1						
7	21	1	49	75	164	es neme			🖉 BMI	szomatikus	Restate		0						
8	22	1	40	100	170	sestmag	asság		🖉 kiégés_	_átlag	Bootsus	ap	0						
9	23	1	50	80	170	nány do	logtól stres	*					2						
10	24	1	36	60	167	legmag	asabb iskol						0						
11	25	1	39	66	158	a cigimen	nyiseg						0						
12	26	1	36	70	163								0						
13	27	1	22	58	159	Correlation	n Coefficients-						0						
14	28	1	49	93	1/9	V Pearso	<u>n 🔝 K</u> endall's	tau-b 🔝 S	pearman				1						
15	29	1	35	64	1/1								1						
10	30	1	30	67	1/4	Test of Sig	nificance						0						
1/	31	1	40	80	104	Two-tail	ed 🔘 One-tai	ed					2						
10	32	2	42	80	182	🗸 Flag sigr	nificant correlat	ions					4						
20	34		37	65	170								1						
20	35	1	43	67	173		OK	aste <u>R</u>	eset	ncei Heij	p		0						
22	36	1	32	65	165	23.9	11		4	3.6	4		0						
23	37	1	48	72	158	28.8	11		6	4.2	4		0						
24	38	1	45	80	164	29.7	17		5	4.6	4		0						
25	39	1	49	75	174	24,8	8	;	1	1,4	2		2						
26	40	1	52	85	175	27,8	7		3	2,6	2		4						
27	41	1	46	85	163	32,0	14		4	2,9	4		0						
	40	4	20	CO	477	40.0	40			20	4							1	
Data View	Variable View																		
														IBM SPSS S	tatistics Proce	eenrie ready		icode:ON	

121. ábra: Korreláció számítás kettőnél több változó esetén

Az első táblázatban megjelenik az előző két átlag mellett a pszichoszomatikus tünetek (11,6) és a kiégés (3,161) átlaga és szórása is. A második egy, az előzőnél nagyobb korrelációs mátrix. Vízszintesen és függőlegesen is ugyanazok a változók szerepelnek, és láthatjuk, hogy mindegyik változó mindegyikkel való kapcsolatát elemezte a program. Az értelmezéshez célszerű oszloponként haladni, és megnézni, hogy az életkor változó (1. oszlop) melyik változókkal függ esetlegesen össze. Az előző elemzésben már láthattuk, hogy az életkor a BMIvel összefügg (r=0,267; p<0,000). Nincs összefüggés az életkor és a pszichoszomatikus tünetek (r=0,015; p=0,824), valamint az életkor és a kiégés (r=0,012; p=0,852) között. Nézzük meg a 2. oszlopot (BMI). Azt az előbb már láttuk, hogy összefügg az életkorral, de nem függ össze a pszichoszomatikus tünetekkel (r=0,015; p=0,827) és a kiégéssel (r=0,035; p=0,600). A harmadik oszlopban a pszichoszomatikus tünetek láthatók. Az előző oszlopokban már láttuk, hogy nem függ össze az életkorral és a BMI-vel, viszont összefüggést mutat a kiégéssel (r=0,011; p<0,000), mégpedig erős összefüggést jelez. Azt mondhatjuk, hogy minél nagyobb a pszichoszomatikus tüneti skálán elért pontszám, annál nagyobb a kiégés pontszáma is, vagyis a pszichoszomatikus tünetek megléte együtt jár a kiégés meglétével a vizsgált mintában. A negyedik oszlop már nem tartalmaz semmi újdonságot. (122. ábra)

122. ábra: Korreláció számítás eredménye kettőnél több változó esetén

Descriptive Statistics											
Mean Std. Deviation N											
életkora	41,47	9,003	229								
BMI	26,562	5,4911	229								
pszichoszomatikus_össz pont	11,60	4,339	229								
kiégés_átlag	3,161	1,2399	229								

				pszichoszom atikus_összp	
		életkora	BMI	ont	kiégés_átlag
életkora	Pearson Correlation	1	,267**	,015	,012
	Sig. (2-tailed)		,000	,824	,852
	N	229	229	229	229
BMI	Pearson Correlation	,267**	1	,015	,035
	Sig. (2-tailed)	,000		,827	,600
	N	229	229	229	229
pszichoszomatikus_össz	Pearson Correlation	,015	,015	1	,611 ^{**}
pont	Sig. (2-tailed)	,824	,827		,000
	N	229	229	229	229
kiégés_átlag	Pearson Correlation	,012	,035	,611**	1
	Sig. (2-tailed)	,852	,600	,000	
	Ν	229	229	229	229

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

Most nézzük meg a gyakorlatban, hogyan alkalmas a statisztikai próba hipotézisek vizsgálatára.

H1: Feltételezem, hogy a munkahelyi stressz források száma összefügg a pszichoszomatikus tünetek megjelenési gyakoriságával és a kiégéssel. A statisztikai próbát a fent ismertetett módon elvégeztük, és a következő eredményt kaptuk. (**123. ábra**) A 229 válaszadó átlag 4,34 dologtól stresszel a munkahelyén (SD=2,216). Ez egy összetett hipotézis. Először nézzük meg a második táblázatban, hogy a stressz és a pszichoszomatikus tünetek között milyen kapcsolat van. A korrelációs együttható értéke r=0,373; p<0,000 -> ez azt jelenti, hogy a stressz és a pszichoszomatikus tünetek között erős, pozitív irányú kapcsolat van, tehát minél több dologtól stresszel a válaszadó a munkahelyén, annál több pszichoszomatikus tünettel rendelkezik. A hipotézis első fele igazolódott. Most vizsgáljuk meg a második felét: r=0,442; p<0,000 -> szintén pozitív irányú, erős korrelációs kapcsolatot találtunk, vagyis minél több dologtól stresszel valaki a munkahelyén, annál rosszabb lelki állapotban van (annál kiégettebb), így a hipotézis második fele is igazolást nyert. Összességében tehát az első hipotézis igazolódott.

123. ábra: 1. hipotézis vizsgálata

Descriptive Statistics

	Mean	Std. Deviation	N
Hány dologtól stresszel összesen munkája során?	4,34	2,216	229
pszichoszomatikus_össz pont	11,60	4,339	229
kiégés_átlag	3,161	1,2399	229

		Hány dologtól stresszel összesen munkája során?	pszichoszom atikus_összp ont	kiégés_átlag
Hány dologtól stresszel	Pearson Correlation	1	,373**	,442**
osszesen munkaja során?	Sig. (2-tailed)		,000	,000
Solum	Ν	229	229	229
pszichoszomatikus_össz	Pearson Correlation	,373 ^{**}	1	,611
pont	Sig. (2-tailed)	,000		,000
	Ν	229	229	229
kiégés_átlag	Pearson Correlation	,442**	,611**	1
	Sig. (2-tailed)	,000	,000	
	N	229	229	229

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

H2: *Feltételezem, hogy minél több pszichoszomatikus tünettel rendelkezik valaki, annál nagyobb a kiégettségének mértéke is.* A statisztikai próbát a fent ismertetett módon elvégeztük, és a következő eredményt kaptuk. (**124. ábra**) A két változó átlagpontszáma az első táblázatból leolvasható: a 229 válaszadó pszichoszomatikus tüneteinek átlag pontszáma 11,6 (SD=4,339); a kiégésé pedig 3,161 (SD=1,2399). A második táblázatban látjuk, hogy a két változó között pozitív irányú, erős korrelációs kapcsolat van (r=0,611; p<0,000), ami azt jelenti, hogy minél több pszichoszomatikus tünettel rendelkezik valaki, annál rosszabb lelki állapotban van (annál kiégettebb), így a hipotézis igazolódott.

124. ábra: 2. hipotézis vizsgálata

Descriptive	Statistics
-------------	------------

	Mean	Std. Deviation	N
pszichoszomatikus_össz pont	11,60	4,339	229
kiégés_átlag	3,161	1,2399	229

		pszichoszom atikus_összp ont	kiégés_átlag
pszichoszomatikus_össz	Pearson Correlation	1	,611
pont	Sig. (2-tailed)		,000
	Ν	229	229
kiégés_átlag	Pearson Correlation	,611 **	1
	Sig. (2-tailed)	,000	
	Ν	229	229

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

H3: *Feltételezem, hogy az életkor és a testsúly között pozitív irányú összefüggés mutatkozik.* A statisztikai próbát a fent ismertetett módon elvégeztük, és a következő eredményt kaptuk. (**125. ábra**) A válaszadók átlag életkora 41,47 év (SD=9,003), átlagos testsúlya 73,17 kg (SD=15,565). A két változó között pozitív irányú, gyenge szignifikáns kapcsolat van (r=0,161; p=0,015), vagyis minél idősebb a válaszadó, annál nagyobb a testtömege, így a hipotézis igazolódott.

125. ábra: 3. hipotézis vizsgálata

Descriptive Statistics

	Mean	Std. Deviation	N				
életkora	41,47	9,003	229				
testsúly	73,17	15,565	229				

		életkora	testsúly
életkora	Pearson Correlation	1	,161 [°]
	Sig. (2-tailed)		,015
	Ν	229	229
testsúly	Pearson Correlation	,161	1
	Sig. (2-tailed)	,015	
	Ν	229	229

Correlations

*. Correlation is significant at the 0.05 level (2-tailed).

Spearman-féle rangkorreláció

Rangsorolt (ordinális) változók közötti összefüggések vizsgálatára alkalmazzuk (pl: Likertskála), két változó esetén. Ennél a vizsgálatnál is három alapeset lehetséges, úgy mint a korreláció számításnál:

- a két ordinális változó a vizsgált személyeknél közel azonos értéket vesz fel, vagyis ha az egyik változó szerint az adott személy magas rangpontszámmal rendelkezik, akkor a másik változónál is magas a rangpontszám (pozitív rangkorrelációs összefüggés);
- az egyik változó rangpontszáma a másik változónál alacsony rangpontszámmal jár együtt (negatív rangkorrelációs összefüggés);
- a két változó között nincs semmilyen kapcsolat (korrelálatlanság) (Falus és Ollé 2008).

Mérőszáma a rangkorrelációs együttható, jele: r_s. Értékelése ugyanúgy történik, mint a korreláció számításnál. A Likert-skála irányára figyelni kell!

SPSS-ben a következő parancssor követésével végezhetjük el a próbát: Analyze -> Correlate - > Bivariate

Ugyanazt a kezelőfelületet kapjuk, mint a korreláció számításnál. Első lépésként vegyük ki a pipát a Pearson elől és tegyük át a Spearman elé (ez jelenti azt, hogy most nem sima korreláció számítást végzünk, hanem rangkorreláció számítást). (**126. ábra**)

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze D	irect <u>M</u> arketing	<u>G</u> raphs <u>U</u>	<u>I</u> tilities Add	ons <u>W</u> indow <u>H</u> elp									
2			⊐ 🖺	*		*	Z = 43 =	A 14		6						
														Visi	ble: 42 of 42 V	/ariables
	sorszám	neme	életkora	BMI	BMI_kategóri a	munkarend	Müszakozik_ egészségi_ál e apot_önérték elése	krónikus_bet egség	fejfájás	alvási_problé mák	gyomorés yomorfáj	é_g gyors_szívdo ás bogás	hátfájás	gyengeség_fá radtság	hasmenés	pszi atik
1	1	1	38	37,6	5	3		4	2	2	×	3 3	:	3 3	3	3 🛀
2	8	1	49	29,6	3	3	Elvariate Correlations				^	0 0) (0 0	0	0
3	9	1	40	26,9	3	3		Varia	bles:	Onti	0.00	0 2	: :	3 2	0	0
4	10	2	27	22,3	2	3	🖋 sorszám 🖆				0113	2 1	1	2 2	0	0
5	11	1	23	23,6	2	3	aneme aneme			St	vie	0 1	:	2 3	2	2
6	12	1	39	24,5	2	3	P eletkora			Boot	strap	2 2	:	3 3	2	2
7	13	1	35	19,5	2	3	- 💰 BMI_kategória	\$				0 0) () 1	0	3
8	14	1	35	29,4	3	2	ali munkarend					2 2		3 3	0	3
9	15	1	35	18,7	2	2	Müszakozik_e					1 1	:	3 3	0	3
10	16	1	38	27,7	3	1	krónikus heters					1 1		1 0	0	3
11	25	1	39	26,4	3	3	Correlation Coefficients					0 1		3 2	0	3
12	26	1	36	26,3	3	2	Pearson 🕅 Kendali's	tau-h 🥅 Snea	rman			1 1		1 3	0	1
13	27	1	22	22,9	2	3						2 1		2 3	3	3
14	20	1	49	29,0	3	3	To of Significance	1				2 2		2		
10	29	1	30	21,9	2	2	<u>Two-tailed</u> One to	ied				0 2		1 3	2	2
10	30	1	30	22,1	2	3	The similarity and south					1 0) I	1	-
17	31	1	40	25,3	3	3	Flag significant correla	tions				1 0		2 1		
10	33	2	42	23,2	2	1	OK	Paste Reset	Cancel	Help		2 3		3 3		
20	34	1	37	29,2	2	3	2 2	0	0	2		3 0		3 3	3	
21	35	1	43	22,3	2	3	2 2	0	2	3		2 1		3 1		0
22	36	1	32	23.9	2	3	2 3	1	2	1		0 2		3 3	0	0
23	37	1	48	28.8	3	3	2 3	0	1	3		1 1		3 2	0	0
24	38	1	45	29.7	3	2	1 3	0	2	3		1 2		3 3	3	3
25	39	1	49	24.8	2	3	2 3	0	2	0		1 1		3 1	0	0
26	40	1	52	27.8	3	2	1 3	0	1	1		0 0		3 2	0	0
27	41	1	46	32,0	4	2	1 3	1	2	2		2 2		2 3	1	1
	1 10		20	40.0	2	-							· · · · ·			

Data View	Variable View															
											IBM SPS	S Statistics Proce	ssor is readv	Unicode	e:ON	

126. ábra: Spearman-féle rangkorreláció kiszámítása 1.

Ezután mozgassuk át a kis nyíllal a Variables mezőbe azokat az ordinális változókat, amik között a kapcsolatot szeretnénk megnézni. Itt is érvényes az, hogy tetszőleges számú változót átvihetünk, a program elvégzi az összes között az elemzést. Mi most nézzük meg, hogy a fejfájás mutat-e összefüggést az alvási problémákkal. Azt feltételezzük, hogy akinek gyakran fáj a feje, annak gyakrabban vannak alvási problémái is. Ezen két tünet meglétét egy

n x

négyfokozatú Likert-skálán kellett értékelni a válaszadóknak, ahol 0=soha; 3=gyakran jelentéssel bírt. Egyéb beállításra nincs szükség, kattintsunk az OK gombra. (**127. ábra**)

9.ora_FELA	DAT_Mann_Wh	itney_proba.sav	[DataSet2] - IB!	A SPSS Statistics	Data Editor	-		U							- 0	\times
Eile Edit	View Data	Transform	<u>A</u> nalyze D)irect <u>M</u> arketing	Graphs Ut	lities Add-	ons <u>W</u> indow <u>H</u> elp									
			~ 12	J			🗊 📼 📩 🎹		AL	16						
								1୶ 🎔								
														Visi	ble: 42 of 42 \	/ariables
	sorszám	neme	életkora	BMI	BMI_kategóri	munkarend	Müszakozik_ egészségi_	áll krónikus_bet	fejfájás	alvási_problé	gyomorésé _.	_g gyors_szívdo	hátfájás	gyengeség_fá	hasmenés	psz
					а		e apot_önérté	k egség		mák	yomorfájás	s bogás		radtság		atik
1	1	1	38	37.6	5	3	0			n n	_	3 3	3	3		3 🔺
2	8	1	49	29,6	3	3	Bivariate Correlations				×	0 0	0	0		0
3	9	1	40	26,9	3	3	-	Vari	ablae:	_		0 2	3	2		0
4	10	2	27	22,3	2	3	egészségi állap.		feifáiás	Optic	ons	2 1	2	2		0
5	11	1	23	23,6	2	3	💑 krónikus_betegs		alvási_problér	mák Sty	le	0 1	2	3	:	2
6	12	1	39	24,5	2	3	gyomorésé_gyo			Boots	trap	2 2	3	3	:	2
7	13	1	35	19,5	2	3	gyors_szivdobog					0 0	0	1	1	0
8	14	1	35	29,4	3	2	gvengeség fárad					2 2	3	3		0
9	15	1	35	18,7	2	2	🚽 hasmenés					1 1	3	3		0
10	16	1	38	27,7	3	1	pszichoszomatik	-				1 1	1	0		0
11	25	1	39	26,4	3	3	A Hany dologtol str					0 1	3	2		0
12	26	1	36	26,3	3	2	Correlation Coefficient:					1 1	1	3		0
13	27	1	22	22,9	2	3	Pearson Kendal	's tau-b 📝 <u>S</u> pe	arman			2 1	2	3		3
14	28	1	49	29,0	3	3	Test of Significance					2 2	3	2		0
15	29	1	35	21,9	2	1	Two-tailed One-t	ailed				0 2	1	3		2
16	30	1	36	22,1	2	3						0 0	0	1		0
17	31	1	45	25,3	3	3	Elag significant correl	ations				1 0	2	1		1
18	32	1	42	25,2	3	3	ОК	Paste Rese	et Cancel	Help		1 3	3	3		1
19	33	2	45	24,2	2	1						2 3	3	3		1
20	34	1	37	22,5	2	3	2	2 0		0 2		3 0	3	3		3
21	35	1	43	22,4	2	3	2	3 (2 3		2 1	3	1		0
22	36	1	32	23,9	2	3	2	3 1		2 1		0 2	3	3		0
23	37	1	48	28,8	3	3	2	3 (1 3		1 1	3	2		0
24	38	1	45	29,7	3	2	1	3 (2 3		1 2	3	3		3
25	39	1	49	24,8	2	3	2	3 (2 0		1 1	3	1		
26	40	1	52	27,8	3	2	1	3 (2 4		1 1		0 0	3	2		1
21	41		46	32,0	4	2	1	ა 1 ა ი		د ۲ ۱ ۲		2 2	2	3		
	1							_			_					
Data View	Variable View															
											UDM ODOC	01-1-1-1				

127. ábra: Spearman-féle rangkorreláció kiszámítása 2.

Az output ablakban megjelenik a korrelációs mátrix (**128. ábra**), melyet ugyanúgy kell értékelni, mint a korreláció számítás korrelációs mátrixát: a fejfájás és az alvási problémák között pozitív irányú, erős korrelációs kapcsolat van ($r_s=0,287$; p<0,000), vagyis a gyakori fejfájás gyakori alvási problémákkal jár együtt. A hipotézis igazolódott.

		correlations		
			fejfájás	alvási_problé mák
Spearman's rho	fejfájás	Correlation Coefficient	1,000	,287**
		Sig. (2-tailed)		,000
		Ν	274	274
	alvási_problémák	Correlation Coefficient	,287**	1,000
		Sig. (2-tailed)	,000	
		Ν	274	274

128. ábra: Spearman-féle rangkorreláció eredménye Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

FIGYELEM! A statisztikai próbák elvégzése után következtetéseinket csak az adott vizsgálatban szereplő egyénekre vonhatjuk le! Nem mondhatjuk azt, hogy "a magyar serdülők…" vagy "a serdülők…", hanem: "a felmérésemben részt vevő serdülők" vagy "a kérdőívet kitöltő serdülők…". Ennek oka egyszerű: mintánk nem reprezentatív!

3.3. Excel program a statisztikában

Előfordulhat, hogy nincs lehetőség az SPSS statisztikai program beszerzésére, ebben az esetben az Excel is segítséget nyújt a statisztikai számítások elvégzésében. Hátránya, hogy több lépésben lehetséges egy-egy számítást elvégezni, így nagyobb a hibalehetőség is.

3.3.1. Adatbázis készítés Excel programmal

Első lépés itt is az adatok kérdőíven való kódolása, vagyis a kérdőív kérdéseire adott szöveges válaszokat számokká alakítjuk (ld. 1.2. fejezet!). Akár csak az SPSS adatbázisra, erre is igaz, hogy oszlopok és sorok összességéből áll. Egy változó (pl: nem) egy oszlopban jelenik meg, minden egyes sor pedig egy válaszadó által adott összes választ tartalmazza. A továbbiakban az 1.2. fejezetben ismertetett példák alapján, Excel programmal láthatjuk az adatbázis elkészítését.

Az Excel megnyitása után láthatjuk az üres adattáblát, mely még semmilyen adatot nem tartalmaz. Az első sorban fognak szerepelni a változók nevei, azonban itt a sorszámmal kell kezdeni. Ide kerül az a sorszám, amit az adott kérdőív jobb felső sarkába írtunk. Célszerű a felső sort (a változók neveit) mindig láthatóvá tenni, mert ha ezt nem tesszük, akkor a 30. kérdőív bevitele után már nem látszik a felső sor. Ezt a következőképpen tehetjük meg: Nézet -> Panelek rögzítése -> felső sor rögzítése. Ezután sorban vihetjük be a változóinkat. Az első volt a nem (1=férfi; 2=nő), ezt beírjuk az első sor második cellájába, majd a jobb egérgombbal a cellába kattintunk, ezután a megjegyzés beszúrása parancsra. (**129. ábra**)

FÁJL KEZDŐL	ΔP	BESZÚRÁS LAPELRENDE	ZÉS KÉPLETEK	ADATO	K VÉL	.EMÉNYEZÉS	NÉZET									
Témák	ok * : *	Margók Tájolás Méret Nyorr Laite	ntatási Töréspontok let * *	Háttér Ny	omtatási címek	Szélesség	: Automa g: Automa 100%	tik ▼ Rács tik ▼ ⊻ H ‡ □ I	vonalak Képernyőn Nyomtatva Munkalap-E	Fejlécek Képern Nyomt	yón Előb atva hoza	bre Hátrébb is * küldés *	Kijelöléspar	nel Igazítás	Csoportosítá:	Forgatás
	Cal	ibri - 11 - Δ° Α΄ 🖙 -	96 000 🖽													
B1 *	F															
A	3			G	н	1	J	К	L	M	N	0	Р	Q	R	S
1 sorszám nem	- *	Kiyágás														
2	Ee	Másolás														
3	1	Beillesztés beállításai:														
5																
6																
7		Irányított beilles <u>z</u> tés														
8		Beszúrás														
9		<u>T</u> örlés														
10		Tartalom t <u>ö</u> rlése														
11	12	Gyorselemzés														
12		Szűrő 🕨														
13	-	Rendezér k														
14	-	Ren <u>u</u> ezes ,														
16		Megjegyzes beszuras <u>a</u>														
17	::	Cella <u>f</u> ormázás														
18		Legörd <u>ü</u> lő választéklista														
19		Név megadása														
20	8	Hivatkozás														
21																
22																
23																
24																
25																

129. ábra: Változó értékeinek megadása
Itt tudjuk megadni a kódokat, azaz 1=férfi; 2=nő. (**130. ábra**) A cella jobb felső sarka pirosra fog változni, ez jelzi azt, hogy megadtuk a változó kódjait. Ha az egérrel ráállunk a kis piros jelre, akkor megjelennek a kódok.

F/	AJL KE	ezdőlap	BESZÚRÁ	S LAPI	ELRENDEZÉS	KÉPLETE	K ADA	tok véi	LEMÉNYEZÉS	6 NÉZET									
Tén	A Bet	nek ~ űtípusok ~ ektusok ~	Margók Ta	ájolás Mér	et Nyomtatá	isi Törésponto	ok Háttér N	Nyomtatási címek	Szélessé	ég: Autom ág: Autom 1009	atik - Rács atik - V	svonalak Képernyőn Nyomtatva	Fejlécek	iyőn Elő tatva hoz	bbre Hátrébb ás v küldés	Kijelöléspa	nel Igazítás	Csoportosítá	is Forgatás v
	Iemai	ĸ			Lappea	allitas		Ea.	Meret	peallitasa	Gil	Munkalap-I	Deallitasok	Car I		E	irendezes		
B1		* :	$\times \checkmark$	f_{x}															
	А	В	С	D	E	F	G	н	1.1	J	К	L	м	N	0	Р	Q	R	S
1	sorszám	nem	Anikó:																
2			1=férfi																
3			2=nő		0														
4																			
5			-																
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
21																			
22																			
23																			
24																			
25																			
26																			

130. ábra: Kódok megjelenítése

Ezután sorban begépeljük és kódoljuk ugyaezzel a módszerrel az összes változónkat. Ugyanannyi változónk lesz, mint SPSS-ben, csak a kezelőfelület lesz más. Ha ezzel kész vagyunk, akkor kezdhetjük a kérdőívekről az adatbevitelt. A **131. ábrán** egy kész adatbázist láthatunk.

131. ábra: Kész Excel adatbázis

×I F	5.0	ð	;	,					Rebek	:a_07.29_k	ODOLT -	Excel (A	termékaktivá	ás nem sikeri	ilt)						?	* -	a x
FÁJL	KEZDÖ	LAP	BESZÚ	RÁS I	APELREND	DEZÉS KÉP	LETEK	ADATOK V	ÉLEMÉNYE2	ZÉS N	VÉZET											Bejelent	kezés
ľ	* [Arial		* 10	· A A	= = =	87 -	🚏 Sortöréssel	több sorba	Általán	105	Ť	¥				*		AutoSzur	n · Az	r H		
Beilleszte		FD	<u>A</u> -	88 - 2	<u>a</u> - <u>A</u> -	= = =	€≣ ¥≣	🗄 Cellaegyesít	iés 🔻	S -	% 000	58 -58	Feltételes formázás z	Formázás táblázatként :	Cellastilusok	Beszúrás -	Törlés Forr	nátum +	🧶 Törlés 🕶	Rend és szű	ezés Keresés rés≖ kijelölés	÷	
Vágól	ар Га		Betű	típus	Ga		lga	zítás	5	1	Szám	5		Stílusok			Cellák			Szerkeszté	s		^
	_																						
DZ			~ ~	Jx	1																		•
1.0	A		В	C	100	and a	D	5 (10) () () ()		1-1-1	E				F		G		H		i a int	1	
1 Sors	szam	1 INER	n 1	Eletkor	Kerem, je	iolje be az O	nre jellem	zo allitasokat!	Kerem je	noile pe :	az Onre j	ellemzo	allitasokat!	MIOTA GOIO	jozik a szakm	aj ⊑gy ne	ten atlagos:	an KD. I	Vallasos-e?	Mit gondo	i, On pozitiva	n vagy neg	lativan
2		2	- 1	30					1					3		2		2	2				
4		3	1	29					3					4		2		1	1				
5		4	1	49					3					4		6		3	3				
6		5	2	39					3					3		4		2	2				
7		6	1	42					3					1		2		2	2				
8		7	1	48					1					3		6		2	1				
9		8	2	38					1					4		3		3	1				
10		9	1	49					3					3		6		3	3				
11	1	10	1	46					3					4		6		2	1				
12	1	11	1	40					3					4		5		2	2				
13	1	12	1	39					3					4		5		2	2				
14	1	13	2	25					3					4		1		5	2				
15	1	14	1	57					1					3		6		2	2				
16	1	15	1	47					3					4		6		5	1				
17	1	16	1	36					3					3		2		3	3				
18	1	17	1	52					1					4		5		4	1				
19	1	18	1	55					1					3		3		2	1				
20	1	19	1	43					3					1		5		2	1				
21	2	20	1	39					3					1		3		5	2				
22	4	21	1	40					3					1		2		5	3				
23	2	22	1	30					3					1		2		5	2				
24	2	23	1	40					3					3		2		3	3				
25	2	24	1	20					3					4		1		1	1				
26	2	25	1	53					1					4		6		5	1				
27	2	26	1	33					3					4		3		2	1				
28	2	27	1	46					3					4		5		1	2				
29	2	28	1	22					3					4		1		3	2				
50	2	29	1	21					3					1		1		3	3				_
4	F.	A(z) 2	. lapon l	évő válas	zok 🖌	(z) 1. lapon	lévő vála	szok (+)						4								•

3.3.2. Leíró statisztikai módszerek

Gyakorisági eloszlások

Az **abszolút gyakoriság**ot, vagyis hogy hányan tartoznak egy kategóriába, a következőképpen számolhatjuk ki:

Azt szeretnénk megtudni, hogy az egyes kiégés kategóriákba hány fő tartozik a 14 válaszadó közül. Ehhez ismerni kell a kiégés kategóriák neveit és a ponthatárokat (örökös eufória: 2 pont alatt; jól csinálja: 2-2,9 pont; változtatás szükséges: 3-3,9 pont; kezelés szükséges: 4 pont felett). Az Excel táblában a válaszadók által elért pontok láthatók. Először az egyes csoportok felső határait kell megadni (intervallumskála esetén a felső ponthatár, nominális változó esetén a kategóriát kifejező számérték). Mi most intervallumskálával dolgozunk. A kezelés szükséges csoport felső ponthatárának 9-et adtam meg, mivel ilyen magas kiégési pontszáma biztosan nincs senkinek. (**132. ábra**)

F	ÁJL KEZDÓ	ĎLAP	BESZÚ	RÁS LAPELRENDEZÉS	KÉPLETE	EK AD	ATOK VÉ	LEMÉNYEZ	ÉS NÉZE	т										Bejel	entkezés 🔍
	* *	Calibri		- 11 - A A =	= = %	- 12	Sortöréssel tö	ibb sorba	Általános	*	Ŧ			Ē	- 🛪		∑ Autos	szum 👻 🖊	T	6	
Bei	llesztés	FD	<u>A</u> -	⊞ • <mark>🏷</mark> • <u> </u> • ≡	= = 6	*	Cellaegyesíté	5 *	\$ - % 0	00 58 48	Feltételes formázás	Formázá táblázatkér	s Cellastílus nt • •	sok Bes	zúrás Törlés	Formátum	Kitoiti Törlés	es▼ Re ≅‴ és s	ndezés Keres zűrés v kijelő	és és ilés *	
	/ágólap ⊑		Betű	típus 🕞		Igazítás		G.	Szár	n G		Stíluso	k		Cellák			Szerkes	ztés		^
				£ 0																	
	· ·		~ v	Jx 9	-	_			1						1		_		-	_	
4	A		в	L	U	E	F	G	н	1	J	ĸ	L	м	N	0	P	Q	ĸ	5	
-	kieges pontsz	zam																			
2		3,7			conortha	tárok															
-		4,0		örökör oufória	1.0	Larok															
5		17		iól csinália	2.9																
6		1.9		változtatás szükséres	2,5																
7		2.6		kozolás szüksános	9,5																
8		2.9		Reference and and a second																	
9		3																			
10		3.7																			
11		3.3																			
12		4.2																			
13		4,1																			
14		4																			
15		5,7																			
16																					
17																					
18																					
19																					
20																					
21																					
22																					
23																					
24																					
25																					
26																					
27																					
28																					——U
29																					
30	1						-														· · · · · ·
	Abszolút gyakoriság Relatív gyakoriság Munka 🔄																				

132. ábra: Abszolút gyakoriság csoporthatárainak megadása

A bal egérgombot nyomva tartva kijelöljük azt a területet, ahol a gyakoriságértéket szeretnénk létrehozni (ezt közvetlenül a csoporthatárok melletti oszlopban célszerű megtenni), majd a függvény létrehozása gombra (piros nyíl jelzi) kattintunk. (**133. ábra**)

ĥ Å.	Calibri	• 11 • A A =	= 📃 🦻 -	📑 Sortörés:	sel több sorba	Általán	os	•	×	.		+==	*	ġ	AutoSzum	• A	46	
lesztés 💞	FDA-	🖽 • 💁 • 📥 • 🎫	ē∃ €€	🚍 Cellaegy	esítés *	¶- 9	% 000	% <i>\$</i> 8	Feltételes formázás *	Formázá: táblázatkér	s Cellastilusok	Beszúrás	Törlés Form	átum -	Törlés •	Rendezés és szűrés v	Keresés és kijelőlés •	
tágólap ra	Be	etűtípus ra	l gaz	ítás		G.	Szám	G.		Stiluso	k		Cellák			izerkesztés	injeries.	
Ŧ	: X																	
A	8	<u>د</u>	D	E	F	G	н	1	1	1	K L	м	N	0	P	Q	R	S
kiégés pontsz	ám																	
	3,7																	
	4,8		csoporthatárok	gyakoriság														
	2,1	örökös eufória	1,9															
	1,7	jól csinálja	2,9															
	1,9	változtatás szükséges	3,9															
	2,6	kezelés szükséges	9															
	2,9																	
	3																	
	3,7																	
	3,3																	
	4,2																	
	4,1																	
	4																	
	5,7																	
				1 0				_	1	_	1	1	-	-	1	1	1	

133. ábra: Függvény létrehozása parancs

A megjelenő kis ablakban a függvény kategóriájánál kiválasztjuk a "statisztikai"-t, ebben található a gyakoriság. (**134. ábra**)

FAJL KEZDO	OLAP	BESZÚ	rás laf	ELRENDEZÉS	KÉPLETEK	ADATOK	VÉLEMÉN	IYEZÉS	NÉZET													Bejelentkezé	5 🔍
*	Calibr		* 11 *	A A =	= _ %	F Sortöré	ssel több sor	ba Álta	lános	v	₽		I.		€	*		∑ AutoS	Szum +	A Z	H		
Beillesztés	F <i>D</i>	<u>A</u> -	🛛 - 💩 -	<u></u>	≡≡∣∉∉	🗄 Cellaeg	yesítés *	9	- % 000	50 <u>.00</u>	Feltételes	Formáz	ás Ce	llastílusok	Beszúrás	Törlés Fo	ormátum	Kitolte	es *	Rendezés	Keresés és		
· ·				_			-				formázás *	táblázatké	ént ≁	÷	Ť	*	Ŧ	Tones		és szűrés ∗	kijelölés *		
Vágólap 🕞		Betül	tipus	G	Ig	azitás		G)	Szâm	F2		Stilus	ok			Cellâk			Szeri	cesztés			~
E4 *		× v	f _x =																				~
				~	5			6	1									0		0			
A 1 kiégés ponts	zám	в		C	D	E	F	G	н	-		,	ĸ	L	M	IN		0	P	Q	к	5	ΠĤ
2	3.7													_									
3	4.8				csoporthatárol	gyakorisá	Függvény	beszúrása					?	×									
4	2.1		örökös eu	fória	1.	9=	<u>E</u> üggvény	keresése:															
5	1.7		iól csinália		2.	9	Íria be	öviden mi	t tegyen a f	üggvény,	és kattintson	a	Kere	sés									
6	1.9		változtatá	s szükséges	3.	9	Keresés	gombra						-									
7	2.6		kezelés sz	ükséges		9	<u>A</u> függv	ény kateg	óriája: Stati	sztikai		\sim											
8	2.9						A függvér	w neve:															
9	3						GAMM																
10	3,7						GAMM	.ELOSZL															
11	3,3						GAMM	ALINVERZ ALN															
12	4,2						GAMM	ALN.PONT	os														
13	4,1						GYAKO	RISÁG						~									
14	4						GYAKO	RISÁG(ada	ttömb;csop	ort_tömb	1												
15	5,7						A gyako	risági vagy	/ empirikus	eloszlás é	tékét (milyer	gyakran fo	ordulnal	k elő net									
16							tartalma	zó függől	eges tömbk	ént adja e	redményül.	ereggyere											
17																							
18																							
19							<u>Súgó a fü</u>	ggvényről			1.00	ОК	Még	se									
20																							
21																							
22																							
23																							
24																							
25																							
26																							
27																							
28																							
29																							
30																	_						
	Absz	olút gyak	oriság	Relatív gyako	oriság Munki	a3 (i)							(Þ

134. ábra: Gyakoriság parancs

Kattintsunk az OK gombra. Ekkor megjelenik egy kis ablak, adattömb és csoporttömb mezőket tartalmazva. Az adattömb jelenti azt, ahol az adataink vannak (jelen példában az A oszlop 2-15-ös celláiban), a csoporttömb pedig az a helyet jelenti, ahol a csoportok felső határait megadtuk (jelen példában D oszlop 4-7 celláiban). Ezért a következőt írjuk a megfelelő cellákba: adattömb A2:A15; csoporttömb D4:D7 (kettőspontot használunk!) (**135. ábra**), majd egyszerre lenyomjuk a Ctrl+Shift gombot, majd utána az Enter-t. Ekkor a gyakoriság oszlopban (amit előzetesen kijelöltünk) megjelenik az, hogy melyik csoportba hány fő tartozik. (**136. ábra**)

135. ábra: Gyakoriság kiszámításának menete

136. ábra: Abszolút gyakoriság értékei

FÁJL	KEZDŐ	DLAP	BESZÚ	IRÁS LAPELRENDEZÉS	KÉPLETEK	ADATOK	VÉLEMÉNYEZ	zés r	NÉZET											Bejelentkezés
ĥ	*	Calibri		• 11 • A A =	= _ %-	🔐 Sortöré	ssel több sorba	Általár	ios	*	×			-	> 🗊	Σ Au	utoSzum *	A Z	H	
Beilleszte	és 💉	FD	<u>A</u> -	🖽 • 🔷 • 📥 • 🚍	== += +=	🚊 Cellaeg	yesítés 👻	1	% 000	58 48	Feltételes	Formázá	is Cellastílusok	Beszúrás	Törlés Formátu	m 🖉 Ki	toites *	Rendezés I	Keresés és	
Vágól	an G		Betű	tínus G	laa	rítás	5		Szám		formázás	r táblázatkéi Stíluso	nt = = =	*		< <u> </u>	S76	és szürés * rkesztés	kijelölés *	^
ragor	op				igu															
E4	*		$\times \checkmark$	∫x {=GYAKORISÁ	G(A2:A15;D4:D7)	}														*
	А		в	С	D	E	F	G	н		i	L	K L	м	N	0	Р	Q	R	S 🔺
1 kiég	zés pontsz	ám																		
2		3,7																		
3		4,8			csoporthatárok	gyakorisá	g													
4		2,1		örökös eufória	1,9	2														
5		1,7		jól csinálja	2,9	3														
6		1,9		változtatás szükséges	3,9	4														
7		2,6		kezelés szükséges	9	5														
8		2,9																		
9		3																		
10		3,7																		
11		3,3																		
12		4,2																		
13		4,1																		
14		4																		
15		5,7																		
16																				
17																				
18																				
19																				
20																				
21																				
22																				
23																				
24																				
25																				
26																				
27																				
28																				
29																				
30																				
4	Þ	Abszo	lút gyal	coriság Relatív gyako	oriság Munka:	3 (+)						: •							Þ
véra								_	_	_	_									

Ha a **136**. **ábrát** jobban megfigyeljük, akkor függvény kategória melletti hosszú ablakban a következő képletet láthatjuk: =GYAKORISÁG(A2:A15;D4:D7) Ez tartalmazza a begépelt adattartományokat.

A relatív gyakoriságot a következőképpen számolhatjuk ki:

Erre külön nincs képlet az Excelben, az abszolút gyakoriságból kell kiszámolni, vagyis annak a képletét átalakítani. Itt is meg kell adni a csoporthatárokat, illetve a minta elemszámát. Első lépésként hozzuk megint létre a csoporthatárokat (az abszolút gyakoriságnál ismertetett példában dolgozunk), majd jelöljük ki azt a területet, ahová a relatív gyakoriságot szeretnénk kiszámolni (pontosan annyi cellát jelöljünk ki, ahány csoportkategóriánk van). (**137. ábra**)

137. ábra: Relatív gyakoriság kiszámítása

Ezután számoljuk ki az előző példában ismertetett módon az abszolút gyakoriságot, majd a szerkesztőlécben megjelent képlelet =GYAKORISÁG(A2:A15;D4:D7) (**138. ábra**) alakítsuk át a következőképpen: =GYAKORISÁG(A2:A15;D4:D7)*100/14 (14 az elemszám). Nyomjuk le egyszerre a Ctrl és Shift billentyűket, majd Enter. Az előzőleg kiszámolt abszolút gyakoriságok helyén megjelennek a relatív gyakoriságok (*Falus és Ollé 2008*). (**139. ábra**)

138. ábra: Abszolút gyakoriság képlete a szerkesztőlécben

139. ábra: Relatív gyakoriság képlete a szerkesztőlécben+eredmények

FÁJL KEZI	DŐLAP	BESZŰ	RÁS LA	APELRENDEZÉS	KÉPLETEK	ADATOK	VÉLEM	ÉNYEZÉS	NÉZET											Bejelentke	zés 🍳
Ë 👗	Calibr	i	- 11 -	A A = =	- %· -	🔐 Sortō	iréssel több s	orba Ált.	alános	٣	ŧ			•	*		AutoSzum	· Azy	H		
Beillesztés 💞	F L	<u>A</u> -	🗉 🖌 💍	• <u>A</u> • = = =	≡ 4≣ 4≣	🗄 Cella	egyesítés 🔹	9	- % 000	50 50	Feltételes formázás * ti	Formázás iblázatként •	Cellastílusok	Beszúrás *	Törlés Fo	rmátum *	Törlés *	Rendezés és szűrés *	Keresés és kijelölés *		
Vágólap 🕞		Betűt	típus	5	lgi	azítás		Ge .	Szám	G.		Stílusok			Cellák		:	szerkesztés			^
F4		~ /	£			7) #100 /14	1														
E4 .		~ ~	Jx	(=GYAKORISAG(A.	2:A15;D4:D7	/) 100/14	3														*
A		В	С	D	E	F	G	н	1	J	K	L	М	N	0	Р	Q	R	S	Т	-
1 kiégés pont	tszám																				
2	3,7																				
3	4,8			csoporthatárok																	
4	2,1			1,9	14,28571																
5	1,7			2,9	21,42857																
6	1,9			3,9	28,57143																
7	2,6			9	35,71429																
8	2,9																				
9	3																				
10	3,7																				
11	3,3																				
12	4,2																				
13	4,1																				
14	4																				
15	5,7																				
10																					
10																					
10																					
20																					
21																					
22																					
23																					
24																					
25																					
26																					
27																					
28																					
29																					
30																					-
	Abs	olút gyako	oriság	Relatív gyakorisá	ig Munka	a3	+						4								Þ
KÉSZ										ÁTLAG: 25	CELLÁK SZÁ	MA:4 MIN	: 14.28571429	MAX: 35.7	1428571	ÖSSZEG:	100 🏛	B 🏼 .		+	100%

Az eredményekből látjuk, hogy az örökös eufória (1,9 pont alatt) csoportba tartozik a válaszadók 14,28%-a, a jól csinálja csoportba (2-2,9 pont) 21,42%, a változtatás szükséges csoportba (3-3,9 pont) 28,57%, a kezelés szükséges csoportba (4 pont felett) pedig 35,71%. (139. ábra)

Középértékek

Középértékek és szóródási paraméterek számítására is lehetőség van intervallumskálán mért változók esetében. Célszerű az adatbázis egy üres oszlopában egymás alá beírni azokat a mérőszám neveket, amiket ki szeretnénk számolni, és a számolást a mérőszám neve melletti üres cellában fogjuk elvégezni. Tehát egymás alá felírtuk a következőket: átlag, medián, módusz, átlagos eltérés, szórás, majd ezután kattintsunk az egér bal gombjával az átlag melletti üres cellára. (**140. ábra**)

FÁ	AU KEZDÓLAP BESZŰRÁS LAPELRENDEZÉS KÉPLETEK ADATOK VÉLEMÉNVEZÉS NÉZET Bejelentkezés														is M					
ľ	*	Calibri	* 11 * A A	==	* S	ortöréssel te	5bb sorba	Italános	÷		≠	1	÷== =	× 🗊	∑ Aut	oSzum *	A Z▼	H		
Beill	esztés 🍼	F D	A - 🗄 - 🙆 - <u>A</u> -	===	≡ € 72 🖽 0	ellaegyesíté	is v 🖸	- % 000	58 58	Felté	teles Fo	rmázás Cellastílusok	Beszúrás Törl	és Formátum	Jord Net	Ác v	Rendezés H	Keresés és		
v	ígólap	5	Betűtípus	-	Igazítás		D.	Szám		Torma	azas * tabia	szátkent * *	Cel	• Ilák		Szer	es szüres * kesztés	kijeloles *		~
	- y p																			
G8		* :	$\times \checkmark f_x$																	~
	Α	В	С		D	E	F	G	i i	н	1	J		К	L	м	N	0	Р	A
1	életkor	BMI	egészségügyben eltöltő	ött évek e	gészségi állapot															
2	3	2 24,2	1	34	3															
3	3	3 28,3		20	3															
4	2	9 41,7		31	3															
5	2	9 27,7	1	4	3															
6	3	5 22,9		40	3															
6	3	5 29,2		10	4		641		_											
•	2	5 22,4		12	3		Atlag		_											
10		5 20,1		2	3		Móducz													
11	3	21,3		2	3		Átlagos elté	rác												
12	5	31 3		27	3		Szórás													
13	5	21.3		27	4		520105													
14	4	23.8		6	3															
15	4	4 25.5		30	4															
16	5	4 24,8		43	4															
17	4	5 27,9)	33	3															
18	4	5 34,7	,	23	3															
19	4	4 22,2	2	40	3															
20	3	4 25,9)	39	3															
21	3	8 25,2	1	7	3															
22	3	5 26,2	2	39	4															
23	4	1 24,2		24	3															
24	4	3 23,2		45	3															
25	3	1 24,1		9	3															
26	5	22,1		43	3															
27	4	2 24,4		43	3															
28	3	2 25,9		45	2															
29	4	26,5		36	3															
30	3	5 31,1		4	4															
		Közép	értékek-Szóródás Mur	nka2	(+)							•								Þ
KÉS	1															₩ 🗉	- 🗉		+	100%

Ebben a cellában fogjuk az átlag életkort kiszámolni. A függvény beszúrása gombra kattintva a statisztika függvénycsomagban találjuk a leíró statisztikai próbákat, de a szerkesztőlécbe be is gépelhetjük a képletet: =ÁTLAG(A2:A181), majd Enter. A zárójelben azt a tartományt adjuk meg, amelyikben az életkor található: A oszlop 2-181. sora. A válaszadók átlag életkora 40,12 év. A többi mérőszám esetében a következő képleteket gépeljük be:

=MEDIÁN(A2:A181) =MÓDUSZ(A2:A181) =ÁTL.ELTÉRÉS(A2:A181) =SZÓRÁS(A2:A181) *(Falus és Ollé 2008)*. Az eredmények a következők: az életkor mediánja 40,5; módusz 34; átlagos eltérés 7,91; szórás 9,41. Ezek után kattintsunk a BMI oszlop átlag cellájára, és folytassuk a BMI értékeinek kiszámítását. (**141. ábra**)

Б	ÁJL	KEZE	DŐLAP	BESZÚRÁS LA	PELRENDEZÉS	KÉPLETEK	ADAT	ок и	ÉLEMÉNYEZÉS	NÉZET												Be	jelentkezé	5 🖂
		‰ ì≞ -	Calibri	× 11 ×	A A =	= »··	🔐 So	rtöréssel t	öbb sorba Általá	inos	٣		≠		C. C.	€ ===	*		∑ AutoS ▼ Kitölté	zum ×	A Z Y	H		
Beil	lesztés	\$	FD	A • 🗄 • 🖄	- <u>A</u> - = =	≣ € 1 2	🖽 Ce	llaegyesít	és * 🔤 *	% 000 5	8 48	Felté	teles Fo árás rtábli	rmázás Cella izatkánt z	stílusok	Beszúra	ás Törlés	Formátum	🗶 Törlés	- Ri	endezés Ki	eresés és jelölér x		
1	/ágólap	5		Betűtípus	5	le	Jazítás		5	Szám	5	TOTTIC	203 10010	stílusok			Cellái	ç .		Szerke	sztés	Jeiores		~
H	3	Ŧ		$\times \checkmark f_x$																				~
	Α		в	с		D		Е	F	G	H	н	1	J	1.1	к	L	м	N	0	Р	Q	R	
1	életko	r B	мі	egészségügyben	eltöltött ével	egészségi á	llapot																	חר
2		32	24,2	1	3	4	. 3																	
3		33	28,3		2	0	3																	
4		29	41,7	,	3	1	3																	
5		29	27,7	1		4	3																	
6		35	22,9)	4	0	3																	
7		36	29,2		1	0	4			életkor	BMI	e	eü évek	egészségi ál	ι.									
8		28	22,4		1	2	3		Átlag	40,12778														
9		43	20,1			2	3		Medián	40,5														
10		35	21,5			5	1		Módusz	34														
11		43	27,2			2	3		Átlagos eltérés	7,916667														
12		50	31,2		2	7	3		Szórás	9,41414														
13		50	21,3		2	7	4																	
14		49	23,8			6	3																	
15		44	25,5		3	0	4																	
16		54	24,8		4	3	4																	
17		46	27,9		3	3	3																	
18		40	34,7			3	3																	
20		24	22,2		4	0 0	3																	
20		20	25,5			7	2																	
22		35	25,2			9	4																	
23		41	24.2		2	4	3																	
24		43	23.2		4	5	3																	
25		31	24.1			9	3																	
26		50	22.1		4	3	3																	
27		42	24.4		4	3	3																	
28		32	25,9)	4	5	2																	
29		40	26,5		3	6	3																	
30		33	31,1			4	4																	
			Közép	értékek-Szóródás	Munka2	(+)								: •										Þ
KÉS	z _						_	_		_		_				_	_	_	Ħ	E	四	1	+	100%

141. ábra: Kiszámított középértékek

A BMI esetében először nézzük meg, hogy a B oszlop hányadik soráig vannak válaszok (108), és az átlag képlete a következő lesz: =ÁTLAG(B2:B108), majd Enter. És így haladunk tovább a többi érték kiszámításában.

3.3.3. Matematikai statisztikai módszerek

Excel programnak a bonyolultságán túl az a hátránya, hogy Wilcoxon-, Mann-Whitney- és Kruskal-Wallis-próbákat nem lehet vele végezni, illetve vannak olyan statisztikai próbák (varianciaanalízis, korreláció), ahol a szignifikancia értéket nem lehet kiszámolni, csupán a próbához tartozó mérőszámot (F, r), és az alapján kell egy külön táblázatból kikeresni, hogy szignifikáns-e az adott eredmény. Ez a külön táblázat pedig statisztika könyvekben található.

Egymintás t-próba

Nézzük meg, hogy az egészségpedagógia kurzus teljesítése előtt és után van-e különbség az egészségrajzokon megjelenített, fizikális egészség dimenzióba tartozó rajzelemszámok között! Első lépésként célszerű felírni (ha több változót kívánunk vizsgálni) a változók nevét, hogy az alatta lévő sorban számoljuk ki a szignifikancia értéket. Kattintsunk a fizikális rajzelemszám alatti üres cellára. (**142. ábra**)

FÁJL	KEZDŐLAP BESZÚRÁS	S LAPELRENDEZÉS KÉPLETE	K ADATOK VÉLEMÉNYEZÉS	NÉZET						Be	ejelentkezés 🖡	9
	Calibri -		 Sortöréssel több sorba 	Általános 🔹 🖡	ŧ.		-		∑ AutoSzum × A ↓ Kitöltés × Z	Ħ		
Beillesz	^{tés} 🛷 🛛 F D A 👻 🔛	• 🎂 • 🛕 • 🚍 🚍 😂	🚈 🖽 Cellaegyesítés 🔹 🚺	3 - % 000 58 30 Feltét formá	iteles Formázás C ázás táblázatként *	ellastilusok E	Beszúrás Törlés F	ormátum *	Törlés * és szűrés *	Keresés és kiielőlés *		
Vágó	lap 🕞 Betűtípu	is Fa	Igazítás 😼	Szám 🕞	Stílusok		Cellák		Szerkesztés		~	~
17	¥ : X ./	£										
17		Jx										
1	В	С	D	E		F	G	Н	1	J	ĸ	A.
1 fiz	kális rajzelemszám ELÖTTE	fizikális rajzelemszám UTÁNA	Testi tünetek ELÖTTE	Testi tünetek UTANA								
2	2	4	10		10							
3	4	5	2		3							
4	5	8	/		8							
5	2		0		11				finil: flin an in a la ana far		- 1-	
0	1		1		11 F			ي خمه خار	fizikalis rajzelemszam	testi tunet	ек	
•	1		0		3			репек		4		
0	2		11		4							
10	3	5			7							
11		9	1		2							
12	- 1	3	-		5							-
13	1		4		1							
14	1	5	1		1							
15	3	3	8		11							
16	4	8	13		9							
17	2	4	17		11							
18	2	: 5	11		9							
19	6	i 9	12		10							
20	3	5	3		7							
21	1	. 4	17		12							
22	2	3	11		5							
23	1	. 6	10		8							
24	3	3	4		0							
25	4	8	9		5							
26	5	8	7		8							
27	1	. 4	6		2							
28	3	4	13		14							
29	4	9	3		3							
30	2	5	13		•							Ŧ
	egymintás t-pról	Munka2 (+)				•					•	
KÉSZ									- 🖽 🖽 🗉		+ 100%	%

142. ábra: Vizsgálni kívánt változók elnevezése

Ezután a függvénybeszúrása gombra kattintva a statisztikai csomagból válasszuk ki a t-próbát, majd kattintsunk az OK gombra. (**143. ábra**)

143. ábra: T-próba kiválasztása a statisztika menüből

FÁJL KEZ	DŐLAP BESZÚRÁS LAPELRE	NDEZÉS KÉPLETEK ADATOK	VÉLEMÉNYEZÉS	NÉZET					Bejelentkezés 🔍
<mark>ь</mark> .	Calibri - 11 - A A	A [™] ≡ ≡ ■ ≫ ∗ ₽ Sortöréssel	több sorba Álta	lános 🔹 📝	V	E 🖹		∑ AutoSzum × A ↓ Kitöltés × Z	A
Beillesztés	F D A - 🖽 - 🖄 - A	→ = = = ← ← ← □ Cellaegyes	ítés 🔹 😭	 % 000 00 + elteteles formázás + 1 	áblázatként • •	Beszúrás Torlés I	ormatum v		zreses es ijelölés *
Vágólap 🕞	Betűtípus	ra Igazítás	G.	Szám 🕞	Stílusok	Cellák		Szerkesztés	·
17 .									
17	: ^ v)x -								*
	В	C D		E	F	G	Н	1	J K 🔺
1 fizikális rajz	zelemszám ELŐTTE fizikális rajz	elemszám UTÁNA Testi tünetek ELŐ	TTE Te	esti tünetek UTÁNA					
2	2	4	10	10					
3	4	5	2	3					
4	5	8	7	R Főzenvény bernésére		2 ×	1		
5	2	5	6	ruggveny beszurasa		r ^			
6	1	3	7	Eüggvény keresése:				fizikális rajzelemszám	testi tünetek
1	1	3	6	Írja be röviden mit tegyen a f	üggvény, és kattintson a	<u>K</u> eresés	pertek	=	
8	2	4	5	Kereses gombra					
9	3	3		A függveny kategoriaja: Stat	sztikai	/			
10	4	5	1	A függvény <u>n</u> eve:					
12	2	2		SZÓRÁSPA		^			
12	1	2	0	T.ELOSZL T.ELOSZLÁS.2SZ					
14	1	5	1	T.ELOSZLÁS.JOBB					
15	3	3	8	T.INVERZ.2SZ					
16	4	8	13	T.PRÓB		×			
17	2	4	17	A Student-féle t-próbáboz ta	ius) tozó valószínűséget számítia l	и			
18	2	5	11	A statent ter tyrobanoz ta	tozo varoszínaseget szannya i				
19	6	9	12						
20	3	5	3						
21	1	4	17	Súgó a függvényről	OF	Ménre			
22	2	3	11	Judo a laddicultoi	OK	megse			
23	1	6	10	8					
24	3	3	4	0					
25	4	8	9	5					
26	5	8	7	8					
27	1	4	6	2					
28	3	4	13	14					
29	4	9	3	3					
30	2	5	13	8					v
	egymintás t-próba Munkai	2 🕀							Þ
SZERKESZTÉS								III III	+ 100%

A Tömb1 cellába írjuk a B2:B51-et (mivel a fizikális rajzelemszám oktatás előtti értéke a B oszlop 2-51. soráig tart), a Tömb2-be a C2:C51-et (mivel a fizikális rajzelemszám oktatás utáni értéke a C oszlop 2-51. soráig tart). Ügyeljünk a kettős pontokra! A Szél cellába 2-t, a Típus

cellába pedig 1-et írunk (ez jelzi, hogy egymintás t-próbáról van szó), majd a Kész gombra kattintunk. (144. ábra)

144. ábra: T-próba menete

A fizikális rajzelemszám alatti cellában megjelenik a p érték. Előfordulhat, hogy "furcsa" számbetű kombináció jelenik meg (pl: 1,74878E-15). Ez azért fordulhat elő, mert az Excel beállítása nem jó. Ilyenkor jobb egérgombbal kattintsunk a cellára, majd a Cellaformázás parancsra, és válasszuk ki a Szám-ot, majd a tizedes jegyek számát növeljük 3-ra (**145. ábra**), és kattintsunk az OK gombra.

A fizikális rajzelemszám alatti cellában máris megjelenik a szignifikancia értéke: 0,000; amit így jelenítünk meg: p<0,000. Azt mondhatjuk, hogy jelentős különbség van az egészségpedagógia kurzus előtt, majd annak elvégzése után az egészségrajzokon megjelenített, fizikális dimenzióba tartozó rajzelemszámok között. Ez a vizsgálat t értéket nem ad meg, így nem tudjuk megmondani, hogy az oktatás előtt vagy után jelenítettek-e meg több rajzelemszámot a hallgatók. A kérdés megválaszolása egyszerű: a középértékek fejezetnél ismertetett módon számítsuk ki az átlagokat (*Falus és Ollé 2008*).

Ha ezzel kész vagyunk, akkor következhet a többi változó vizsgálata (ügyeljünk az oszlop nevekre!).

Kétmintás t-próba F-próbával

Vizsgáljuk meg, hogy a két csoport között van-e különbség az intelligencia hányadosban (IQ). Az A oszlopban 1 és 2-es számmal különböztetjük meg a két csoport tagjait. Figyelni kell arra, hogy az egyes csoport tagjai a 2-51. sorig találhatók, a kettes csoport tagjai pedig az 52-118. sorig. Először az F-próbát kell elvégeznünk, mivel kétmintás t-próbát csak akkor végezhetünk, ha a két csoport eredményei alapján meghatározható varianciák között nincs jelentős különbség (tehát az F-próba nem szignifikáns). Először itt is célszerű felírni a vizsgált változók nevét, majd az F- és t-próbáknak is egy külön sort kijelölni. Ezután kattintsunk az IQ alatti F-próba cellára. (**146. ábra**)

146. ábra: Kétmintás t-próba előkészítése

A függvény beszúrása gombra kattintva a statisztikai programcsomagban találjuk az F-próbát, majd kattintsunk az OK gombra. (**147. ábra**)

Ð	JL	KEZDŐLAF	BESZŰ	IRÁS	LAPELRENDEZÉ	S KÉPLETEK AD	ATOK	VÉLEMÉNYEZÉ	S NÉZET										Bejelentke	zés 🏳
Beil	lesztés	Calil	ni D <u>A</u> -	• 11	· A A =	= * * * *	Sortörésse Cellaegye:	l több sorba sítés 👻	Szám	r Feltételes	Formázás táblázatként	Cellastílusok	Beszúrás	Törlés Formá	itum	AutoSzum Kitöltés + Törlés +	A Z Rendezés és szűrés *	Keresés és kijelölés *		
1	ágólap	5	Betű	típus	G	Igazítás		5	Szám	G	Stílusok			Cellák		Sz	erkesztés	Rijeloles		~
G		¥ :	×v	f _x	=															*
	А	В	C	[D E	F	G	н		1			J	K	L.	M	N	0	Р	-
1	csoport	IQ	testsú	ly																
2		1	11	70			IQ	testsúly												
3		1	20	54		F-próba p	=													
4		1	78	64																
5		1	69	70					Függvény besz	úrása			?	×						
6		1	89	85		kétmintás t-próba			<u>F</u> üggvény kere	iése:										
7		1	88	96					Írja be rövide	en mit tegyen a	függvény, és	kattintson a	Ker	sés						
8		1	79	80					Keresés gom	bra										
9		1	90	11					<u>A</u> függvény k	ategóriája: Sta	tisztikai		\sim							
10		1	84	63					A függvény <u>n</u> er	e:										
11		1	69	67					F.ELOSZL					<u> </u>						
12		1	70	85					F.ELOSZLÁS.	OBB										
13		1	.30	61					F.INVERZ.JO	3B										
14		1	.02	100					F.PROB FERDESEG											
15		1	.09	83					FERDESÉG.P					×						
16		1	90	70					F.PRÓB(tömt	1;tömb2)										
17		1	89	75					Az F-próba ér két tömb vari	tékét adja ered anciáia nem tér	iményül (anna el szignifikán	k a kétszélű való san).	ószínűségét,	hogy a						
18		1	90	75																
20		1	10	62																
20		1	88	80								_	_							
22		1	98	74					Súgó a függvé	nyröl		OK	Mé	gse						
23		1	99	62																
24		1	00	63																
25		1	69 6	0.5																
26		1	77	62																
27		1	88	75																
28		1	99	98																
29		1	.09	64																
30		1	15	82																
	F	Két	mintás t-n	r + F-pr	Munka2	(+)						4								- F
	overnte					0	_	_	_								a n a			10001

147. ábra: F-próba kiválasztása

A Tömb1 cellába írjuk a B2:B51-et (mert az első csoport tagjai ezekben a sorokban helyezkednek el), a Tömb2 cellába pedig a B52:B118-at (a második csoport tagjainak helye). Ügyeljünk a kettőspontokra! Kattintsunk a Kész gombra. (**148. ábra**)

	KE	ZDOLAP	BESZURAS	LAPELRENDEZES	KEPLETEK AD	ATOK \	/ELEMENYE	ZES NEZET	proba	men	cic							Bejelentke:	zės 🖂
	n X		× 11	. A^ . A ≡	= _ 8- =	Sortöréssel	több sorba	Szám	· .		and the second s	÷	\geq		∑ AutoSzum	- A	*		
Beil	lesztés	F D	<u>A</u> - III - <u>-</u>	⊵ - A - ≡	== @#	Cellaegyesi	tés –	En - % 000 €00	,00 Feltételes	Formázás táblázatként	Cellastílusok	Beszúrás ~	Törlés For	mátum	Kitoltes *	Rendezés és szűrés	Keresés és kijelőlés *		
\	ágólap	5	Betűtípus	5	Igazítás			Szám	5	Stílusok			Cellák		s	zerkesztés	,		^
	nón			r ppóp/pp	PE4-PE2-P440)														
F.	PROB	* : 2	< ✓ J×	=F.PROB(B2	:851;852:8118)														Ŷ
	Α	В	С	DE	F	G	н		1			J	K	1	L M	N	0	Р	
1	csoport	IQ .	testsúly																
2	1	11	70			IQ	testsúly												
3	1	120	54		F-próba p	2:B118)													
4	1	78	64																
5	1	69	70																
6	1	89	85		kétmintás t-próba														
7	1	88	96				Függv	ényargumentumok						? :	×				
8	1	79	80				E DD	ÓB											
9	1	90	77								1000 A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.								
10	1	84	63					TOMD1	82:851		1281 = (11)	120,78,69,8	9,88,79,90,8	4;69;70;1	30				
11	1	69	67					Tömb2	B52:B118		= {85	86;96;99;10	4;126;133;86	5;90;98;99	9;1				
12	1	70	85								= 0,0	69137754							
13	1	130	61				Az F-	oróba értékét adja eredm	iényül (annak a l	kétszélű valósz	tínűségét, hogy i	a két tömb v	arianciája n	em tér el					
14	1	102	100				szign	fikansan).											
15	1	109	83						Tömb2 a más	odik adattöml	b vagy adattarto	mány; eleme	i számok va	gy számo	ikat				
16	1	90	78						nem s	izámítanak).	ombok vagy niva	LKOZASOK TEP	ietnek (az u	res cellar	·				
17	1	89	72																
18	1	96	75				Érték	0,07											
19	1	106	65				5 Aug.	- 47				×1	ica .	Mégra					
20	1	110	62				2000	aruggvenyror				. Ka	592	megse					
21	1	88	80																
22	1	98	74																
23	1	99	62																
24	1	100	63																
25	1	69	60.5																
26	1	77	62																
27	1	88	75																
28	1	00	98																
20	1	109	64																
30	1	115	82																
50		M Gaussian		h fundaria l	0														
_	4 P	Ketmin	tas τ-pr' + F-pr	iviunka2	•						: •								•
SZE	RKESZTÉS															= 1		+	100%

148. ábra: F-próba menete

A kijelölt cellában megjelenik a szignifikancia értéke: p=0,069. Tehát az F-próba nem szignifikáns, így a kétmintás-t próba elvégezhető. Kattintsunk az IQ oszlopában a kétmintás t-próba melletti cellára. (**149. ábra**)

F	ÁJL	KE	ZDŐLAP	BESZÚRÁS	LAPELREN	NDEZÉS	KÉPLETEK A	DATOK \	/ÉLEMÉNYEZ	ZÉS NÉZET								Bejelentkeze	és 🖂
Be	Lesztés	ж №	Calibri	- 1 A - 100 -	A A	=		Sortöréssel	több sorba	Szám *	Feltételes F	ormázás Cellastílusok	€ ⊞ Beszúrás	Forlés Formátu	AutoSzun ▼ Kitöltés ~	n * Azy Rendezé	Keresés és		
	+	* *	F D	A · ···· ·	<u>м • А</u> •			g Cellaegyesi	tes *		formázás - táb	lázatként • •	*		n 🖉 Törlés 🕶	és szűrés	 kijelölés * 		
	Vágólap		5	Betűtípus	1	5	Igazítá	is	5	Szám 5		Stílusok		Cellák		Szerkesztés			~
G	6		• :	× ~ f	×														~
	A		в	с	D	E	F	G	н		1		J	к	L M	N	0	Р	-
1	csopo	ort	Q	testsúly					-										ПП
2		1	11	1 70				IQ	testsúlv										
3		1	120	54			F-próba p	0,069	,										
4		1	78	3 64															
5		1	65	9 70															
6		1	89	85			kétmintás t-próba	а											
7	1	1	88	3 96															
8		1	79	9 80															
9		1	90) 77															
10		1	84	4 63															
11		1	65	67															
12		1	70) 85															
13		1	130) 61															
14		1	102	2 100															
15		1	109	83															
16		1	90) 78															
17		1	89	9 72															
18		1	96	5 75															
19		1	106	5 65															
20		1	110) 62															
21		1	88	8 80															
22		1	98	3 74															
23		1	99	9 62															
24		1	100) 63															
25		1	69	60,5															
26		1	7	7 62															
27		1	88	s /5															
28		1	99	98															
29		1	109	0 64															
30		1	115	02			-												
	4		Kétmi	ntás t-pr + F-	pr Munk	ka2	(+)												Þ
KÉ	5Z														#	8 1			100%

149. ábra: F-próba eredménye

A függvény beszúrása gombra kattintva válasszuk ki a statisztikai programcsomagból a t-próbát (ugyanazt, mint az egymintás t-próbánál), majd kattintsunk az OK gombra. A Tömb1 cellába írjuk a B2:B51; a Tömb2-be a B52:B118 (1. és 2. csoport tagjainak helye), a Szél cellába ismét 2-t írunk, a Típus cellába is 2-t (ez jelzi, hogy kétmintás t-próbáról van szó) (**150. ábra**), majd a Kész gombra kattintunk.

A kijelölt cellában megjelenik a p érték: p<0,000 (**151. ábra**); ami azt jelenti, hogy jelentős különbség van a két csoport intelligenciájában. Ha az F-próba szignifikáns lett volna, akkor kétmintás t-próba helyett Welch-próbát kellett volna végezni. Ennek a menete ugyanaz, mint a kétmintás t-próbáé, csak a Típus cellába a kettes helyett hármast kellett volna írni (ez jelenti a Welch-próbát) *(Falus és Ollé 2008)*.

FÁJL	KE	ZDŐLAP	BESZÚRÁS	LAPELRENDEZÉ	S KÉPLETEK AD	ΑΤΟΚ V	ÉLEMÉNYEZI	ÉS NÉZET							Bejelentkezés 🏳
	X	Calibri	* 11	• A A =	= = 🗞 -	Sortöréssel t	öbb sorba	Szám *	F= 🗾		÷== [× 🗊	AutoSzum	Žy 👬	
Beilleszt	és 🧹	FD	<u>A</u> • 🖾 •	<mark>⊘</mark> - <u>A</u> - ≡	≡≡ € # 🖽	Cellaegyesít	és *	💱 - % 👓 % 🐝	Feltételes Formá	zás Cellastílusok	Beszúrás T	Förlés Formátum	📌 Törlés 🛪	Rendezés Keresés és	
Vágó	ap	6	Betűtípus	5	Igazítás		5	Szám	Stílu	sok		Cellák	Si	erkesztés	~
_															
G6		• :	$\times \checkmark f_x$	=T.PROB(B2	2:B51;B52:B118;2;2)										~
	Α	В	С	D E	F	G	н		1		J	К	L M	N O	P 🔺
1 cso	port	IQ	testsúly												
2	1	11	. 70			IQ	testsúly								
3	1	120	54		F-próba p	0,069									
4	1	78	64												
5	1	69	70												
6	1	89	85		kétmintás t-próba	0,000									
7	1	88	96												
8	1	79	80												
9	1	90	11												
10	1	84	63												
11	1	69	67												
12	1	70	85												
13	1	130	61												
14	1	102	100												
15	1	109	83												
10	1	90	70												
17	1	89	75												
18	1	90	75												
19	1	100	63												
20	1	110	80												
21	1	00	74												
22	1	30	62												
23	1	100	63												
25	1	69	60.5												
26	1	77	62												
27	1	88	75												
28	1	99	98												
29	1	109	64												
30	1	115	82												
4		Kétmi	ntás t-pr + F-pr	Munka2	(+)						1		1		
KÉSZ		_				_	_						⊞0	I II	+ 100%
-															

151. ábra: Kétmintás t-próba eredménye

Ezek után ugyanezzel a módszerrel kell elvégezni a többi változó esetében is a kétmintás tpróbákat.

Varianciaanalízis (ANOVA)

Excelben közvetlenül nem lehetséges a varianciaanalízist elvégezni, ehhez több lépésre van szükség. Példánkban három osztály tanulói szerepelnek, akiket 1, 2, és 3-as csoportként neveztünk el. Azt szeretnénk megtudni, hogy van-e jelentős különbség az egyes osztályok intelligencia hányadosában (IQ). Először minden részmintára ki kell számolni az összehasonlítás alapjául szolgáló változó átlagát és négyzetes összegét. Ehhez jegyezzük fel, hogy a B oszlop hányadik sorában találhatók az adott osztályok tanulói: 1 csoport 2-51. sor; 2. csoport 52-118. sor; 3. csoport 119-174. sor. Ezután üres cellákat nevezzünk el, hogy az adott csoport eredményeit ne keverjük össze. Ezután kattintsunk az 1. csoport átlag alatti üres cellára, ide fogjuk kiszámolni az eredményt. (**152. ábra**)

FÁ	JL	KEZC	DŐLAP	BESZÚRÁS	LAPEL	.RENDEZÉS KÉ	PLETEK	ADATOK	VÉLEMÉNYEZÉS	NÉZET								Bejelentke	zés 🔍
ľ	b 🖁	6	Calibri	×	11 · A	• • • = = =	»? -	루 Sortöré	ssel több sorba Általa	inos ×	≠			•== [×	AutoSzum	Z T		
Beille	esztés 🍾	×	FDA	• 🖽 •	<u>_</u>	▲ - = = =	€≣∔≣	🛄 Cellaeg	yesítés 🔹 🦉 🔹	% 000 50 50	Feltételes formázás *	Formázás táblázatként -	Cellastílusok	Beszúrás 1	örlés Formátun	Törlés -	Rendezés Keresés és és szűrés v kijelölés v		
Vá	igólap	G.		Betűtípus		6	Iga	zítás	G	Szám 🕞		Stílusok			Cellák	s	zerkesztés		^
54					e.														~
F4				~	Jx														*
	Α		В	С	D	E		F	G	Н	1	J	K	L	M	N O	P Q	R	^
1 0	soport	- IC	ב																
2		1	11																
3		1	120					átlag	négyzetes összeg										
4		1	78			1. csoport		_	_										
5		1	69			2. csoport													
6		1	89			3. csoport		_											
7		1	88																
8		1	/9																
9		1	90																
10		1	84																
11		1	69																
12		1	/0																
13		1	130																
14		1	102																
16		1	105																
17		1	90																
18		1	96																
10		1	106																
20		1	110																
21		1	88																
22		1	98																
23		1	99																
24		1	100																
25		1	69																
26		1	77																
27		1	88																
28		1	99																
29		1	109																
30		1	115																
-	•		Variancia	a Mun	ka2	+							4						•
KÉSZ																# (8 🗉	+	100%

152. ábra: Varianciaanalízis előkészítése

A függvény beszúrása gombra kattintva a statisztika menüpontból válasszuk ki az átlagot, és számoljuk ki a már tanult módon, vagy a szerkesztőlécbe gépeljük be az alábbi képletet: =ÁTLAG(B2:B51); majd Enter. (**153. ábra**)

153. ábra: Átlagok kiszámítása

Járjunk el ugyanígy a 2. és 3. csoportok esetében. A képletek a következők: =ÁTLAG(B52:B118) és =ÁTLAG(B119:B174). Az eredmények a **154. ábrán** láthatók.

154. ábra: Átlagok eredményei

Ezután számoljuk ki a négyzetes összegeket ugyanezen csoporthatárok és módszer alkalmazásával. A képletek a három csoport esetében a következők: =SQ(B2:B51); =SQ(B52:B118); =SQ(B119:B174). Az eredmények a **155. ábrán** láthatók.

G	5	• :	$\times \checkmark$	<i>f</i> _x =(9	SQ(B119:B174))					
	А	В	С	D	E	F	G	н	1	J
1	csoport	IQ								
2	1	. 1	1							
3	1	. 12	20			átlag	négyzetes összeg			
4	1	. 7	78		1. csoport	92,84	17222,72			
5	1	. 6	59		2. csoport	104,597	14356,1194			
6	1	. 8	39		3. csoport	99,€ ♦ 14	10951,35714			
7	1	. 8	38							
8	1	. 7	79							
9	1	9	90							
10	1	. 8	34							
11	1	. 6	59							
12	1	7	70							
13	1	13	30							

155. ábra: Négyzetes összegek eredményei

Ezek után ki kell számolni a teljes minta (mind a három osztály tanulói) IQ átlagát a következő képlettel: =ÁTLAG(B2:B174). Erre jelöljünk ki egy másik üres cellát. (**156. ábra**)

F8	1	* :	$\times \checkmark$	f _x =Á	TLAG(B2:B174)			
	А	В	С	D	E	F	G	н
1	csoport	IQ						
2	1		11					
3	1	1	20			átlag	négyzetes összeg	
4	1		78		1. csoport	92,84	17222,72	
5	1		69		2. csoport	104,597	14356,1194	
6	1		89		3. csoport	99,60714	10951,35714	
7	1		88					
8	1		79		a teljes minta IQ átlaga	99,58382		
9	1		90					
10	1		84					
11	1		69					

156. ábra: Teljes minta átlaga

Ezután egy következő cellában számoljuk ki a részminták négyzetösszegeinek összegét a következő képlettel: =SZUM(G4:G6). A zárójelben mindig azon oszlop betűjelét és sor számát kell megadni, ahol az adott értékek elhelyezkednek! (**157. ábra**)

FS)	*	: _ :	× ✓	$f_{\mathcal{K}}$	=SZ	ZUM(G4:G6)					
	А		В	С	C		E	F	G	Н	I	J
1	csoport	IQ										
2	1		11									
3	1		120					átlag	négyzetes összeg			
4	1		78				1. csoport	92,84	17222,72			
5	1		69				2. csoport	104,597	14356,1194			
6	1		89				3. csoport	99,60714	10951,35714			
7	1		88									
8	1		79				a teljes minta IQ átlaga	99,58382				
9	1		90				négyzetösszegek összege	42530,2				
10	1		84									
11	1		69									
12	1		70									

157. ábra: Négyzetösszegek összege

A belső variancia ennek az átlagnak és az összelemszám mínusz részminták száma hányados eredménye. Ezt is számoljuk ki egy külön cellában a következő képlettel: =F9/(174-3), majd Enter. (**158. ábra**)

F1	.0	•	:)	×	$f_{\mathcal{K}}$	=F	9/(174-3)					
	Α		В	С	[0	E	F	G	Н	1	J
1	csoport	IQ										
2	1		11									
3	1		120					átlag	négyzetes összeg			
4	1		78				1. csoport	92,84	17222,72			
5	1		69				2. csoport	104,597	14356,1194			
6	1		89				3. csoport	99,60714	10951,35714			
7	1		88									
8	1		79				a teljes minta IQ átlaga	99,58382				
9	1		90				négyzetösszegek összege	42530,2				
10	1		84				belső variancia	248,7146				
11	1		69									
12	1		70									
10	1		100									

158. ábra: Belső variancia

Ezután a három részmintára külön-külön ki kell számolnunk a külső variancia értékeit. Itt az egyes részmintába tartozó elemszámokat (fők számát) pontosan tudnunk kell. Az első részmintába 50, a másodikba 67, a harmadikba 56 fő tartozik. A képletben a teljes minta átlagából kivonjuk az adott csoport átlagát. A képletben ezeket a számokat tartalmazó cellák pontos helyét adjuk meg! A három képlet a következő:

1. csoport: =50*(F8-F4)*(F8-F4)

2. csoport: =67*(F8-F5)*(F8-F5)

3. csoport: =56*(F8-F6)*(F8-F6)

Az eredmények a 159. ábrán láthatók.

H	5	• :	$\times \checkmark$	<i>f</i> _x =56	5*(F8-F6)*(F8-F6)				
	А	В	С	D	E	F	G	Н	I.
1	csoport	IQ							
2	1	11	L						
3	1	120)			átlag	négyzetes összeg	külső variancia	
4	1	78	3		1. csoport	92,84	17222,72	2273,952057	
5	1	69)		2. csoport	104,597	14356,1194	1683,855605	
6	1	89)		3. csoport	99,60714	10951,35714	0,030474504	
7	1	88	3						
8	1	79)		a teljes minta IQ átlaga	99,58382			
9	1	90)		négyzetösszegek összege	42530,2			
10	1	84	L		belső variancia	248,7146			
11	1	69)						
12	1	70)						
13	1	130)						

159. ábra: Külső varianciák

Ezután ki kell számolni a külső varianciák végső értékét, mely a külső varianciák összegének és a részminták számánál egyel kisebb értéknek a hányadosa. Itt is figyeljünk az adott értékeket tartalmazó cellák pontos megadására. Esetünkben a képlet: =SZUM(H4:H6)/2 Az eredményt a **160. ábra** szemlélteti.

H	1	- :	2	K 🗸	f_{x} :	=SZUM(H4:H6)/2					
	А	В		С	D	E	F	G	Н	I.	J
1	csoport	IQ									
2	1		11								
3	1		120				átlag	négyzetes összeg	külső variancia		
4	1		78			1. csoport	92,84	17222,72	2273,952057		
5	1		69			2. csoport	104,597	14356,1194	1683,855605		
6	1		89			3. csoport	99,60714	10951,35714	0,030474504		
7	1		88								
8	1		79			a teljes minta IQ átlaga	99,58382				
9	1		90			négyzetösszegek összege	42530,2				
10	1		84			belső variancia	248,7146				
11	1		69			külső variancia			1978,919068		
12	1		70								
13	1		130								

160. ábra: Külső variancia

A szignifikancia vizsgálathoz szükséges F érték a külső és belső variancia hányadosa: =H11/F10 (**161. ábra**)

F1	13	- :	\sim	 	<i>f</i> _x =H	11/F10				
	А	В		С	D	E	F	G	н	I.
1	csoport	IQ								
2	1	L	11							
3	1	L	120				átlag	négyzetes összeg	külső variancia	
4	1	L	78			1. csoport	92,84	17222,72	2273,952057	
5	1	L	69			2. csoport	104,597	14356,1194	1683,855605	
6	1	L	89			3. csoport	99,60714	10951,35714	0,030474504	
7	1	L	88							
8	1	L	79			a teljes minta IQ átlaga	99,58382			
9	1	L	90			négyzetösszegek összege	42530,2			
10	1	L	84			belső variancia	248,7146			
11	1	L	69			külső variancia			1978,919068	
12	1	L	70							
13	1	L	130			F érték	7,956586			
14	1	L	102							
15	1	L	109							

161. ábra: F érték kiszámítása

Egy F-eloszlás táblázatból (statisztika könyvekben megtalálható) keressük ki, hogy szignifikáns-e ez az F érték. Jelen esetben nem, tehát az általunk vizsgált három csoport között nincs jelenős különbség az intelligencia hányadosban *(Falus és Ollé 2008)*.

Korreláció-számítás

Első lépésként nézzük meg, hogy az adataink melyik sorokban helyezkednek el (2-163), majd válasszuk ki azt a cellát, ahová szeretnénk kiszámolni a korrelációs együtthatót. (**162. ábra**)

F	ÁJL	KEZ	DŐLAP BES	ZÚRÁS	LAPELRENDE	ZÉS KÉ	ÉPLETEK	ADATOK VÉLEMÉNYEZ	ZÉS NÉZET												Bejelentkez	6 M
Bei	llesztés	¥ ⊪ - ∛	Calibri F D A -	* 11 *	т А́А́ А́- А́-	= = =	&>- € #:	Cellaegyesítés *	Szám	• %8 \$%	Feltételes formázás ≈	Formázás táblázatként •	Cellastilusok	Beszúrás	Törlés F	ormátum	∑ Au ↓ Kit ≪ Tö	itoSzum × öltés × rlés ×	A Rendezés és szűrés *	Keresés és kijelölés *		
	Vágólap	5	В	etűtípus	Gr.		Ig	gazítás G	Szám	5		Stílusok			Cellák			Szei	kesztés			^
D	5	,	• : ×	$\sqrt{-f_{\rm N}}$																		~
	A		вс		D		E			F				G	I F		1	J.	к	L	м	
1	életko	r t	estsúly																			
2		46	90																			
з		39	86																			
4		59	68	korre	elációs együt	tható																
5		42	61																			
6		47	130																			
7		62	64																			
8		43	104																			
9		59	80																			
10		56	60																			
11		57	90																			
12		50	75																			
13		51	70																			
14		45	96																			
15		30	102																			
16		58	67																			
17		49	73																			
18		55	60																			
19		46	60																			
20		34	100																			
21		59	79																			
22		50	70																			
23		55	70																			
24		40	100																			
25		92	60																			
20		42	110																			
2/		42	106																			
20		-+r 50	105																			
20		46	65																			
50	4 1	40	korreláció e	zámítás	Munka2	(+)																
¥ É S	7	_	norrendero a			U	_			_	_		1.51					## m	m -			100%
AL.																						100%

ése

Kezdjük el begépelni a korreláció számítás képletét, esetünkben =KORREL(A2:A163;B2:B163) (mivel a két változó, ami között az összefüggést szeretnénk vizsgálni, az A és B oszlopokban van), majd Enter. (**163. ábra**)

163. ábra: Korreláció eredménye

E	ÁJL KE	ZDŐLAP	BESZÚRJ	ÁS LAPELRENDE	ZÉS KÉPLETEK	ADATOK	VÉLEMÉNYEZ	ÉS NÉZET			
	* *	Calibri		- 11 - A A	= = ** •	📴 Sortörés	sel több sorba	Szám	-	₹	
Bei	lesztés	FD	<u>a</u> - =	- 🗠 - 🔺 -	===	E 🗄 Cellaegy	resítés +	약 · % 000	58 38	Feltételes formázás *	Formázás Ce táblázatként -
1	/ágólap	ra l	Betűtíp	us ra		Igazítás	G	Szám	r ₂		Stílusok
D	5	• : [$\times \checkmark$	fs: =KORREL	(A2:A163;B2:B16	3)					
	А	В	С	D	E				F		
1	életkor	testsúly									
2	46	90									
з	39	86									
4	59	68		korrelációs együt	tható						
5	42	61		-0,04	79348						
6	47	130									
7	62	64									
8	43	104									
9	59	80									
10	56	60									
11	57	90									
12	50	75									
13	51	70									
14	45	96									
15	30	102									
16	58	67									
17	49	73									
18	55	60									
19	46	60									
20	34	100									
21	59	79									
22	50	70									
23	55	70									

A kapott korreláció értéke (r) -0,0479, amit már is látunk, hogy a nullához nagyon közel van, tehát biztosan nincs összefüggés a két változó között *(Falus és Ollé 2008)*.

Excel programmal azonban csak két változó közötti korrelációs összefüggést tudunk vizsgálni, nincs lehetőségünk olyan összetett vizsgálatra, korrelációs mátrix elkészítésére, mint SPSS-ben.

ÖNELLENŐRZŐ KÉRDÉSEK A 3. FEJEZETHEZ

- 1. Sorolja fel a leíró statisztikai módszereket!
- 2. Mik a csoportosítás/kategorizálás főbb kritériumai?
- 3. Mit jelent a relatív gyakorisági eloszlás?
- 4. Mit jelent az abszolút gyakorisági eloszlás?
- 5. Mit jelent a medián?
- 6. Hogyan számítjuk ki a mediánt?
- 7. Mi a szórás?
- 8. Mi a szignifikancia egyezményes határa?
- 9. Mit jelent az első és másodfajú hiba?
- 10. Mi az önkontrollos vizsgálat?
- 11. Mely statisztikai próbákkal végezzük a normalitásvizsgálatot?
- 12. Mely statisztikai próbákat alkalmazzuk intervallumskálán mért adatok esetén?
- 13. Mi az egymintás t-próba lényege?
- 14. Melyek a kétmintás t-próba elvégezhetőségének feltételei?
- 15. Melyek a varianciaanalízis elvégezhetőségének feltételei?
- 16. Mely statisztikai próbákat alkalmazhatjuk ordinális változók esetében?
- 17. Milyen vizsgálatnál alkalmazzuk a Mann-Whitney-próbát?

18. Mely statisztikai próbákat lehet alkalmazni abban az esetben, ha a vizsgált folytonos változó nem normál eloszlású?

- 19. Mely statisztikai próbák alkalmasak kettőnél több csoport vizsgálatára?
- 20. Különbözőség vagy összefüggés vizsgálatra alkalmas a Khi-négyzet-próba?
- 21. Mit vizsgál a korreláció számítás?

4. Próbafeladatok megoldásokkal

Ennek a fejezetnek a célja, hogy megismertesse az olvasót a statisztikai döntéshozás folyamatával, ugyanis egy hipotézisről el kell tudni dönteni, hogy milyen típusú, illetve a változók típusa alapján pedig el kell tudni dönteni, hogy milyen statisztikai próbát kell végezni. Ezek után az eredményeket megfelelően értékelni kell, és ezután a következtetéseket levonni, majd megfelelően közölni.

H1: *Feltételezem, hogy az egészségügyben eltöltött idő összefügg a munkahelyen megélt negatív életesemények számával.* Ebben a hipotézisben árulkodik egy szó: "összefügg", tehát ez egy összefüggést vizsgáló hipotézis lesz. Ebből adódóan – ha megnézzük az **50. ábrát** – már tudjuk is, hogy milyen statisztikai próbák jöhetnek szóba: korreláció számítás, Spearman-féle rangkorreláció, Khi-négyzet-próba.

Most nézzük meg a változók típusát (ehhez szükség van az eredeti kérdőívre is): az egészségügyben eltöltött időt évben kérdeztük, a munkahelyen átélt negatív eseményeket pedig ixeléssel kellett jelölni. Ezután összeadtuk, hogy ki hány darab negatív eseményt jelölt be, így mindkét változó intervallumskálán mért változó lesz, tehát már is adott a statisztikai próba, amit el kell végeznünk: korreláció számítás. Független változó (ok) lesz az egészségügyben eltöltött évek, függő változó pedig (okozat) az átélt negatív életesemények száma.

A korreláció számítást elvégeztük a már ismertetett módon, és a következő eredményt kaptuk (164. ábra):

Descriptive Statistics							
	Mean	Std. Deviation	Ν				
Hany eve dolgozik az egeszsegugyben?	17,46	9,855	483				
negatív életesemények	2,63	1,649	483				

164.	ábra:	1.	hipo	tézis	vizsgálata
	D			.	

~				
.0	rre	ап	or	15

	Conclutions		
		Hany eve dolgozik az egeszsegugyben?	negatív életesemények
Hany eve dolgozik az egeszsegugyben?	Pearson Correlation Sig. (2-tailed)	1	,074 ,104
	Ν	483	483
negatív életesemények	Pearson Correlation	,074	1
	Sig. (2-tailed)	,104	
	Ν	483	483

A 483 válaszadó átlag 17,46 éve dolgozik az egészségügyben (SD=9,855), és átlag 2,63 (SD=1,649) negatív életeseményt éltek át munkahelyükön. A statisztikai próba eredménye:

r=0,074; p=0,104. Ez alapján azt mondhatjuk, hogy nincs összefüggés az egészségügyben eltöltött évek száma, és a munkahelyen átélt negatív életesemények száma között, így hipotézisünket levetjük. (A következtetésben mindig utalni kell a hipotézis tartalmára!)

H2: *Feltételezem, hogy a mellékállással rendelkezők rosszabbnak ítélik meg egészségi állapotukat.* A kérdőívben egy kérdés vizsgálta, hogy valakinek van-e mellékállása (igen-nem válaszlehetőséggel). A hipotézis azt mondja, hogy "a mellékállással rendelkezők", tehát itt két csoport vizsgálatáról van szó: akinek van, és akinek nincs mellékállása. Ha már tudjuk, hogy két csoportot vizsgálunk, akkor az **50. ábrából** meg tudjuk állapítani, hogy ez különbözőség vizsgálat lesz. Most nézzük meg az egészségi állapot változót: ezt a kérdést egy négy fokozatú Likert-skálával vizsgáltuk (1=kiváló egészség; 4=rossz egészség). Ha Likert-skála, akkor csakis nemparaméteres próbáról lehet szó, mivel ez ordinális adat. Két, egymástól független csoport esetében csak a Mann-Whitney-próba jöhet szóba. Hiába egy kutatáson belül van az éjszakázók és nem éjszakázók csoportja, mégis egymástól függetlennek kezeljük őket, mivel az egyik csoport tagjai rendelkeznek egy tulajdonsággal (éjszakáznak), a másik csoport tagjai nem (nem éjszakáznak). Független változó a mellékállás, függő az egészségi állapot.

A korábban már ismertetett módon elvégeztük a Mann-Whitney-próbát, és a következő eredményeket kaptuk (165. ábra):

	Ranks			
	van-e mellékállása	Ν	Mean Rank	Sum of Ranks
egészségi állapota	nincs	438	243,17	106508,00
önbecsléssel	van	45	230,62	10378,00
	Total	483		

Test Statistics ^a	
------------------------------	--

	egészségi
	állapota
	önbecsléssel
Mann-Whitney U	9343,000
Wilcoxon W	10378,000
Z	-,631
Asymp. Sig. (2-tailed)	,528

a. Grouping Variable: van-e mellékállása

Az első táblázatban látható rangpontszám átlagokat a Likert-skála alapján kell értékelni: magasabb pontszám (így magasabb rangpontszám átlag) rosszabb egészségi állapotot jelent. Ennek értelmében, a mellékállással nem rendelkezők rosszabbnak ítélték meg saját egészségi állapotukat, mint a mellékállással rendelkezők. Előbbi csoport rangpontszám átlaga magasabb (MR=243,17), utóbbié alacsonyabb (MR=230,62). A statisztikai próba eredménye: U=9343,0;

p=0,528. Ez alapján azt mondhatjuk, hogy a mellékállással nem rendelkezők és az azzal rendelkezők csoportja között nincs jelentős/szignifikáns különbség az egészségi állapot önértékelésében, így hipotézisünket elutasítjuk. Ezzel a mondattal visszautaltunk a hipotézisre, és arra is, hogy különbözőséget vizsgáltunk.

H3: *Feltételezem, hogy az egyes kiégés kategóriák között jelentős különbség van a dohányzás rendszerességében.* A hipotézisben ott a kulcsszó: "különbség", tehát már tudjuk, hogy különbözőség vizsgálatról van szó. Most vizsgáljuk meg a két változót! A kiégés kategóriából négy van (örökös eufória, jól csinálja, változtatás szükséges, kezelés szükséges), ez négy csoportnak felel meg, és nominális változó. A dohányzás rendszerességét három válaszlehetőség közül kellett kiválasztani: nem, alkalmanként, rendszeresen. Ezekből látszik, hogy nominális változóról van szó. Független változó a kiégés kategóriák, függő pedig a dohányzás rendszeressége. Az **50. ábrából** leolvashatjuk, hogy nominális változók esetében a Khi-négyzet-próba szolgál a különbözőség vizsgálatára.

A statisztikai próbát elvégeztük a korábban már ismertetett módon, és a következő eredményt kaptuk (166. ábra):

donanyzas kieges_kategona orosstasalation							
			örökös	jól	változtatás	kezelés	_
			eufória	csinálja	szükséges	szükséges	Total
dc	nem	Count	64	106	73	50	293
há		% dohányzás	21,8%	36,2%	24,9%	17,1%	100,0%
nyz		% kiégés_kategória	61,0%	62,0%	61,9%	56,2%	60,7%
<u>í</u> ás	alkalmanként	Count	6	10	16	10	42
		% dohányzás	14,3%	23,8%	38,1%	23,8%	100,0%
		% kiégés_kategória	5,7%	5,8%	13,6%	11,2%	8,7%
	rendszeresen	Count	35	55	29	29	148
		% dohányzás	23,6%	37,2%	19,6%	19,6%	100,0%
		% kiégés_kategória	33,3%	32,2%	24,6%	32,6%	30,6%
Total		Count	105	171	118	89	483
		% dohányzás	21,7%	35,4%	24,4%	18,4%	100,0%
		% kiégés_kategória	100,0%	100,0%	100,0%	100,0%	100,0%

166. ábra: 3. hipotézis vizsgálata

dohányzás	* kiéaés	kategória	Crosstabula	ation
uonanyzas	Rieges_	_nategoria	01035185016	ation

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square Likelihood Ratio Linear-by-Linear	8,816ª 8,747 ,000	6 6 1	,184 ,188 ,987
N of Valid Cases	483		

a. 0 cells (,0%) have expected count less than 5. The minimum

expected count is 7,74.

Mivel az egyes kiégés kategóriák közötti különbséget vizsgáljuk, az első táblázatban a vastaggal kiemelt számokat kell összehasonlítani. Szemmel láthatóan van egy kis különbség, de hiba lenne bármelyik adatot is kiragadni a többi közül! Feltűnő például, hogy a kezelés szükséges csoportban vannak a legkevesebben azok, akik nem dohányoznak. Az is hiba lenne, ha az első táblázatból a relatív gyakoriságokat egyenként kimásolnánk egy szövegbe. E helyett készítsünk egy diagramot, amin az értékek fel vannak tüntetve. **(167. ábra)**

167. ábra: Dohányzás rendszerességének megoszlása a kiégés kategóriák között (n=483)

nem alkalmanként rendszeresen

A következtetéseket így vonjuk le: a **167. ábrán** láthatjuk, hogy a legkevesebb nem dohányzó válaszadó (56,2%) a kezelés szükséges csoportban van, azonban a Khi-négyzet-próba alapján megállapíthatjuk, hogy a dohányzás gyakoriságát tekintve nincs szignifikáns különbség az egyes kiégés csoportokba tartozó válaszadók között (p=0,184), így a hipotézist elvetjük.

H4: *Feltételezem, hogy a rendszeresen dohányzók jelentősen több gyógyszert szednek, mint azok, akik alkalmanként vagy nem dohányoznak.* A hipotézis megfogalmazásából kitűnik, hogy három csoport (rendszeresen, alkalmanként és nem dohányzók) közötti különbséget szeretnénk vizsgálni. Független változó a dohányzás rendszeressége, függő pedig a szedett gyógyszerek száma. A szedett gyógyszerek számát megkérdeztük a kérdőívben: "Ön hány féle gyógyszert szed rendszeresen betegségeire?" Ez a változó intervallumskálán mért változó, így meg kell néznünk, hogy normál eloszlást mutat-e! Az elvégzett Kolmogorov-Smirnov- és Shapiro-Wilk tesztek szignifikánsak (p<0,000) (168. ábra), tehát a változó nem követi a normál eloszlást, így a varianciaanalízis nem paraméteres párját, a Kruskal-Wallis-próbát kell alkalmazni. A normalitás hiányát bizonyítja a 169. ábra is.

168. ábra: Normalitás vizsgálat Tests of Normality

	Koln	nogorov-Smir	nov ^a	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
rendszeresen szedett gyógyszerek száma	,345	483	,000	,641	483	,000

a. Lilliefors Significance Correction

A korábban ismertetett módon elvégeztük a Kruskal-Wallis-próbát, és a következő eredményt kaptuk (170. ábra):

170. ábra: 4. hipotézis vizsgálata

Ranks

	dohányzás	Ν	Mean Rank
rendszeresen szedett gyógyszerek száma	nem	293	243,22
	alkalmanként	42	204,74
	rendszeresen	148	250,17
	Total	483	

Test Statistics^{a,b}

	rendszeresen szedett gyógyszerek száma
Chi-Square	4,705
df	2
Asymp. Sig.	,095

a. Kruskal Wallis Test

 b. Grouping Variable: dohányzás

Az első táblázatból leolvasható rangpontszám átlagok mutatják, hogy a legkevesebb gyógyszert az alkalmanként dohányzók szedik (MR=204,74), utánuk következnek a nem dohányzók (MR=243,22), majd a rendszeresen dohányzók (MR=250,17). Azonban a statisztika próba eredménye (Chi-Square=4,705; p=0,095) alapján megállapíthatjuk, hogy a dohányzás rendszeressége alapján kialakított csoportok között nincs szignifikáns különbség a rendszeresen szedett gyógyszerek számában, így hipotézisünket elvetjük.

H5: Feltételezem, hogy minél zaklatottabbnak ítéli meg valaki az életét, annál rosszabbnak értékeli egészségi állapotát. Ebben a hipotézisben a zaklatott élet és az egészségi állapot közötti összefüggést keressük. Fontos, hogy meg van adva az elvárt kapcsolat is "rosszabbnak", tehát ha ezzel ellentétes, de szignifikáns eredmény jönne ki, akkor a hipotézist el kellene utasítani. A független változó a zaklatott élet, a függő pedig az egészségi állapot megítélése. Azt már tudjuk, hogy összefüggést keresünk, így csak korreláció számítás, Spearman-féle rangkorreláció és a Khi-négyzet-próba jöhet szóba. Nézzük meg a két változót a kérdőívben. A zaklatottságot egy négyfokozatú Likert-skálával mértük (1=nagyon; 4=egyáltalán nem), tehát ordinális változó. Az egészségi állapot önértékelését szintén egy négyfokozatú Likert-skálával mértük (1=kiváló; 4=rossz), tehát ez is ordinális változó. Két ordinális változó között a kapcsolatot pedig a Spearman-féle rangkorrelációval vizsgáljuk. Az eredmények értékelésénél azonban majd figyelni kell a Likert-skálák irányára!

A Spearman-féle rangkorreláció számítást elvégeztük a korábban már ismertetett módon, és a következő eredményt kaptuk (171. ábra):

		Correlations		
			Mennyire zaklatott, hajszolt az élete	egészségi állapota önbecsléssel
Spearman's rho	Mennyire zaklatott, hajszolt	Correlation Coefficient	1,000	-,200**
1	az élete	Sig. (2-tailed)		,000
1		N	483	483
	egészségi állapota	Correlation Coefficient	-,200**	1,000
	önbecsléssel	Sig. (2-tailed)	,000	
1		Ν	483	483

171. ábra: 5. hipotézis vizsgálata

**. Correlation is significant at the 0.01 level (2-tailed).

A zaklatott élet és az egészségi állapot önértékelése között negatív irányú, erős korrelációs kapcsolat van (r=-0,200; p<0,000), ami azt jelenti, hogy minél inkább úgy érzi az illető, hogy nem zaklatott az élete (magasabb számot jelölt), annál jobbnak ítéli meg egészségi állapotát (alacsonyabb számot jelölt) (ezért kellett figyelni a Likert-skálák irányát). Ezt a mondatot

nyugodtan megfordíthatjuk: minél zaklatottabbnak érzi valaki az életét, annál rosszabbnak ítéli meg egészségi állapotát, tehát a hipotézis igazolást nyert.

H6: *Feltételezem, hogy a külső bizonytalanság érzetében jelentős különbség van a munkahely átszervezését megélők, és az azt meg nem élők között.* Ebben a hipotézisben is ott van a kulcsszó: különbség. Ebből tudjuk, hogy különbözőség vizsgálatot fogunk végezni. A munkahely átszervezését megélők, és az azt meg nem élők lesznek a két csoport, így már tudjuk, hogy az **50. ábra** 2. sorában kell keresnünk az elvégzendő statisztikai próbát. Tehát vagy kétmintás t-próba, vagy Mann-Whitney-próba, vagy Khi-négyzetpróba lesz. A választ a külső bizonytalanság érzete fogja megadni. Itt egy összpontszámról van szó, tehát intervallumskálán mért változó. Ebben az esetben megint normalitásvizsgálatot kell végezni (most csak az eredményeket közlöm): a Kolmogorov-Smirnov-próba (p=0,128) és a Shapiro-Wilk-teszt (p=0,320) sem szignifikáns, így a változót normál eloszlásúnak tekintjük, és a kétmintás t-próba elvégezhető. Független változó a munkahely átszervezése, függő pedig a külső bizonytalanság érzete.

A kétmintás t-próbát elvégeztük a korábban már ismertetett módon, és a következő eredményt kaptuk (**172. ábra**):

	eü átszervezés az ön munkahelyén	N	Mean	Std. Deviation	Std. Error Mean
Külső_bizonytalanság_ö	igen	300	10,66	2,775	,160
sszpontszám	nem	183	9,73	2,707	,200

172. ábra: 6. hipotézis vizsgálata

Group Statistics

Independent Samples Test										
Levene's Test Varia			for Equality of nces				t-test for Equality	of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Differ Lower	e Interval of the ence Upper
Külső_bizonytalanság_ö sszpontszám	Equal variances assumed	,191	,662	3,610	481	,000	,931	,258	,424	1,438
	Equal variances not assumed			3,632	392,068	,000	,931	,256	,427	1,435

A munkahely átszervezését átélők esetében a külső bizonytalanság átlaga 10,66 (SD=2,775), az átszervezést át nem élők esetében az átlag 9,73 (SD=2,707) (már ez is láttatja, hogy az átszervezést átélőknél magasabb a külső bizonytalanság érzése). A második táblázatban először vizsgáljuk meg az F-próbát! Ez nem szignifikáns (p=0,662), tehát a kétmintás t-próbát értékelhetjük (felső sor). Azt mondhatjuk, hogy a külső bizonytalanság pontszáma a munkahely

átszervezését megélők esetében jelentősen (p<0,000; t=3,610) magasabb, mint az átszervezést át nem élők esetében, így a hipotézis igazolódott.

H7: *Feltételezem, hogy az egyes kórházak dolgozói között jelentős különbség van a munkavesztéstől való félelemben és a munkával való elégedettségben.* Ez a hipotézis szintén különbözőség vizsgálat, mégpedig az egyes kórházak válaszadói közötti különbözőséget kívánja vizsgálni. Összetett hipotézis, mivel két függő változó van: a munkavesztéstől való félelem és a munkával való elégedettség. Mind a két függő változót ötfokozatú Likert-skálával mértük: a munkavesztéstől való félelem esetében 1=egyáltalán nem fél; 5=nagyon fél; a munkával való elégedettség esetében 1=egyáltalán nem elégedett; 5=nagyon elégedett. Mind a kettő ordinális változó (mivel Likert-skálák), és összesen hat kórház dolgozóit kívánjuk összehasonlítani, így csakis a Kruskal-Wallis-próba jöhet szóba.

A statisztikai próbát elvégeztük, és a következő eredményt kaptuk (173. ábra):

	Ranks		
	KÓRHÁZAK	Ν	Mean Rank
jelenleg fél-e a	Nyíregyháza	88	285,32
munkahely elvesztésétől	Szombathely	37	219,32
	Székesfehérvár	99	223,54
	Baja	54	197,75
	Gyula	113	250,52
	Kecskemét	92	245,06
	Total	483	
mennyire elégedett a	Nyíregyháza	88	235,10
munkájával	Szombathely	37	276,82
	Székesfehérvár	99	222,05
	Baja	54	246,12
	Gyula	113	271,35
	Kecskemét	92	217,59
	Total	483	

173.	ábra:	7.	hipotézis	vizsgálata
------	-------	----	-----------	------------

Test Statistics^{a,b}

	jelenleg fél-e a munkahely elvesztésétől	mennyire elégedett a munkájával
Chi-Square	18,391	15,841
df	5	5
Asymp. Sig.	,002	,007

a. Kruskal Wallis Test

b. Grouping Variable: KÓRHÁZAK

Először vizsgáljuk meg a hipotézis első felét, de a Likert-skála irányát nézzük! A munkahely elveszítésétől legjobban (mivel náluk a legmagasabbak a rangpontszám átlagok) a nyíregyházi (MR=285,32) és a gyulai (MR=250,52) válaszadók félnek, a többi kórházból válaszolók

rangpontszám átlagai ennél alacsonyabb félelmet mutatnak. A különbséget a szignifikancia is megerősíti (p=0,002; Chi-Square=18,391), tehát a hipotézis első fele igazolódott.

A hipotézis második felét vizsgálva láthatjuk, hogy munkájukkal (magasabb rangpontszám átlag) leginkább a szombathelyi (MR=276,82) és a gyulai (MR=271,35) válaszadók az elégedettek, a többi kórház válaszadói ennél kevésbé. Itt is szignifikáns különbséget találunk: p=0,007; Chi-Square=15,841, tehát a hipotézis második fele is igazolódott. Összességében azt mondhatjuk, hogy az egyes kórházak dolgozói között jelentős különbség van a munkahely elveszítésétől való félelem érzetében és a munkával való elégedettségben, így a hipotézis igazolódott.

Amennyiben közleményünket/szakdolgozatunkat színesíteni szeretnénk, úgy a rangpontszám átlagokból készíthetünk diagramot is **(174. ábra)**, azonban arra figyeljünk, hogy vagy diagram legyen, vagy táblázat (a rangpontszám átlagokat mindenképp közölni kell!), a kettő együttes alkalmazását kerüljük el, mert felesleges!

174. ábra: Munkavesztés rangpontszám átlagai

H8: *Feltételezem, hogy minél magasabb az iskolai végzettség, annál kevesebbet dohányoznak a válaszadók.* Ez a hipotézis az iskolai végzettség és a dohányzás közötti összefüggést vizsgálja, megadja az irányát is (magas iskolai végzettség kevesebb dohányzással jár együtt). Nézzük meg a két változó típusát! Az iskolai végzettség három kategóriát tartalmaz (alap, közép, főiskola-egyetem), a dohányzás is hármat (nem, alkalmanként, rendszeresen), mindkét változó kategorikus, azaz nominális adatnak számít. A nominális adatok közötti összefüggést pedig Khi-négyzet-próbával vizsgáljuk. A független változó az iskolai végzettség, a függő pedig a dohányzás.

		-				
			i	skolai vegzettseg		
			alapfokú végzettség (nincs érettségi)	középfokú végzettség (érettségi van)	főiskolai- egyetemi oklevél	Total
dohányzás	nem	Count	35	203	53	291
		% within dohányzás	12,0%	69,8%	18,2%	100,0%
		% within iskolai vegzettseg	54,7%	59,9%	68,8%	60,6%
		% of Total	7,3%	42,3%	11,0%	60,6%
	alkalmanként	Count	2	33	7	42
		% within dohányzás	4,8%	78,6%	16,7%	100,0%
		% within iskolai vegzettseg	3,1%	9,7%	9,1%	8,8%
		% of Total	0,4%	6,9%	1,5%	8,8%
	rendszeresen	Count	27	103	17	147
		% within dohányzás	18,4%	70,1%	11,6%	100,0%
		% within iskolai vegzettseg	42,2%	30,4%	22,1%	30,6%
		% of Total	5,6%	21,5%	3,5%	30,6%
Total		Count	64	339	77	480
		% within dohányzás	13,3%	70,6%	16,0%	100,0%
		% within iskolai vegzettseg	100,0%	100,0%	100,0%	100,0%
		% of Total	13,3%	70,6%	16,0%	100,0%

175. ábra: 8. hipotézis vizsgálata dohányzás ' iskolai vegzettseg Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8,595 ^a	4	,072
Likelihood Ratio	9,228	4	,056
Linear-by-Linear Association	5,010	1	,025
N of Valid Cases	480		

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 5,60.

Ha az első táblázatban megnézzük a rendszeresen dohányzó sorban a második relatív gyakorisági sort, akkor azt látjuk, hogy az alapfokú végzettséggel rendelkezők 42,2%-a; a középfokú végzettségűek 30,4%-a, a felsőfokú végzettségűek 22,1%-a dohányzik rendszeresen. Az igaz, hogy van különbség a különböző végzettségűek dohányzási gyakorisága között, de ez nem jelentős, mivel a p értéke 0,072. A második táblázat alatt láthatjuk, hogy mindegyik cella tartalmazza az elvárt 5,6 elemszámot, tehát a Khi-négyzet-próba eredménye értékelhető. Azt a megállapítást tehetjük, hogy az iskolai végzettség és a dohányzás gyakorisága között nincs szignifikáns összefüggés, így a hipotézist elutasítjuk.

Khi-négyzet-próba esetén szakdolgozatban/publikációban ne a relatív gyakorisági táblázatot közöljük, hanem készítsünk belőle diagramot, mert az átláthatóbb. Arra azonban ügyeljünk, hogy a megfelelő relatív gyakoriságokat másoljuk át! Azt, hogy melyik a megfelelő relatív gyakoriság, könnyen megállapíthatjuk: mivel az egyes iskolai végzettségeket vizsgáltuk a dohányzás tekintetében, így a legalsó vízszintes Total sorban kell megnézni, hogy hányadik

relatív gyakorisági sorban van feltüntetve a 100%. Azt látjuk, hogy a másodikban, tehát minden dohányzási sorból a második relatív gyakorisági sort kell kimásolni a diagram készítésekor. (176. ábra)

176. ábra: Iskolai végzettség összefüggése a dohányzás gyakoriságával

H9: *Feltételezem, hogy összefüggés van a szabadidő mennyisége és a külső munkahelyi bizonytalanság mértéke között.* Ez is egy összefüggést vizsgáló hipotézis, tehát azonnal tudjuk szűkíteni a statisztikai próbák körét: korreláció számítás, Spearman-féle rangkorreláció, Khinégyzet-próba. Most nézzük meg a két változó típusát! A szabadidő mennyiségét napokban kellett megadni a válaszadóknak, ebből kifolyólag intervallumskálán mért változó lesz. A külső munkahelyi bizonytalanság pedig három Likert-skála összpontszámából adódik. Mivel összpontszám, így szintén intervallumskálán mért adat lesz. Két intervallumskála között az összefüggést korreláció analízissel végezzük. A hipotézis nem adja meg az összefüggés irányát, így ha szignifikáns lesz a statisztikai próba, akkor a hipotézist igazolódottnak tekintjük.

A korreláció számítást a korábban már ismertetett módon elvégeztük, és a következő eredményt kaptuk (177. ábra):

177. ábra:	9.	hipotézis	vizsgálata
------------	----	-----------	------------

Descriptive Statistics

	Mean	Std. Deviation	Ν
azt tegye, amit szeretne hetente (óra)	14,74	16,287	409
Külső_bizonytalanság_ö sszpontszám	10,31	2,784	483

	Correlations		
		azt tegye, amit szeretne hetente (óra)	Külső_bizonyt alanság_öss zpontszám
azt tegye, amit szeretne	Pearson Correlation	1	-,065
hetente (óra)	Sig. (2-tailed)		,189
	Ν	409	409
Külső_bizonytalanság_ö	Pearson Correlation	-,065	1
sszpontszám	Sig. (2-tailed)	,189	
	Ν	409	483

Az első táblázatban látjuk, hogy a válaszadóknak hetente átlag 14,74 óra (SD=16,287) szabadidő jut, amikor azt csinálhatnának, amit szeretnének, és átlag 10,31 (SD=2,784) a külső bizonytalanság pontszámuk. A statisztikai próba alapján megállapíthatjuk, hogy nincs jelentős összefüggés a szabadidő mennyisége és a külső bizonytalanság között (r=-0,065; p=0,189), így a hipotézis megdőlt.

H10: Feltételezem, hogy az egyes intézmények dolgozói között jelentős különbség van a pozitív és a negatív jól-lét mértékében. Ez a hipotézis különbséget vizsgál, és azt is tudjuk, hogy hat intézmény dolgozói szerepelnek a vizsgálatban. Már csak azt kell megnézni, hogy a pozitív és a negatív jól-lét milyen adat lesz. Elvégeztük előzetesen a normalitásvizsgálatokat, és sem a Kolmogorov-Smirnov-, sem a Shapiro-Wilk-teszt nem volt szignifikáns, így a két változó normál eloszlású intervallumskálán mért adat lesz. Az **50. ábrán** láthatjuk, hogy ebben az esetben varianciaanalízist kell végeznünk.

A statisztikai próbát elvégeztük, és a következő eredményt kaptuk (178. ábra):

Descriptives									
						95% Confiden Me	ce Interval for an		
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
pozitív_jóllét	Nyíregyháza	88	9,02	1,531	,163	8,70	9,35	4	12
	Szombathely	37	9,49	1,325	,218	9,04	9,93	7	12
	Székesfehérvár	99	9,54	1,606	,161	9,22	9,86	5	12
	Baja	54	9,26	1,627	,221	8,82	9,70	6	12
	Gyula	113	9,58	1,746	,164	9,26	9,91	5	12
	Kecskemét	92	9,22	1,575	,164	8,89	9,54	6	12
	Total	483	9,36	1,610	,073	9,21	9,50	4	12
negatív_jóllét	Nyíregyháza	88	6,32	1,580	,168	5,98	6,65	3	9
	Szombathely	37	5,81	1,488	,245	5,31	6,31	3	9
	Székesfehérvár	99	5,69	1,614	,162	5,36	6,01	3	9
	Baja	54	5,91	1,617	,220	5,47	6,35	3	9
	Gyula	113	6,15	1,774	,167	5,82	6,48	3	9
	Kecskemét	92	6,18	1,610	,168	5,85	6,52	3	9
	Total	483	6,04	1,645	,075	5,89	6,19	3	9

178. ábra: 10. hipotézis vizsgálata

Test of Homogeneit	y of Variances
--------------------	----------------

	Levene Statistic	df1	df2	Sig.
pozitív_jóllét	2,361	5	477	,039
negatív_jóllét	,765	5	477	,576

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
pozitív_jóllét	Between Groups	21,737	5	4,347	1,690	,135
	Within Groups	1227,298	477	2,573		
	Total	1249,035	482			
negatív_jóllét	Between Groups	25,355	5	5,071	1,891	,094
	Within Groups	1278,898	477	2,681		
	Total	1304,253	482			

Az első táblázat a leíró statisztikát tartalmazza, az átlagokat mindenképpen fel kell tüntetni publikáláskor. A második táblázat a Levene-teszt, mely a szóráshomogenitást vizsgálja. A pozitív jól-lét esetében ez nem teljesül (p=0,039), így ennél nem értelmezhető a varianciaanalízis eredménye. A negatív jól-lét esetében a Levene-teszt nem szignifikáns (p=0,576), tehát a szóráshomogenitás, mint a varianciaanalízis második előfeltétele teljesül. Ezen változó esetében azt látjuk, hogy az egyes intézmények között nincs szignifikáns különbség a negatív jól-lét érzésében (F=1,891; p=0,094), így a hipotézis második fele nem igazolódott. A hipotézis első felét tovább kell vizsgálni, mivel a Levene-teszt szignifikáns lett! Ezt a varianciaanalízis nemparaméteres párjával, a Kruskal-Wallis-próbával kell megtennünk! **(179. ábra)**

179. ábra: Pozitív jól-lét vizsgálata

Ranks

	KÓRHÁZAK	Ν	Mean Rank
pozitív_jóllét	Nyíregyháza	88	216,46
	Szombathely	37	255,54
	Székesfehérvár	99	254,81
	Baja	54	231,76
	Gyula	113	261,96
	Kecskemét	92	228,69
	Total	483	

Test	Statistics ^{a,b}
------	---------------------------

	pozitív_jóllét
Chi-Square	7,871
df	5
Asymp. Sig.	,164

a. Kruskal Wallis Test

b. Grouping Variable: KÓRHÁZAK Az első táblázat a szokásos rangpontszám átlagokat tartalmazza. E szerint a pozitív jól-lét érzése leginkább a gyulai válaszadókra jellemző. A második táblázatban látható eredmények szerint (Chi-Square=7,871; p=0,164) az egyes kórházak válaszadói között nincs jelentős különbség a pozitív jól-lét érzetében, így a hipotézis első felét is elvetjük. Összességében az egész hipotézist elvetjük!

H11: Feltételezem, hogy a regenerációs tréning hatására csökkent a pszichoszomatikus tünetek mértéke. Ez egy hatásvizsgálat, vagyis arra vagyunk kíváncsiak, hogy a tréning előtti és utáni időpontban van-e különbség a pszichoszomatikus tünetek előfordulásának gyakoriságában. Már tudjuk, hogy különbséget kívánunk vizsgálni. A pszichoszomatikus tünetek pontszámait összeadtuk. A kapott összpontszám intervallumskálán mért változó. Először végezzük el a normalitásvizsgálatot! (180. ábra)

180.	ábra:	Norma	litásv	izsgálat	eredménye
		1 101 1114	III CLED V	Logane	er cumeny c

Tests of No	ormality
-------------	----------

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
pszichoszom. tünetek	,094	77	,091	,980	77	,265	

a. Lilliefors Significance Correction

Egyik próba sem szignifikáns, így a változó normál eloszlásúnak tekinthető a mintában. Ebben az esetben az egymintás t-próbát kell végezni.

A próbát elvégeztük, és a következő eredményt kaptuk (181. ábra):

Paired Samples Statistics							
		Mean	N	Std. Deviation	Std. Error Mean		
Pair 1	pszichoszom. tünetek	8,65	77	4,630	,528		
	pszichoszom. utána	7,13	77	4,238	,483		

181. ábra: 11. hipotézis vizsgálata

Paired Samples Correlations

	Ν	Correlation	Sig.
Pair 1 pszichoszom. tünetek & pszichoszom. utána	77	,788	,000,

Paired Samples Test

		Paired Differences							
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	pszichoszom. tünetek - pszichoszom. utána	1,519	2,909	,332	,859	2,180	4,583	76	,000

A 77 válaszadó esetében a regenerációs tréning előtt a pszichoszomatikus tünetek átlaga 8,65 (SD=4,630) volt, a tréning után pedig 7,13 (SD=4,238). Ebből látszik, hogy kb. 1,5-del csökkent az átlagpontszám, azonban még nem tudjuk, hogy ez a változás jelentős volt-e. A második táblázat azt mutatja, hogy a két változó között jelentős a kapcsolat (p<0,000), vagyis összetartoznak. Ha ez nem szignifikáns lenne, akkor az azt jelentené, hogy véletlenül nem összetartozó változópárokat vizsgáltunk. A harmadik táblázatból leolvashatjuk a statisztikai próba eredményét: t=4,583; p<0,000, vagyis a regenerációs tréning hatására szignifikánsan csökkent a pszichoszomatikus tünetek előfordulásának gyakorisága, így a hipotézisünket megtartjuk, vagyis igazoltnak tekintjük.

Ezekből a fentebb ismertetett példákból látható, hogy milyen gondolatmenetet kell alkalmazni egy-egy hipotézis vizsgálatához. Fontos azonban még egyszer hangsúlyozni, hogy az elemzéshez elengedhetetlen a kérdőív pontos ismerete, mert csak abból tudjuk megállapítani, hogy egy-egy változó (azaz az adott kérdés) milyen jellegű volt, mert csak ebből tudunk következtetni az adat típusára, és az elvégzendő statisztikai próbára. Az elemzés során körültekintőnek kell lennünk, mert akár hol is publikáljuk eredményeinket (szakdolgozat, cikk, konferencia), a hibás számításokból eredő adatok félrevezetik a tudományt!
Önellenőrző kérdések megoldásai

1. fejezet: A tervezett módszerek kipróbálása (próbafelmérés – pilot study)

1. A próbafelmérés során milyen jellegű hibákra derülhet fény?

- formai
- tartalmi
- logikai

2. Milyen előnyei vannak a próbafelmérésnek?

- megtudhatjuk, hogy az alkalmazni kívánt mintavételi eljárás megfelelő lesz-e a vizsgálat szempontjából;
- megbecsülhetjük a nem válaszolók arányát is;
- a kiválasztott adatfelvételi mód megfelel-e a céljainknak;
- ellenőrizni tudjuk, hogy a kérdőív kitöltési útmutatója, vagy az egyes kérdéseknél közölt utasítások egyértelműek-e;
- módosítani tudjuk a kérdéseket, illetve a válaszlehetőségeket is, mivel fény derülhet olyan válaszlehetőségekre, amelyekre a kérdőív szerkesztése során nem is gondoltunk;
- meg tudjuk állapítani a felmérés időtartamát, és várható költségeit is.

2. fejezet: A kutatás során nyert adatok feldolgozása

1. Mit jelent a kódolás?

A kérdőív kérdéseit számokká alakítjuk.

2. Miért van jelentősége a kódolásnak?

Mert a statisztikai program csak számokkal tud dolgozni (számításokat végez).

3. fejezet: Statisztikai eljárások

1. Sorolja fel a leíró statisztikai módszereket!

- adatgyűjtés
- adatok ábrázolása
- adatok csoportosítása
- adatok osztályozása
- adatokkal végzett egyszerűbb műveletek

• eredmények megjelenítése

2. Mik a csoportosítás/kategorizálás főbb kritériumai?

- egy adatot csak egyetlen csoportba lehet elhelyezni
- minden adatnak elhelyezhetőnek kell lenni valamelyik csoportban
- mérhető adatoknál a szélső csoportokat kinyitjuk
- megállapítható adatoknál "egyéb" kategóriát hozunk létre
- a csoportok terjedelmét egyformára kell szabni, kivétel a két szélső
- csak feltétlenül szükséges mennyiségű csoportot hozzunk létre

3. Mit jelent a relatív gyakorisági eloszlás?

Egy-egy csoportba tartozó egyének az összes válaszadó hány százalékát teszik ki.

4. Mit jelent az abszolút gyakorisági eloszlás?

Egy-egy csoportba összesen hány vizsgált személyt soroltunk be.

5. Mit jelent a medián?

Az az érték, amelynél ugyanannyi kisebb, mint amennyi nagyobb érték fordul elő.

6. Hogyan számítjuk ki a mediánt?

Az adatokat nagyságuk szerint sorba rendezzük, majd megkeressük a középsőt (páros számú adat esetén a két középső átlagát vesszük).

7. Mi a szórás?

Az egyes adatok átlaguktól való eltérésének átlaga (vagyis a variancia négyzetgyöke)

8. Mi a szignifikancia egyezményes határa?

5% (0,05)

9. Mit jelent az első és másodfajú hiba?

A nullhipotézist elutasítjuk annak ellenére, hogy igaz (elsőfajú hiba). A nullhipotézist megtartjuk annak ellenére, hogy nem igaz (másodfajú hiba).

10. Mi az önkontrollos vizsgálat?

Egy minta vizsgálata két különböző időpontban. A kutatási folyamat elején és végén ugyanazoknál a személyeknél vizsgáljuk ugyanazokat az adatokat.

11. Mely statisztikai próbákkal végezzük a normalitásvizsgálatot?

Kolmogorov-Smirnov- és a Shapiro-Wilk-teszt

12. Mely statisztikai próbákat alkalmazzuk intervallumskálán mért adatok esetén?

- egymintás t-próba
- független kétmintás t-próba
- variancia analízis
- korrelációanalízis

13. Mi az egymintás t-próba lényege?

Intervallumskálán értelmezett adatok esetén alkalmazzuk (pl: életkor, testsúly, kiégés pontszám). A vizsgálat során azt szeretnénk megtudni, hogy egy normál eloszlású folytonos változó értékszintje megváltozik-e két helyzet vagy időpont között. Pontosan ugyanazt kell kérdezni a két időpontban, és ugyanazoknak a személyeknek kell a mintában szerepelnie. Tudnunk kell, hogy mely kérdőíveket töltötte ki ugyanaz a személy a felmérés elején és végén, ezért egy jeligével vagy szimbólummal kell azonosítani, amit a válaszadó választ.

14. Melyek a kétmintás t-próba elvégezhetőségének feltételei?

- a két csoport eredményei alapján meghatározható varianciák között nincs jelentős különbség
- a vizsgált változó normál eloszlású legyen

15. Melyek a varianciaanalízis elvégezhetőségének feltételei?

- teljesüljön a varianciahomogenitás
- a vizsgált változó normál eloszlású legyen

16. Mely statisztikai próbákat alkalmazhatjuk ordinális változók esetében?

- Wilcoxon-próba
- Mann-Whitney-próba
- Kruskal-Wallis-próba
- Spearman-féle rangkorreláció

17. Milyen vizsgálatnál alkalmazzuk a Mann-Whitney-próbát?

kontrollcsoportos

18. Mely statisztikai próbákat lehet alkalmazni abban az esetben, ha a vizsgált folytonos változó nem normál eloszlású?

• Wilcoxon-próba

- Mann-Whitney-próba
- Kruskal-Wallis-próba
- Spearman-féle rangkorreláció

19. Mely statisztikai próbák alkalmasak kettőnél több csoport vizsgálatára?

- variancia analízis
- Kruskal-Wallis-próba
- Khi-négyzet próba

20. Különbözőség vagy összefüggés vizsgálatra alkalmas a Khi-négyzet-próba?

mindkettőre

21. Mit vizsgál a korreláció számítás?

- milyen mértékben határozza meg az egyik változó nagysága a másik változó nagyságát
- az összefüggés irányát és erősségét

Felhasznált irodalom

- Ács P. (szerk.): *Gyakorlati adatelemzés*. Pécsi Tudományegyetem Egészségtudományi Kar, Pécs, 2014.
- 2. Elekes A.: *Kutatásmódszertan*. Semmelweis Egyetem Egészségügyi Főiskolai Kar, Budapest, 2007.
- 3. Falus I., Ollé J.: *Az empirikus kutatások gyakorlata*. Nemzeti Tankönyvkiadó Zrt, Budapest, 2008.
- Takács P., Papp K., Radó S. (2013): Kutatásról ápolóknak 3. rész: Elemzésekről röviden. Nővér, 26 (6), 4-17.
- Sajtos L., Mitev A.: SPSS kutatási és adatelemzési kézikönyv. Alinea Kiadó, Budapest, 2007.
- 6. Vargha A.: Matematikai statisztika. Pólya Kiadó, Budapest, 2000.

Jelen tananyag a Szegedi Tudományegyetemen készült az Európai Unió támogatásával. Projekt azonosító: EFOP-3.4.3-16-2016-00014

