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Feedback

Let Πq = (P,L) be a projective plane of order q.

Idea (Bailey, BCC 2011): if PS is a point-set that resolves all
lines, and LS is a line-set that resolves all points, then
S = PS ∪ LS is clearly a resolving set.

Such a resolving set is called a split resolving set; its parts, PS

and LS are called semi-resolving sets. Note that if the plane is
self-dual (like PG(2, q)), then we may assume that a semi-resolving
set resolves the lines of the plane.

Definition

The size of the smallest split resolving set for Πq is µ∗(Πq).
The size of the smallest semi-resolving set for Πq is µS(Πq);
well-defined if Πq is self-dual.

Clearly µ(Πq) ≤ µ∗(Πq), and µ∗(PG(2, q)) = 2µS(PG(2, q)).
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Semi-resolving sets for projective planes

P is a point, ℓ is a line;

d(P, ℓ) = 1 ⇐⇒ P ∈ ℓ

d(P, ℓ) = 3 ⇐⇒ P /∈ ℓ

There is no third possibility: incidence determines distance. I.e., a
distance list of ℓ with respect to a point-set S ! ℓ ∩ S.

So S is a semi-resolving set ⇐⇒ S ∩ ℓ is unique for every line ℓ.

Clear: |ℓ ∩ S| ≥ 2 ⇒ S resolves ℓ.

So a point-set S is a semi-resolving set if and only if

there is at most one skew line to S
there is at most one tangent line through any point of S.

Héger, Takáts Semi-resolving sets for PG(2, q)



Semi-resolving sets for projective planes

P is a point, ℓ is a line;

d(P, ℓ) = 1 ⇐⇒ P ∈ ℓ

d(P, ℓ) = 3 ⇐⇒ P /∈ ℓ

There is no third possibility: incidence determines distance. I.e., a
distance list of ℓ with respect to a point-set S ! ℓ ∩ S.

So S is a semi-resolving set ⇐⇒ S ∩ ℓ is unique for every line ℓ.

Clear: |ℓ ∩ S| ≥ 2 ⇒ S resolves ℓ.

So a point-set S is a semi-resolving set if and only if

there is at most one skew line to S
there is at most one tangent line through any point of S.

Héger, Takáts Semi-resolving sets for PG(2, q)



Semi-resolving sets for projective planes

P is a point, ℓ is a line;

d(P, ℓ) = 1 ⇐⇒ P ∈ ℓ

d(P, ℓ) = 3 ⇐⇒ P /∈ ℓ

There is no third possibility: incidence determines distance. I.e., a
distance list of ℓ with respect to a point-set S ! ℓ ∩ S.

So S is a semi-resolving set ⇐⇒ S ∩ ℓ is unique for every line ℓ.

Clear: |ℓ ∩ S| ≥ 2 ⇒ S resolves ℓ.

So a point-set S is a semi-resolving set if and only if

there is at most one skew line to S
there is at most one tangent line through any point of S.

Héger, Takáts Semi-resolving sets for PG(2, q)



Semi-resolving sets for projective planes

P is a point, ℓ is a line;

d(P, ℓ) = 1 ⇐⇒ P ∈ ℓ

d(P, ℓ) = 3 ⇐⇒ P /∈ ℓ

There is no third possibility: incidence determines distance. I.e., a
distance list of ℓ with respect to a point-set S ! ℓ ∩ S.

So S is a semi-resolving set ⇐⇒ S ∩ ℓ is unique for every line ℓ.

Clear: |ℓ ∩ S| ≥ 2 ⇒ S resolves ℓ.

So a point-set S is a semi-resolving set if and only if

there is at most one skew line to S
there is at most one tangent line through any point of S.

Héger, Takáts Semi-resolving sets for PG(2, q)



Semi-resolving sets for projective planes

P is a point, ℓ is a line;

d(P, ℓ) = 1 ⇐⇒ P ∈ ℓ

d(P, ℓ) = 3 ⇐⇒ P /∈ ℓ

There is no third possibility: incidence determines distance. I.e., a
distance list of ℓ with respect to a point-set S ! ℓ ∩ S.

So S is a semi-resolving set ⇐⇒ S ∩ ℓ is unique for every line ℓ.

Clear: |ℓ ∩ S| ≥ 2 ⇒ S resolves ℓ.

So a point-set S is a semi-resolving set if and only if

there is at most one skew line to S
there is at most one tangent line through any point of S.

Héger, Takáts Semi-resolving sets for PG(2, q)



Constructions

Definition

A t-fold blocking set is a set of points that intersects every line in
at least t points.

Blocking set = 1-fold blocking set

Double blocking set = 2-fold blocking set

A double blocking set is clearly a semi-resolving set.

τ2: the size of the smallest double blocking set.

Hence we have µS ≤ τ2. (Bailey)
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Constructions

B a double blocking set, P ∈ B arbitrary.

Then S = B \ {P} is a semi-resolving set:

there is no skew line to S;

there is at most one tangent line through any point Q of S:
PQ may be tangent.

So we have µS ≤ τ2 − 1. (Bailey)
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Constructions

B1, B2 disjoint blocking sets, P1 ∈ B1, P2 ∈ B2 arbitrary.

Then S = B1 \ {P1} ∪ B2 \ {P2} is a semi-resolving set:

P

B

P

B

1 2

1 2

Q

there is at most one skew line to S: P1P2 may be skew

there is at most one tangent line through any point Q ∈ S:
say, Q ∈ B1; every line through Q intersects B2, except
possibly QP2.
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Results

If q is a square, we find disjoint Baer subplanes (blocking sets of
size q +

√
q + 1). Thus we have µS(PG(2, q)) ≤ 2q + 2

√
q.

Aart Blokhuis (unpublished): µS(Πq) ≥ 2q +
√

2q (roughly).

We prove: if q ≥ 87, then µS(PG(2, q)) ≥ 2q + 2
√

q. In fact:

Theorem

Let S be a semi-resolving set for PG(2, q), q ≥ 4. If
|S| < 9q/4 − 3, then one can add at most two points to S to
obtain a double blocking set; thus |S| ≥ τ2 − 2.

Corollary

Let S be a semi-resolving set for PG(2, q), q ≥ 4. Then
|S| ≥ min{9q/4 − 3, τ2(PG(2, q)) − 2}.
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Results

If q ≥ 9 is a square, then τ2 = 2q + 2
√

q + 2. Thus the
corollary gives µS ≥ τ2 − 2 if q ≥ 87.

If q = rh, r odd, h ≥ 3 odd, then τ2 ≤ 2(q − 1)/(r − 1). Thus
the corollary gives µS ≥ τ2 − 2 if r ≥ 11.

Theorem
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Blocking semiovals

Definition

A point-set S is a semioval, if it has precisely one tangent at each
of its points. A blocking semioval is a semioval that is a blocking
set.

Theorem (Dover)

Let S be a blocking semioval in an arbitrary projective plane of
order q. If q ≥ 7, then |S| ≥ 2q + 2. If q ≥ 3 and there is a line
intersecting S in q − k points, 1 ≤ k ≤ q − 1, then
|S| ≥ 3q − 2q/(k + 2) − k.
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A corollary for blocking semiovals

Corollary

Let S be a blocking semioval in PG(2, q), q ≥ 4. Then
|S| ≥ 9q/4 − 3.

Proof.

A blocking semioval S is a semi-resolving set. Suppose
|S| < 9q/4 − 3. Then |S| ≥ τ2 − 2 > 2q + 1, so S has at least
2q + 2 tangents, but two points may block at most 2q + 1 of
them. �
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Index

S is a semi-resolving set, P is a point.

Let |S| = 2q + β. Homework: β ≥ −1.

indi (P): the number of i-secants to S through P

ind(P) := 2ind0(P) + ind1(P) (index)

We show that ind(P) is either large or small.

If P ∈ S, then ind(P) ≤ 1.

Let P /∈ S, ind(P) ≤ q − 2, |S| = 2q + β ≤ 4q − 4. Choose ℓ∞ so

that P ∈ ℓ∞, |ℓ∞ ∩ S| = s ≥ 2 , (∞) /∈ S , and P 6= (∞).
(This can be done: homework.)
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The Rédei polynomial

R(M, B) =

|S∩AG(2,q)|
∏

i=1

(Mxi + B − yi ) ∈ GF(q)[M, B]

|S ′ ∩ {Y = mX + b}| = the multiplicity of the root b in R(m, B)

m ∈ GF(q), P = (m) /∈ S, ℓ∞ a „standard” line

deg gcd(R(m, B), (Bq − B)2) =

0 · #skew lines on (m)

+1 · #tangent lines on (m)

+2 · #standard lines on (m)

= 2q − ind(m)
{(x ,y )}

8

( )

Y=mX+b

m

AG(2,   )q

S’=(0,  )b i i

l

8(  )
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The crucial tool: the Szőnyi–Weiner Lemma

For z ∈ Z, z+ = max{z , 0}.

Lemma (Szőnyi–Weiner)

Let u, v ∈ GF(q)[X , Y ]. Suppose that the coefficient of X deg(u) in
u(X , Y ) is not zero. For y ∈ GF(q), let

ky := deg gcd (u(X , y), v(X , y)) .

Then for all y ∈ GF(q)

∑

y ′∈GF(q)

(

ky ′ − ky

)+ ≤ (deg u(X , Y ) − ky )(deg v(X , Y ) − ky ).
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Applying the Szőnyi–Weiner Lemma

D: non-vertical directions outside S

D ⊂ GF(q); |D| = q − s

R(M, B) =
∏|S′|

i=1(Mxi + B − yi )

deg(R(M, B)) = |S ′| = 2q + β − s

{(x ,y )}

8l S
i

m

D
(  )8

( )=P

S’= i

∀m′ ∈ D : km′ := deg gcd(R(m′, B), (Bq − B)2) = 2q − ind(m′)

(

|S ′| − km

)

(2q − km) ≥
∑

m′∈GF(q)

(km′ − km)+ ≥

∑

m′∈D

(km′ − km)+ ≥
∑

m′∈D

(ind(m) − ind(m′))
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Applying the Szőnyi–Weiner Lemma

(

|S ′| − km)
)

(2q − km)) ≥
∑

m′∈D

(ind(m) − ind(m′))

|S ′| = 2q + β − s, β ≥ −1 and km = 2q − ind(m), thus
(

|S ′| − km

)

(2q − km) = (ind(m) + β − s)ind(m).

δ := #1-secants +2 · #0-secants. Then
∑

m′∈D

ind(m′) ≤ δ, and
∑

m′∈D

ind(m′) ≤ |S| − s + 2 ≤ 2q + β,

thus
∑

m′∈D

(ind(m) − ind(m′)) ≥ (q − s)ind(m) − δ.

For any point P /∈ S, we get

ind(P)2 − (q − β)ind(P) + δ ≥ 0.
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There are no medium indices

Proposition

Let P /∈ S, β ≤ q/4 − 5/2. Then ind(P) ≤ 2 or
ind(P) ≥ q − β − 2.

Proof.

Recall that we have

ind(P)2 − (q − β)ind(P) + 2q + β ≥ 0.

Substituting ind(P) = 3 or ind(P) = q − β − 3, we get
β ≥ (q − 9)/4, a contradiction. �

Thus if S is not too large, then every point has a small or a large
index.
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume β < q/4 − 5/2 and q ≥ 4. If ℓ is tangent to S, then
|ℓ ∩ T | ≥ 1; if ℓ is skew to S, then |ℓ ∩ T | ≥ 2.

Proof.

Let ℓ be a tangent line; c := maximal index on ℓ \ S (c > 0);
suppose c ≤ 2. There is no skew line; δ = #1-secants
+2 · #0-secants ≤ 1 + q(c − 1). Thus

0 ≤ ind(P)2 − (q − β)ind(P) + δ =

c2 − (q − β)c + 1 + q(c − 1), so

β ≥ (q − c2 − 1)/c ≥ (q − 5)/2.
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume β ≤ q/4 − 5/2 and q ≥ 4. If ℓ is tangent to S, then
|ℓ ∩ T | ≥ 1; if ℓ is skew to S, then |ℓ ∩ T | ≥ 2.

This means that S ∪ T is a double blocking set.
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There are at most two points with large index

Proposition

Let |S| < 9q/4 − 3 (that is, β < q/4 − 3). Then |T | ≤ 2.

Proof.

Suppose that there are three points with index ≥ q − β − 2. Then
the number of tangents is at least 3(q − β − 4):

q −   − 4β q −   − 4β q −   − 4β
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There are at most two points with large index

Proposition

Let |S| < 9q/4 − 3 (that is, β < q/4 − 3). Then |T | ≤ 2.

Proof.

Suppose that there are three points with index ≥ q − β − 2. Then
the number of tangents is at least 3(q − β − 4). Thus

3q − 3β − 12 ≤ |S| = 2q + β,

whence β ≥ q/4 − 3, a contradiction. �
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Thank you for your attention!
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