Semi-resolving sets for PG(2, q)

Tamás Héger Joint work with Marcella Takáts

Eötvös Loránd University Budapest

Finite Geometry Conference and Workshop 10–14 June 2013 Szeged, Hungary

Feedback

Let $\Pi_q = (\mathcal{P}, \mathcal{L})$ be a projective plane of order q.

Idea (Bailey, BCC 2011): if \mathcal{P}_S is a point-set that resolves all lines, and \mathcal{L}_S is a line-set that resolves all points, then $\mathcal{S} = \mathcal{P}_S \cup \mathcal{L}_S$ is clearly a resolving set.

Such a resolving set is called a **split resolving set**; its parts, \mathcal{P}_S and \mathcal{L}_S are called **semi-resolving sets**. Note that if the plane is self-dual (like PG(2, q)), then we may assume that a semi-resolving set resolves the lines of the plane.

Definition

The size of the smallest split resolving set for Π_q is $\mu^*(\Pi_q)$. The size of the smallest semi-resolving set for Π_q is $\mu_S(\Pi_q)$; well-defined if Π_q is self-dual.

Clearly $\mu(\Pi_q) \leq \mu^*(\Pi_q)$, and $\mu^*(\operatorname{PG}(2,q)) = 2\mu_{\mathcal{S}}(\operatorname{PG}(2,q))$.

▶ ★ 臣 ▶ ★ 臣 ▶ …

Feedback

Let $\Pi_q = (\mathcal{P}, \mathcal{L})$ be a projective plane of order q.

Idea (Bailey, BCC 2011): if \mathcal{P}_S is a point-set that resolves all lines, and \mathcal{L}_S is a line-set that resolves all points, then $\mathcal{S} = \mathcal{P}_S \cup \mathcal{L}_S$ is clearly a resolving set.

Such a resolving set is called a split resolving set; its parts, \mathcal{P}_S and \mathcal{L}_S are called semi-resolving sets. Note that if the plane is self-dual (like PG(2, q)), then we may assume that a semi-resolving set resolves the lines of the plane.

Definition

The size of the smallest split resolving set for Π_q is $\mu^*(\Pi_q)$. The size of the smallest semi-resolving set for Π_q is $\mu_S(\Pi_q)$; well-defined if Π_q is self-dual.

Clearly $\mu(\Pi_q) \leq \mu^*(\Pi_q)$, and $\mu^*(\operatorname{PG}(2,q)) = 2\mu_{\mathcal{S}}(\operatorname{PG}(2,q))$.

Let $\Pi_q = (\mathcal{P}, \mathcal{L})$ be a projective plane of order q.

Idea (Bailey, BCC 2011): if \mathcal{P}_S is a point-set that resolves all lines, and \mathcal{L}_S is a line-set that resolves all points, then $\mathcal{S} = \mathcal{P}_S \cup \mathcal{L}_S$ is clearly a resolving set.

Such a resolving set is called a **split resolving set**; its parts, \mathcal{P}_S and \mathcal{L}_S are called **semi-resolving sets**. Note that if the plane is self-dual (like PG(2, q)), then we may assume that a semi-resolving set resolves the lines of the plane.

Definition

The size of the smallest split resolving set for Π_q is $\mu^*(\Pi_q)$. The size of the smallest semi-resolving set for Π_q is $\mu_S(\Pi_q)$; well-defined if Π_q is self-dual.

Clearly $\mu(\Pi_q) \leq \mu^*(\Pi_q)$, and $\mu^*(\operatorname{PG}(2,q)) = 2\mu_{\mathcal{S}}(\operatorname{PG}(2,q))$.

Let $\Pi_q = (\mathcal{P}, \mathcal{L})$ be a projective plane of order q.

Idea (Bailey, BCC 2011): if \mathcal{P}_S is a point-set that resolves all lines, and \mathcal{L}_S is a line-set that resolves all points, then $\mathcal{S} = \mathcal{P}_S \cup \mathcal{L}_S$ is clearly a resolving set.

Such a resolving set is called a **split resolving set**; its parts, \mathcal{P}_S and \mathcal{L}_S are called **semi-resolving sets**. Note that if the plane is self-dual (like PG(2, q)), then we may assume that a semi-resolving set resolves the lines of the plane.

Definition

The size of the smallest split resolving set for Π_q is $\mu^*(\Pi_q)$. The size of the smallest semi-resolving set for Π_q is $\mu_S(\Pi_q)$; well-defined if Π_q is self-dual.

Clearly $\mu(\Pi_q) \leq \mu^*(\Pi_q)$, and $\mu^*(\operatorname{PG}(2,q)) = 2\mu_S(\operatorname{PG}(2,q))$.

Let $\Pi_q = (\mathcal{P}, \mathcal{L})$ be a projective plane of order q.

Idea (Bailey, BCC 2011): if \mathcal{P}_{S} is a point-set that resolves all lines, and \mathcal{L}_{S} is a line-set that resolves all points, then $\mathcal{S} = \mathcal{P}_{S} \cup \mathcal{L}_{S}$ is clearly a resolving set.

Such a resolving set is called a **split resolving set**; its parts, \mathcal{P}_S and \mathcal{L}_S are called **semi-resolving sets**. Note that if the plane is self-dual (like PG(2, q)), then we may assume that a semi-resolving set resolves the lines of the plane.

Definition

The size of the smallest split resolving set for Π_q is $\mu^*(\Pi_q)$. The size of the smallest semi-resolving set for Π_q is $\mu_S(\Pi_q)$; well-defined if Π_q is self-dual.

Clearly $\mu(\Pi_q) \leq \mu^*(\Pi_q)$, and $\mu^*(\mathrm{PG}(2,q)) = 2\mu_{\mathcal{S}}(\mathrm{PG}(2,q))$.

- $d(P, \ell) = 1 \iff P \in \ell$
- $d(P, \ell) = 3 \iff P \notin \ell$

There is no third possibility: incidence determines distance. I.e., a distance list of ℓ with respect to a point-set $S \iff \ell \cap S$.

So S is a semi-resolving set $\iff S \cap \ell$ is unique for every line ℓ .

Clear: $|\ell \cap S| \ge 2 \Rightarrow S$ resolves ℓ .

So a point-set \mathcal{S} is a semi-resolving set if and only if

- \bullet there is at most one skew line to ${\cal S}$
- \bullet there is at most one tangent line through any point of $\mathcal{S}.$

- $d(P, \ell) = 1 \iff P \in \ell$
- $d(P, \ell) = 3 \iff P \notin \ell$

There is no third possibility: incidence determines distance. I.e., a distance list of ℓ with respect to a point-set $S \iff \ell \cap S$.

So S is a semi-resolving set $\iff S \cap \ell$ is unique for every line ℓ . Clear: $|\ell \cap S| \ge 2 \Rightarrow S$ resolves ℓ .

So a point-set $\mathcal S$ is a semi-resolving set if and only if

- \bullet there is at most one skew line to ${\cal S}$
- \bullet there is at most one tangent line through any point of $\mathcal{S}.$

- $d(P, \ell) = 1 \iff P \in \ell$
- $d(P, \ell) = 3 \iff P \notin \ell$

There is no third possibility: incidence determines distance. I.e., a distance list of ℓ with respect to a point-set $S \iff \ell \cap S$.

So \mathcal{S} is a semi-resolving set $\iff \mathcal{S} \cap \ell$ is unique for every line ℓ .

 $\mathsf{Clear:} \ |\ell \cap \mathcal{S}| \geq 2 \Rightarrow \mathcal{S} \text{ resolves } \ell.$

So a point-set $\ensuremath{\mathcal{S}}$ is a semi-resolving set if and only if

- \bullet there is at most one skew line to ${\cal S}$
- there is at most one tangent line through any point of \mathcal{S} .

- $d(P, \ell) = 1 \iff P \in \ell$
- $d(P, \ell) = 3 \iff P \notin \ell$

There is no third possibility: incidence determines distance. I.e., a distance list of ℓ with respect to a point-set $S \iff \ell \cap S$.

So S is a semi-resolving set $\iff S \cap \ell$ is unique for every line ℓ .

 $\mathsf{Clear:} \ |\ell \cap \mathcal{S}| \geq 2 \Rightarrow \mathcal{S} \text{ resolves } \ell.$

So a point-set ${\mathcal S}$ is a semi-resolving set if and only if

- \bullet there is at most one skew line to ${\cal S}$
- there is at most one tangent line through any point of \mathcal{S} .

- $d(P, \ell) = 1 \iff P \in \ell$
- $d(P, \ell) = 3 \iff P \notin \ell$

There is no third possibility: incidence determines distance. I.e., a distance list of ℓ with respect to a point-set $S \iff \ell \cap S$.

So \mathcal{S} is a semi-resolving set $\iff \mathcal{S} \cap \ell$ is unique for every line ℓ .

 $\mathsf{Clear:} \ |\ell \cap \mathcal{S}| \geq 2 \Rightarrow \mathcal{S} \text{ resolves } \ell.$

So a point-set $\ensuremath{\mathcal{S}}$ is a semi-resolving set if and only if

- \bullet there is at most one skew line to ${\cal S}$
- there is at most one tangent line through any point of S.

A t-fold blocking set is a set of points that intersects every line in at least t points.

Blocking set = 1-fold blocking set

Double blocking set = 2-fold blocking set

A double blocking set is clearly a semi-resolving set.

 τ_2 : the size of the smallest double blocking set.

Hence we have $\mu_S \leq \tau_2$. (Bailey)

A t-fold blocking set is a set of points that intersects every line in at least t points.

Blocking set = 1-fold blocking set

Double blocking set = 2-fold blocking set

A double blocking set is clearly a semi-resolving set.

 au_2 : the size of the smallest double blocking set.

Hence we have $\mu_S \leq \tau_2$. (Bailey)

A t-fold blocking set is a set of points that intersects every line in at least t points.

Blocking set = 1-fold blocking set

Double blocking set = 2-fold blocking set

A double blocking set is clearly a semi-resolving set.

 τ_2 : the size of the smallest double blocking set.

Hence we have $\mu_{S} \leq \tau_{2}$. (Bailey)

 ${\mathcal B}$ a double blocking set, $P\in {\mathcal B}$ arbitrary.

Then $S = B \setminus \{P\}$ is a semi-resolving set:

- there is no skew line to S;
- there is at most one tangent line through any point Q of S: PQ may be tangent.

So we have $\mu_S \leq \tau_2 - 1$. (Bailey)

Constructions

 $\mathcal{B}_1, \mathcal{B}_2$ disjoint blocking sets, $P_1 \in \mathcal{B}_1, P_2 \in \mathcal{B}_2$ arbitrary.

Then $\mathcal{S} = \mathcal{B}_1 \setminus \{P_1\} \cup \mathcal{B}_2 \setminus \{P_2\}$ is a semi-resolving set:

- there is at most one skew line to $S: P_1P_2$ may be skew
- there is at most one tangent line through any point Q ∈ S: say, Q ∈ B₁; every line through Q intersects B₂, except possibly QP₂.

If q is a square, we find disjoint Baer subplanes (blocking sets of size $q + \sqrt{q} + 1$). Thus we have $\mu_{S}(PG(2,q)) \leq 2q + 2\sqrt{q}$.

Aart Blokhuis (unpublished): $\mu_S(\Pi_q) \ge 2q + \sqrt{2q}$ (roughly).

We prove: if $q \ge 87$, then $\mu_S(PG(2,q)) \ge 2q + 2\sqrt{q}$. In fact:

Theorem

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. If |S| < 9q/4 - 3, then one can add at most two points to S to obtain a double blocking set; thus $|S| \ge \tau_2 - 2$.

Corollary

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. Then $|S| \ge \min\{9q/4 - 3, \tau_2(PG(2, q)) - 2\}.$

イロト イポト イヨト イヨト

If q is a square, we find disjoint Baer subplanes (blocking sets of size $q + \sqrt{q} + 1$). Thus we have $\mu_{\mathcal{S}}(PG(2,q)) \leq 2q + 2\sqrt{q}$.

Aart Blokhuis (unpublished): $\mu_S(\Pi_q) \ge 2q + \sqrt{2q}$ (roughly).

We prove: if $q \ge 87$, then $\mu_S(PG(2,q)) \ge 2q + 2\sqrt{q}$. In fact:

Theorem

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. If |S| < 9q/4 - 3, then one can add at most two points to S to obtain a double blocking set; thus $|S| \ge \tau_2 - 2$.

Corollary

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. Then $|S| \ge \min\{9q/4 - 3, \tau_2(PG(2, q)) - 2\}$.

(人間) トイヨト イヨト

If q is a square, we find disjoint Baer subplanes (blocking sets of size $q + \sqrt{q} + 1$). Thus we have $\mu_{\mathcal{S}}(\operatorname{PG}(2,q)) \leq 2q + 2\sqrt{q}$.

Aart Blokhuis (unpublished): $\mu_S(\Pi_q) \ge 2q + \sqrt{2q}$ (roughly).

We prove: if $q \ge 87$, then $\mu_{\mathcal{S}}(\operatorname{PG}(2,q)) \ge 2q + 2\sqrt{q}$. In fact:

Theorem

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. If |S| < 9q/4 - 3, then one can add at most two points to S to obtain a double blocking set; thus $|S| \ge \tau_2 - 2$.

Corollary

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. Then $|S| \ge \min\{9q/4 - 3, \tau_2(PG(2, q)) - 2\}$.

- 4 同 2 4 日 2 4 日 2

If q is a square, we find disjoint Baer subplanes (blocking sets of size $q + \sqrt{q} + 1$). Thus we have $\mu_{\mathcal{S}}(PG(2,q)) \leq 2q + 2\sqrt{q}$.

Aart Blokhuis (unpublished): $\mu_S(\Pi_q) \ge 2q + \sqrt{2q}$ (roughly).

We prove: if $q \ge 87$, then $\mu_{\mathcal{S}}(\operatorname{PG}(2,q)) \ge 2q + 2\sqrt{q}$. In fact:

Theorem

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. If |S| < 9q/4 - 3, then one can add at most two points to S to obtain a double blocking set; thus $|S| \ge \tau_2 - 2$.

Corollary

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. Then $|S| \ge \min\{9q/4 - 3, \tau_2(PG(2, q)) - 2\}.$

(4月) (3日) (3日)

If q is a square, we find disjoint Baer subplanes (blocking sets of size $q + \sqrt{q} + 1$). Thus we have $\mu_{\mathcal{S}}(PG(2,q)) \leq 2q + 2\sqrt{q}$.

Aart Blokhuis (unpublished): $\mu_S(\Pi_q) \ge 2q + \sqrt{2q}$ (roughly).

We prove: if $q \ge 87$, then $\mu_{\mathcal{S}}(\operatorname{PG}(2,q)) \ge 2q + 2\sqrt{q}$. In fact:

Theorem

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. If |S| < 9q/4 - 3, then one can add at most two points to S to obtain a double blocking set; thus $|S| \ge \tau_2 - 2$.

Corollary

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. Then $|S| \ge \min\{9q/4 - 3, \tau_2(PG(2, q)) - 2\}.$

・ロト ・部ト ・ヨト ・ヨト

- If $q \ge 9$ is a square, then $\tau_2 = 2q + 2\sqrt{q} + 2$. Thus the corollary gives $\mu_S \ge \tau_2 2$ if $q \ge 87$.
- If $q = r^h$, r odd, $h \ge 3$ odd, then $\tau_2 \le 2(q-1)/(r-1)$. Thus the corollary gives $\mu_S \ge \tau_2 2$ if $r \ge 11$.

Theorem

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. If |S| < 9q/4 - 3, then one can add at most two points to S to obtain a double blocking set; thus $|S| \ge \tau_2 - 2$.

Corollary

Let S be a semi-resolving set for PG(2, q), $q \ge 4$. Then $|S| \ge \min\{9q/4 - 3, \tau_2(PG(2, q)) - 2\}.$

・ロト ・部ト ・ヨト ・ヨト

A point-set S is a **semioval**, if it has precisely one tangent at each of its points. A **blocking semioval** is a semioval that is a blocking set.

Theorem (Dover)

Let S be a blocking semioval in an arbitrary projective plane of order q. If $q \ge 7$, then $|S| \ge 2q + 2$. If $q \ge 3$ and there is a line intersecting S in q - k points, $1 \le k \le q - 1$, then $|S| \ge 3q - 2q/(k+2) - k$.

Corollary

Let ${\cal S}$ be a blocking semioval in ${\rm PG}(2,q),~q\geq 4.$ Then $|{\cal S}|\geq 9q/4-3.$

Proof.

A blocking semioval S is a semi-resolving set. Suppose |S| < 9q/4 - 3. Then $|S| \ge \tau_2 - 2 > 2q + 1$, so S has at least 2q + 2 tangents, but two points may block at most 2q + 1 of them.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Corollary

Let S be a blocking semioval in $\mathrm{PG}(2,q)$, $q\geq 4$. Then $|\mathcal{S}|\geq 9q/4-3$.

Proof.

A blocking semioval S is a semi-resolving set. Suppose |S| < 9q/4 - 3. Then $|S| \ge \tau_2 - 2 > 2q + 1$, so S has at least 2q + 2 tangents, but two points may block at most 2q + 1 of them.

Index

S is a semi-resolving set, P is a point.

Let $|\mathcal{S}| = 2q + \beta$. Homework: $\beta \ge -1$.

ind_i(P): the number of *i*-secants to S through P
ind(P) := 2ind₀(P) + ind₁(P) (index)

We show that ind(P) is either large or small.

If $P \in S$, then $ind(P) \leq 1$.

Let $P \notin S$, $ind(P) \leq q-2$, $|S| = 2q + \beta \leq 4q - 4$. Choose ℓ_{∞} so

that $P \in \ell_{\infty}$, $|\ell_{\infty} \cap S| = s \ge 2$, $(\infty) \notin S$, and $P \ne (\infty)$. (This can be done: homework.)

・ 同 ト ・ ヨ ト ・ モ ト …

Let $|\mathcal{S}| = 2q + \beta$. Homework: $\beta \ge -1$.

- $\operatorname{ind}_i(P)$: the number of *i*-secants to S through P
- $\operatorname{ind}(P) := 2\operatorname{ind}_0(P) + \operatorname{ind}_1(P)$ (index)

We show that ind(P) is either large or small.

If $P \in S$, then $ind(P) \leq 1$.

Let $P \notin S$, $ind(P) \leq q-2$, $|S| = 2q + \beta \leq 4q - 4$. Choose ℓ_{∞} so

that $P \in \ell_{\infty}$, $|\ell_{\infty} \cap S| = s \ge 2$, $(\infty) \notin S$, and $P \ne (\infty)$. (This can be done: homework.)

Let $|\mathcal{S}| = 2q + \beta$. Homework: $\beta \ge -1$.

- $\operatorname{ind}_i(P)$: the number of *i*-secants to S through P
- $\operatorname{ind}(P) := 2\operatorname{ind}_0(P) + \operatorname{ind}_1(P)$ (index)

We show that ind(P) is either large or small.

If $P \in S$, then $ind(P) \leq 1$.

Let $P \notin S$, $ind(P) \leq q-2$, $|S| = 2q + \beta \leq 4q - 4$. Choose ℓ_{∞} so

that $P \in \ell_{\infty}$, $|\ell_{\infty} \cap S| = s \ge 2$, $(\infty) \notin S$, and $P \ne (\infty)$. (This can be done: homework.)

Let $|\mathcal{S}| = 2q + \beta$. Homework: $\beta \ge -1$.

- $\operatorname{ind}_i(P)$: the number of *i*-secants to S through P
- $\operatorname{ind}(P) := 2\operatorname{ind}_0(P) + \operatorname{ind}_1(P)$ (index)

We show that ind(P) is either large or small.

If
$$P \in S$$
, then $ind(P) \leq 1$.

Let $P \notin \mathcal{S}$, $\operatorname{ind}(P) \leq q-2$, $|\mathcal{S}| = 2q + \beta \leq 4q - 4$. Choose ℓ_{∞} so

that $P \in \ell_{\infty}$, $|\ell_{\infty} \cap S| = s \ge 2$, $(\infty) \notin S$, and $P \ne (\infty)$. (This can be done: homework.)

同下 イヨト イヨト ニヨ

Let $|\mathcal{S}| = 2q + \beta$. Homework: $\beta \ge -1$.

- $\operatorname{ind}_i(P)$: the number of *i*-secants to S through P
- $\operatorname{ind}(P) := 2\operatorname{ind}_0(P) + \operatorname{ind}_1(P)$ (index)

We show that ind(P) is either large or small.

If
$$P \in S$$
, then $ind(P) \leq 1$.

Let $P \notin S$, $ind(P) \leq q-2$, $|S| = 2q + \beta \leq 4q - 4$. Choose ℓ_{∞} so

that $P \in \ell_{\infty}$, $|\ell_{\infty} \cap S| = s \ge 2$, $(\infty) \notin S$, and $P \ne (\infty)$. (This can be done: homework.)

伺う イヨン イヨン ニヨ

Let $|\mathcal{S}| = 2q + \beta$. Homework: $\beta \ge -1$.

- $\operatorname{ind}_i(P)$: the number of *i*-secants to S through P
- $\operatorname{ind}(P) := 2\operatorname{ind}_0(P) + \operatorname{ind}_1(P)$ (index)

We show that ind(P) is either large or small.

If
$$P \in S$$
, then $ind(P) \leq 1$.

Let $P \notin S$, $ind(P) \leq q-2$, $|S| = 2q + \beta \leq 4q - 4$. Choose ℓ_{∞} so

that $P \in \ell_{\infty}$, $|\ell_{\infty} \cap S| = s \ge 2$, $(\infty) \notin S$, and $P \ne (\infty)$. (This can be done: homework.)

同 ト イヨ ト イヨ ト 二 ヨ

Let $|\mathcal{S}| = 2q + \beta$. Homework: $\beta \ge -1$.

- $\operatorname{ind}_i(P)$: the number of *i*-secants to S through P
- $\operatorname{ind}(P) := 2\operatorname{ind}_0(P) + \operatorname{ind}_1(P)$ (index)

We show that ind(P) is either large or small.

If
$$P \in S$$
, then $ind(P) \leq 1$.

Let $P \notin \mathcal{S}$, $\operatorname{ind}(P) \leq q-2$, $|\mathcal{S}| = 2q + \beta \leq 4q - 4$. Choose ℓ_{∞} so

that
$$P \in \ell_{\infty}$$
, $|\ell_{\infty} \cap S| = s \ge 2$, $(\infty) \notin S$, and $P \ne (\infty)$.
(This can be done: homework.)

伺う イヨン イヨン ニヨ

Let $|\mathcal{S}| = 2q + \beta$. Homework: $\beta \ge -1$.

- $\operatorname{ind}_i(P)$: the number of *i*-secants to S through P
- $\operatorname{ind}(P) := 2\operatorname{ind}_0(P) + \operatorname{ind}_1(P)$ (index)

We show that ind(P) is either large or small.

If
$$P \in S$$
, then $\operatorname{ind}(P) \leq 1$.
Let $P \notin S$, $\operatorname{ind}(P) \leq q - 2$, $|S| = 2q + \beta \leq 4q - 4$. Choose ℓ_{∞} so that $P \in \ell_{\infty}$, $|\ell_{\infty} \cap S| = s \geq 2$, $(\infty) \notin S$, and $P \neq (\infty)$.
(This can be done: homework.)

$$R(M,B) = \prod_{i=1}^{|S \cap AG(2,q)|} (Mx_i + B - y_i) \in GF(q)[M,B]$$

 $|S' \cap \{Y = mX + b\}|$ = the multiplicity of the root b in R(m, B)

$$R(M,B) = \prod_{i=1}^{|S \cap AG(2,q)|} (Mx_i + B - y_i) \in GF(q)[M,B]$$

 $|S' \cap \{Y = mX + b\}|$ = the multiplicity of the root *b* in *R*(*m*, *B*)

$$R(M,B) = \prod_{i=1}^{|S \cap AG(2,q)|} (Mx_i + B - y_i) \in GF(q)[M,B]$$

 $|\mathcal{S}' \cap \{Y = mX + b\}|$ = the multiplicity of the root b in R(m, B)

 (∞) $m \in GF(q), P = (m) \notin S, \ell_{\infty}$ a "standard" line (m)Y = mX + b(0,b) $\{(\mathbf{x}_i,\mathbf{y}_i)\}$ l_{∞} AG(2,q)

$$R(M,B) = \prod_{i=1}^{|S \cap AG(2,q)|} (Mx_i + B - y_i) \in GF(q)[M,B]$$

 $|\mathcal{S}' \cap \{Y = mX + b\}|$ = the multiplicity of the root b in R(m, B)

 (∞) $m \in GF(q), P = (m) \notin S, \ell_{\infty}$ a "standard" line (m) $\deg \gcd(R(m, B), (B^q - B)^2) =$ $0 \cdot \#$ skew lines on (m) $+1 \cdot \#$ tangent lines on (m)Y = mX + b $+2 \cdot \#$ standard lines on (m)(0,b) $\{(\mathbf{x}_i,\mathbf{y}_i)\}$ $= 2q - \operatorname{ind}(m)$ l_{∞} AG(2, q)

For $z \in \mathbb{Z}$, $z^+ = \max\{z, 0\}$.

_emma (Szőnyi–Weiner)

Let $u, v \in GF(q)[X, Y]$. Suppose that the coefficient of $X^{deg(u)}$ in u(X, Y) is not zero. For $y \in GF(q)$, let

 $k_y := \deg \gcd \left(u(X, y), v(X, y) \right).$

Then for all $y \in GF(q)$

$$\sum_{v'\in \mathrm{GF}(q)} \left(k_{y'}-k_y\right)^+ \leq (\deg u(X,Y)-k_y)(\deg v(X,Y)-k_y).$$

伺 ト く ヨ ト く ヨ ト

For $z \in \mathbb{Z}$, $z^+ = \max\{z, 0\}$.

Lemma (Szőnyi–Weiner)

Let $u, v \in GF(q)[X, Y]$. Suppose that the coefficient of $X^{deg(u)}$ in u(X, Y) is not zero. For $y \in GF(q)$, let

 $k_y := \deg \gcd \left(u(X, y), v(X, y) \right).$

Then for all $y \in GF(q)$

$$\sum_{v'\in \mathrm{GF}(q)} \left(k_{y'} - k_y\right)^+ \leq (\deg u(X, Y) - k_y)(\deg v(X, Y) - k_y).$$

* E > < E >

For $z \in \mathbb{Z}$, $z^+ = \max\{z, 0\}$.

Lemma (Szőnyi–Weiner)

Let $u, v \in GF(q)[X, Y]$. Suppose that the coefficient of $X^{deg(u)}$ in u(X, Y) is not zero. For $y \in GF(q)$, let

$$k_y := \deg \gcd \left(u(X, y), v(X, y) \right).$$

Then for all $y \in GF(q)$

$$\sum_{v'\in \mathrm{GF}(q)} \left(k_{y'} - k_y\right)^+ \leq (\deg u(X, Y) - k_y)(\deg v(X, Y) - k_y).$$

< E > < E >

For $z \in \mathbb{Z}$, $z^+ = \max\{z, 0\}$.

Lemma (Szőnyi–Weiner)

Let $u, v \in GF(q)[X, Y]$. Suppose that the coefficient of $X^{deg(u)}$ in u(X, Y) is not zero. For $y \in GF(q)$, let

$$k_y := \deg \gcd \left(u(X, y), v(X, y) \right).$$

Then for all $y \in GF(q)$

$$\sum_{y'\in \mathrm{GF}(q)} \left(k_{y'}-k_y\right)^+ \leq (\deg u(X,Y)-k_y)(\deg v(X,Y)-k_y).$$

D: non-vertical directions outside S $D \subset \operatorname{GF}(q); |D| = q - s$

$$egin{array}{rl} \left(|\mathcal{S}'|-k_m
ight)\left(2q-k_m
ight)&\geq&\sum_{m'\in\mathrm{GF}(q)}(k_{m'}-k_m)^+\geq&\ &\sum\left(k_{m'}-k_m
ight)^+&\geq&\sum\left(\mathrm{ind}(m)-\mathrm{ind}(m')
ight) \end{array}$$

$$\sum_{m' \in D} (k_{m'} - k_m)^+ \geq$$

Héger, Takáts

Semi-resolving sets for PG(2, q)

(日) (日) (日) (日) 日

D: non-vertical directions outside S $D \subset GF(q); |D| = q - s$ $R(M, B) = \prod_{i=1}^{|S'|} (Mx_i + B - y_i)$ $\deg(R(M, B)) = |S'| = 2q + \beta - s$ $l_{\infty} \cap S$

イロト イポト イヨト イヨト 二日

 $\forall m' \in D \colon k_{m'} := \deg \gcd(R(m', B), (B^q - B)^2) = 2q - \operatorname{ind}(m')$

$$egin{array}{lll} \left(|\mathcal{S}'|-k_m
ight)\left(2q-k_m
ight)&\geq&\sum_{m'\in\mathrm{GF}(q)}(k_{m'}-k_m)^+\geq&\\ &\sum\left(k_{m'}-k_m
ight)^+&\geq&\sum\left(\mathrm{ind}(m)-\mathrm{ind}(m')
ight) \end{array}$$

Héger, Takáts Semi-resolving sets for PG(2, q)

D: non-vertical directions outside S $D \subset GF(q); |D| = q - s$ $R(M, B) = \prod_{i=1}^{|S'|} (Mx_i + B - y_i)$ $\deg(R(M, B)) = |S'| = 2q + \beta - s$ $l_{\infty} \cap S$

 $\forall m' \in D \colon k_{m'} := \deg \gcd(R(m', B), (B^q - B)^2) = 2q - \operatorname{ind}(m')$

$$\left(|\mathcal{S}'|-k_m\right)(2q-k_m) \ \geq \ \sum_{m'\in\mathrm{GF}(q)}(k_{m'}-k_m)^+\geq$$

$$\sum_{m'\in D} (k_{m'}-k_m)^+ \geq$$

Héger, Takáts

Semi-resolving sets for PG(2, q)

- 34

D: non-vertical directions outside S $D \subset GF(q); |D| = q - s$ $R(M, B) = \prod_{i=1}^{|S'|} (Mx_i + B - y_i)$ $\deg(R(M, B)) = |S'| = 2q + \beta - s$ $l_{\infty} \cap S$

 $\forall m' \in D \colon k_{m'} := \deg \gcd(R(m',B),(B^q-B)^2) = 2q - \operatorname{ind}(m')$

$$ig(|\mathcal{S}'|-k_mig)\left(2q-k_m
ight) \ \geq \ \sum_{m'\in\mathrm{GF}(q)}(k_{m'}-k_m)^+\geq$$

$$\sum_{m'\in D} (k_{m'}-k_m)^+ \geq$$

Héger, Takáts

- 34

D: non-vertical directions outside S $D \subset GF(q); |D| = q - s$ $R(M, B) = \prod_{i=1}^{|S'|} (Mx_i + B - y_i)$ $\deg(R(M, B)) = |S'| = 2q + \beta - s$ $l_{\infty} \cap S$

 $\forall m' \in D \colon k_{m'} := \deg \gcd(R(m',B),(B^q-B)^2) = 2q - \operatorname{ind}(m')$

$$\left(|\mathcal{S}'|-k_m\right)(2q-k_m) \geq \sum_{m'\in\mathrm{GF}(q)}(k_{m'}-k_m)^+\geq$$

$$\sum_{m'\in D} (k_{m'}-k_m)^+ \geq$$

Héger, Takáts

3 × 3

D: non-vertical directions outside S $D \subset GF(q); |D| = q - s$ $R(M, B) = \prod_{i=1}^{|S'|} (Mx_i + B - y_i)$ $\deg(R(M, B)) = |S'| = 2q + \beta - s$ $l_{\infty} \cap S$

 $\forall m' \in D \colon k_{m'} := \deg \gcd(R(m',B),(B^q-B)^2) = 2q - \operatorname{ind}(m')$

$$ig(|\mathcal{S}'|-k_mig)\left(2q-k_mig)\ \geq \sum_{m'\in\mathrm{GF}(q)}(k_{m'}-k_m)^+\geq \sum_{m'\in D}(\mathrm{ind}(m)-\mathrm{ind}(m'))$$

Héger, Takáts

Semi-resolving sets for PG(2, q)

$$(|\mathcal{S}'| - k_m))(2q - k_m)) \ge \sum_{m' \in D} (\operatorname{ind}(m) - \operatorname{ind}(m'))$$

 $|\mathcal{S}'| = 2q + \beta - s, \ \beta \ge -1 \ ext{and} \ k_m = 2q - ext{ind}(m), \ ext{thus}$ $\left(|\mathcal{S}'| - k_m\right)(2q - k_m) = (ext{ind}(m) + \beta - s) ext{ind}(m).$

 $\delta:=\#1\text{-secants}\ +2\cdot\#0\text{-secants}.$ Then

 $\sum_{m'\in D} \operatorname{ind}(m') \leq \delta$, and $\sum_{m'\in D} \operatorname{ind}(m') \leq |\mathcal{S}| - s + 2 \leq 2q + eta,$

thus
$$\sum_{m'\in D} (\operatorname{ind}(m) - \operatorname{ind}(m')) \ge (q-s)\operatorname{ind}(m) - \delta.$$

For any point $P \notin S$, we get

$$(|\mathcal{S}'|-k_m))(2q-k_m)) \ge \sum_{m'\in D} (\operatorname{ind}(m) - \operatorname{ind}(m'))$$

$$|\mathcal{S}'| = 2q + \beta - s, \ \beta \ge -1 \ ext{and} \ k_m = 2q - ext{ind}(m), \ ext{thus}$$

 $(|\mathcal{S}'| - k_m) (2q - k_m) = (ext{ind}(m) + \beta - s) ext{ind}(m).$

 $\delta := #1$ -secants $+2 \cdot #0$ -secants. Then

 $\sum_{m'\in D} \operatorname{ind}(m') \leq \delta$, and $\sum_{m'\in D} \operatorname{ind}(m') \leq |\mathcal{S}| - s + 2 \leq 2q + eta,$

thus
$$\sum_{m'\in D} (\operatorname{ind}(m) - \operatorname{ind}(m')) \ge (q-s)\operatorname{ind}(m) - \delta.$$

For any point $P \notin S$, we get

$$(|\mathcal{S}'| - k_m))(2q - k_m)) \ge \sum_{m' \in D} (\operatorname{ind}(m) - \operatorname{ind}(m'))$$

$$ert \mathcal{S}' ert = 2q + eta - s, \ eta \ge -1 \ ext{and} \ k_m = 2q - ext{ind}(m), \ ext{thus}$$

 $ig(ert \mathcal{S}' ert - k_mig) \left(2q - k_mig) = (ext{ind}(m) + eta - s) ext{ind}(m).$

$$\delta:=\#1\text{-secants}\ +2\cdot\#0\text{-secants}.$$
 Then

 $\sum_{\boldsymbol{m'}\in \mathcal{D}}\operatorname{ind}(\boldsymbol{m'}) \leq \delta, \text{ and } \sum_{\boldsymbol{m'}\in \mathcal{D}}\operatorname{ind}(\boldsymbol{m'}) \leq |\mathcal{S}| - s + 2 \leq 2q + \beta,$

thus
$$\sum_{m'\in D} (\operatorname{ind}(m) - \operatorname{ind}(m')) \ge (q-s)\operatorname{ind}(m) - \delta.$$

For any point $P \notin S$, we get

$$(|\mathcal{S}'|-k_m))(2q-k_m)) \ge \sum_{m'\in D} (\operatorname{ind}(m) - \operatorname{ind}(m'))$$

$$|\mathcal{S}'| = 2q + \beta - s, \ \beta \ge -1 \ ext{and} \ k_m = 2q - ext{ind}(m), \ ext{thus}$$

 $(|\mathcal{S}'| - k_m) (2q - k_m) = (ext{ind}(m) + \beta - s) ext{ind}(m).$

$$\begin{split} \delta &:= \#1\text{-secants} + 2 \cdot \#0\text{-secants. Then} \\ &\sum_{m' \in D} \operatorname{ind}(m') \leq \delta, \text{ and } \sum_{m' \in D} \operatorname{ind}(m') \leq |\mathcal{S}| - s + 2 \leq 2q + \beta, \\ &\text{thus } \sum_{m' \in D} \left(\operatorname{ind}(m) - \operatorname{ind}(m') \right) \geq (q - s) \operatorname{ind}(m) - \delta. \end{split}$$

For any point $P \notin S$, we get

$$(|\mathcal{S}'| - k_m))(2q - k_m)) \ge \sum_{m' \in D} (\operatorname{ind}(m) - \operatorname{ind}(m'))$$

$$|\mathcal{S}'| = 2q + \beta - s, \ \beta \ge -1 \ ext{and} \ k_m = 2q - ext{ind}(m), \ ext{thus}$$

 $(|\mathcal{S}'| - k_m) (2q - k_m) = (ext{ind}(m) + \beta - s) ext{ind}(m).$

$$\begin{split} \delta &:= \#1\text{-secants} + 2 \cdot \#0\text{-secants. Then} \\ &\sum_{m' \in D} \operatorname{ind}(m') \leq \delta, \text{ and } \sum_{m' \in D} \operatorname{ind}(m') \leq |\mathcal{S}| - s + 2 \leq 2q + \beta, \\ & \text{thus } \sum_{m' \in D} \left(\operatorname{ind}(m) - \operatorname{ind}(m') \right) \geq (q - s) \operatorname{ind}(m) - \delta. \end{split}$$

For any point $P \notin S$, we get

$$(|\mathcal{S}'| - k_m))(2q - k_m)) \ge \sum_{m' \in D} (\operatorname{ind}(m) - \operatorname{ind}(m'))$$

$$ert \mathcal{S}' ert = 2q + eta - s, \ eta \ge -1 \ ext{and} \ k_m = 2q - ext{ind}(m), \ ext{thus}$$

 $\left(ert \mathcal{S}' ert - k_m
ight) \left(2q - k_m
ight) = (ext{ind}(m) + eta - s) ext{ind}(m).$

$$\begin{split} \delta &:= \#1\text{-secants} + 2 \cdot \#0\text{-secants. Then} \\ &\sum_{m' \in D} \operatorname{ind}(m') \leq \delta, \text{ and } \sum_{m' \in D} \operatorname{ind}(m') \leq |\mathcal{S}| - s + 2 \leq 2q + \beta, \\ & \text{thus } \sum_{m' \in D} (\operatorname{ind}(m) - \operatorname{ind}(m')) \geq (q - s) \operatorname{ind}(m) - \delta. \end{split}$$

For any point $P \notin S$, we get

$$\operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + \delta \ge 0.$$

- < '문 ▶ - < '문 ▶ - '

Let
$$P \notin S$$
, $\beta \leq q/4 - 5/2$. Then $ind(P) \leq 2$ or $ind(P) \geq q - \beta - 2$.

Proof.

Recall that we have

$$\operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + 2q + \beta \ge 0.$$

Substituting ind(P) = 3 or $ind(P) = q - \beta - 3$, we get $\beta \ge (q - 9)/4$, a contradiction.

Thus if ${\mathcal S}$ is not too large, then every point has a small or a large index.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Let
$$P \notin S$$
, $\beta \leq q/4 - 5/2$. Then $ind(P) \leq 2$ or $ind(P) \geq q - \beta - 2$.

Proof.

Recall that we have

$$\operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + 2q + \beta \ge 0.$$

Substituting ind(P) = 3 or $ind(P) = q - \beta - 3$, we get $\beta \ge (q - 9)/4$, a contradiction.

Thus if ${\mathcal S}$ is not too large, then every point has a small or a large index.

Let
$$P \notin S$$
, $\beta \leq q/4 - 5/2$. Then $ind(P) \leq 2$ or $ind(P) \geq q - \beta - 2$.

Proof.

Recall that we have

$$\operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + 2q + \beta \ge 0.$$

Substituting ind(P) = 3 or $ind(P) = q - \beta - 3$, we get $\beta \ge (q - 9)/4$, a contradiction.

Thus if ${\mathcal S}$ is not too large, then every point has a small or a large index.

Let
$$P \notin S$$
, $\beta \leq q/4 - 5/2$. Then $ind(P) \leq 2$ or $ind(P) \geq q - \beta - 2$.

Proof.

Recall that we have

$$\operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + 2q + \beta \ge 0.$$

Substituting ind(P) = 3 or $ind(P) = q - \beta - 3$, we get $\beta \ge (q - 9)/4$, a contradiction.

Thus if ${\mathcal S}$ is not too large, then every point has a small or a large index.

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta < q/4 - 5/2$ and $q \ge 4$. If ℓ is tangent to S, then $|\ell \cap T| \ge 1$; if ℓ is skew to S, then $|\ell \cap T| \ge 2$.

Proof.

$$0 \le \operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + \delta = c^2 - (q - \beta)c + 1 + q(c - 1), \text{ so}$$
$$\beta \ge (q - c^2 - 1)/c \ge (q - 5)/2.$$

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta < q/4 - 5/2$ and $q \ge 4$. If ℓ is tangent to S, then $|\ell \cap T| \ge 1$; if ℓ is skew to S, then $|\ell \cap T| \ge 2$.

Proof.

$$0 \le \operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + \delta =$$

 $c^2 - (q - \beta)c + 1 + q(c - 1), \text{ so}$
 $\beta \ge (q - c^2 - 1)/c \ge (q - 5)/2.$

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta < q/4 - 5/2$ and $q \ge 4$. If ℓ is tangent to S, then $|\ell \cap T| \ge 1$; if ℓ is skew to S, then $|\ell \cap T| \ge 2$.

Proof.

$$0 \le \operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + \delta =$$

 $c^2 - (q - \beta)c + 1 + q(c - 1), \text{ so}$
 $\beta \ge (q - c^2 - 1)/c \ge (q - 5)/2.$

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta < q/4 - 5/2$ and $q \ge 4$. If ℓ is tangent to S, then $|\ell \cap T| \ge 1$; if ℓ is skew to S, then $|\ell \cap T| \ge 2$.

Proof.

$$0 \le \operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + \delta =$$

 $c^2 - (q - \beta)c + 1 + q(c - 1), \text{ so}$
 $\beta \ge (q - c^2 - 1)/c \ge (q - 5)/2.$

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta < q/4 - 5/2$ and $q \ge 4$. If ℓ is tangent to S, then $|\ell \cap T| \ge 1$; if ℓ is skew to S, then $|\ell \cap T| \ge 2$.

Proof.

$$egin{aligned} 0 &\leq \operatorname{ind}(P)^2 - (q-eta)\operatorname{ind}(P) + \delta = \ c^2 - (q-eta)c + 1 + q(c-1), ext{ so} \ eta &\geq (q-c^2-1)/c \geq (q-5)/2. \end{aligned}$$

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta \leq q/4 - 5/2$ and $q \geq 4$. If ℓ is tangent to S, then $|\ell \cap T| \geq 1$; if ℓ is skew to S, then $|\ell \cap T| \geq 2$.

Proof.

Let ℓ be skew line; suppose that there is at most one point with large index on ℓ . Then there are at most q tangents; so $\delta \leq q + 2$. Let $P \in \ell$, ind(P) = 2; then

$$0 \le \operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + \delta \le$$
$$4 - (q - \beta) \cdot 2 + 2 + q, \text{ so}$$
$$\beta \ge (q - 6)/2.$$

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta \leq q/4 - 5/2$ and $q \geq 4$. If ℓ is tangent to S, then $|\ell \cap T| \geq 1$; if ℓ is skew to S, then $|\ell \cap T| \geq 2$.

Proof.

Let ℓ be skew line; suppose that there is at most one point with large index on ℓ . Then there are at most q tangents; so $\delta \leq q + 2$. Let $P \in \ell$, ind(P) = 2; then

$$0 \leq \operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + \delta \leq$$
$$4 - (q - \beta) \cdot 2 + 2 + q, \text{ so}$$
$$\beta \geq (q - 6)/2.$$

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta \leq q/4 - 5/2$ and $q \geq 4$. If ℓ is tangent to S, then $|\ell \cap T| \geq 1$; if ℓ is skew to S, then $|\ell \cap T| \geq 2$.

Proof.

Let ℓ be skew line; suppose that there is at most one point with large index on ℓ . Then there are at most q tangents; so $\delta \leq q + 2$. Let $P \in \ell$, ind(P) = 2; then

$$0 \leq \operatorname{ind}(P)^2 - (q - \beta)\operatorname{ind}(P) + \delta \leq$$

 $4 - (q - \beta) \cdot 2 + 2 + q$, so
 $\beta \geq (q - 6)/2.$

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta \leq q/4 - 5/2$ and $q \geq 4$. If ℓ is tangent to S, then $|\ell \cap T| \geq 1$; if ℓ is skew to S, then $|\ell \cap T| \geq 2$.

Proof.

Let ℓ be skew line; suppose that there is at most one point with large index on ℓ . Then there are at most q tangents; so $\delta \leq q + 2$. Let $P \in \ell$, ind(P) = 2; then

$$egin{aligned} 0 &\leq \operatorname{ind}(P)^2 - (q-eta)\operatorname{ind}(P) + \delta \leq \ &4 - (q-eta)\cdot 2 + 2 + q, ext{ so} \ η &\geq (q-6)/2. \end{aligned}$$

 $\ensuremath{\mathcal{T}}$ is the set of points with large index.

Proposition

Assume $\beta \leq q/4 - 5/2$ and $q \geq 4$. If ℓ is tangent to S, then $|\ell \cap T| \geq 1$; if ℓ is skew to S, then $|\ell \cap T| \geq 2$.

This means that $\mathcal{S}\cup\mathcal{T}$ is a double blocking set.

There are at most two points with large index

Proposition

Let
$$|\mathcal{S}| < 9q/4 - 3$$
 (that is, $\beta < q/4 - 3$). Then $|\mathcal{T}| \le 2$.

Proof.

Suppose that there are three points with index $\geq q - \beta - 2$. Then the number of tangents is at least $3(q - \beta - 4)$:

(日) (同) (目) (日)

There are at most two points with large index

Proposition

Let
$$|\mathcal{S}| < 9q/4 - 3$$
 (that is, $\beta < q/4 - 3$). Then $|\mathcal{T}| \le 2$.

Proof.

Suppose that there are three points with index $\geq q - \beta - 2$. Then the number of tangents is at least $3(q - \beta - 4)$:

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

There are at most two points with large index

Proposition

Let
$$|\mathcal{S}| < 9q/4 - 3$$
 (that is, $eta < q/4 - 3$). Then $|\mathcal{T}| \leq 2$.

Proof.

Suppose that there are three points with index $\geq q - \beta - 2$. Then the number of tangents is at least $3(q - \beta - 4)$. Thus

$$3q - 3\beta - 12 \le |\mathcal{S}| = 2q + \beta,$$

whence $\beta \geq q/4 - 3$, a contradiction.

(*) *) *) *)

Thank you for your attention!

Héger, Takáts Semi-resolving sets for PG(2, q)

* E > < E >