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Feedback

Let Mg = (P, L) be a projective plane of order g.

Idea (Bailey, BCC 2011): if Ps is a point-set that resolves all
lines, and Ls is a line-set that resolves all points, then
S ="Ps U Ls is clearly a resolving set.
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Such a resolving set is called a split resolving set; its parts, Ps
and Lg are called semi-resolving sets.
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lines, and Ls is a line-set that resolves all points, then
S ="Ps U Ls is clearly a resolving set.

Such a resolving set is called a split resolving set; its parts, Ps
and Ls are called semi-resolving sets. Note that if the plane is
self-dual (like PG(2, g)), then we may assume that a semi-resolving
set resolves the lines of the plane.
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Feedback

Let Mg = (P, L) be a projective plane of order g.

Idea (Bailey, BCC 2011): if Ps is a point-set that resolves all
lines, and Ls is a line-set that resolves all points, then
S ="Ps U Ls is clearly a resolving set.

Such a resolving set is called a split resolving set; its parts, Ps
and Ls are called semi-resolving sets. Note that if the plane is
self-dual (like PG(2, g)), then we may assume that a semi-resolving
set resolves the lines of the plane.

Definition

The size of the smallest split resolving set for Mg is p*(Mg).
The size of the smallest semi-resolving set for My is pus(Mg);
well-defined if T, is self-dual.
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Feedback

Let Mg = (P, L) be a projective plane of order g.

Idea (Bailey, BCC 2011): if Ps is a point-set that resolves all
lines, and Ls is a line-set that resolves all points, then
S ="Ps U Ls is clearly a resolving set.

Such a resolving set is called a split resolving set; its parts, Ps
and Ls are called semi-resolving sets. Note that if the plane is
self-dual (like PG(2, g)), then we may assume that a semi-resolving
set resolves the lines of the plane.

Definition

The size of the smallest split resolving set for Mg is p*(Mg).
The size of the smallest semi-resolving set for My is pus(Mg);
well-defined if T, is self-dual.

Clearly 11(Mg) < p*(Mg), and p*(PG(2, q)) = 2us(PG(2, g)).
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Semi-resolving sets for projective planes

P is a point, £ is a line;
0 dP,l)=1 < Pet
o d(P,l)=3 < P¢/¢
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Semi-resolving sets for projective planes

P is a point, £ is a line;

0 d(Pl)=1 <« Pec/

@ d(P,l)=3 «<— P ¢/
There is no third possibility: incidence determines distance. l.e., a
distance list of £ with respect to a point-set S «~ N S.
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Semi-resolving sets for projective planes

P is a point, £ is a line;
0 d(Pl)=1 <« Pec/
@ d(P,l)=3 «<— P ¢/
There is no third possibility: incidence determines distance. l.e., a

distance list of £ with respect to a point-set S «~ N S.

So S is a semi-resolving set <= S N/ is unique for every line /.
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Semi-resolving sets for projective planes

P is a point, £ is a line;

0 d(Pl)=1 <« Pec/

@ d(P,l)=3 «<— P ¢/
There is no third possibility: incidence determines distance. l.e., a
distance list of £ with respect to a point-set S «~ N S.

So S is a semi-resolving set <= S N/ is unique for every line /.

Clear: [N S| > 2= S resolves (.
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Semi-resolving sets for projective planes

P is a point, £ is a line;
0 d(Pl)=1 <« Pec/
@ d(P,l)=3 «<— P ¢/
There is no third possibility: incidence determines distance. l.e., a
distance list of £ with respect to a point-set S «~ N S.
So S is a semi-resolving set <= S N/ is unique for every line /.

Clear: [N S| > 2= S resolves (.

So a point-set S is a semi-resolving set if and only if
@ there is at most one skew line to S

@ there is at most one tangent line through any point of S.
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Constructions

Definition

A t-fold blocking set is a set of points that intersects every line in
at least t points.

Blocking set = 1-fold blocking set

Double blocking set = 2-fold blocking set
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Constructions

Definition

A t-fold blocking set is a set of points that intersects every line in
at least t points.

Blocking set = 1-fold blocking set

Double blocking set = 2-fold blocking set

A double blocking set is clearly a semi-resolving set.
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Constructions

Definition

A t-fold blocking set is a set of points that intersects every line in
at least t points.

Blocking set = 1-fold blocking set

Double blocking set = 2-fold blocking set

A double blocking set is clearly a semi-resolving set.
To: the size of the smallest double blocking set.

Hence we have us < 1. (Bailey)
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Constructions

B a double blocking set, P € BB arbitrary.

Then § = B\ {P} is a semi-resolving set:
@ there is no skew line to S;

@ there is at most one tangent line through any point Q of S:
PQ may be tangent.

So we have ps < 7 — 1. (Bailey)
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Constructions

B1, B> disjoint blocking sets, P1 € By, P> € By arbitrary.
Then S = B1 \ {P1} UB> \ {P»} is a semi-resolving set:

@ there is at most one skew line to S: Py P, may be skew

@ there is at most one tangent line through any point Q € S:
say, @ € By; every line through Q intersects B3>, except
possibly QP>.
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If g is a square, we find disjoint Baer subplanes (blocking sets of
size g + /g + 1). Thus we have us(PG(2,q)) < 2q9 +2,/4.
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If g is a square, we find disjoint Baer subplanes (blocking sets of
size g + /g + 1). Thus we have us(PG(2,q)) < 2q9 +2,/4.

Aart Blokhuis (unpublished): ps(Mg) > 2q + v/2q (roughly).
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If g is a square, we find disjoint Baer subplanes (blocking sets of
size g + /g + 1). Thus we have us(PG(2,q)) < 2q9 +2,/4.

Aart Blokhuis (unpublished): ps(Mg) > 2q + v/2q (roughly).
We prove: if g > 87, then us(PG(2,q)) > 29+ 2,/q. In fact:
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If g is a square, we find disjoint Baer subplanes (blocking sets of
size g + /g + 1). Thus we have us(PG(2,q)) < 2q9 +2,/4.

Aart Blokhuis (unpublished): ps(Mg) > 2q + v/2q (roughly).
We prove: if g > 87, then us(PG(2,q)) > 29+ 2,/q. In fact:

Let S be a semi-resolving set for PG(2,q), g > 4. If
|S| < 9q/4 — 3, then one can add at most two points to S to
obtain a double blocking set; thus |S| > m — 2.
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If g is a square, we find disjoint Baer subplanes (blocking sets of
size g + /g + 1). Thus we have us(PG(2,q)) < 2q9 +2,/4.

Aart Blokhuis (unpublished): ps(Mg) > 2q + v/2q (roughly).
We prove: if g > 87, then us(PG(2,q)) > 29+ 2,/q. In fact:

Let S be a semi-resolving set for PG(2,q), g > 4. If
|S| < 9q/4 — 3, then one can add at most two points to S to
obtain a double blocking set; thus |S| > m — 2.

Let S be a semi-resolving set for PG(2,q), g > 4. Then
S| > min{9q/4 — 3,72(PG(2, q)) — 2}.
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o If g > 9is a square, then » = 2q +2,/q + 2. Thus the
corollary gives us > 7 — 2 if g > 87.

o If g=r" rodd, h>3odd, then 7, <2(q—1)/(r —1). Thus
the corollary gives ps > 7 — 2 if r > 11.

Let S be a semi-resolving set for PG(2,q), g > 4. If
|S| < 9q/4 — 3, then one can add at most two points to S to
obtain a double blocking set; thus |S| > m — 2.

Let S be a semi-resolving set for PG(2,q), g > 4. Then
S| > min{9q/4 — 3,72(PG(2, q)) — 2}.
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Blocking semiovals

Definition

A point-set S is a semioval, if it has precisely one tangent at each
of its points. A blocking semioval is a semioval that is a blocking
set.

Theorem (Dover)

Let S be a blocking semioval in an arbitrary projective plane of
order q. If ¢ > 7, then |S| > 2q + 2. If g > 3 and there is a line
intersecting S in q — k points, 1 < k < q— 1, then

|S| > 3q —2q/(k +2) — k.
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A corollary for blocking semiovals

Let S be a blocking semioval in PG(2,q), g > 4. Then
IS| > 9q/4 - 3.
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A corollary for blocking semiovals

Let S be a blocking semioval in PG(2,q), g > 4. Then
IS| > 9q/4 - 3.

A blocking semioval S is a semi-resolving set. Suppose

|S| <9q/4—3. Then |S| > —2>2g+1,s0S has at least

2q + 2 tangents, but two points may block at most 2g + 1 of
them. O
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Index

S is a semi-resolving set, P is a point.

Let |S| = 2q + 8. Homework: 5 > —1.
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Index

S is a semi-resolving set, P is a point.

Let |S| = 2q + 8. Homework: 5 > —1.

@ ind;(P): the number of i-secants to S through P
@ ind(P) := 2indo(P) + ind;(P) (index)
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Index

S is a semi-resolving set, P is a point.

Let |S| = 2q + 8. Homework: 5 > —1.

@ ind;(P): the number of i-secants to S through P
@ ind(P) := 2indo(P) + ind;(P) (index)

We show that ind(P) is either large or small.
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Index

S is a semi-resolving set, P is a point.

Let |S| = 2q + 8. Homework: 5 > —1.

@ ind;(P): the number of i-secants to S through P
@ ind(P) := 2indo(P) + ind;(P) (index)

We show that ind(P) is either large or small.
If P €S, then ind(P) < 1.
Let P¢ S, ind(P)<q—2,|S| =29+ 3 <4q—4
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Index

S is a semi-resolving set, P is a point.
Let |S| = 2q + 8. Homework: 5 > —1.
@ ind;(P): the number of i-secants to S through P
@ ind(P) := 2indo(P) + ind;(P) (index)
We show that ind(P) is either large or small.
If P €S, then ind(P) < 1.
Let P¢ S, ind(P) < qg—2, |S| =29+ <4qg— 4. Choose {o so

that P € /
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Index

S is a semi-resolving set, P is a point.
Let |S| = 2q + 8. Homework: 5 > —1.
@ ind;(P): the number of i-secants to S through P
@ ind(P) := 2indo(P) + ind;(P) (index)
We show that ind(P) is either large or small.
If P €S, then ind(P) < 1.
Let P¢ S, ind(P) < qg—2, |S| =29+ <4qg— 4. Choose {o so

that P € l, [looNS|=5>2
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Index

S is a semi-resolving set, P is a point.
Let |S| = 2q + 8. Homework: 5 > —1.
@ ind;(P): the number of i-secants to S through P
@ ind(P) := 2indo(P) + ind;(P) (index)
We show that ind(P) is either large or small.
If P €S, then ind(P) < 1.
Let P¢ S, ind(P) < qg—2, |S| =29+ <4qg— 4. Choose {o so
that P € oo, loc NS|=5>2,(c0) ¢ S
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Index

S is a semi-resolving set, P is a point.
Let |S| = 2q + 8. Homework: 5 > —1.
@ ind;(P): the number of i-secants to S through P
@ ind(P) := 2indo(P) + ind;(P) (index)
We show that ind(P) is either large or small.
If P €S, then ind(P) < 1.
Let P¢ S, ind(P) < qg—2, |S| =29+ <4qg— 4. Choose {o so

that P € U, [loc NS|=5>2, (00) ¢ S, and P # (c0).
(This can be done: homework.)
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The Rédei polynomial

|SNAG(2.0)
RM,B)= [[ (Mxi+B—y)eGF(q)M,B]
i=1

@

0.0 {(xiy}

AG(2, q)

o
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The Rédei polynomial

[SNAG(2,q)]
RM.B)= [ (Mxi+B—y)eGF(q)[M,B]
i=1
IS’ N {Y = mX + b}| = the multiplicity of the root b in R(m, B)
(C)

Y=mX+b

0.0 {(xiy}

AG(2, q)

o
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The Rédei polynomial

ISNAG(2,q)]

RM.B)= [ (Mxi+B-y)eGF(q)M,B]

i=1

IS’ N {Y = mX + b}| = the multiplicity of the root b in R(m, B)

@

(0.b)

m e GF(q), P=(m) ¢ S, {x a ,standard” line

Y=mX+b

{(xiy}
AG(2, q)

o
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The Rédei polynomial

|SNAG(2,q)]
II (Mxi+B-—y)eGF(q)M,B]
i=1

IS’ N {Y = mX + b}| = the multiplicity of the root b in R(m, B)

@

(0.b)

m e GF(q), P=(m) ¢ S, {x a ,standard” line
M deg ged(R(m, B), (B — B)?
0 - #£skew lines on (m

Y=mX+b

+2 - #standard lines on (m
{(x.yi)}
AG(2,0q)

)=
(m)
+1 - #ftangent lines on (m)
(m)
(m)

=2q — ind(m

o
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The crucial tool: the Szényi—Weiner Lemma

For z € Z, zt = max{z,0}.
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The crucial tool: the Szényi—Weiner Lemma

For z € Z, zt = max{z,0}.

Lemma (Szényi-Weiner)
Let u,v € GF(q)[X, Y]. Suppose that the coefficient of X9¢&(t) jn
u(X,Y) is not zero.
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The crucial tool: the Szényi—Weiner Lemma

For z € Z, zt = max{z,0}.

Lemma (Szényi-Weiner)

Let u,v € GF(q)[X, Y]. Suppose that the coefficient of X9¢&(t) jn
u(X,Y) is not zero. Fory € GF(q), let

ky := degged (u(X,y), v(X,y)).
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The crucial tool: the Szényi—Weiner Lemma

For z € Z, zt = max{z,0}.

Lemma (Szényi-Weiner)

Let u,v € GF(q)[X, Y]. Suppose that the coefficient of X9¢&(t) jn
u(X,Y) is not zero. Fory € GF(q), let

ky := degged (u(X,y), v(X,y)).

Then for all y € GF(q)

S (ky — k)" < (degu(X,Y) — ky)(deg v(X, Y) — ky).
y'€GF(q)
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Applying the Szényi—Weiner Lemma

> . ) . .
() D D: non-vertical directions outside S

D c GF(q); |D|=q—s

{(xi.yi)} A
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Applying the Szényi—Weiner Lemma

> . ) . .
() D D: non-vertical directions outside S

D c GF(q); |D|=q—s

'l

R(M. B) = [T21(Mx; + B — y;)
deg(R(M, B)) = || = 2q+ B —s

{(xi.yi)} A

®
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Applying the Szényi—Weiner Lemma

> . ) . .
() D D: non-vertical directions outside S

D c GF(q); |D|=q—s

'l

R(M. B) = [T21(Mx; + B — y;)
deg(R(M, B)) = || = 2q+ B —s

{(xi.yi)} A

®

Vm' € D: kyy = deggcd(R(m', B), (B9 — B)?) = 2q — ind(m’)
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Applying the Szényi—Weiner Lemma

> . ) . .
() D D: non-vertical directions outside S

D c GF(q); |D|=q—s

'l

R(M. B) = [T21(Mx; + B — y;)
deg(R(M, B)) = || = 2q+ B —s

{(xi.yi)} A

®

Vm' € D: kyy = deggcd(R(m', B), (B9 — B)?) = 2q — ind(m’)

(ST = km) 2q = km) = D (kaw — k)T
m’'eGF(q)
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Applying the Szényi—Weiner Lemma

> . ) . .
() D D: non-vertical directions outside S

D c GF(q); |D|=q—s

'l

R(M. B) = [T21(Mx; + B — y;)
deg(R(M, B)) = || = 2q+ B —s

{(xi.yi)} A

®

Vm' € D: kyy = deggcd(R(m', B), (B9 — B)?) = 2q — ind(m’)

(|Sl| - km) (2q - km) > Z (km’ - km)+ >

m’'€GF(q)
Z (kny — km)Jr

m'eD
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Applying the Szényi—Weiner Lemma

> . ) . .
() D D: non-vertical directions outside S

D c GF(q); |D|=q—s

'l

R(M. B) = [T21(Mx; + B — y;)
deg(R(M, B)) = || = 2q+ B —s

{(xi.yi)} A

®

Vm' € D: kyy = deggcd(R(m', B), (B9 — B)?) = 2q — ind(m’)

(|Sl| - km) (2q - km) > Z (km’ - km)+ >

m’'€GF(q)
> (k= km)T = (ind(m) — ind(m'))
m'eD m'eD
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Applying the Szényi—Weiner Lemma

(I8’ = km)) (24 = km)) = > (ind(m) — ind(m'))

m'eD
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Applying the Szényi—Weiner Lemma

(I8’ = km)) (24 = km)) = > (ind(m) — ind(m'))

m’eD
|S'| =2+ 8 —s, 8> —1and ky, =2g — ind(m), thus
(IS'] = km) (2q — km) = (ind(m) + 3 — s)ind(m).
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Applying the Szényi—Weiner Lemma

(I8’ = km)) (24 = km)) = > (ind(m) — ind(m'))

m’eD
|S'| =2+ 8 —s, 8> —1and ky, =2g — ind(m), thus
(IS'] = km) (2q — km) = (ind(m) + 3 — s)ind(m).

0 := #1-secants +2 - #0-secants. Then

Z ind(m') <6

m’'eD
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Applying the Szényi—Weiner Lemma

(I8’ = km)) (24 = km)) = > (ind(m) — ind(m'))

m’eD
|S'| =2+ 8 —s, 8> —1and ky, =2g — ind(m), thus
(IS'] = km) (2q — km) = (ind(m) + 3 — s)ind(m).

0 := #1-secants +2 - #0-secants. Then

Z ind(m’) < 6, and Z ind(m') <|S|—s+2<2q+p

m'eD m'eD
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Applying the Szényi—Weiner Lemma

(I8’ = km)) (24 = km)) = > (ind(m) — ind(m'))

m’eD
|S'| =2+ 8 —s, 8> —1and ky, =2g — ind(m), thus
(IS'] = km) (2q — km) = (ind(m) + 3 — s)ind(m).

0 := #1-secants +2 - #0-secants. Then
Z ind(m’) <6, and Z ind(m') < |S] —s+2<2q+ 4,

m'eD m'eD

thus )~ (ind(m) — ind(m')) > (g — s)ind(m) — 6.
m'eD
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Applying the Szényi—Weiner Lemma

(I8’ = km)) (24 = km)) = > (ind(m) — ind(m'))

m’eD
|S'| =2+ 8 —s, 8> —1and ky, =2g — ind(m), thus
(IS'] = km) (2q — km) = (ind(m) + 3 — s)ind(m).

0 := #1-secants +2 - #0-secants. Then
Z ind(m’) <6, and Z ind(m') < |S] —s+2<2q+ 4,

m'eD m'eD

thus )~ (ind(m) — ind(m')) > (g — s)ind(m) — 6.
m'eD

For any point P ¢ S, we get
ind(P)? — (g — B)ind(P) 46 > 0.
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There are no medium indices

Proposition

Let P¢ S, 3<q/4—5/2. Thenind(P) <2 or
ind(P) > q—3—-2.
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There are no medium indices

Proposition

Let P¢ S, 3<q/4—5/2. Thenind(P) <2 or
ind(P) > q—3—-2.

Proof.
Recall that we have

ind(P)? — (g — B)ind(P) +2g + 3 > 0.
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There are no medium indices

Proposition

Let P¢ S, 3<q/4—5/2. Thenind(P) <2 or
ind(P) > q—3—-2.

Proof.
Recall that we have

ind(P)? — (g — B)ind(P) +2g + 3 > 0.

Substituting ind(P) = 3 or ind(P) = g — § — 3, we get
B> (g —9)/4, a contradiction. O
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There are no medium indices

Proposition

Let P¢ S, 3<q/4—5/2. Thenind(P) <2 or
ind(P) > q—3—-2.

Proof.
Recall that we have

ind(P)? — (g — B)ind(P) +2g + 3 > 0.

Substituting ind(P) = 3 or ind(P) = g — § — 3, we get
B> (g —9)/4, a contradiction. O

v

Thus if S is not too large, then every point has a small or a large
index.
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
|¢NT|>1;iflis skew to S, then |[{NT| > 2.
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
|¢NT|>1;iflis skew to S, then |[{NT| > 2.

Proof.
Let £ be a tangent line; ¢ := maximal index on ¢\ S (¢ > 0);
suppose ¢ < 2.
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
|¢NT|>1;iflis skew to S, then |[{NT| > 2.

Proof.

Let £ be a tangent line; ¢ := maximal index on ¢\ S (¢ > 0);
suppose ¢ < 2. There is no skew line;
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
|¢NT|>1;iflis skew to S, then |[{NT| > 2.

Proof.

Let ¢ be a tangent line; ¢ := maximal index on £\ S (¢ > 0);
suppose ¢ < 2. There is no skew line; § = #1-secants

+2 - #0-secants < 1+ g(c —1).
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
|¢NT|>1;iflis skew to S, then |[{NT| > 2.

Proof.
Let ¢ be a tangent line; ¢ := maximal index on £\ S (¢ > 0);

suppose ¢ < 2. There is no skew line; § = #1-secants
+2 - #0-secants < 1+ g(c —1). Thus
0 < ind(P)? — (g — f)ind(P) + 6 =
¢ —(q—B)c+1+q(c—1), so
B>(q-c*~1)/c>(q-5)/2
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
[¢NT|>1;iflis skew to S, then |[{NT| > 2.

Proof.

Let ¢ be skew line; suppose that there is at most one point with
large index on £.
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
[¢NT|>1;iflis skew to S, then |[{NT| > 2.

Proof.

Let ¢ be skew line; suppose that there is at most one point with
large index on £. Then there are at most g tangents;
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
[¢NT|>1;iflis skew to S, then |[{NT| > 2.

Proof.

Let ¢ be skew line; suppose that there is at most one point with
large index on £. Then there are at most g tangents; so § < g + 2.
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
[¢NT|>1;iflis skew to S, then |[{NT| > 2.

Proof.

Let ¢ be skew line; suppose that there is at most one point with
large index on £. Then there are at most g tangents; so § < g + 2.
Let P € ¢, ind(P) = 2; then

0 < ind(P)? — (g — B)ind(P) + 6 <
4—(g—p0)-2+2+q, so
8= (q-06)/2.
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Points with large index block the non-standard lines

T is the set of points with large index.

Proposition

Assume 3 < q/4 —5/2 and q > 4. If { is tangent to S, then
[¢NT|>1;iflis skewto S, then |[{NT| > 2.

This means that SU 7 is a double blocking set.
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There are at most two points with large index

Proposition
Let |S| < 9q/4 — 3 (thatis, 3 < q/4—3). Then |T| < 2.

Proof.

Suppose that there are three points with index > g — 3 — 2. Then
the number of tangents is at least 3(qg — 3 — 4):
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There are at most two points with large index

Proposition
Let |S| < 9q/4 — 3 (thatis, 3 < q/4—3). Then |T| < 2.

Proof.

Suppose that there are three points with index > g — 3 — 2. Then
the number of tangents is at least 3(qg — 3 — 4):
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There are at most two points with large index

Proposition
Let |S| < 9q/4 —3 (thatis, 5 < q/4—3). Then |T| <2.

Proof.
Suppose that there are three points with index > g — 3 — 2. Then
the number of tangents is at least 3(¢ — 5 — 4). Thus

3g-36-12<|S| =2q + 5,

whence 3 > q/4 — 3, a contradiction.
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Thank you for your attention!
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