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Linear Prediction and
(Honest) Confidence Sets

Getting directions from András: MDPs, ILT, Dregely
4 / 31



The Data
I X1, . . . ,Xn ∈ Rd, Y1, . . . ,Yn ∈ R

I ∃θ∗ ∈ Rd s.t.

Yt = 〈Xt, θ∗〉+ ηt, t = 1, . . . ,n

I The “noise”, ηt is conditionally R-sub-Gaussian with
some R > 0, i.e.,

∀λ ∈ R : E[eληt |X1, . . . ,Xt, η1, . . . , ηt−1] ≤ exp
(
λ2R2

2

)
.

I Often Xt is chosen based on (X1, . . . ,Xt−1) and
(Y1, . . . ,Yt−1)

Estimation Problems:

I Estimate θ∗ based on ((X1,Y1), . . . , (Xn,Yn))!
I Construct a confidence set that contains θ∗ w.h.p.!
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Sub-Gaussianity

Definition
Random variable Z is R-sub-Gaussian for some R ≥ 0 if

∀γ ∈ R E[eγZ] ≤ exp
(
γ2R2

2

)
.

The condition implies that
I E[Z] = 0
I Var[Z] ≤ R2

Examples:
I Zero-mean bounded in an interval of length 2R

(Hoeffding-Azuma)
I Zero-mean Gaussian with variance ≤ R2
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(Honest) Confidence Sets

Given the data ((X1,Y1), . . . , (Xn,Yn)) and

0 ≤ δ ≤ 1,

construct
Cn ⊂ Rd

such that
Pr(θ∗ ∈ Cn) ≥ 1 − δ.
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Confidence Sets based on Ridge-regression
I Data (X1,Y1), . . . , (Xn,Yn) such that Yt ≈ 〈Xt, θ∗〉

I Stack them into matrices: X1:n is n× d and Y1:n is n× 1
I Ridge regression estimator:

θ̂n = (X1:nX
T
1:n + λI)−1XT

1:nY1:n

I Let Vn = X1:nX
T
1:n + λI

Theorem ([AYPS11])
If ‖θ∗‖2 ≤ S, then with probability at least 1 − δ, for all t, θ∗
lies in

Ct =

{
θ : ‖θ̂t − θ‖Vt ≤ R

√
2 ln

(
det(Vt)1/2

δdet(λI)1/2

)
+ S
√
λ

}

where ‖v‖A =
√

vTAv is the matrix A-norm.
Proof technique: [RS70, dLS09]. Extends to separable Hilbert spaces.
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Comparison with Previous Confidence Sets
I Bound of [AYPS11]:

‖θ̂t − θ∗‖Vt ≤ R

√
2 ln

(
det(Vt)1/2

δdet(λI)1/2

)
+ S
√
λ

I [DHK08]: If ‖θ∗‖2, ‖Xt‖2 ≤ 1 then for a specific λ

‖θ̂t −θ∗‖Vt ≤ R max
{√

128d ln(t) ln(t2/δ),
8
3

ln(t2/δ)

}
I [RT10]: If ‖Xt‖2 ≤ 1

‖θ̂t − θ∗‖Vt ≤ 2Rκ
√

ln t
√

d ln t + ln(t2/δ) + S
√
λ

where κ = 3 + 2 ln((1 + λd)/λ).

The bound of [AYPS11] doesn’t depend on t.
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Questions

I Are there other ways to construct confidence sets?

I Can we get tighter confidence sets when some special
conditions are met?

I SPARSITY:

Only p coordinates of θ∗ are nonzero.

I Can we construct tighter confidence sets based on the
knowledge of p?

I Least-squares (or ridge) estimators are not a good
idea!

10 / 31



Questions

I Are there other ways to construct confidence sets?
I Can we get tighter confidence sets when some special

conditions are met?

I SPARSITY:

Only p coordinates of θ∗ are nonzero.

I Can we construct tighter confidence sets based on the
knowledge of p?

I Least-squares (or ridge) estimators are not a good
idea!

10 / 31



Questions

I Are there other ways to construct confidence sets?
I Can we get tighter confidence sets when some special

conditions are met?
I SPARSITY:

Only p coordinates of θ∗ are nonzero.

I Can we construct tighter confidence sets based on the
knowledge of p?

I Least-squares (or ridge) estimators are not a good
idea!

10 / 31



Questions

I Are there other ways to construct confidence sets?
I Can we get tighter confidence sets when some special

conditions are met?
I SPARSITY:

Only p coordinates of θ∗ are nonzero.

I Can we construct tighter confidence sets based on the
knowledge of p?

I Least-squares (or ridge) estimators are not a good
idea!

10 / 31



Questions

I Are there other ways to construct confidence sets?
I Can we get tighter confidence sets when some special

conditions are met?
I SPARSITY:

Only p coordinates of θ∗ are nonzero.

I Can we construct tighter confidence sets based on the
knowledge of p?

I Least-squares (or ridge) estimators are not a good
idea!

10 / 31



Online-to-Confidence-Set
Conversion

I Idea: Create a confidence set
based on how well an online
linear prediction algorithm
works.

I This is a reduction!

I If a new prediction algorithm
is discovered, or a better
performance bounds for an
algorithm becomes available,
we get tighter confidence sets

I Hopefully it will work for
the sparse case

Encouragement: Working on
my thesis
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Online Linear Prediction
For t = 1, 2, . . .:

I Receive Xt ∈ Rd

I Predict Ŷt ∈ R
I Receive correct label Yt ∈ R
I Suffer loss (Yt − Ŷt)

2

Goal: Compete with the best linear predictor in hindsight

No assumptions whatsoever on (X1,Y1), (X2,Y2), . . . !

There are heaps of algorithms for this problem:
I online gradient descent [Zin03]
I online least-squares [AW01, Vov01]
I exponentiated gradient algorithm [KW97]
I online LASSO (??)
I SeqSEW [Ger11, DT07]
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2

Goal: Compete with the best linear predictor in hindsight

No assumptions whatsoever on (X1,Y1), (X2,Y2), . . . !

There are heaps of algorithms for this problem:
I online gradient descent [Zin03]
I online least-squares [AW01, Vov01]
I exponentiated gradient algorithm [KW97]
I online LASSO (??)
I SeqSEW [Ger11, DT07]

12 / 31



Online Linear Prediction
For t = 1, 2, . . .:

I Receive Xt ∈ Rd

I Predict Ŷt ∈ R
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Online Linear Prediction, cnt’d

I Regret with respect to a linear predictor θ ∈ Rd

ρn(θ) =

n∑
t=1

(Yt − Ŷt)
2 −

n∑
t=1

(Yt − 〈Xt, θ〉)2

I Prediction algorithms come with “regret bounds” Bn:

∀n ρn(θ) ≤ Bn

I Bn depends on n, d, θ and possibly X1,X2, . . . ,Xn and
Y1,Y2, . . . ,Yn

I Typically, Bn = O(
√

n) or Bn = O(log n)
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Good Regret Implies Small Risk

I Data: {(Xt,Yt)}
n
t=1 is i.i.d.,

Yt = 〈Xt, θ∗〉+ ηt, ηt R-sub-Gaussian

I Online Learning Algorithm:
A produces {θt}

n
t=1 and predicts Ŷt = 〈Xt, θt〉

I Regret bound: ∀n: ρn(θ∗) ≤ Bn

I Risk of vector θ: R(θ) = E[(Y1 − 〈X1, θ〉)2].

Theorem ([CBG08])
Let θ̄n = 1

n

∑n
t=1 θt. Then, w.p. 1 − δ,

R(θ̄n) ≤
Bn

n
+

36
n

ln
(

Bn + 3
δ

)
+

√
Bn

n2 ln
(

Bn + 3
δ

)
.
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Online-to-Confidence-Set Conversion
I Data (X1,Y1), . . . , (Xn,Yn) where Yt = 〈Xt, θ∗〉+ ηt

and ηt is conditionally R-sub-Gaussian.

I Predictions Ŷ1, Ŷ2, . . . , Ŷn

I Regret bound ρ(θ∗) ≤ Bn

Theorem (Conversion, [AYPS12])
With probability at least 1 − δ, for all n, θ∗ lies in

Cn =

{
θ ∈ Rd :

n∑
t=1

(Ŷt − 〈Xt, θ〉)2

≤ 1 + 2Bn + 32R2 ln

(
R
√

8 +
√

1 + Bn

δ

)}
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Proof Sketch
Algebra: With probability 1, due to the regret bound Bn,

n∑
t=1

(Ŷt − 〈Xt, θ∗〉)2 ≤ Bn + 2
n∑

t=1

ηt(Ŷt − 〈Xt, θ∗〉)︸ ︷︷ ︸
Mn

. (1)

(Mn)
∞
n=1 is a martingale. Using the same argument as in

[AYPS11], we get that w.p. 1 − δ, for all n ≥ 0,

|Mn| ≤ R

√√√√2

(
1 +

n∑
t=1

(Ŷt − 〈Xt, θ∗〉)2

)

× ln




√
1 +
∑n

t=1(Ŷt − 〈Xt, θ∗〉)2

δ


 .

Combine with (1) and solve the inequality.
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ηt(Ŷt − 〈Xt, θ∗〉)︸ ︷︷ ︸
Mn

. (1)

(Mn)
∞
n=1 is a martingale. Using the same argument as in

[AYPS11], we get that w.p. 1 − δ, for all n ≥ 0,

|Mn| ≤ R

√√√√2

(
1 +

n∑
t=1
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Application to Sparse Linear Prediction
Theorem ([Ger11])
For any θ such that ‖θ‖∞ ≤ 1 and ‖θ‖0 ≤ p, the the regret of
SEQSEW is bounded by

ρn(θ) ≤ Bn = O(p log(nd)) .

Corollary
∃A > 0 s.t. with probability at least 1 − δ, for all n, θ∗ lies in

Cn =

{
θ ∈ Rd :

n∑
t=1

(Ŷt − 〈Xt, θ〉)2

≤ 1 + 2Ap log(nd) + 32R2 ln

(
R
√

8 +
√

1Ap log(nd)
δ

)}
.
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Application to Linear
Bandits

Encouragement: Gittin’s mistake
Stamina: András’ theory of hiking

18 / 31



Linear Bandits

Unknown, but fixed weight vector θ∗ ∈ Rd.

In round t = 1, 2, . . .
I Receive convex set Dt ⊂ Rd

I Choose an action Xt ∈ Dt

I Receive a reward

Yt = 〈Xt, θ∗〉+ ηt,

where ηt is conditionally on the past R-sub-Gaussian.

Goal: Maximize total reward.
Sparse bandits: θ∗ is sparse.
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Motivation

I multi-armed bandits, with infinitely many arms

I dependency between the rewards of arms (linear
structure)

I applications: web-advertisement, network routing,
. . .

I action = arm = ad = feature vector
I reward = click
I sparsity: high-dimensional parameter spaces/feature

vectors
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Regret

I If we knew θ∗, then in round t we’d choose action

X∗t = argmax
x∈Dt

〈x, θ∗〉

I Our regret is how much less total reward we have
incurred:

Regretn =

n∑
t=1

〈X∗t , θ∗〉−
n∑

t=1

〈Xt, θ∗〉

I We want Regretn /n→ 0 as n→∞
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Optimism in the Face of Uncertainty

I Maintain a confidence set Ct ⊆ Rd such that θ∗ ∈ Ct

with high probability.

I OFUL Algorithm: In round t, choose

(Xt, θ̃t) = argmax
(x,θ)∈Dt×Ct−1

〈Xt, θt〉

I θ̃t is an “optimistic” estimate of θ∗
I The “OFU” principle goes back to at least [LR85]
I Algorithm UCB1 of [Aue03] is a special case
I Widely applied, very active in machine learning

(internet giants)
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Confidence Set Ct

θ̂t

θ∗

θ̃t+1

I θ̂t: center of Ct (e.g., least-squares estimate)
I θ∗ lies somewhere in Ct w.h.p.
I Next optimistic estimate, θ̃t+1, is on the boundary of

Ct

23 / 31



Regret of OFUL with Ridge-Regressor
Estimator

Theorem ([DHK08, AYPS11])
If ‖θ∗‖2 ≤ 1 and Dt’s are subsets of the unit 2-ball then with
probability at least 1 − δ

Regretn ≤ O(Rd
√

n · polylog(n, d, 1/δ))
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Empirical Results

OFUL using the confidence set of [AYPS11]

– “New bound”
OFUL using the confidence set of [DHK08] – “Old bound”
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OFUL with Online-to-Confidence-Set
Conversion

Theorem
If |〈x, θ∗〉| ≤ 1 for all x ∈ Dt and all t then with probability at
least 1 − δ, for all n, the regret of Optimistic Algorithm is

Regretn ≤ O
(√

dnBn · polylog(n, d, 1/δ,Bn)
)
.
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OFUL Combined with SeqSEW

Theorem ([AYPS12])
Suppose ‖θ∗‖2 ≤ 1 and ‖θ∗‖0 ≤ p. Via the conversion, OFUL
has regret

O(R
√

pdn · polylog(n, d, 1/δ))

. . . which is better than O(Rd
√

n · polylog(n, d, 1/δ)).
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Results on Sparse Bandits
OFUL-EG: OFUL with the EG algorithm

OFUL-LS: OFUL with ridge regression
d = 200: Dt = D = co(A1, . . . ,A200), Ai ∈ {−1,+1}200

p = 10 with θ∗,i ∈ {0, 0.1}, ηt ∼ N(0, 0.12)
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Summary

I Online-to-Confidence-Set Conversion
I First confidence set for sparse linear prediction
I Application to bandits
I Top results on the recent Yahoo article

recommendation competition (with no tuning, RR)

Open Problems

I Confidence sets for batch algorithms e.g. offline
LASSO.

I Adaptive bandit algorithm that doesn’t need p
upfront.

I When Dt has few corners, LS wins. Best of both
worlds?
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Lesson about health

Wonderful memories
THANK YOU!
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