The Levelwise Search Algorithm

Tamás Horváth

University of Bonn & Fraunhofer IAIS, Sankt Augustin, Germany tamas.horvath@iais.fraunhofer.de

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Local Pattern Mining as Theory Extraction

Given

- a database D,
- a pattern language \mathcal{L} ,
 - e.g., expressing properties or defining subgroups of the data
 - elements of ${\mathcal L}$ are referred to as sentences or patterns
- an *interestingness predicate* $q_D : \mathcal{L} \to {\text{true, false}}$
 - e.g., evaluating whether a sentence $\varphi \in \mathcal{L}$ is "interesting" w.r.t. D

compute $Th(\mathcal{L}, D, q_D) = \{\varphi \in \mathcal{L} : q_D(\varphi) = \text{true}\}$

- i.e., set of "interesting" sentences
- $Th(\mathcal{L}, D, q_D)$: theory of D with respect to \mathcal{L} and q_D

Theory Extraction Problem – Additional Restrictions

in many **practical cases**, we have further properties of the theory extraction problem that can algorithmically be utilized

- 1. there is a (natural) partial order \preccurlyeq on $\mathcal L$
 - φ, θ ∈ L; φ ≼ θ referred to as φ is more general than θ (or θ is more specific than φ)
- 2. q_D is anti-monotone with respect to \preccurlyeq
 - i.e., $\varphi \preccurlyeq \theta$ and $q_D(\theta) = \text{true implies } q_D(\varphi) = \text{true}$

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Examples

some data mining problems which are instances of the theory extraction problem:

- association rule mining
- frequent set mining
- frequent episode mining
- subgroup discovery
- frequent connected subgraph mining
- track mining
- ...

Example I: Association Rule Mining

 discovery of interesting relations between binary attributes, called *items*, in large databases

example of an association rule extracted from supermarket sales:

"Customers who buy cereals and sugar also tend to buy milk."

- only rules with support and confidence above some minimal thresholds are extracted
 - support: proportion of customers who bought the three items among **all** customers
 - confidence: proportion of customers who bought milk among the customers who bought cereals and sugar

Example I: Association Rule Mining

special case of the theory extraction problem:

- database D: binary matrix,
 - rows: transactions
 - columns: items
- *pattern language* \mathcal{L} : rules of the form $X \to Y$, where X and Y are disjoint sets of items
- interestingness predicate $q_D : \mathcal{L} \to {\text{true}, \text{false}}$:

 $q_D(X \to Y) = \text{true} \iff$ $\text{support}(X \to Y) \ge minsup \text{ and } \text{confidence}(X \to Y) \ge minconf$

Example II: Frequent Itemset Mining

 discovery of sets of items (columns) that are subsets of at least t transactions (rows) in a binary matrix

Example:

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Milk, Bread, Diaper, Beer
5	Milk, Bread, Diaper, Coke

• $\{Milk, Bread, Diaper\}$ is frequent for the frequency thershold t = 2

Example II: Frequent Itemset Mining

special case of the theory extraction problem:

- *database* D: binary matrix,
 - rows: transactions
 - columns: set I of items
- pattern language \mathcal{L} : 2^{I}
- interestingness predicate $q_D : \mathcal{L} \to \{ true, false \}$:

 $q_D(X) = \text{true} \iff \text{support}(X) \ge minsup$

8

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Example III: Frequent Episodes

episode mining: list collection of events that occur within a time interval of a given size in a given partial order

episode: $\varphi = (V, \leq, g)$ with

- V: set of nodes,
- \leq : partial order on V,
- $g: V \to E$: associates each node with an event type in E
- **problem definition**: *Given* an event sequence *S* over *E*, a window width win, and a frequency threshold t > 0, *list* all episodes φ that are "contained" in at least *t* windows of size win
 - "contained": the total order on the events in the window is consistent with the partial order of φ

Example III: Frequent Episodes

(a) An event sequence; (b) two episodes.

10

PhD Course, Szeged, 2013 - © T.Horvath

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

universität**bon**r

Example III: Frequent Episodes

frequent episode mining: special case of the theory extraction problem

• exercise

Example IV: Frequent Connected Subgraph Mining

frequent connected subgraph mining problem:

Given a set D of labeled graphs and an integer t > 0, *list* the set of t-frequent connected subgraphs w.r.t. D

- t > 0 integer: *frequency threshold*
- *t*-frequent subgraph: subgraph isomorphic to at least t graphs in D

instance of theory extraction problem:

- D : set of labeled graphs
- *L*: set of all labeled *connected* graphs
- *interestingness predicate* q_D : for a pattern $H \in \mathcal{L}$, $q_D(H)$ is true iff H is subgraph isomorphic to at least t graphs in D
 - q_D is *anti-monotone*: any connected subgraph of a t-frequent connected graph is also t-frequent

Some Remarks on the Theory Extraction Problem

remarks on the theory extraction problem restricted to anti-monotone interestingness predicate

- enumeration problem
- size of the problem is defined by the size of the input database D
- size of the output can be exponentially large in the size of the input
 - e.g., for $D = \{I\}$ with $I = \{1, \ldots, n\}$, $\mathcal{L} = 2^{I}$, and $q_{D} : \varphi \mapsto \text{true}$ for every $\varphi \in \mathcal{L}$, we have the theory $Th(\mathcal{L}, D, q_{D}) = \mathcal{L}$
 - \Rightarrow hopeless to compute $Th(\mathcal{L},D,q_D)$ in time polynomial in the input parameter
 - $\Rightarrow\,$ the size of the output is also taken into account in the analyses of the time and space complexity

The Levelwise Algorithm

- [Agrawal, Mannila, Srikant, Toivonen, & Verkamo, 1996]
- developed for the theory extraction problem restricted to anti-monotone interestingness predicates w.r.t. the partial order on the pattern language
- starting from the most generel sentences, generate and evaluate more and more special sentences
 - breadth-first search
 - do not evaluate those sentences that cannot be interesting given the set of interesting sentences computed earlier

The Levelwise Algorithm

Input : database D, a language \mathcal{L} associated with a specialization relation \leq , and a selection predicate q_D

Output: $Th(\mathcal{L}, D, q_D)$

1:
$$C_1 := \{ \varphi \in \mathcal{L} : \text{ there is no } \varphi' \in \mathcal{L} \text{ such that } \varphi' \prec \varphi \}$$

2:
$$i := 1$$

3: while $C_i \neq \emptyset$ do

4:
$$\mathcal{F}_i := \{ \varphi \in \mathcal{C}_i : q_D(\varphi) \}$$

5: $C_{i+1} := \{ \varphi \in \mathcal{L} : \text{for all } \varphi' \prec \varphi \text{ we have } \varphi' \in \bigcup_{j \leq i} \mathcal{F}_j \} \setminus \bigcup_{j \leq i} C_j$

6:
$$i := i + 1$$

- 7: endwhile
- 8: print $\bigcup_{j < i} \mathcal{F}_j$

Proposition: The levelwise algorithm computes $Th(\mathcal{L}, D, q_d)$ correctly.

Proof: exercise

PhD Course, Szeged, 2013 - © T.Horvath

Complexity of Finding All Interesting Sentences

- we consider the restricted theory extraction problem
 - i.e., partially ordered pattern language and anti-monotone interestingness predicate
- real-world applications:
 - main effort in generating the theory is in the evaluation of the interestingness predicate q_D against the database
- ⇒ we want to analyse the complexity of generating all interesting sentences in terms of the number of evaluations of the interestingness predicate
 - we show that it depends not only on the cardinality of the theory (i.e., set of interesting sentences), but also on the cardinality of the **border** of theory

Borders of Theories

• $(\mathcal{L},\preccurlyeq)$: poset

- $S \subseteq \mathcal{L}$ is closed downwards under \preccurlyeq if

$$\forall \varphi' (\exists \varphi \in S \text{ such that } \varphi' \preccurlyeq \varphi \implies \varphi' \in S)$$

- let $S \subseteq \mathcal{L}$ be closed downwards under \preccurlyeq

- the border Bd(S) of S is defined by

$$Bd(S) = \{ \varphi \in \mathcal{L} : \forall \gamma (\gamma \prec \varphi \implies \gamma \in S) \land \forall \theta (\varphi \prec \theta \implies \theta \notin S) \}$$

i.e., all generalizations of φ are in S and none of the specializations of φ is in S

- if S is not closed then $Bd(S)=Bd(S^\prime),$ where S^\prime is the downward closure of S

Positive and Negative Borders

• the positive border $Bd^+(S)$ of S is defined by

 $Bd^+(S) = \{\varphi \in S : \forall \theta(\varphi \prec \theta \implies \theta \not\in S)\}$

i.e., those sentences $\varphi \in Bd(S)$ that are in S

• the negative border $Bd^{-}(S)$ of S is defined by

$$Bd^{-}(S) = \{ \varphi \in \mathcal{L} \setminus S : \forall \gamma (\gamma \prec \varphi \implies \gamma \in S) \}$$

i.e., those sentences $\varphi \in Bd(S)$ that are not in S

 $\Rightarrow Bd(S) = Bd^+(S) \cup Bd^-(S)$

Example

- poset $(\mathcal{L},\preccurlyeq)$ is $\left(2^{\{A,B,C,D\}},\subseteq\right)$
- $S = \{ABC, ABD\}$ // $\{X_1, \dots, X_k\}$ is also denoted by $X_1 \dots X_k$
- $\bullet \ S' = \{ \emptyset, A, B, C, D, AB, AC, AD, BC, BD, ABC, ABD \}$
- $Bd(S) = Bd(S') = \{ABC, ABD, CD\}$ with
 - $Bd^+(S) = Bd^+(S') = \{ABC, ABD\}$

-
$$Bd^{-}(S) = Bd^{-}(S') = \{CD\}$$

Complexity of Finding All Interesting Sentences

Prop.: The levelwise algorithm uses

 $|Th(\mathcal{L}, D, q_D) \cup Bd^-(Th(\mathcal{L}, D, q_D))|$

evaluations of the interestingness predicate q_D .

Proof: *exercise*

Complexity of Finding All Interesting Sentences

Theorem: Given $(\mathcal{L}, \preccurlyeq)$, D, q_D , and $S \subseteq \mathcal{L}$, deciding whether $S = Th(\mathcal{L}, D, q_D)$

(i) requires in the worst case at least |Bd(S)| evaluations of q_D and

(ii) can be done using exactly this number of evaluations of q_D .

Corollary: Any algorithm that computes $Th(\mathcal{L}, D, q_d)$ and has access to D only by means of evaluations of q_D requires *at least*

 $|Bd(Th(\mathcal{L}, D, q_D))|$

invocations of the interestingness predicate q_D .

Proof of the Theorem

Proof of (i): suppose there exists an algorithm \mathcal{A} and a problem instance (\mathcal{L}, D, q_D) such that \mathcal{A} computes $Th(\mathcal{L}, D, q_D)$ with less than |Bd(S)| evaluations of the interestingness predicate q_D

 $\Rightarrow \ \exists \varphi \in Bd(S)$ that has not been evaluated by $\mathcal A$

 $\Rightarrow\,$ consider the problem instance (\mathcal{L},D,q_D') with

$$q_D'(\theta) := \begin{cases} \neg q_D(\theta) & \text{if } \theta = \varphi \\ q_D(\theta) & \text{o/w} \end{cases}$$

for every $\theta \in \mathcal{L}$

 $\Rightarrow~\mathcal{A}$ computes the same theory for the two instances

 $\Rightarrow \mathcal{A} \text{ is not correct, as } Th(\mathcal{L}, D, q_D) \neq Th(\mathcal{L}, D, q'_D)$

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Proof of the Theorem

Proof of (ii): it follows directly from

$$S = Th(\mathcal{L}, D, q_D) \iff$$
$$q_D(\varphi) = \text{true for all } \varphi \in Bd^+(S) \text{ and } q_D(\theta) = \text{false for all } \theta \in Bd^-(S)$$

(" \Rightarrow ") trivial

(" \Leftarrow ") exercise

Summary

- many practical pattern mining problems:
 - special cases of the theory extraction problem
- further restriction: partial order on the pattern language and an antimonotone interestingness predicate w.r.t. the partial order
 - also satisfied by many practical problems
- levelwise algorithm
 - generates all interesting patterns
 - number of evaluations of the interestingness predicate is cardinality of the theory + cardinality of the negative border
- cardinality of the border is a sharp lower bound on the number of evaluations of the interestingness predicate by any algorithm accessing the data only by means of the evaluation of the interestingness predicate

