Advanced Topics in Pattern Mining - Introduction -

PhD Course – Szeged, 2013

Tamás Horváth

University of Bonn & Fraunhofer IAIS, Sankt Augustin, Germany tamas.horvath@iais.fraunhofer.de

Slides 2-10 are taken from Stefan Wrobel

Fraunhofer IAIS: Intelligent Analysis and Information Systems

"From sensor data to business intelligence, from media analysis to visual information systems: Our research allows companies to do more with data"

- 240 people: scientists, project engineers, technical and administrative staff
- Located on Fraunhofer Campus Schloss Birlinghoven/Bonn
- Joint research groups and cooperation with

Director: Prof. Dr. Stefan Wrobel

Fraunhofer IAIS: Intelligent Analysis and Information Systems

Core research areas:

- machine learning and adaptive systems
- data mining and business intelligence
- automated media analysis
- interactive access and exploration
- autonomous systems

3

Why is Knowledge Discovery becoming more and more important? -- Four Current Trends

Convergence

Ubiquitous intelligent system`s

Users as producers

Networked autonomy

PhD Course, Szeged, 2013 - © T.Horváth

Convergence

- Universal digital representation of any media content
 - Web, MP3, digital cameras, Video
- Internet formats replace traditional delivery channels
 - Online Magazines, Blogs, Podcasts, Webradio, IPTV, Video on Demand
- Explosive growth of accessible media assets
 - digitalisation, crosslinking, swapping

 Automated search, structuring, classification and selection are of central relevance

Ubiquitous Intelligent Systems

- Personal devices, integrated processors (Factor 20 – 30 above PCs)
- Interactivity, Sensors, Actuators
- Enormous production of data
- Physical and virtual worlds merge

6

PhD Course, Szeged, 2013 - © T.Horváth

Users as Producers

- Web 2.0, Social Web, Crowdsourcing
- Exploding growth of content
- Media providers transform from content to confidence providers, competing with social communities
- Users expect full interactivity and control
- Quality control, confidence, choice and searching are becoming central

Networked Autonomy

- Growing readiness to use loosely controlled systems (autonomous agents)
- Loosely coupled company structures
- Service orientation (SOA) in IT systems
- First mobile autonomous systems
- Flexibility and capability for autonomous decisions on the basis of observations and goals is becoming central

8

Drowning in Data ...

Megabytes

Gigabytes

Terabytes

Petabytes Size of digital universe 2007: 161 Exabyte 2010: 998 Exabyte [IDC]

Challenges and Research Opportunities

- Amount and variety of available data is growing with enormous dynamics
- Systems, people and organizations cannot handle them but must use the knowledge hidden in those data is crucial for making the right decisions!
- Autonomous agents and systems must process sensor data and make intelligent decisions
- → We need machine learning and data mining! More than ever.

PhD Course, Szeged, 2013 - © T.Horváth

UNIVERSITAT

Machine Learning and Data Mining

Machine Learning

 "Machine learning refers to a system capable of the autonomous acquisition and integration of knowledge. This capacity to learn from experience, analytical observation, and other means, results in a system that can continuously self-improve and thereby offer increased efficiency and effectiveness." [AAAI Webpage]

Knowledge Discovery/Data Mining

 "Knowledge Discovery in Databases is the nontrivial process of identifying valid, novel, potentially useful and ultimately understandable **patterns** in large databases." [Fayyad et.al., 1996]

Global vs. Local Models

- machine learning: usually searches for global models
 - **global patterns** (e.g., decision trees, separating hyperplanes, etc.)
 - given any possible object, a global pattern (e.g., a decision tree) can be used to make a prediction
- (descriptive) data mining: usually searches for local models
 - local patterns (e.g., association rules, subgroups etc.)
 - for many objects, the model simply "does not apply" (contains no information)
 - for those where it does apply, it reports a *descriptive* characteristic which is not necessarily sufficient to make a prediction

Two Problem Examples

1. machine learning:

- on-line learning of conjunctive concepts from examples in the mistake bound model
 - global predictive pattern

2. data mining:

- association rule mining
 - local descriptive pattern

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

13

Formal Models of Learning

- a formal model of learning can be defined by specifying the following components:
- **1.** Learner: Who is doing the learning?
- **2. Domain:** What is being learned?
- **3.** Information Source: From what is the learner learning?
- **4. Prior knowledge:** What does the learner know about the domain initially?
- **5. Performance Criteria:** How do we know whether, or how well, the learner has learned? What is the learner's output?

1. Learner: Who is doing the learning?

typically a computer program that may be restricted, e.g.

- it must work in *polynomial time*
- it must use only *finite memory*
- ...

T. Horváth

- 2. Domain: What is being learned? E.g.,
 - an unknown concept
 (rule separating positive examples from negative examples)
 - an unknown *function*
 - an unknown *language*
 - ...

- 3. **Information Source:**From what is the learner learning? E.g.,
 - The learner is given +/- labeled examples a) (can be chosen at random, arbitrarily, maliciously by some adversary, by a helpful teacher, etc.)
 - b) The learner may ask *questions*, e.g.,
 - **membership** queries (e.g., $w \in L$? Answer YES/NO)
 - **equivalence** queries (e.g. L' = L ? Answer YES/counterexample)

Is the information corrupted by **noise**?

()

IAIS

4. Prior knowledge:

What does the learner know about the domain initially? (e.g., the unknown concept is representable in a certain way)

T. Horváth

5. Performance Criteria:

How do we know whether, or how well, the learner has learned? What is the learner's output?

- off-line vs. on-line measures
- descriptive output vs. predictive output
- accuracy (error rate, number of mistakes during learning)

• ...

Example 1: On-line learning of conjunctive concepts with mistake-bound measure

The Model:

- 1. Learner: computer program (no time/space restriction)
- 2. Domain: $X = \{0, 1\}^n$; unknown concept $c : X \to \{0, 1\}$
- 3. Source: $\langle \vec{x}_1, c(\vec{x}_1) \rangle, \langle \vec{x}_2, c(\vec{x}_2) \rangle, \ldots$; arbitrary, noise-free
- 4. **Prior knowledge:** c is a conjunction (e.g., $v_3\overline{v}_5v_8$)
- 5. **Performance:** on-line prediction (#prediction mistakes)

On-line learning of conjunctive concepts

Algorithm 1:

- 1. let $h = v_1 \overline{v}_1 v_2 \overline{v}_2 \dots v_n \overline{v}_n$
- 2. for all \vec{x}_i with $c(\vec{x}_i) \neq h(\vec{x}_i)$
- 3. remove from h all literals that are false in \vec{x}_i

example: $n = 3, c = v_1 \overline{v}_3$ (unknown!), $\langle 110, 1 \rangle, \langle 111, 0 \rangle, \langle 100, 1 \rangle, \dots$

• $h = v_1 \overline{v}_1 v_2 \overline{v}_2 v_3 \overline{v}_3$

 $\langle 110, 1 \rangle : \ c(110) \neq h(110) \Rightarrow h = v_1 v_2 \overline{v}_3$ $\langle 111, 0 \rangle : \ c(111) = h(111) \Rightarrow \text{no change}$ $\langle 100, 1 \rangle : \ c(100) \neq h(100) \Rightarrow h = v_1 \overline{v}_3$

On-line learning of conjunctive concepts

Theorem 1: On-line learning of conjunctive concepts can be done with at most n+1 prediction mistakes

Proof Sketch: The proof follows from Lemmas 1-3, noting that worst-case occurs when the target concept *c* to be learned is **true**.

Lemma 1:(*correctness*): No literal in c is ever removed from h.

Lemma 2:Each mistake causes at least one literal to be removed from *h*. (Note that *mistakes are only made on positive examples*!)

Lemma 3:The first mistake causes *n* literals to be removed from *h*.

T. Horváth

Example II (Data Mining): Mining Association Rules

Example: Market-basket transactions

Analysis of purchase "basket" data (items purchased together) in a department store

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules:

{Diaper}	\rightarrow	{Beer}
{Milk, Bread}	\rightarrow	{Eggs,Coke}
{Beer, Bread}	\rightarrow	{Milk}

Implication means co-occurrence, not causality!

Association Rules: Notions and Notations

- *I*: set of items
- itemset: collection of one or more items
- transaction: itemset

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Beer

• transaction database *D*: multiset of transactions

Association Rules: Notions and Notations

support set D[X] of an itemset X:

$$D[X] = \{T : T \in D \text{ and } X \subseteq T\}$$

multiset of sets

support (s): fraction of transactions that contain an itemset, i.e., for $X \subseteq I$

$$s(X) = \frac{|D[X]|}{|D|}$$

frequent itemset: itemset with support greater than or equal to a threshold minsup

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

example:

•
$$s(\{Milk, Diaper, Beer\}) = 2/5$$

Association Rules

association rule

- implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
 - **example:** {Milk, Diaper} \rightarrow {Beer}
- rule evaluation metrics
 - support (s): fraction of transactions that contain both X and Y
 - confidence (c): fraction of transactions that contain both X and Y relative to the transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

example: $R = \{Milk, Diaper\} \rightarrow \{Beer\}$

$$s(R) = \frac{|D[\{Milk, Diaper, Beer\}]|}{|D|} = \frac{2}{5}$$
$$c(R) = \frac{|D[\{Milk, Diaper, Beer\}]|}{|D[\{Milk, Diaper\}]|} = \frac{2}{3}$$

PhD Course, Szeged 2013 - © T.Horváth

26

Applications of Association Rules

- cross-marketing
- attached mailing
- catalog design
- loss-leader analysis
- store layout
- customer segmentation based on buying patterns

Mining Association Rules

Given

- a transaction database D over a set I of items and
- thresholds minsup and minconf

find all association rules $X \to Y$ satisfying

 $s(X \rightarrow Y) \geq minsup \text{ and } c(X \rightarrow Y) \geq minconf$

Brute-Force Approach

- 1. list all possible association rules
- 2. compute the support and confidence for each rule
- 3. prune rules that fail the *minsup* and *minconf* thresholds

computationally prohibitive

- total number of *possible* association rules is exponential in the cardinality of the set of all items
- ⇒ exponential delay in worst case

Upper Bound on the Number of Association Rules

let d = |I|

- \Rightarrow total number of itemsets is 2^d
- \Rightarrow total number of possible association rules is $3^d 2^{d+1} + 1$

Mining Association Rules

two-step approach:

- 1. frequent itemset generation
 - generate all itemsets whose support \geq *minsup*
 - use e.g. the Apriori or the FP-Growth Algorithm

2. rule generation

- generate association rules of confidence \geq *minconf* from each frequent itemset X by binary partitioning of X

Input to a Typical Machine Learning/Data Mining Problem

single relation

- can be represented by a single table of fixed length
 - rows: objects/instances
 - columns: attributes

previous two examples:

- *learning conjunctions:* each training example is a binary vector of length n+1
 - +1 column: target value (i.e., c)
- association rule mining: each transaction is a binary vector of length n
 - *n*: number of items

Problem

classical machine learning/data mining methods

- developed for **single** relational problem settings

many applications

- deal with graphs and/or
- require multiple relations

remark:

- graphs can be considered as (special) relational structures!

problem:

no (natural) representation of graphs and (multi-)relational structures by a single table of fixed width

PhD Course, Szeged 2013 - © T.Horváth

An Application Example: Virtual Screening in Drug Discovery

 select a limited number of candidate compounds from millions of database molecules that are most likely to possess a desired biological activity

An Application Example: Virtual Screening in Drug Discovery

molecules give rise to labeled undirected graphs

PhD Course, Szeged 2013 - © T.Horváth

universität**bonn**

This PhD Course

algorithmic aspects of local pattern mining in

- single table representations,
- graphs and relational structures

topics:

- the theory extraction problem
- itemset/association rule mining
- graph mining
- local/global pattern mining in relational structures

