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Transmission tomography

• We are interested in the
inner structure of some
given object.

• We can measure the
projections of the object of
study (the densities of the
object on the path of some
projection beams).

• The goal is to reconstruct
the original structure from a
given set of projections.

Object of
study

Projection
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Transmission tomography

• The object of study is represented by a function f (u, v).

f : R2 → R (1)

• We take the line integrals of the image
(Radon-Transform).

[Rf ](α, t) =

∫ ∞

−∞
f (t cos(α)− q sin(α), t sin(α) + q cos(α)) dq

(2)

• We are looking for an f ′(u, v) function that has the same
projections as the original f (u, v).
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Transmission tomography
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Discrete Tomography

In discrete tomography we assume that the object of study
consists of only a few known materials.

f (u, v) ∈ {l1, l2, . . . , lc} (3)

With this information we can gain accurate reconstructions
from only few (say, 2-10) projections.
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László Varga,
Péter Balázs,
Antal Nagy

Introduction:
discrete
tomography

The
reconstruction
algorithm

Problem
formulation

Applied energy
function

Optimization
process

Results

Discrete Tomography

f (u, v) ∈ {0, 1}
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Formulation of the reconstruction
problem

• We assume a discrete representation of the object of study
(i.e., it is represented on an n × n sized discrete image).

• The projections are given by the integrals of the image
along a set of straight lines.

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16 Source

Detector

xj
bi

bi+1

ai,j

ai+1,j
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Formulation of the reconstruction
problem

• With this the reconstruction problem can be reformulated a a
system of equations Ax = b, where:

• b, is the vector of m projection values,
• x, represents the vector of the image pixel values,
• A, describes the connection between the image pixels, and

the projection values, with all aij giving the length line
segment of the i-th projection line in the j pixel.

• We will further assume, that the pixel intensities are elements of
a predefined set L = {l1, l2, . . . , lc}.

x1 x2 x3 x4

x5 x6 x7 x8
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Energy function

With the algebraic formulation of the reconstruction algorithm,
one can construct an energy function that takes its minima in
the correct reconstructions.

Eµ(x) :=
︷ ︸︸ ︷
1

2
· ‖Ax− b‖22+

︷ ︸︸ ︷
α

2
·
n2∑

i=1

∑

j∈N4(i)
(xi − xj)

2+
︷ ︸︸ ︷
µ · g(x) , x ∈ [l0, lc]

n2

Projection correctness: (convex)
Minimal if the result satisfies projections.

Smoothness term: (convex)
Minimal, if result contains large homogeneous regions.

Discretizing term: (non-convex)
Minimal at discrete solutions.
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Discretizing term

The part of the energy function responsible for the discretizing
can be given in the form

g(x) =
n2∑

i=1

gp(xi ) , i ∈ {1, 2, . . . , n2} , (4)

where

gp(z) =





[(z−lj−1)·(z−lj)]
2

2·(lj−lj−1)2 , ha z ∈ [lj−1, lj ] for each

j ∈ {2, . . . , c},
undefined, otherwise.
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Discretizing term

The discretizing term is given as the sum of one-dimensional
discretizing functions written on each pixel value, which

• takes a 0 minimum, at
the discrete values of L,

• and takes high positive
values between the
desired intensities.

Example of the discretizing function of one pixel with
L = {0, 0.25, 0.5, 1} expected intensities.
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Basic process of the optimization

• The minimized energy function is basically constructed of
two parts:
• Two convex terms responsible for projection correctness,

and ”smoothness”.
• A non-convex discretizing term preferring discrete solutions

of L.

Eµ(x) :=
1

2
·‖Ax−b‖2

2 +
α

2
·

n2∑
i=1

∑
j∈N4(i)

(xi−xj)
2 +µ ·g(x) , x ∈ [l1, lc ]n

2

(5)



An Energy
Minimization
Reconstruc-

tion Algorithm
for

Multivalued
Discrete

Tomography

László Varga,
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Basic process of the optimization

• We assume that, the most important part of the energy
function is the projection correctness term, and start the
optimization with a gradient method as follows:

1 At the beginning we omit discretization.
2 We start running a gradient method from an initial

solution.
3 As the projections of the current intermediate solution get

closer to the desired ones, we slowly start to increase the
weight of the discretization

4 When the iteration does not make significant changes of
the results, we stop the process.
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The algorithm

Input: A projection matrix, b expected projection values, x0 initial solution,
α, µ, σ ≥ 0 predefined constants, and L list of expected intensities.

1: λ ← an upper bound for the largest eigenvalue of the (ATA + α · S)
matrix.

2: k ← 0
3: repeat
4: v← AT (Axk − b).
5: w← Sxk .
6: for each i ∈ {1, 2, . . . , n2} do
7: y k+1

i ← xk
i −

vi+α·wi+µ·G0,σ(vi )·∇gp(xki )

λ+µ

8: xk+1
i ←


l1, if y k+1

i < l1,
y k+1
i , if l1 ≤ y k+1

i ≤ lc ,
lc , if lc < y k+1

i .
9: end for

10: k ← k + 1
11: until a stopping criterium is met.
12: Apply a discretization of xk to gain fully discrete results.
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The algorithm

Input: A projection matrix, b expected projection values, x0 initial solution,
α, µ, σ ≥ 0 predefined constants, and L list of expected intensities.

1: λ ← an upper bound for the largest eigenvalue of the (ATA + α · S)
matrix.

2: k ← 0
3: repeat
4: v← AT (Axk − b).
5: w← Sxk .
6: for each i ∈ {1, 2, . . . , n2} do
7: y k+1

i ← xk
i −

vi+α·wi+µ·G0,σ(vi )·∇gp(xki )

λ+µ

8: xk+1
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
l1, if y k+1

i < l1,
y k+1
i , if l1 ≤ y k+1

i ≤ lc ,
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9: end for

10: k ← k + 1
11: until a stopping criterium is met.
12: Apply a discretization of xk to gain fully discrete results.
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Description of the iteration

yk+1i ← xki −
vi+α·wi+µ·G0,σ(vi)·∇gp(xki )

λ+µ
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Description of the iteration

yk+1i ← xki −
vi+α·wi+µ·G0,σ(vi)·∇gp(xki )

λ+µ

previous iteration step
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Description of the iteration

yk+1i ← xki −
vi+α·wi+µ·G0,σ(vi)·∇gp(xki )

λ+µ

previous iteration step smoothness term
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Description of the iteration

yk+1i ← xki −
vi+α·wi+µ·G0,σ(vi)·∇gp(xki )

λ+µ

previous iteration step

discretizing function

smoothness term
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Description of the iteration

yk+1i ← xki −
vi+α·wi+µ·G0,σ(vi)·∇gp(xki )

λ+µ

too
high

too
low

ok

previous iteration step

discretizing function

smoothness term

backprojected
error of

projections
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Description of the iteration

yk+1i ← xki −
vi+α·wi+µ·G0,σ(vi)·∇gp(xki )

λ+µ

too
high

too
low

ok

previous iteration step

discretizing function

smoothness term

backprojected
error of

projections

discretization
weights
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László Varga,
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Results of the optimization

The result of the optimization process is a semi-continuous
reconstruction on which pixel values are somewhat steered
towards discrete solutions.

+ Animation
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Example of the process


6_circle.avi
Media File (video/avi)
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Evaluation of the algorithm

We evaluated the algorithm by running software tests.

• We have chosen two other reconstruction algorithms for
comparision.
• Discrete Algebraic Reconstrction Algorithm (DART)

K.J. Batenburg, J. Sijbers, DART: a practical reconstruction algorithm for discrete

tomography, IEEE Transactions on Image Processing 20(9), pp. 2542–2553 (2011).

• A D.C. programming based algorithm, that is capable of
reconstructing binary images by minimizing an energy
function. (DC)
T. Schüle, C. Schnörr, S. Weber, J. Hornegger, Discrete tomography by convex-concave

regularization and D.C. programming, Discrete Applied Mathematics 151, pp. 229–243

(2005).

• We reconstructed a set of software phantoms from their
projections with the three given algorithms.

• After the reconstructions we compared the results for
evaluation.
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Results

Original DC, DART, Prop. method,
image 5 projs. 5 projs. 5 projs.

DC, DART, Prop. method,
6 projs. 6 projs. 6 projs.
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László Varga,
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Results

Original DART, Prop. method,
image 6 projs. 6 projs.

DC, Prop. method,
9 projs. 9 projs.
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Results

Original DART, Prop. method,
image 15 projs. 15 projs.

DC, Prop. method,
18 projs. 18 projs.
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Numerical results

DC DART Prop. method
projections Error Time Error Time Error Time

2 90.7% 12.1 s. 85.6 % 6.6 s. 107.4% 10.1 s.
3 22.0% 12.4 s. 52.9% 5.4 s. 30.8% 11.2 s.
4 1.2% 13.6 s. 44.9% 8.0 s. 22.4% 11.8 s.
5 0.3% 12.5 s. 29.9% 9.5 s. 7.9% 12.7 s.
6 0.2% 8.1 s. 0.2% 2.7 s. 0.8% 7.6 s.
9 0.2% 6.5 s. 0.0% 0.8 s. 0.3% 4.6 s.

12 0.0% 7.2 s. 0.0% 0.9 s. 0.1% 4.8 s.
15 0.0% 8.7 s. 0.0% 1.2 s. 0.1% 5.8 s.
18 0.0% 8.7 s. 0.0% 0.9 s. 0.1% 5.8 s.
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Numerical results

DC DART Prop. method
projections Error Time Error Time Error Time

2 - - 62.9% 6.7 s. 52.7% 10.4 s.
3 - - 45.1% 8.0 s. 41.9% 11.4 s.
4 - - 43.4% 8.6 s. 35.4% 12.2 s.
5 - - 36.4% 9.4 s. 26.4% 13.2 s.
6 - - 27.0% 10.2 s. 11.6% 13.8 s.
9 - - 0.7% 4.5 s. 1.9% 15.6 s.

12 - - 0.4% 14.9 s. 1.0% 11.6 s.
15 - - 0.3% 2.3 s. 0.8% 11.6 s.
18 - - 0.1% 21.3 s. 0.6% 10.9 s.
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Numerical results

DC DART Prop. method
projections Error Time Error Time Error Time

2 - - 84.4% 6.7 s. 85.7% 9.3 s.
3 - - 77.3% 8.2 s. 82.5% 6.0 s.
4 - - 75.3% 8.8 s. 81.0% 8.0 s.
5 - - 73.3% 9.7 s. 74.2% 10.2 s.
6 - - 74.1% 10.2 s. 70.0% 12.7 s.
9 - - 57.0% 12.6 s. 46.8% 14.7 s.

12 - - 33.9% 14.5 s. 24.8% 11.4 s.
15 - - 22.0% 18.0 s. 16.3% 8.6 s.
18 - - 15.7% 20.8 s. 14.0% 8.0 s.
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Summary

• Based on the results, the proposed method can compete
with the other two algorithms in both speed and accuracy
of the results.

• With reconstructions of images containing at least 3
intensity levels from few projections, it could outperform
the other two methods.

• There are several possible ways for improvement and
alternative applications of the algorithm.
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László Varga,
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