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A novel kynurenic acid analog (SZR104) inhibits
pentylenetetrazole-induced epileptiform seizures.
An electrophysiological study
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Abstract The concentration of kynurenic acid (KYNA)

in the cerebrospinal fluid, which is in the nanomolar range,

is known to decrease in epilepsy. The experimental data

suggest that treatment with L-KYN dose dependently

increases the concentration of the neuroprotective KYNA

in the brain, which itself hardly crosses the blood–brain

barrier. However, it is suggested that new synthetic KYNA

analogs may readily cross the blood–brain barrier. In this

study, we tested the hypothesis that a new KYNA analog

administered systemically in a sufficient dose results in a

decreased population spike activity recorded from the

pyramidal layer of area CA1 of the hippocampus, and also

provides protection against pentylenetetrazole-induced

epileptiform seizures.

Keywords Neuroprotection � Epilepsy � Blood–brain
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Introduction

The tryptophan metabolism, which occupies a central route

in the brain, is known to be responsible for the formation of

kynurenines (Beadle et al. 1947). Kynurenic acid (KYNA)

is produced directly by irreversible transamination from

L-kynurenine by the action of kynurenine aminotransfer-

ases (KATs) (Okuno et al. 1991a, b).

Endogenous kynurenines, KYNA and synthetic deriva-

tives of kynurenines have been studied and found to be

neuroprotective, and may be of therapeutic value in dif-

ferent neurological disorders (Gellert et al. 2011; Schwarcz

and Pellicciari 2002; Vamos et al. 2009; Zadori et al. 2009).

Kynurenine administered intraperitoneally (i.p.) increa-

ses the concentration of KYNA in the brain, and exerts

antiepileptic effects in pentylenetetrazole (PTZ)- and

NMDA-induced seizures (Vecsei et al. 1992).

In some forms of human epilepsy, such as the West

syndrome, the concentration of KYNA in the human

cerebrospinal fluid is reduced relative to the normal level

(Yamamoto et al. 1995; Stone 2001; Kaminski et al. 2003).

It is well known that in most forms of epilepsy the

activation of excitatory amino acid receptors may play a

decisive role. Excitatory amino acid agonists, and mainly

those that act at NMDA receptors, can produce seizures

(Stone 1993). The only known endogenous antagonist of

excitatory amino acid receptors in the brain is KYNA

(Swartz et al. 1990; Stone 2000), which has only a very

limited ability to cross the blood–brain barrier.

Endogenous KYNA is neuroprotective (Hicks et al.

1994), and is also an anticonvulsant (Foster et al. 1984;

Klivenyi et al. 2004).

Previous in vitro studies have confirmed that KYNA can

suppress electrophysiological signs of epilepsy in brain

slices (Stone 1988; Scharfman and Ofer 1997).
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As a new KYNA analog, SZR104, earlier demonstrated

an outstanding ability to cross an artificial blood–brain

barrier in vitro, it was decided to examine whether

peripherally administered SZR104 exerts any effect on the

hippocampal electrical activity and whether it provides

protection against PTZ-induced epileptiform seizures.

Methods

Animals

Experiments were performed on male Sprague–Dawley

(SPRD) rats (n = 18) weighing 200–250 g. The animals

were housed under controlled environmental conditions,

under a 12-h light/dark cycle and had free access to food

and water. All experiments had been approved by the

Hungarian Health Committee and were performed in

accordance with the 86/609/EEC directive.

Drugs

Pentylenetetrazole was purchased from Sigma (Stein-

heim, Germany) and was administered i.p. in a dosage of

60 mg/kg.

SZR104 was prepared in the Institute of Pharmaceuti-

cal Chemistry and Research Group for Stereochemistry,

University of Szeged and was administered i.p. in a

dosage of 358.2 mg/kg. This dosage is equimolar with

that of kynurenine proved to be effective in protection

against PTZ-induced epileptic seizures (Nemeth et al.

2004).

Electrophysiology

Male SPRD rats were anesthetized with urethane (1.25

g/kg, i.p.). The drugs were administered i.p., through a

syringe implanted at the beginning of the experiments. The

method was described in detail earlier (Nemeth et al.

2004). In brief: a 2- to 3-mm diameter hole was drilled over

the dorsal hippocampus for the recording electrode in area

CA1: 3.0- to-3.8 mm posterior and 1.8- to-2.3 mm lateral

to the sagittal suture and lowered 2.2–2.8 mm from the

cortical surface. Contralaterally, for the CA3 stimulating

electrode, a 1- to 2-mm hole was drilled 3.7-mm posterior

to the bregma, and 3.3-mm lateral to the sagittal suture, the

final electrode depth being 3.8 mm below the dura. The

recording electrode was lowered slowly and the final

position was adjusted so that the maximum CA1 popula-

tion spike was obtained in response to contralateral CA3

stimulation (Fig. 1, insert). Hippocampal areas CA1 and

CA3 were confirmed histologically.

Statistical analysis

Population spike amplitudes evoked by CA3 stimulation in

the pyramidal layer of area CA1 were measured from peak

to peak (Fig. 1, insert). Differences between amplitudes

were determined statistically. Statistical analysis was per-

formed with the linear mixed-effects model in all cases

(General linear model/PASW Statistics 18 data analysis

package, SPSS Inc. Chicago, USA). The effects of the

different rats were used as random effects and the different

treatments were used as fixed effects in the mixed effect

linear model (p value set at 0.05 for significance).

Results

The animals were divided into 4 groups: group 1 (controls,

injected with saline), group 2 (injected with PTZ), group 3

(injected with SZR104) and group 4 (injected with

SZR104 ? PTZ).

Effects of PTZ

After a 20-min control period, PTZ was administered i.p. in

a dose of 60 mg/kg. This resulted in a significant increase

in the amplitude of the CA1 responses induced by con-

tralateral CA3 stimulation, to over 70% of the control

amplitude (F = 11.666; p = 0.008). The level remained

elevated throughout the 30-min registration period (Fig. 1).

Fig. 1 Changes in population spike amplitudes after the adminis-

tration of pentylenetetrazole (PTZ) (60 mg/kg i.p.). Saline adminis-

tration resulted in hardly any changes in population spike amplitudes,

whereas PTZ injection induced significant increases in amplitudes.

Statistical analysis was achieved only on amplitudes registered after

PTZ treatment (F = 11.666; p = 0.008). Insert a typical population

spike, the amplitude of which was measured between levels a and

b. Abscissa: time in min. Ordinate: spike amplitudes as percentages of

the controls (between 0 and 20 min)
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Effects of SZR104

After a 20-min control period, SZR104 was administered

i.p. in a dose of 358.2 mg/kg, with registration for 180 min.

After 30 min, the amplitude gradually decreased

(F = 9.509; p = 0.018) (Fig. 2).

Effects of SZR104 1 PTZ

The effects of PTZ were followed in SZR104-pretreated

animals. After a 20-min control period, SZR104 was

administered i.p. in a dose of 358.2 mg/kg. During the next

80 min, a gradual decrease in amplitude was observed.

Eighty minutes after SZR104 administration, PTZ was

injected in a dose of 60 mg/kg, which resulted in an

increase of the amplitude to the baseline. However, during

the following 30 min, the amplitude remained on the

baseline and did not exceed the control level (Fig. 3).

Statistical analysis was achieved only on amplitudes reg-

istered after PTZ treatment (F = 0.135; p = 0.726).

Discussion

Pentylenetetrazole is a GABA A antagonist that has been

used experimentally to investigate the seizure phenome-

non. One of our previous electrophysiological and behav-

ioral studies confirmed that the combination of kynurenine

and probenecid inhibits PTZ-induced seizures (Nemeth

et al. 2004). An in vitro electrophysiological study has

demonstrated that exogenously administered L-kynurenine

can be converted to KYNA, which not only decreases the

amplitude of the hippocampal CA1 responses evoked by

Schaffer collateral stimulation but is also sufficient to

prevent the neuroexcitatory effect of PTZ (Rozsa et al.

2008).

During the past few years, several new KYNA analogs

have been synthesized and tested by our research group

(Fulop et al. 2009).

Firstly, KYNA analogs were tested in an in vitro BBB

model. In parallel experiments, Na-fluorescein (SF) and

Evans blue albumin (EBA) permeabilities were measured

and compared to that of KYNA’s permeability. Among SF,

EBA and several KYNA analogs, permeability of SZR104

proved to be noteworthy higher. In accordance with these

unpublished in vitro data, SZR104 administered i.p., sig-

nificantly decreased the amplitude of hippocampal field

EPSP’s amplitudes.

All these results suggest that SZR104 crosses the blood–

brain barrier and support our present ex vivo results.

Recent results indicated the enhancement of KYNA

production by anticonvulsants (carbamazepine, phenytoin,

phenobarbital, felbamate and lamotrigine), which directly

elevate the activity of KAT I, as a novel mechanism in the

control of epilepsy (Kocki et al. 2006). However, if the

KYNA level in the central nervous system is increased by a

peripherally administered KYNA analog which crosses the

blood–brain barrier, this might also exert an effective

anticonvulsant effect.

As expected, the systemic administration of SZR104 in

a sufficient dose resulted in a decreased population spike

activity recorded from the pyramidal layer of area CA1 of

Fig. 2 Examples of the effects of the KYNA analog (SZR104) on

the population spike amplitude recorded in area CA1. SZR104

(358.2 mg/kg, i.p.) resulted in a significant decrease in amplitude.

Statistical analysis was achieved only on amplitudes registered after

SZR104 treatment (F = 9.509; p = 0.018). Abscissa and ordinate are

as in Fig. 1

Fig. 3 Changes in amplitudes after SZR104 and PTZ administration.

Saline administration did not induce any changes in the amplitudes

(control). After SZR104 injection, the amplitudes decreased (as seen

previously). PTZ administration (80 min after SZR104 injection),

resulted in slightly increased amplitudes, but they did not exceed the

control level. Statistical analysis was achieved only on amplitudes

registered after PTZ treatment (F = 0.135; p = 0.726). Abscissa and

ordinate are as in Fig. 1
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the hippocampus, and additionally provided protection

against PTZ-induced epileptiform seizures.

We have synthetized several new KYNA analogs during

the past 8 years (Fulop et al. 2009), but SZR104 seems to be

one of the most promising molecules as a neuroprotectant.

The question raises whether the pharmacological targets

for KYNA and SZR104 are the same or not? Our experi-

mental data suggest that the target for both molecules is

probably the same: the strychnine-insensitive glycine-

binding site of the NMDA receptor. However, the proof of

this assumption needs further studies.

Presently the facts are as follows: (1) the new synthetic

KYNA analog SZR104 administrated systemically in suf-

ficient dose results in a decreased population spike activity

recorded from the pyramidal layer of area CA1 of hippo-

campus, (2) SZR104 not only decreased the population

spike activity but also provided protection against penty-

lenetetrazol-induced epileptiform seizures.

Conclusions

The findings of the present study have revealed that

SZR104 is an effective neuroprotectant and provides pro-

tection against seizures. It appears to be a potentially

promising candidate for future preclinical trials.
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