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Abstract. In binary tomography, the goal is to reconstruct binary im-
ages from a small set of their projections. However, especially when only
two projections are used, the task can be extremely underdetermined. In
this paper, we show how to reduce ambiguity by using the morphological
skeleton of the image as a priori. Three different variants of our method
based on Simulated Annealing are tested using artificial binary images,
and compared by reconstruction time and error.
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1 Introduction

Binary tomography [7] aims to reconstruct binary images from their projections.
In the most common applications of this field, e.g., electron tomography [1, 2]
and non-destructive testing [3], usually just few projections of the object can
be measured, since the acquisition of the projection data can be expensive or
damage the object. Moreover, the physical limitations of the imaging devices
make it sometimes impossible to take projections from numerous angles. Owing
to the small number of projections the binary reconstruction can be extremely
ambiguous. A common way to reduce the number of solutions of the reconstruc-
tion task is to assume that certain geometrical properties (e.g., convexity and/or
connectedness) are satisfied.

In this paper we investigate a new kind of prior information, the skeleton
of the image to be reconstructed. Skeleton is a region-based shape descriptor
which represents the general form of binary objects [6]. One way of defining the
skeleton of a 2-dimensional continuous object is as the set of the centers of all
maximal inscribed (open) disks [5]. A disk is maximal inscribed if it is included
in an object, but it is not contained by any other inscribed disk. The skeleton of
a discrete binary image can be characterized via morphological operations [6],
where disks are approximated by successive dilations of the selected structuring
element that represents the unit disk. An interesting property of the morpho-
logical skeleton is that the original binary image can be exactly reconstructed
from the skeletal subsets. In this work, we deal with the reconstruction problem
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in which the entire morphological skeleton (instead of the individual skeletal
subsets) and two projections of the original image are known.

In the reconstruction process the prior knowledge is often incorporated into
an energy function, thus the reconstruction task is equivalent to a function mini-
mization problem. There are various methods to solve that kind of problems [4, 9,
11]. In this paper, we show how to use Simulated Annealing (SA) for the binary
reconstruction problem using two projections and the morphological skeleton.
We show that, although theoretically the problem is non-unique, under some
circumstances an acceptable image quality can be achieved. We propose three
variants of a method to solve the above problem, based on parametric SA re-
construction.

The paper is structured as follows. In Section 2 we introduce the binary recon-
struction problem, and show how to describe it as an energy minimization task.
The morphological skeleton as an additional information to the reconstruction
is presented in Section 3. In Section 4 we describe the problem of using skeletal
information in the reconstruction and introduce the proposed algorithms to solve
this task. In Section 5 we present experimental results and provide an explana-
tion of them. Finally, we summarize our work and mention some of its possible
extensions in Section 6.

2 The Two-Projection Binary Reconstruction Problem

In binary tomography the task is to reconstruct a two-dimensional binary image
from a set of projections. The image can be represented by a binary matrix, and
its horizontal and vertical projection can be defined as the vector of the row and
column sums, respectively, of the image matrix. The task is now to reconstruct
the binary image F from its horizontal and vertical projections, H(F ) and V(F ),
respectively. Throughout this paper – without loss of generality – we assume
square images of size n× n.

The first method to solve the above problem was published in [10]. In the
same work it was also showed that the solution is not always uniquely deter-
mined. Furthermore, in practical applications noisy projection data also com-
plicates the reconstruction. A common way to overcome those problems is to
transform the original task to a function minimization problem

f(x) = ||Ax− b||22 + α · g(x) → min , (1)

where ||.||2 stands for the Euclidean norm, x is an n2×1 binary vector represent-
ing the unknown image in a vector form using row-by-row traversal;

b =
(
H(F ),V(F )

)T
is a 2n × 1 vector containing the projections and A is a

2n× n2 binary matrix, where aij = 1 if and only if the pixel xi is in relation
with the j-th projection ray, 0 otherwise. The function g(x) provides additional
information, such as shape, connectivity, perimeter, etc. The lower value it takes
the closer the reconstructed image to the expected one. It is multiplied by the
weighting parameter α > 0. In this paper we show how to use morphological
skeleton as additional information.
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3 Morphological Skeleton

The morphological skeleton S(F, Y ) of a discrete set of points F ⊂ Z2 determined
by a structuring element Y ⊂ Z2 consists of the centers of all maximal inscribed
discrete disks of radius k (k = 0, 1, . . .) [6]. With this approach, the structuring
element Y is assumed to be the unit disk (i.e., a disk of radius 1) and the discrete
disk Y k of radius k is derived from Y by successive dilations:

Y k = (. . . (({O}⊕Y )⊕ Y )⊕ . . .)⊕︸ ︷︷ ︸
k-times

Y , (2)

where O and “⊕” denote origin and the fundamental morphological operation
called dilation [6], respectively.

The morphological skeleton S(F, Y ) is defined by

S(F, Y ) =

K⋃
k=0

Sk(F, Y ) =

K⋃
k=0

(F 	 Y k)− [(F 	 Y k+1)⊕ Y ] , (3)

where “	” denotes the erosion (i.e., a morphological operation that is dual to
dilation) [6], and K is the radius of the largest inscribed disk. In other words,

K = max{ k | F 	 Y k 6= ∅ }. (4)

According to the formulation defined by Eq. 3, the morphological skeleton is
the union of the disjoint skeletal subsets, where Sk(F, Y ) contains the centers of
all maximal inscribed disks of radius k (k = 0, 1, . . . ,K). An interesting property
of the morphological skeleton is that a set F can be exactly reconstructed from
the skeletal subsets:

F =

K⋃
k=0

Sk(F, Y )⊕ Y k =
⋃

p∈S(F,Y )

p⊕ Y kp , (5)

where kp is a unique value for each p such that p ∈ Skp(F, Y ).
From now we assume that structuring element Y corresponds to the

4-neighbors of the origin:

Y = { (−1, 0), (0,−1), (0, 0), (0, 1), (1, 0) } . (6)

Figure 1 shows an example of morphological skeleton by that Y .

4 Problem Setting and the Proposed Method

Let H ∈ Rn and V ∈ Rn be two vectors, and S ⊂ Z2 be a finite set of points. Our
task is to reconstruct an image F for which S(F, Y ) = S, and which (at least
approximately) satisfies H(F ) = H and V(F ) = V (see Fig. 2). Unfortunately,
the problem is underdetermined, as the following lemma states.
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(a) (b) (c)

Fig. 1: Example of morphological skeleton. Original image F (a), the enlarged
version of the considered structuring element Y (b), and the morphological skele-
ton S(F, Y ) (c).

(a) (b) (c)

Fig. 2: Examples of two kinds of reconstruction problems. If kp is known for each
p ∈ S(F, Y ), F is uniquely reconstructable by Eq. 5 (a), the considered problem
is to reconstruct F from S(F, Y ) and the two projections (b), image F to be
reconstruced (c).

Lemma 1. There may be some images with the same projections and morpho-
logical skeleton (i.e., the considered reconstruction problem is ambiguous).

Proof. An example is given in Fig. 3. ut

We know that for each point p ∈ S(F, Y ) there is a unique kp value such
that p ∈ Skp(F, Y ). Thus, the image F can be uniquely represented by a vector

K(S(F, Y )) = (kp1 , kp2 , . . . , kp|S(F,Y )|) ∈ Z|S(F,Y )|. Using the notions of Eq. 1 and
given a set of points S, our goal is to find a K∗(S) = (k∗p1 , k

∗
p2 , . . . , k

∗
p|S|

) which

corresponds to the image F ∗ generated by Eq. 5, such that f(x∗) = ||Ax∗−b||22
is minimal. Here, x∗ is the column vector representing F ∗. Figure 4 shows an
example. Note that even if there is no F such that S = S(F, Y ) and the function
value of f is zero (e.g. in case of noisy data), it is still possible to give a solution,
whose projections are close to the required ones.
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Fig. 3: Two different images F1 and F2 having the same projections and mor-
phological skeleton, where S(F1, Y ) = S(F2, Y ) = {p, q, r, s}.

(a) (b) (c)

Fig. 4: Example of the studied reconstruction problem. The skeleton S and the
required projections H and V (a), a possible solution F with H(F ) and V(F )
given by some K(S) (b), the optimal solution F ∗ with H = H(F ∗) and V =
V(F ∗) given by K∗(S) (c). Projection elements that differ from the required
ones are shown underlined.

The following lemma gives an upper bound for each element of K(S(F, Y ))
of an arbitrary binary image F .

Lemma 2. Let F be a binary image of size n×n and K(S(F, Y )) = (kp1 , kp2 , . . . ,
kp|S(F,Y )|) ∈ Z|S(F,Y )|. Then kpi ≤ n/2 for each i = 1, . . . , |S(F, Y )|.

Proof. From Eq. 4 we know that the maximum value of K(S(F, Y )) is
max{k | F 	 Y k 6= ∅}. Since the size of the structuring element Y is 3 × 3,
it follows that F 	 Y n/2 = ∅. Thus, the possible maximum value in K(S(F, Y ))
is n/2. ut

Since the size of the image is known, the searching space is bounded by
Lemma 2. The following lemma defines a sharper upper bound.
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Lemma 3. For any skeletal set of points S and for each p = (i, j) ∈ S with the
corresponding ki,j ∈ K(S)

ki,j ≤ min

{
i− 1, j − 1, n− i, n− j, hi

2
,
vj
2

}
,

where hi and vj is the corresponding horizontal and vertical projection value,
respectively.

Proof. It is trivial due to the size of the image and the size of Y ki,j . ut

Lemma 2 and Lemma 3 define a unique maximum value for each
kp ∈ K(S(F, Y )). Additionally, we can use the following theorem for further
reducing the searching space.

Theorem 1. Let S(F, Y ) be the morphological skeleton of F generated with the
structuring element Y defined by Eq. 6. Let p, q ∈ S(F, Y ), where ||p−q||2 ≤

√
2

(i.e., p and q are 8-adjacent to each other) and p ∈ Si(F ), q ∈ Sj(F ) defined by
Eq. 3. Then |i− j| ≤ 1.

Proof. Indirectly assume that |i − j| > 1, e.g., i ≥ j + 2. We know from Eq. 3
that q ∈ (F 	Y j) but q /∈ (F 	Y j+1). Similarly p ∈ (F 	Y i). However, in that
case p ∈ (F 	Y j+2). Since p and q are 8-adjacent to each other, this also means
that q ∈ (F 	 Y j+1), which is a contradiction. The case j ≥ i + 2 can be seen
analogously. ut

Informally, if two skeletal points, p and q are 8-adjacent, then |kp − kq| ≤ 1, if
the structuring element is Y mentioned before. This can significantly reduce the
searching space if the skeleton contains numerous pairs of 8-adjacent points.

There are numerous methods for solving Eq. 1. Since the function f is discrete
and has many local minima, we propose to use Simulated Annealing (SA) [8].
Perhaps the most important advantage of the SA over the competitive methods
is that it can guarantee a near optimal solution in a reasonable time. On the
other hand, one serious drawback of the method is that one has to fine-tune
many parameters to achieve an acceptable approximation of the global minimun
of f . See Alg. 1 for the pseudo-code for SA.

The energy function f is simply f(x) = ||Ax−b||22, where x is defined by F .
The goal is to find K∗(S) which describe an image x∗ where f(x∗) is minimal,
i.e., it has the lowest energy. We know that if f(x1) < f(x2), then the image F1

is better than F2 in the sense that its projections are closer to the required ones,
therefore function f(x) is a proper energy function. T (t) is the temperature
function or the cooling schedule, such that T (0) is positive, and T (t) → 0 as
t→∞.

We choose the following exponential function

T (t) = T0 ·
(
Ts
T0

)t/M
,
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Algorithm 1 Simulated Annealing on the Introduced Problem.

Input: projections H and V , set of skeletal points S and starting position K0(S)
Output: K(S)

K(S)← K0(S)
t← 0
repeat

K′(S)← MODIFY(K(S))
Calculate x′ and x from K′(S) and K(S), respectively

if f(x′) < f(x) or RAND < exp
(

f(x)−f(x′)
T (t)

)
then

K(S)← K′(S)
end if
t← t + 1

until the termination criterion is satisfied

where t denotes time, so the temperature will decrease over time, T0 is the chosen
value for the starting temperature and Ts is a technical parameter controlling
the shape of the cooling schedule. We empirically established the starting tem-
perature T0 = 10 and the technical parameter Ts = 0.001. In each iteration
step the time t is increased by 1. The process terminates when reaching M the
maximal number of allowed iterations or zero energy.

RAND is a floating point number taken in each iteration from a uniform
random distribution (0 ≤ RAND ≤ 1). With the function MODIFY we alter a
state to another one simply by choosing a kp ∈ K(S) randomly and updating its
value between the corresponding bounds. For the initial solution we choose the
kp-s such that the initial image satisfies Theorem 1 and its projections are close to
the required ones. We developed three different strategies for the reconstruction:

1. No Vase Constraint (NVC): In the SA modification step, we choose a kp
randomly, and change it randomly between its bounds, omitting Theorem 1.

2. Dynamic Vase Constraint (DVCC): We apply Theorem 1 in the following
way: in each step, we modify a randomly chosen kp by defining its new value
such that |kp − kq| ≤ C holds for each q 8-adjacent to p. If C = 1, we
allow only those differences that mentioned in Theorem 1. Because it also
means slow convergence during iterations, we allow higher C values in the
beginning of the reconstruction, and decrease C through time. For that we
use a function C(t), which is similar to the cooling schedule:

C(t) =

⌈
C0 ·

(
Cs
C0

)t/M⌉
,

where d.e denotes the ceil function, C0 is the starting parameter, so C(0) =
C0, Cs is a technical parameter established to 0.15 explicitly. Note that
C(t) → 1 as t → M , so we force SA to search a solution that satisfies
Theorem 1 as much as possible.
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3. Combined Energy Function (CEFα): We incorporate the constraints of The-
orem 1 by using an extended energy function:

f(x) = α||Ax− b||22 + (1− α)g(x),

where α is a weighting parameter (0 ≤ α ≤ 1),

g(x) =
∑

||p−q||2≤
√
2

h(kp, kq)
(
p, q ∈ S, kp, kq ∈ K(S)

)
,

and

h(kp, kq) =

{
0 if |kp − kq| ≤ 1

|kp − kq|/2 otherwise.

Note that if a solution F satisfies Theorem 1, then g(x) = 0. In case of
α = 1, this method is equivalent to the No Vase Constraint method (i.e.
CEF1 = NVC).

5 Results

5.1 Implementation Details

For testing our proposed methods we developed a general reconstruction frame-
work. For initialization, one has to specify the initial temperature T0, the techni-
cal parameter Ts, the maximal number of allowed iterations and the initialization
method. Some of the solving methods could have additional parameters, such
as α or C0. Certain parameters were fixed, since they are not really relevant
to the efficiency of the methods, such as Cs or the structuring element Y . We
also fixed the cooling schedule, which is empirically established. The test was
running under Windows 7 on an Intel Core 2 Duo T2520 of 1.5 GHz PC with
2GB of RAM.

5.2 Experimental Results

We tested our algorithm on many images, in this paper we show eight samples
of them. Six of our test samples have one point thin morphological skeleton
consisting of few 8-connected components. However, we also show two other
images which have more complex skeletons. All of the test images have the size
of 256× 256.

Since SA is a randomized algorithm, we performed each test 5 times and
measured the mean CPU time and errors of the reconstruction. For the numerical
evaluation of the quality of the reconstructed images, we calculated

E = ||b− b′||2 ,

where b and b′ are the projection vectors of the original and the reconstructed
image, respectively For all tests, we set T0 = 10, Ts = 0.001 and M = 50 000.
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Table 1: Reconstruction results. CPU values are in milliseconds and E values
are rounded to integers. Best results are highlighted.

Image Method CPU E Image Method CPU E
NVC 3842 1060 NVC 7276 1285
DVC10 4030 98 DVC10 7900 174
DVC5 4116 97 DVC5 8127 146
DVC1 4563 18 DVC1 4473 0
CEF0.3 4358 2468 CEF0.3 7626 2578
CEF0.5 4415 1675 CEF0.5 7665 1849
CEF0.7 4435 1305 CEF0.7 7691 1505
NVC 3784 3405 NVC 4346 6136
DVC10 3038 1291 DVC10 4733 1066145
DVC5 3164 4288 DVC5 4609 1722350
DVC1 3566 5307 DVC1 4926 3302481
CEF0.3 5412 5665 CEF0.3 7308 14371
CEF0.5 5387 4829 CEF0.5 7243 8896
CEF0.7 5328 3212 CEF0.7 7222 7402
NVC 1666 1341 NVC 2165 2709
DVC10 1215 292 DVC10 1713 6042
DVC5 1234 314 DVC5 1724 7962
DVC1 1302 294 DVC1 1910 6360
CEF0.3 2904 2534 CEF0.3 4123 5688
CEF0.5 2827 1950 CEF0.5 4131 4178
CEF0.7 2851 1732 CEF0.7 4114 3346
NVC 3537 2530 NVC 2757 4034
DVC10 2852 9154 DVC10 2304 4523
DVC5 2981 13138 DVC5 2467 7472
DVC1 3226 67493 DVC1 2430 13096
CEF0.3 6380 5183 CEF0.3 8884 6663
CEF0.5 6367 4102 CEF0.5 8856 5012
CEF0.7 6343 3029 CEF0.7 8959 4407

(a) (b) (c)

Fig. 5: A test image (a), its morphological skeleton (b), one of the reconstructed
images with CEF0.5 (c).
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First, we tested the images containing just one convex object (see the first row
of Table 1). An example for the reconstruction is shown in Fig. 5. We found that
the results were mostly smooth enough, and 50 000 iterations were more than
enough to converge to such a reconstructed image. All three methods provided
good results, and DVC turned out to be the best choice. In one case, with certain
parameters we could even perfectly reconstruct the original image in all 5 runs,
using only 21 220 iterations on average.

In the second turn we studied the images of convex objects arranged in a
2 × 2 and a 3 × 3 array (second row of Table 1). We observed that the initial
state misleaded the DVC algorithm in one of the images. The main reason is
that the initial image is very dissimilar to the original one, and DVC converges
very slowly.

The third group of test data contained images consisting of convex objects
forming random groups (third row of Table 1). For the first image, the results
are similar to the first group’s results, even if there are more skeletal points
now which yields a bigger searching space. However, for the second image NVC
produced the best results.

Finally, we examined some images that have many skeletal points with few
connections (fourth row of Table 1). An example reconstruction result can be
seen in Fig. 6. One of the reasons for the poor results could be the skeleton,
which contains many isolated pixels. It makes the method slow and ambiguous
due to the large searching space. Here, NVC proved to be the best choice, since
it does not use Theorem 1, yielding the most robust approach of all. Although
even this method could reach just a rough approximation of the original object,
the result is quite promising – regarding that just two projections were used.

(a) (b) (c)

Fig. 6: A test image (a), its morphological skeleton that contains numerous iso-
lated pixels (b), and one of the reconstructed images with NVC (c).
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6 Conclusions and Further Work

We proposed three variants of a method based on Simulated Annealing to re-
construct binary images from their horizontal and vertical projections and their
morphological skeleton. Without assuming 8-connected morphological skeletons,
a rough reconstruction is always possible in a short time and a small number
of iterations. With additional restrictions the result will be smoother, however,
the convergency of the method becomes slower. The No Vase Constraint method
provides overall satisfactory results, however, the Dynamic Vase Constraint cre-
ates smoother results in most cases, but needs more iterations to converge. The
Combined Energy Function method is just slightly worse than the first method,
but much slower. Beside that, in all the three considered methods we found that
the result is much more dependent on the number of the skeletal points, rather
than on the size of the image.

This paper is just an introduction of a novel approach and there are many
open questions in the field. Since SA is rather sensitive to the initial state, in a
further work, we want to apply further strategies for choosing a starting image,
e.g., by using Ryser’s algorithm to obtain an initial solution. Beside that, we try
to find a more sophisticated function minimizer, or redefine our energy function
in a way that it could be managed with deterministic mathematical tools –
however, this seems to be a hard task. We assume that the problem is NP-hard.
We also plan to examine the efficiency of the methods using more projections
and other prior information, such as smoothness on the boundary. Finally, we
also intend to study the robustness of the reconstruction when the projections
are corrupted by noise.
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