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Preface

Probability incorporates two courses: the related lecture and the seminar. The aim of these
courses is to teach the meaning of the basic notions of probability theory as probability,
random variables, probability distribution, expected value, standard deviation, variance,
covariance, density function, normal distribution.

This handout presents the definitions and theorems applied during the semester and
provides examples for better understanding and for practicing and also includes sample
tests. The starred exercises are a slightly more difficult then the others. Problems like
these will not appear in the tests.

Lecturer: Janos Marcell BENKE



Contents

C o onl

(1 Counting methods|
(.1 Exercisesl. . . . . . . . . e

2 Probability]

6.1 FExercises . . . . . . . .
7 Conii I bles

[(.1  Exercisesl. . . . . . . . . e
BN [ distribution

8.1 Exercisesl. . . . . . . ..
[9 Approximation to normal distribution|

9.1 FExercisesl. . . . . . . . . e
(10 Solutions|

14
22

24
27

28
36

38
50

52
95

57
62

64
67

69
73

74



Course information

Course title: PROBABILITY

Course code:
60A106 Lecture
60A107 Seminar

Credit: 3+ 2

Type: lecture and seminar

Contact hours / week: 2 + 1

Evaluation:
Lecture: exam mark (five-grade)
Seminar: practical course mark (five-grade)

Semester: 3

Prerequisites: Calculus



Learning outcomes

(a) regarding knowledge, the student

can use basic combinatorical counting methods as permutation, variation and
combination to count the number of possible outcomes of an experiment

is able to simplify complex events using operations on events
knows the definition of probability and the heuristic of it as well
can calculate probabilities on classical probability space

can calculate probabilities of events connected to discrete random variable using
its probability distribution

can calculate expected value, standard deviation, variance of discrete random
variable using its probability distribution

understands the heuristical meaning of expectation and standard deviation
understand the meaning of covariance and correlation

is able to identify binomial, hypergeometric and geometric distribution
understands the meaning of conditional probability and is able to calculate it

can calculate probabilities of events connected to continuous random variable
using its probability density function

can calculate expected value, standard deviation, variance of continuous random
variable using its probability density function

can calculate probabilities of events connected to normally distributed random
variable

can calculate approximated probabilities using normal distribution

(b) regarding skills, the student

can uncover facts and basic connections

can draw conclusions and make critical observations along with preparatory sug-
gestions using the theories and methods learned

(c) regarding attitude, the student

behaves in a proactive, problem oriented way to facilitate quality work

is open to new information, new professional knowledge and new methodologies

(d) regarding autonomy, the student

conducts the tasks defined in his/her job description independently under general
professional supervision

takes responsibility for his/her analyses, conclusions and decisions



Requirements

During the semester there are 5 small tests and each small test is worth 5 points. There is
no way to retake any of the small tests. Based on the collected points the following grade
is given for the seminar:

0-5 points,
6-8 points,
9-11 points,
12-14 points,
15-25 points.

The examination is a big test, which can be written in the exam period. It is worth 50
points. It is profitable to collect more points from the small test, because the points over
15 will be added to the big test points. Based on the collected points the following grade
is given for the lecture:

00-19 points,
20-26 points,
27-33 points,
34-39 points,
40-50 points.

Example: in the case of 20/25 small test points and 37/50 big test points, the seminar
mark is 5, and the overall point is 5+37=42, so the lecture mark is 5 as well.



Course topics

Combinatorial counting methods, basic properties of probability, classical probability space,
conditional probability. Discrete random variables, expectation, variance. Continuous ran-
dom variables. Moments, skewness, curtosis, median and quantiles. Law of large numbers

and central limit theorem.



1 Counting methods

When calculating probabilities we often have to rely on combinatorial methods to find the
total number of possible outcomes of a random experiment. In this chapter we are going
to refresh these methods, and introduce (standard) notations for them.

Definition 1.1 (Factorial). The factorial of a non-negative integer n, denoted by n!, is
the product of all positive integers less than or equal to n, that is

o:=1, nl=[[i=1-2-...-n, n>1
=1

Permutations of different objects

Proposition 1.2 (Permutations without repetition). Suppose we have n different objects,
then we can arrange them in order in n! different ways.

Proof. We have n choices for the first element of the sequence, then we have only n — 1
choices for the second element, because we are allowed to use the same object only once.
For the third element we have n—2 choices, and so on. Multiplying these numbers together
gives the desired result. l

Example 1.3. How many ways can we rearrange the letters of the word MATH?

Solution. Since the word MATH consists of 4 distinct letters, the number of permuta-
tions of these letters is 4! = 24. It is such a small number, that we can list all those
rearrangements:

MATH MAHT MTAH MTHA MHAT MHTA
ATHM ATMH AHTM AHMT AMTH AMHT
THAM THMA TAMH TAHM TMAH THHA
HMAT HMTA HTAM HTMA HATM HAMT

O

Example 1.4. A deck of French playing cards consists of 52 cards, one card for each of
the possible rank and suit combinations, where there are 13 ranks namely 2, 3, 4, 5, 6,
7, 8,9, 10, Jack, Queen, King, Ace and four suits Clubs(é), Diamonds(<»), Hearts(Q),
Spades(#). If we shuffle this deck of cards what is the number of possible outcomes?

Solution. Since each card in the deck is unique, we have 52 different objects, therefore
the number of possible permutations is 52! ~ 8.065 - 10°”. That is a huge number with 68
digits. It would be futile to try to list all the possible outcomes. ([l

Permutations of not necessarily different objects

Our method fails to give the correct answer if the objects we aim to rearrange are not
unique. In order to find all the rearrangements of the letters of the word FOOD we need
to refine our way of calculating permutations.

Proposition 1.5 (Permutations with repetition). Suppose we have £ > 0 types of objects.
We take ki of object 1, ko of object 2, and so on ky of object ¢, a total of n = ki +---+ ky
objects. The number of permutations these objects have is

n!

kilkol - oo Kl
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Note that if we only have 1 of each object then we get back the statement of Proposition
[1.2] since 1! = 1. We will not prove this proposition, however we will illustrate the idea of
the proof in the following example.

Example 1.6. How many ways can we rearrange the letters of the word FOOD?

Solution. First we assume that we have a way to distinguish the 2 letters O, for example
we can use a different colour for them. Then we have 4 different letters, and we already
know the number of rearrangements is 4! = 24. We list them to illustrate the point

DFOO DFOO DOFO DOFO DOOF DOOF
FDOO FDOO FODO FODO FOOD FOOD
ODFO ODFO ODFO ODFO ODOF ODOF
OODF OODF OOFD OOFD OFOD OFOD

The problem is, that we have counted some words more than once. In fact we have counted
each word twice! The reason for this is that we have two choices when we select which letter
O has red colour. Therefore the correct answer, the number of possible rearrangements of
the letters FOOD is 4!/2 = 12. Since 2! = 1 -2 = 2 that is the same answer we get using

Proposition [1.5] O

Example 1.7. How many ways can we rearrange the letters of the word MATHEMATICS?

Solution. The word mathematics consists of 11 letters, but the letters A, M, and T appear
twice. Using Proposition we get that the number of possible rearrangements are
11!

Variations of objects

Previously we were limited by the number of available objects of each type. If we allow
ourselves the option to use each object as many times as we wish, then the number of
possible sequences we can make are infinite, however if we restrict ourselves to sequences
of a given length the answer becomes finite.

Proposition 1.8 (Variations with repetition). Suppose we have n > 0 types of objects. If
we are allowed to use each object multiple times, then the number of sequences of length
¢ >0 we can create using these objects is n’.

Proof. We have n choices for the first element of the sequence, then we have the same n
choices for the second element, because we are allowed to use the same object more than
once. This gives us n choices for each of the ¢ elements of the sequence, multiplying them
together gives the desired result. ([l

Example 1.9. How many 3 digit numbers can we make using the digits 1,4,7 if we can
use them as many times as we want to?

Solution. The previous proposition gives us the answer, we have n = 3 different objects,
and we want to count sequences of length ¢ = 3 therefore the answer is n* = 3% = 27. We
can list the possible numbers



111 114 117 141 144 147 171 174 177
411 414 417 441 444 447 4AT1 474 477
711 714 717 741 v44 74T 771 T4 7T

Example 1.10. We roll a dice twice, list all the possible outcomes!

Solution. A dice has 6 sides marked with numbers 1, 2, 3, 4, 5, 6, that is our n = 6
different objects. We roll the dice twice, that means we are looking for sequences of length
¢ = 2. Therefore the number of these outcomes is n = 62 = 36. Here we list them

(L,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5 (2,6)
3,1) (3,2) (3,3) (3,4 (3,5 (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

O

Note that we included both (1, 2) and (2, 1) in our list, that is because we care about

the order in which these numbers appear. There are cases when we don’t need information
about the order. One such case is discussed in the next subsection.

Combination without repetition

So far we cared about the order of things, but this time we study questions where the
order of things is irrelevant. For example in a game called poker, each player draws 5 cards
from a shuffled deck of French playing cards and after some betting (which we ignore here,
thus vastly simplifying the game) the player with the most powerful combination of cards
wins. The combination called royal flush is a hand of 5 cards with the ranks 10, Jack,
Queen, King and Ace with the same suit, it is the most powerful one as it beats all other
combinations and ties with another royal flush. In order to study the number of different
poker hands we have to introduce the binomial coefficient.

Definition 1.11. Let n € N a positive integer, and 0 < k < n another integer, then the n
choose k binomial coefficient is denoted by (Z) and can be calculated as

(4)

Proposition 1.12 (Combination without repetition). A set with n unique elements has
(Z) different subsets of size k, that is, if we have n different objects, then we can choose k

of them in (Z) ways.

Proof. We are going to use permutations to demonstrate this. Suppose we select the
objects by taking a permutation of the n elements, and taking the first k£ objects of that
ordering. Then we have n! permutations, however not all of them produce a different
selection, because the order of the first £ and last n — k elements don’t matter. So we have
counted each selection k!(n — k)! times, dividing with this number gives the desired result.

O
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Example 1.13. Suppose we want to make pizza. Our basic pizza will have tomato sauce
and cheese but we want additional toppings. How many different pizzas can we make using
exactly two of the four available toppings: ham, pineapple, corn, mushroom?

Solution. The previous proposition gives us the correct result

E W L
2)  204-2) 4 7

In order to illustrate the idea of the proof, we are going to list the permutations and the
pizzas we can create using them. Let H, P, C, and M denote ham, pineapple, corn and
mushroom respectively. Then we can list all possible permutations and the pizzas we would
make using those permutations as a basis

HPCM HPMC PHCM PHMC
HCPM HCMP CHPM CHMP
HMCP HMPC MHCP MHPC
PCHM PCMH CPHM CPMH
PMHC PMCH MPHC MPCH
CMHP CMPH MCHP MCPH

{ham, pineapple}
{ham, corn}

{ham, mushroom}
{pineapple, corn}
{pineapple, mushroom}
{corn, mushroom}

LEDTLEY

O

Example 1.14. How many poker hands are possible, that is how many ways can we draw
5 cards out of a deck of french playing cards?

Solution. Using the n choose k£ formula, all we have to do is substitute n = 52, the
number of cards in the deck, and k£ = 5, the number of cards we are drawing. Then the
answer we are looking for is

= 2598960.

52\ 52! 48-49-50-51-52
5) 51471 51

O

Example 1.15. The most famous Hungarian lottery system is called otdslotto, and it is
a game of luck, where you can buy a ticket for some amount of money (at the time of
writing this, it is 225 Hungarian forints) where you have to mark 5 numbers out of 90.
At each weekend the company responsible for the lottery randomly generates 5 numbers
out of 90, and gives out prizes for those who guessed at least 2 of them correctly on their
ticket. While the prize for guessing only 2 numbers correctly is only a small amount of
money, guessing all 5, thus hitting the jackpot makes the winner wealthy. How many ways
can we fill out a lottery ticket, that is how many different tickets should we fill out, if we
want to guarantee a jackpot?

Solution. Using the n choose k formula, all we have to do is substitute n = 90, the number
of numbers on the ticket, and k£ = 5, the number of guesses we have to make. Then the
answer we are looking for is

= 43949268.

90\ 90!  86-87-88-89-90
5) 585l 5!

11



This is not a winning strategy as the total price of those tickets would be much more
than the jackpot of a lottery game. Even if the jackpot would be greater than the price,
we would face at least two problems. In case of multiple winners the prize is split evenly
and even if no one fills out all the possible tickets someone might get lucky and ruin our
investment. Also filling out the tickets would be no small task, filling out 1 ticket per
second (an unreasonable speed) it would take 43949268 seconds, roughly 1 years and 5
months of non-stop work.

Further readings:
e https://en.wikipedia.org/wiki/Pascal’,27s_triangle
e https://en.wikipedia.org/wiki/Poker

e https://en.wikipedia.org/wiki/Lottery

12
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1.1 Exercises

Problem 1.1. How many ways can we rearrange the letters of the word PROBLEM?

Problem 1.2. How many four digit numbers can we create using the digits 1,3,5,6, if we
can only use each digit once?” How many even four digit numbers can we create using the
same digits? What is the answer to these questions if we can use the same digits more
than once?

Problem 1.3. A group of friends Emma, Jennifer, Peter, Sam and Adam go to the cinema
to watch the movie The Lion King. They have tickets for seat numbers 3 to 7 in the 8th
row. How many ways can they be seated?” How many ways can they be seated if Emma
sits next to Sam?

Problem 1.4. How many ways can we rearrange the letters of the word EXERCISES?

Problem 1.5. How many four digit numbers can we create using the digits 1,2,2,67 How
many odd four digit numbers can we create using the same digits?

Problem 1.6. We have 5 red, 3 green and 3 yellow balls. How many ways can we arrange
them?

Problem 1.7. How many ways are there to order three scoops of ice cream in a cone if the
shop sells 12 different flavours of ice cream? (Suppose that the order of scoops matter.)

Problem 1.8. How many possible outcomes does the experiment of rolling a dice 10
consecutive times have?

Problem 1.9. The local florist sells 5 different kinds of flowers. We’d like to surprise
someone with a bouquet made from two different kinds of flowers. How many ways can we
do that?

Problem 1.10. How many ways can we select a student council with 3 equal members
out of a class of 31 students? How many can we select a student council consisting of a
president, a secretary, and a spokesman with different responsibilities out of a class of 317
(Note that no student can hold more than one title of the student council.)

Problem 1.11. The deck of 52 French playing cards is the most common deck of playing
cards used today. It includes thirteen ranks of each of the four French suits; clubs(é),
diamonds(<>), hearts(Q), spades(#). We shuffle the deck and draw 5 cards from it. How
many possible 5 card hands can we get? (We don’t care about the order of the cards drawn
just the cards themselves.)

The final answers to these problems can be found in section [10}

13



2 Probability

Probability is the branch of mathematics that models randomness. Therefore we need a
concept of randomness before we can talk about probabilities of events.

Sample space, events

Definition 2.1 (Random experiment). By a random experiment we mean an experiment
that has the following properties

e The possible outcomes are known.
e The outcome of the experiment is not predictable in advance.

e The experiment can be repeated under the same circumstances an arbitrary amount
of times.

The first two requirements seem reasonable as we want to speculate about the future,
for that we need to know what can happen, but we have to be uncertain as to what will
happen. In order to make sense of the third requirement we are going to introduce events
and their relative frequencies.

Definition 2.2 (Sample space). The sample space is the set of all possible outcomes of a
given random experiment. We denote it by (2.

We introduce events in an intuitive way. An event is a statement about the outcome of
a random experiment whose truth can be decided after carrying out the experiment. Since
this representation is not unique (we are going to see this in the first example) we need a
unique way to describe an event, and that is going to be the set of outcomes which satisfy
the statement.

Definition 2.3 (Event). Let 2 be the sample space of a random experiment, then the
subsets of () are called events.

For absolute mathematical precision we would have to restrict our definition of events
to certain subsets of the sample space, but that is only relevant in cases where the sample
space is infinite. Since we almost always use a finite sample space during this subject we
are going to omit this considerations.

Definition 2.4. Let €2 be any set. Then we call the set that contains all subsets of 2 the
power set of €2, and we denote it by 2.

Every event is an element of the power set of the sample space of the related random
experiment. We say that the event A C ) occurs or happens if after carrying out the
experiment the outcome is in A.

Definition 2.5. There are two events corresponding to the always false and the always
true statements that we give special names. We call the event represented by the set (2
the certain event, while we call the event corresponding to the empty set, () the impossible
event.

Example 2.6. Describe the random experiment related to tossing a coin once, and ob-
serving whether it lands on heads or tails! Find the set representation for the following
statements!

14



e The coin lands on heads.
e The coin lands on tails.

e The coin does not land on tails.
Solution: The experiment has two possible outcomes, heads or tails, so
Q = {heads, tails}.

We can create a table listing all the possible outcomes in the columns and the statements
in the rows, and write true or false if the corresponding statements is true or false for the
give outcome.

‘ heads ‘ tails

The coin lands on heads. true | false
The coin lands on tails. false | true
The coin does not land on tails. | true | false

From this table we can simply list for each statement the set of outcomes which has true
assigned to them and we get the following.

The coin lands on heads. —  {heads}

The coin lands on tails. —  {tails}

The coin does not land on tails. — {heads}

As we can see the first and third statements are different, however they are true for the
same outcomes, their set representation is unique. 0

Example 2.7. Describe the sample space of the random experiment of rolling a dice! Find
at least one statement that has the given set representation as an event for each of the
following sets.

e {1}
o {1,4}
e {2,4,6}

e {2,3}
Solution: A dice has six sides marked with numbers 1, 2, 3, 4, 5, and finally 6. Therefore
the set of all possible outcomes is

0 ={1,2,3,4,5,6}.

For each of the sets above we give a trivial representation as a statement, just listing the
outcomes it contains and requiring the experiment in resulting one of these, and a non
trivial one. The trivial ones,

{1} —  The dice roll results in 1.

{1,4} — The dice shows 1 or 4.

{2,4,6} — The outcome is 2 or 4 or 6.

{2,3} — The number shown is either 2 or 3.
and the non trivial ones

{1} —  The result is less than 2.

{1,4} — The dice shows a square number.
{2,4,6} — The outcome isn’t odd.
{2,3} — The outcome is less than 4, but not equal to 1.

15



Operations on events

Since we represent events as sets, we can use set operations on them. For thr sake of
completeness we define the set operations here.

Definition 2.8 (Operations on sets). Let A and B arbitrary subsets of 2. Then

e The complement of the set A is denoted by A (or A°), it is the set of elements not
contained in A, that is -
reA<—=uz ¢ A

e The union of sets A and B is denoted by A U B, it is the set of elements that are in
either A or B, that is

rC€AUB<«<=zxcAorzxc B.

e The intersection of sets A and B is denoted by AN B, it is the set of elements that
are both in A and in B, that is

rE€EANB<<=x € Aandzx € B.

e The difference of sets A and B is denoted by A\ B, it is the set of elements that are
in A, but not in B, that is
r€A\B<=z € Aand z ¢ B.

Be aware that unlike the union and the intersection of sets this operation is not
commutative, that is _A \ B can be different from B\ A. The complement is a special
case of difference as A = Q\ A.

e The symmetric difference of sets A and B is denoted by AAB, it is the set of elements
that are in exactly one of the sets A and B, that is

r€ AAB<= (r€ Aandz ¢ B) or (xt ¢ Aand z € B).

We can give probabilistic interpretations of these operations the following way. Let
A, B C ) be arbitrary events, then

e The event A happens if A doesn’t.

e The event AU B happens if A or B happens.

e The event AN B happens, if A and B both happen.

e The event A\ B happens if A happens, but B doesn’t.

e The event AAB happens if exactly one of A and B happens.

Definition 2.9 (Relations of events). We can define relations on events based on how they
are related as sets.

e We say that the events A and B are mutually exclusive (or disjoint) is AN B = 0.
e We say that the event A is a consequence of the event B if B C A.

Proposition 2.10. If the events A and B are mutually exclusive then they cannot happen
at the same time.

Proposition 2.11. If the event A is a consequence of B, then if B happens so does A.

16



Relative frequency of events

The heuristic meaning of the probability of an event can be reached through the relative
frequency. For instance, why can we make fair decisions by tossing a coin? Because we
know that in half of the cases we get heads and in the other half of the cases we get tails.

Definition 2.12 (Relative frequency). Let 2 be the sample space of a random experiment,
and A C Q an arbitrary event. Repeat the experiment n € N times and let k,(A) denote
the number of times the event A has occurred. Then the relative frequency of the event A
after n repetitions is

(A) k. (A) occurences of A
Tn = = - .
n total number of repetitions

We’d like to interpret the probability of the event A as the limit of the relative frequency
rn(A) as n, the number of repetitions tends to infinity. However there is a problem, as the
relative frequency is a random quantity. Take for example these two sequences of random
coin tosses

sequence #1: tails, tails, heads, tails, heads, heads,
sequence #2: heads, heads, tails, tails, tails, tails,

they result in two different sequence of relative frequencies for the event that the coin lands
on heads

~ 0.33,
~ 0.67,

=04,
=04,

= 0.5,

+=0.25,
: ~ 0.33,

2 0.5,

DN oW

Wi Wi
SSRGS

#2: 1, 1,

It is possible that these two sequences have the same limit, but we cannot prove it yet,
so we cannot build a definition of probability upon that. Instead we are going to prove a
few properties of relative frequency and then require those properties in the definition of
probability.

Proposition 2.13 (Properties of relative frequency). Let € be the sample space of a ran-
dom experiment, and A, B C Q arbitrary events. Then

(i) the relative frequency is nonnegative, that is r,(A) > 0,
(ii) the relative frequency of the certain event is always 1, that is r,(2) =1,

(7ii) the relative frequency of unions of mutually exclusive events adds up, that is

ANB = r,(AUB) =r,(A) +r.(B).

There are other properties of relative frequency however these three will be enough to
define probability.

Probability space

Definition 2.14 (Probability Space). Let (£2,.4) denote the sample space and the set of
events for a random experiment. The function P : A — R is called probability if

(i) P(A) >0, for all A € A,
(i) P(Q) =1,

17



(iii) for any pairwise mutually exclusive events A, Ay, --- € A

P(AjUAU...)=P(A) +P(As) +....

Whenever we examine a random experiment we work with a triplet (2,.4,P) that is
related to the experiment, and we call it the related probability space.

The third criteria for P is called the o-additivity of the probability. Sometimes the
probability P is called probability measure. The reason is we can imagine probability as
a quantity like length, area, volume, time, and so on, which we can measure. The basic
concept of any measurement is that we can measure any object with splitting it into smaller
pieces, and the measure of the original object equals the sum of the measure of the pieces.
This property is the o-additivity. The o prefix means that this property is valid not only
for a finite number of pieces but for countable infinite as well.

Theorem 2.15 (Properties of probability). Let (2, A,P) be a probability space, also let
A, B, Ay, Ay, ... A, € A Then

(i) P(0) =0,

(ii) P(Up_; Ax) = >or_ P(Ag) provided that A;NA; =0 if i # 34, i,j=1,....n
(finite additivity of the probability),

(iii) if B C A, then P(A\ B) =P(A) —P(B) and P(B) < P(A) (monotonicity of
probability),

We can solve a lot of problems with a special, important probability space.

Definition 2.16 (Classical probability space). It is a probability space (£2,.4,P) such
that

e () is a finite, non-empty set,
o A:=29
e P: A— R such that

P(A) = @ _ number of favorable outcomesj Ae A

12 total number of outcomes

In a classical probability space, for every w € €, we have P({w}) = \ﬁll If we
model a random experiment using a classical probability space, then it is often useful to
use the tools of counting methods to find the number of favorable outcomes and thus the
probability of an event.

18



Example 2.17. Tossing a fair coin twice, what is the probability of getting one heads and
one tails?

Solution: By distinguishing the two coins, the sample space is
Q= {(HH),HT),(TH),(T,T)},

where each of the four outcomes has the same probability. So the probability of the event
A= {(H,T), (T,H)}

in question is

0

Example 2.18 (Birthday problem). In a set of n randomly chosen people, what is the
probability that there are at least two people who have birthdays on the same day? (We
exclude leap years and we suppose that each day of the year is equally probable for a
birthday.

Solution: If n > 365, then, by the pigeonhole principle, the event A in question is the
certain event, so it has probability 1.
If n <365, then

365 - 364 -+ (365 —n -+ 1)

P(A)=1-P(A) =1 T

(0.284 if n = 16,
0.476 if n = 22,

1 365! ) 0507 if n =23,
T (365 —n)!-365" ] 0.891 if n = 40,
0.970 if n = 50,

(0,990 if n = 57.

Independence

We have explored relations of events, namely two events being exclusive or one being a
consequence of the other. This time our aim is to define a relation of events by having
their probabilities satisfy an equation.

Definition 2.19 (Independence of two events). We say the events A and B are inde-
pendent if
P(ANB) =P(A)P(B).

Independence is a useful notion if we describe (independent) repetitions of random
experiments.

Example 2.20. Tossing a fair coin twice, what is the probability of getting two heads.

19



Solution: The first solution is the following. As in Example [2.17| we can use the sample
space
Q= {<H’H>7 (H7T)7 (T7H)7 (T7T>}

to model this random experiment, which is a classical probability space, hence the proba-
bility of the event

A={(H H)}
in question is
1

However, we can find this probability using independence. Let A; and A, are the events
that we get heads with the first and with the second tossing, respectively. We can assume
that these two events are independent. And we know the probabilities

P(A)) = P(4) = =

hence using the definition of independence, we get

P(A) = P(A1 N Ay) = P(A1) P(A2) =

l\DI»—t
l\')l»—l

O

Even in the simplest case of tossing a coin twice we have events that are not the product
of two events related to the single coin tossing experiment. For example if

A = 7 At least one coin toss result is heads.”

then A can’t be written as a product. However we can write A as a union of mutually
exclusive products, since

A = "The first toss is heads, but the second is tails.”
or "The first toss result is tails, but the second is heads.”
or "Both the first and second toss is heads.”

hence using the additivity and independence we get
P(A) =P ((A1NA) U (A NAy) U (A NA))
=P(A;NA)) +P(A; N Ay) +P(A; N Ay)

= P(A1) P(Az) + P(A) P(Az) + P(A) P(Ay)

_11+11+11 3
2.2 2 2 2 92 4

Indeed, we can solve this problem in this simple experiment easier using
A= {(Ta H)’ (H>T)7 (Ha H)}
hence P(A) = %, however in many more complex cases, the previous idea is more effective.
We can generalise independence to any number of events.

Definition 2.21 (Independence of n events). We say the events A;, Ao, ..., A, are inde-
pendent if for any 1 < k <nand 1 <14y <...7 <n we have

P(A;, M-+ N A

K

) =P(A;)...P(4;,).
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We will learn another concept connected to the notion of indepence when we learn
about conditional probability.

Further readings:
e https://en.wikipedia.org/wiki/Birthday_problem
e https://en.wikipedia.org/wiki/Andrey_Kolmogorov

e https://en.wikipedia.org/wiki/Coin_flipping
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2.1 Exercises

Problem 2.1. We roll a dice 10 times, and we get the following result:
{2,5,6,2,1,3,4,6,1,1}.
Let A be the event of rolling a prime number.

1. What is the relative frequency of the event A?
2. What is the probability of the event A?
Problem 2.2. We toss a coin 5 times. What are the probabilities of the following events?
A : The first coin lands on heads.
: The first and last toss are the same.
: We find an even number of heads.

: We find exactly 3 heads.

m O Q W

: We find more heads than tails.
F : No two consecutive tosses have the same result.

Problem 2.3. Find the answers for the previous problem with the modification that we
toss the coin 3 times in stead of 5.

Problem 2.4. We roll a dice three times. What are the probabilities of the following
events?

A : All dice shows 6. D : At least two numbers are the same.
B : The number 2 isn’t rolled. E : All numbers are odd.
C' : Each number is different. F: The number 5 appears at least once.

Problem 2.5. Find the answers for the previous problem with the modification that we
roll the dice 4 times in stead of 3.

Problem 2.6. We shuffle a deck of 52 French playing cards and draw the top 5 card. Find
the probability of the following events.

A : We draw no cards with the suit spades.
: We only draw cards with the suit spades.
: We draw at least one card with the suit spades.

: We have the Queen of Hearts in our hand.

§ O Q W

: We have all the kings.
F: We have exactly 2 kings and 2 queens.

The deck of French cards is made up of thirteen ranks (2, 3, 4, 5, 6, 7, 8, 9, 10, Jack,
Queen, King, Ace) of each of the four French suits; clubs, diamonds, hearts and spades.
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Problem 2.7. We shuffle a deck of 52 French playing cards and draw the top 5 card. Find
the probability of the following poker hands.

A : Royal flush (10, J, Q, K, A of the same suit)

: Straight flush (5 cards of the same suit in increasing order)
: Four of a kind (4 of the same rank of cards)

: Full house (3 of a kind and a pair)

: Flush (5 cards of the same suit, not in order)

: Straight (5 cards in increasing order, not of the same suit)
: Three of a kind (3 of the same rank cards)

: Two pairs

: A pair

W o~ " m U QW

: High card (none of the above)

Problem 2.8. The class has 43 members. 11 of these people will go to the wine festival
this week, and 30 people will write a perfect test next week. 7 people belong to the each of
these groups. We choose somebody randomly. What are the probabilities of the following
events?

A Go to the wine festival, but write the test not perfectly.
B : Go to the wine festival or write the test perfectly. (Both of these events can occur.)

C': Go to the wine festival or write the test perfectly. (Both of these events can not
occur.)

Problem 2.9. Let’s consider the probability space related to rolling two dice. What is
the probability of the following events?

(a) Both numbers are 6.
(b) The first dice shows 1 and the second dice shows 2.
(c) We see the numbers 1 and 2.

The final answers to these problems can be found in section [I0}
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3 Discrete random variables 1. - distribution

So far we always constructed an entire probability space to solve the exercises, but it is
not always necessary. In this chapter we introduce random variables, which are numbers
assigned to each outcome of a given random experiment, therefore producing a random
number. Their power lies in the fact that we do not have to construct an entire probability
space to describe them, we need only something called the distribution of the random
variable.

Definition 3.1 (Discrete random variable). Let (€2,.4,P) be a probability space related
to a random experiment, and X : {2 — Z an integer-valued function on the sample space.
If {weQ:X(w)=k}e A forall ke€Z the X is a discrete random variable.

Namely, a random variable is discrete if the possible values of it are integer numbers.
The word discrete comes from the fact that the cardinality of the set of the integer numbers
(Z) is countable.

The condition {w € Q: X(w) =k} € A forall k€ Z in the definition above implies
that we can investigate the probabilities like

Pw e Q: X(w) =k}), PHweQ: X(w) >k}, PHwe: k< X(w)<I}).

For example the last one is the probability of the event that the random variable X is
between the integers k and [. Usually we use the following shorter notations

P(X =k), P(X>k), Ph<X<I).

Definition 3.2 (Range). The set of the possible values of a random variable is called the
range of the random variable.

Proposition 3.3 (Discrete random variables on finite probability spaces). If [Q] < oo
and A = 22 then any integer-valued function from 0 to Z is a discrete random variable.

We can define an object which can help us calculate the probabilities connected to
discrete random variables.

Definition 3.4 (Distribution of a discrete random variable). By the (probability) distri-
bution of a discrete random variable X we mean the probabilities

m=P(X=k), kel

Theorem 3.5 (Properties of the distribution of a discrete random variable). For any
discrete random variable X with distribution py the following are valid.

(i) pr >0 forall ke€Z,
(i1) Zkezpk =1

Due to this theorem we can imagine the probability distribution as a mass distribution.
We have unit mass (e.g. 1 kg sugar cubes) and we distribute this mass on the possible
values, and the amount of mass in each value represents the probability that the random
variable equals to this value.

Example 3.6. Let’s consider the probability space related to rolling two dices. Then all
of the following are discrete random variables:
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X := the number shown on the first dice,

Y := the number shown on the second dice,

X+,

max{X,Y}, min{X, Y},

(X —Y)2.

Example 3.7. What is the distribution of Z := X +Y in the previous example?

Answer: Since the smallest number on a dice is 1

and we roll twice the sum is at least 2,

and the greatest number on a dice is 6 therefore the sum is at most 12,

Z € {2,3

11,

12}.

We are going to list all the possible values of the sum, the probability of each value and

the outcomes that produce that value

k| P(Z=k) | outcomes

2 | 35 ~0.028 | (1,1)

3| % ~0.056 | (1,2),(2,1)

4| 2 ~0.083 | (1,3),(2,2),(3,1)

5| 36 ~0.111 | (1,4),(2,3),(3,2),(4,1)

6 | 55~ 0.139 | (1,5),(2,4),(3,3),(4,2),(5,1)
7| 45~ 0166 | (1,6),(2,5),(3,4),(4,3),(5,2),(6,1)
8 | 55 ~0.139 | (2,6),(3,5), (4,4),(5,3), (6,

9 | 55 ~0.111 | (3,6),(4,5),(5,4),(6,3)

10 | 5 ~0.083 | (4,6),(5,5),(6,4)

11 | & ~0.056 | (5,6),(6,5)

12 | 3= ~0.028 | (6,6)

In the case, when we have a finite number of possible values, we can represent the

distribution in a table:

k234567 |8]9]10]11]12
P 5 5 |3 [ a6 [ a6 [ a6 [ a6 [ 56 [ a6 | 56 [ 56

or graphically in a probability histogram

3
(Figure (1))

In general we can add the distribution as a functlon of k. In this case the function py
is sometimes called by the probability mass function.

k—1 _
pk:{ o) k=2

13—k

36 k=38
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Figure 1: Probability distribution of the sum of two dice rollings.

Proposition 3.8 (Calculating probabilities using the distribution). Let X be a discrete
random variable with distribution py, and let a < b are integers. Then

b
Pla<X <b)=> p,
k=a

Pla<X)=> p
k=a

Definition 3.9 (Independence of discrete random variables). The discrete random vari-
ables X and Y are called independent if for any x € Z and y € Z, the events {X =z}
and {Y =y} are independent.

Further readings:
e https://en.wikipedia.org/wiki/Cardinality

e https://www.wolframalpha.com/input/?i=histogram
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3.1 Exercises

Problem 3.1. Let’s consider the probability space related to rolling two dice. Find the
distribution of the following discrete random variables.

Problem 3.2. We take a dice and change the numbers 2 and 3 to show 5. What is the
distribution of a number generated by rolling this modified dice?

Problem 3.3. We toss a coin 20 times. What is the distribution of the number of tails
shown?

Problem 3.4. Three friends, Chandler, Joey and Ross order 3 different pizzas. When the
pizzas are delivered, they are handed out randomly between the three Friends. Denote by
X the number of the Friends, who get the pizza they want. What is the distribution of X?

Problem 3.5. A bag contains 5 green and 7 yellow balls. We pull a ball out of the bag,
note its colour and put them back. We repeat this process 5 times. Find the distribution
of the number of yellow balls drawn. Would it change anything if we didn’t put the balls
back in to the bag?

Problem 3.6. We toss a coin. If the result is heads, then we toss the coin once more, else
we toss the coin two more times. Denote by X the number of heads shown. What is the
distribution of X?

Problem 3.7. There are 3 machines in a factory, which are working at a given time with
probability 0.5, 0.6 and 0.7, respectively. Denote by X the number of working machines.
What is the distribution of X7

Problem 3.8. We play the following game. We roll the dice, and if the result is greater
than 3, we win HUF 1,000. Furthermore, we can roll the dice again. If the result of the
second rolling is greater than 4, we win HUF 2,000, additionally, and we can roll again. If
the result of the third rolling is 6, we win HUF 6,000, additionally, and the game is over.
Denote by X the amount of money earned. What is the distribution of X?

The final answers to these problems can be found in section [10}
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4 Discrete random variables II. - expectation, notable
distributions

In this part we define some special or notable distributions. After that we investigate a
crucial object called expectation.

Notable discrete distributions

Definition 4.1 (Bernoulli distribution). Let us consider a random experiment, let A be
an event whose probability is P(A) = p, and let

1, if A happens,
I A= .
0, otherwise.

Then I, is the indicator of the event A, it has range {0,1}, and
pp=PUa=0)=1-p, p=PIs=1)=p.

Introduce the notation 74 ~ Bernoulli(p) for the Bernoulli distribution with parameter
.

Example 4.2 (Motivational example: number of successes out of a fixed number of repe-
titions). Let’s consider the random experiment of rolling a fair dice. Let n € N be fixed,
and repeat the experiment n times independently. Let X denote the number of dices
showing 3 or 5. Find the distribution of this discrete random variable.

Answer: The variable X can take the following values: 0,1,...,n — 1,n. Its distribution
is
n 2]@4717]6 9 k 4 n—=k 92 k 92 n—~k
P(X:k):(’f)—: "Y2) () = (™M) (Z) (1-2
6" k 6 6 k 6 6
for any k€ {0,1,...,n}. O

Definition 4.3 (Binomial distribution). Let us consider a random experiment, and let A
be an event whose probability is P(A) = p. Repeat the random experiment n times
independently, then let X be the number of times the event A occured. Then X has
binomial distribution with parameters n and p and

n _
pk:P(X:k:):(k)pk(l—p)” k ke {0,1,...,n}.
Introduce the notation X ~ binom(n,p) for the binomial distribution with parameters
n and p.

Hence we can observe, that the binomial distribution describes the probability of k
successes in n draws with replacement, or sampling with replacement. We are drawing
with replacement, so it is good to see, that the draws are independent. Another remark is
the connection between the binomial and the Bernoulli distribution. We can see, that if
X is a binomial distributed variable with parameters n and p, than it has the following
representation

X:[1_|_...+[n’

where I; is the indicator of the event that the ith draw is a success, hence I; ~ Bernoulli(p),
1 =1,...,n, and these random variables are independent.
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Example 4.4. We have to take a test that consists of 10 questions, where you have to
choose between 4 possible answers. Only one of the answers is correct. Suppose we fill out
the test randomly. We get the best grade if we answer at least 9 questions correctly, what
is the probability of that?

Answer: Let X denote the number of correct answers. Then X has the binomial
distribution with parameters n =10 and p = 0.25, that is

1
P(X =k)= (k0)0.25’“0.7510—’“, ke{0,1,...,10}.

Using this formula we get
P(we get the best grade) = P(X >9) = P(X =9) + P(X = 10)
10 10
= 0.25°0.75 0.25'°0.75°
(5)o070+ (1)

~ 0.0000296.
UJ

Example 4.5 (Motivational example: sampling without replacement). Let’s consider the
following random experiment. We have a bag with 5 green and 7 red balls and pull 3 balls
out. Let X denote the number of green balls drawn. Find the distribution of this discrete
random variable.

Answer: The variable X can take the following values: 0,1, 2, 3. Its distribution is

b — g~ D67

(5)

ke {0,1,2,3}.

O

Definition 4.6 (Hypergeometric distribution). Let us consider the following random ex-
periment. We have a bag with N balls, K green and N — K red balls and pull n balls out.
Let X denote the number of green balls drawn. Then X has hypergeometric distribution
with parameters N, K,n and

K\ (N-K
_ GG

()
Introduce the notation X ~ hypergeo(N, K,n) for the hypergeometric distribution with
parameters N, K, n.

ke{0,1,...,n}.

That is, the hypergeometric distribution describes the probability of k successes in n
draws without replacement, or sampling without replacement. The draws are not indepen-
dent in this case. However, we have the representation

X:[1++[7’La

where [; is the indicator of the event that the ith draw is a success, hence I, ~
Bernoulli(p;), i = 1,...,n, with some parameters p;.
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Example 4.7. We fill out a lottery ticket (5-0f-90 lottery). Let X denote the number of
correctly guessed numbers. Find the distribution of this discrete random variable. What
is the probability of winning some money?

Answer: X has hypergeometric distribution with parameters N = 90, K =5 and n = 5,
that is

P(X = k) = M ke{0,1,2,3,4,5).

(5)

P(winnig some money) =P(X >2)=1-P(X <2)=1— (P(X =0)+P(X =1))

=1 (@) (5) + (?()9%?)) ~1—(0.7464 + 0.2304) = 0.0232.
O

Example 4.8 (Motivational example: number of repetitions until the first success). Let’s
consider the random experiment of rolling a fair dice. Let X denote the number of times
we have to roll the dice until we see 3 or 5 as the result. Find the distribution of this
discrete random variable.

Answer: The random variable X can take any positive integer as a value. Its distribution

1S
k=1 4\ 19
P(X =k) = — (2 z
( ) 6k <6> 6

for any k e N={1,2,3,...}. O

Definition 4.9 (Geometric distribution). Let us consider a random experiment, and let
A be an event whose probability is P(A) = p. Repeat the random experiment until the
first occurrence of A and let X be the number of repetitions necessary.

Then X has geometric distribution with parameter p and

pri=P(X =k)=(1-p)""'p, keN=1{1,2,3,...}.
Introduce the notation X ~ geom(p) for the geometric distribution with parameter p.

This is our first distribution, which has infinite many possible values. We can check
that this distribution is well-defined, namely the equation

Zpk =1
k=1

holds or not? (See, Theorem [3.5]) To answer this question we need the following results.

Proposition 4.10 (Geometric series). For any p € (0,1), we have
= 1
Zp f= 1—p
k=0
If we use this result, we get

o= (1=p)fp=p> (1-p*'=p) (1-p)= pﬁ =1,

k=1 =0

hence the geometric distribution is a well-defined distribution. 0
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Example 4.11. We play darts. The chance of us hitting the bullseye (the center of the
target, that is worth 50 points) is 5%. We keep trying until we hit it. What is the
probability of us succeeding in at most 2 tries?

Answer: Let X denote the number of attempts we need. Then X has a geometric
distribution with parameter p = 0.05, that is

P(X =k)=0.95710.05, ke {1,2,...}.
Using this formula we get

P(we need at most 2 tries) = P(X < 2)
=P(X=1)+P(X =2)
= 0.0540.95-0.05
= 0.0975.

Expectation of a discrete random variable

In this part our aim is to introduce our first descriptive quantity about a random variable,
namely the expectation or mean. We will do so by examining a motivating example.

Example 4.12 (Motivational example). Alice and Bob play the following game. Alice
rolls a dice and Bob pays Alice X$, where X is the number shown on the dice. How much
should Alice pay Bob for a chance to play this game?

Answer: In each round Alice gets somewhere between 1$ and 6$ from Bob. Clearly if
Alice pays less than 1$ per game, then she wins some amount of money each round, while
if she pays more than 6$, then she loses some money every round. So the fair price of this
game is somewhere between 1$ and 6$.

We can apply the following idea: let Alice play n games and find her average gain,
if this average has a limit as n — oo then let that be the fair price of the game. Let
X, Xy, X,, ..., X, denote independent dice rolls. Then Alice’s average gain after n games
is

X 4+ X, 1
AnZ: = — XZ

We can regroup these games by the amount of money Bob has paid in them and get that
Alice’s average gain is

where 7,(X = k) is the relative frequency of the event, that the dice shows k. We would
like to interpret the probability of an event by the limit of relative frequencies so if A, has

a limit then it is .

0 1 21 7

k=1 k=1

So the fair price of this game is 3.5% for each round. We will define the expected value
based on this fair price approach. O
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Definition 4.13 (Expectation of a discrete random variable). Let X be a discrete random
variable with distribution py = P(X = k). If the sum

E(X) = kak

exists, then we call it the expectation (or mean) of X.

There are random variables for which the expectation is not defined, since it can happen
that 3, ., |k|px = oo. However, if a discrete random variable X is bounded, then its
expectation always exists and is finite.

Example 4.14 (Dice roll). Let X denote the result of a fair dice roll. Find E(X).

Answer: The distribution of X is
k [T [ 2][3[4]5]6¢6
P(X=Fk)|[1/6]1/6]1/6|1/6]1/6]1/6
Hence the expectation of X is

1 1 1 1 1 1
E(X)=1-24+2-=+3-—+4+4-—+5--+6-- =3.5.
(X) 6 G s T e e TG

Indeed, this is the same as in the motivational example above. 0

The expectation of a random variable is a number that indicates the expected or av-
eraged value of the random variable. It means that if we take a lot of independent copies
of the random variable, then the average of these numbers oscillates around some number,
which is the expectation. This is the so—called law of large numbers.

Theorem 4.15 (Kolmogorov’s strong law of large numbers (1933)). Let X;, Xo,... be
independent and identically distributed random variables whose first absolute moment is
finite, that is, E(|X1|) < oo. Then
X+ + X,
P(lim L :E(X)) =1.

n—oo n

Thus the law of large numbers means that the average of the independent results of some
experiment equals to the expectation. That is the heuristic meaning of the expectation.
Furthermore, we can use the law of large numbers to prove our initial goal, that is to show
that the relative frequencies of an event converge to the probability of the same event.

Theorem 4.16 (Law of large numbers and relative frequency). The relative frequency of
an event converges to the probability of the event in question with probability 1.

Proof. Indeed, let (2, A, P) be a probability space, A € A an event whose probability is
P(A) =p € [0,1]. Repeat the experiment, related to the event A, n times independently
and let
I 1, if A happens during the k-th repetition,
B 0, otherwise,

where k € {1,...,n}. Then the relative frequency of the event A after n repetitions is
the average of the random variables I4,...,1,, and, by the strong law of large numbers

_[1+...+[n
N n

holds with probability 1. O
Let X be the gain of a game (the amount of money we win). Denote by C' the entry
fee of the game. In this case the profit is X — C. We have 3 cases.

rn(A) —E({l)=p, n— o0
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o If C' =E(X), then the game is fair in the sense that the long-run averaged profit is
0. Hence we can say that E(X) is the fair price of the game.

o If C > E(X), then the game is unfair and it is not favorable to us, because the
long-run averaged profit is negative. We should not play this game.

o If C < E(X), then the game is unfair but it is favorable to us, the long-run averaged
profit is positive. We should play it.

Proposition 4.17 (Properties of expectation). Let X and Y be arbitrary random variables
on a probability space (2, A, P) whose expectation exists. Then

(i) The expectation is linear, that is for any constants a,b € R we have
E(aX +bY) =aE(X) +bE(Y).
(i) If the random variables X and Y are independent, then
E(XY) =E(X)E(Y).
(iii) Let g:R — R be a function. Then

E(g(X)) =Y g(k)P(X =k)

keZ

Investigate the expectation of the notable distribution which we already learned.

Theorem 4.18 (Expectation of Bernoulli distribution). Let X ~ Bernoulli(p), then
E(X) =p.
Proof: We can use the definition of expectation and get

E(X)=0-P(X=0)+1-P(X=1)=0-(1—p)+1-p=p.

Theorem 4.19 (Expectation of binomial distribution). Let X ~ binom(n,p), then
E(X) = np.

Proof: We can use the definition of expectation and get

E(X) = gk; P(X = k) = ;k . (Z)pk(l e
e G
= ”Pi:;P(Y =Jj) = np,

where j =k —1,m =n—1and Y ~ binom(m, p).
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However, there is an alternative way to find the expectation of a binomial distribution.
Let X ~ binom(n, p), then the distribution of X is the same as the distribution of

Vit Y,

where Y; ~ Bernoulli(p), i=1,... ,n.
Using the linearity of the expectation and the expectation of the Bernoulli distribution,
we get
EX)=EYi+---+Y,) =EY) + -+ E(,) =np.

Theorem 4.20 (Expectation of geometric distribution). Let X ~ geom(p), then

Proof: We can use the definition of expectation and get the result directly. However, as
in the case of binomial, there is an alternative way again to find the expectation of the
geometric distribution. We have to ask the question what if we fail or succeed on the first
trial?

We succeed with probability p and if we do then X = 1. If we fail (with probability
1 — p), then we can denote the remaining trials until the first success by Y. Note that Y
has the same distribution as X and therefore has the same expectation. We arrive at the
following equation

E(X)=pE(1)+(1-p)E1+Y)=p+(1-p) E(+X)
=p+(1-p)(1+EX)) =1+ (1-p EX)

Hence

E(X)-(1-p)EX)=1
1

E(X)=-.
(X) p
For the precise proof, see the remark after Proposition [6.12]
O
Theorem 4.21 (Expectation of hypergeometric distribution). Let X ~ hypergeo(N, K, n),
then K
E(X)=n—.
(X)=n

Proof: For the proof, as in the binomial and the geometric case as well, we have two
possibilities. One can use some combinatorial identities, and then after some tedious
calculations, the result can be derived.
The other way is similar as in the binomial case. The distribution of X is the same as
the distribution of
Yl + .+ Yn,

where Y; ~ Bernoulli(p;), i=1,... n, namely Y; is the result of the ith trial. It can be shown
(we will see it when we learn about conditional probability, see Example [6.10)), that the
distributions of Y; are the same, and p; = % That is, using the linearity of the expectation
and the expectation of the Bernoulli distribution, we get

E(X):E(Y1+--~+Yn):E(Y1)+---+E(Yn):n%.
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Further readings:

e https://en.wikipedia.
e https://en.wikipedia.
e https://en.wikipedia.

e https://en.wikipedia.

org/wiki/List_of_probability_distributions
org/wiki/Expected_value
org/wiki/Law_of_large_numbers

org/wiki/Geometric_series
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4.1 Exercises

Problem 4.1. We get 6 lottery tickets as a birthday present; each ticket has a 40%
probability of winning. What is the probability that we will have exactly 4 winning tickets?
What is the expected number of winning tickets?

Problem 4.2. At a fair, we can play the following game: we throw a coin until we obtain
heads, then we get 100 Ft times the number of throws. How much should we pay to play
this game?

Problem 4.3. At a driving test, we pass with a probability of 15% each time. Each test
costs HUF 10,000. What is the probability that we will pass the test exactly on the fifth
try? What is the expected cost of the tests if we keep trying until we obtain a driver’s
license?

Problem 4.4. On a city road there are 5 traffic lights. If we have to stop for a light, we
lose 10 seconds. Supposing that the lamps operate independently of each other and that
there is a 60% chance of having to stop for a light, what is the expected amount of delay
on this road?” What is the probability that we will be delayed exactly 30 seconds?

Problem 4.5. We throw two dices simultaneously. If the sum of the numbers is 3, we get
HUF 100, if the sum is 7, we get HUF 30. How much should we pay to play this game?

Problem 4.6. In the 5-0f-90 lottery the winnings are: 500,000,000 for 5 hits, 2,000,000
for 4 hits, 300,000 for 3 hits and 2,000 for 2 hits. What is the expectation of our winnings?

Problem 4.7. We can play the following game. We roll with a dice once and we can find
the amount of money we win in this table.

result | 1/2[3] 4 | 5 | 6
prize | 000250 | 250 | 1000

What is the fair price for this game?

Problem 4.8. We can play the following game. We roll with a dice three times and we
win HUF 54,000 if we roll only sixes, otherwise we win nothing. What is the fair price for
this game?

Problem 4.9. In a video game there is a very difficult map. We only have 0.17 probability
of completing the map successfully. If we fail the map, we can try again as many times
as we wish. Each attempt takes 10 minutes. What is the expected number of attempts
needed to complete the map? What is the expected time to finish the map? We only have
an hour to play, what is the chance of success during that time?

Problem 4.10. We run a cinema, tonight is the premier of the new Star Wars movie,
and we sold all 100 tickets. However we have a problem. We only have enough popcorn
for 35 servings. Assume that each person buys popcorn for the movie with a probability
0.2 independently of each other. What is the probability that everyone gets popcorn who
wants to buy it?

Problem 4.11. We toss a fair coin 3 times. If all tosses result in the same outcome, then
we have to pay HUF 32 | if we get exactly 2 heads, we win HUF 64 and finally if we get
exactly 2 tails we win HUF 16. What is the fair price of this game? How would this price
change if we would exchange our fair coin with a biased one, that lands on heads only 1/4
of the time?
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Problem 4.12. * A drunk sailor comes out of a pub. He is so drunk that every minute he
picks a random direction (up the street or down the street) with equal probability. What is
the probability that he will be back at the pub after 10 minutes? What is the probability
of coming back after 20 minutes? What if he prefers to go up the street with probability
2/37

Problem 4.13. * (Coupon collector’s problem) The Leays company comes up with the
following promotion. They put a card with one of the following colours into every bag of
chips: red, yellow, blue, purple, green. Anyone who collects a card of each colour gets a
mug with the Leays logo on it for free. The company hires us to investigate the effects of
this promotion. What is the expected number of chips someone has to buy to collect one
of each card? (Assume that a bag of chips contains any of the coloured cards with equal
probability.)

The final answers to these problems can be found in section [10}
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5 Discrete random variables III. - variance, covari-
ance, correlation

Variance

Variance is the second descriptive quantity we introduce about a random variable. The
expectation described a long term average behaviour of a random variable. But two random
variables can have different distributions and still have the same expectation. We saw that
a dice roll has expectation 3.5, let’s construct another random variable with expectation
3.5.

Example 5.1 (Motivational example). Take a fair coin, write 3 on one side and 4 on the
other. Toss the coin once and let Y denote the number shown. Find the expectation of Y.

Answer: Let’s find the distribution of Y first. Clearly Y has only 2 possible values 3 and
4 and they have the same probability so

Then the expectation of Y is
3
E(Y) =3P(Y =3) +4P(Y =4) = o +

O

So a dice roll and our modified coin toss has the same expectation. However these

random variables behave differently, the actual result of a dice roll can be further away

from its expectation then our coin toss. We want variance to describe how much a random

variable deviates from the expectation on average. However if we take the average difference
from the expectation we get

E(X - E(X)) =0

for all random variable X whose expectation exists. To get a meaningful quantity we square
a difference and define the variance as the average squared difference from the expectation.

Definition 5.2 (Variance and standard deviation). Let X be a random variable and sup-
pose that E(X) exists and is finite. Then the variance of X is defined by

Var(X) := E((X - E(X))2).

The standard deviation of X is defined by D(X) := /Var(X).

Using this definition we can calculate the variance of the dice roll and the modified coin
toss. We expect that the variance of the dice roll will be greater than the modified coin
toss. Indeed,

1 1 1 1 1 1 1 1

Pk 6 6 6 6 6 6 Pk 2 2

X 1 2 3 4 ) 6 Y 3 4
X—-35 |-25|-15]-05| 05 | 1.5 | 2.5 Y —-35 |-05] 05
(X —3.5)2]6.25[225]0.25]0.25 | 2.25 | 6.25 (Y —3.5)2]0.25|0.25
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hence
) 1 1
Var(X) =E ((X —3.5)%) =6.25 - g+ 6252 =292,

1 1
Var(Y) =E ((Y — 3.5)%) = 0.25 - 5 +025-5=0.25.

Proposition 5.3 (Properties of variance). Let X and Y be random variables such that
their variances exist and are finite. Then

(i) Var(X) = E(X?) — (E(X))?,

(ii) for any constants c,d € R, Var(cX 4 d) = ¢* Var(X),
(i1i) Var(X) >0, and Var(X)=0 if and only if P(X =E(X)) =1,
(w) if X andY are independent, then Var(X +Y) = Var(X) + Var(Y).

Soon, we will discuss the variance of sums of random variables that are dependent, and
a new concept, the covariance of random variables will be introduced.

Using the first property above and the properties of the expectation we can calculate
variance simpler.

Example 5.4 (Variance of dice roll). Let X denote the result of a fair dice roll. Find
Var(X)!

Answer: Recall that the expectation of X is E(X) = 3.5 and the distribution of X is

k [ 1 [ 2][3[4]|5]6¢6
P(X=Fk)|[1/6]1/6]1/6|1/6|1/6]1/6

The expectation of X? (also called the second moment of X) is

6

! 91

Bx2) = -3 =2

(X% =2 K=

k=1
Then the variance of X is
1
Var(X) = B(X2) — (E(X))? = % _(35) = % ~2.92.

O
One can calculate the variances of the four notable discrete distributions that we have
discussed.

Proposition 5.5 (Variance of the notable discrete distributions).
(i) If X ~ Bernoulli(p), then Var(X) = p(1 — p).
(i1) If X ~ binom(n,p), then Var(X) = np(1 — p).

(1ii) If X ~ hypergeo(N, K,n), then

Var(X) = n% (1 - %) <1 . ;__D .
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(iv) If X ~ geom(p), then

Var(X) = ! 2p_
p

If we want to attribute an informal meaning to variance as we did for the expectation
with the fair price example, then we might think of it as a measure of risk. A high variance
means that the random variable is capable of producing values far from the expectation
with positive probability.

This is not a perfect measure of risk because it counts both big gains and big losses
as a risk factor, while usually we only want to avoid big losses. There exists more refined
measures of risk such as 'value at risk (VaR)” and ’expected shortfall (ES)’, however we do
not use them in this introductory material.

Example 5.6. We play a game, in which we roll a fair dice. If we get 1, then the game
is over, our score is 1. Otherwise, we can decide to roll again or stop. Our score will be
the last result of the rolling. How should you play this game to maximize your expected
score?

Denote by X; be the score using the strategy i. Let the strategy A is the following: roll
only once. Then E(X4) = 3.5.

Let the strategy B is the following: if we roll 4,5 or 6, then we stop, if we roll 2 or 3,
then roll again. Then

Xp € {1,4,5,6)

P(Xp =1) = P(roll 1 in the 1th round) + P(roll 1 in the 2nd round)
+ P(roll 1 in the 3rd round) + ...

L (=)
1 ):1

1
6_'_
_1
_6<1— 4

(SN[}

Similarly, one can get

1
P(Xp=1)=P(Xp=4)=P(Xp=5)=P(Xp=6)= 7
hence 44546
E(Xp) = — = 4.

Let the strategy C' is the following: if we roll 3,4,5,6, then we stop, if we roll 2, then
roll again.

Xc € {1,3,4,5,6}

P(Xc =1) =P(roll 1 in the 1th round) 4+ P(roll 1 in the 2nd round)
+ P(roll 1 in the 3rd round) + ...

1 11 [1\*1 1[N /1\'
=% aa*(a)a*“'—a(;(a))

1

: |
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Similarly, one can get

hence
I1+3+4+5+6

5

So we have found that we have the same expectation for strategy B and C. The
question is which should we choose. Naturally, one should choose the strategy with less
risk. In general if we have two games (or strategies) with the same expected gain, then we
choose the game with less risk. We use the variance to measure the risk, hence we say that
the game with less variance has less risk.

We can calculate, that

E(Xc) = 4,

Var(XB) =3.5 VaI'(Xc) =14

thus we should choose the strategy C', because it is less risky then strategy B. O]

Covariance, correlation

In this section we introduce a new object, which describes the dependence structure be-
tween two random variables.

Example 5.7 (Motivational example: resource management). Suppose we assign values
to the random variables X and Y based on a fair dice roll in the following way
diceroll [ 123 |4]|5] 6
X 21414155110
Y 916164141

Let X and Y represent the rewards of two betting games (related to the same fair dice
roll).

e If you have enough money to bet on a single game, then which one (X or Y') should
you bet on?

e If you have enough money to bet on two games, then which one (two X-s, or two
Y-s, orone X and one Y') should you bet on?

We choose a strategy which has a higher expected reward, and in case of two strategies
with the same expected rewards, we choose the one with less variance (risk).

Answer: Let’s start by calculating the expectations (fair prices) for the games:

244444545410 30

B(X) - —=5.
A+4+1

E(Y):9+6+6+ +4+1_30_
6 6

So the two games have the same expected rewards. We should choose the one with less
risk.
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The second moments are

224+ 42+ 424+ 52 4+524+102 186

E(X?) = = — =31

(x?) . - =31,
P 4+62+624+42+424+1%2 186

E(Y?) = O JGF s =5 - 31.

Therefore Var(X) = Var(Y) = 6, that is, each game has the same risk. So, if we are
playing only one game, it doesn’t matter which one we choose.

Let’s examine the case when we have enough money to bet on two games. We have 3
options: two X-s, or two Y-s, or one X and one Y. The rewards are the following:

dice roll | 1 21 314|516
2X 4 18| 8 |10|101|20

2Y 1811212 8 | 8 | 2
X+Y |11 110|109 | 9 |11

It is easy to see, that E(2X) = E(2Y) = E(X +Y) = 10, and that Var(2X) = Var(2Y) =
24. The remaining question is what is the variance of X + Y, namely can we reduce the
risk by splitting our bets?

112 +10* 4+ 10* + 9>+ 9* + 11> 604 302

E(X+Y)?) = s -5 =3

So the variance of X +Y is
2
Var(X +Y)=E (X +Y)?) —E((X +Y))* = 3 ~ 0.667.

Splitting our bets produces lower risk than doubling down on either game. It is because
the random variables X and Y are not independent. Indeed, if they were independent,
then Var(X +Y) = Var(X) + Var(Y) = 12 would hold. They depend on each other in
such a way that when X is big then Y is small and the other way around. 0

Note also that Var(X +Y) — (Var(X) + Var(Y)) = —3. This difference is related to
the covariance of X and Y that we introduce now.

Definition 5.8 (Covariance). Let X and Y be two random variables on the same proba-
bility space such that Var(X) < oo and Var(Y) < co. Then the covariance of X and Y
Is

Cov(X,Y) = E((X — E(X))(Y — E(Y))).

Proposition 5.9 (Properties of the covariance). If X, Y, and Z are random wvariables
such that Var(X) < oo, Var(Y) < oo and Var(Z) < oo, and a,b € R are constants, then

(i) Cov(X,X) = Var(X),
(ii) Cov(X,Y) = Cov(Y, X),
(iii) Cov(X,Y) = E(XY) — E(X)E(Y),
(iv) Cov(aX +bY, Z) = a Cov(X, Z) + bCov(Y, Z),
(v) Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X, V),

(vi) Var(aX + bY') = a® Var(X) + b* Var(Y') + 2ab Cov(X,Y).
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Using property (iii), one can calculate correlation simpler.

Example 5.10. Let us consider our previous example on resource management, and de-
termine the covariance of X and Y.

Answer: We know the distribution of XY
diceroll | 1 [ 2 |3 4[5 |6
Xy [18]24] 24|20 20] 10

which yields that
18 +24 4+ 24+ 20+ 20 + 10 116
( ) 6 6’

and hence
Cov(X,Y)=EXY)-EX)E(Y)=——-5-5=——F = ——.

O

The covariance of two random variable measures the level and the direction of the

dependence of the two variable. To interpret this kind of measure, we introduce another
related notion, the correlation.

Definition 5.11 (Correlation). Let X and Y be two random variables. Then the corre-
lation of X and Y is

 Cov(X,Y) ~ corr(X,Y)
corr(X,Y) := Nt () Var(¥) = D)D)

This quantity sometimes called by Pearson’s correlation coefficient.

Covariance and correlation are very similar. One can say that correlation is a normalized
version of covariance. For instance, if we work with random variables with unit variance,
then Cov(X,Y) = corr(X,Y). Due to the similarity, we have similar properties. One
important property, which is the difference of covariance and correlation (and this is the
reason for using correlation instead of covariance) is that

—1 <corr(X,Y) <1.

Proposition 5.12 (Properties of correlation). Let X, Y, and Z be random variables and
a,b real numbers. Then

(i) Corr(X,X) =1,
(ii) Corr(X,Y) = Corr(Y, X),
(iii) Var(X +Y) = Var(X) + Var(Y) + 2D(X)D(Y) Corr(X,Y),
(iv) Var(aX + bY) = a? Var(X) + b2 Var(Y) + 2abD(X)D(Y) corr(X, Y).

We have a special case of dependence when there are not any dependence between the
variables, namely if they are independent. We investigate this case now.

Definition 5.13 (Uncorrelated variables). If corr(X,Y’) = 0, then we say that the random
variables X and Y are uncorrelated.

Theorem 5.14 (Connection between independence and uncorrelation). If X and Y are
independent, then they are uncorrelated, but the converse does not hold in general.
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Proof: By the definitions, we can see that X and Y are uncorrelated if and only if
Cov(X,Y) =0. If X and Y are independent, then using the properties of covariance and
expectation, we get

corr(X,Y) = E(XY) — E(X)E(Y) = E(X)E(Y) — E(X)E(Y) =0,

thus X and Y are uncorrelated.

Too see that two uncorrelated variables are not necessary independent, we add a coun-
terexample. Let (X,Y) be a random vector uniformly distributed on the points (—1,0),
(0,-1), (0,1) and (1,0), i.e.,

P(X=-1,Y=0)=P(X=0,Y=-1) =P(X=0,Y=1)=P(X=1,Y=0) = i
Then E(X)=E(Y)=0 and E(XY) =0 yielding that
Cov(X,Y) =E(XY) - EX)E(Y) =0,
ie., X and Y uncorrelated, but
P(X=-1)=PX=1)=
PY=-1)=PY =1) =

hence X and Y are not independent, since for example

P(X =1,V =0) P(X_I)P(Y_O)_é.

:Z’
0J

To understand why measures correlation the level and the direction of the linear de-
pendence of the related random variables, we investigate the following problem.

Example 5.15 (The Best Linear Predictor). What linear function of X is closest to Y in
the sense of minimizing the mean square error (second moment of the error)?

Thus we can imagine, that we can only observe the variable X, and using this observa-
tion, we have to estimate (or predict) the variable Y. Hence the task is the following: find
the value of a and b to minimize E ((Y — (aX + b))2).

In the simplest case, if E(X) = E(Y) = 0 and Var(X) = Var(Y) = 1, we get

a = corr(X,Y) b=0,

hence the best linear predictor of Y given X is corr(X,Y)X.
Furthermore, the mean square error of the best linear predictor is

E((Y — corr(X,Y)X)?) =1 — (corr(X,Y))>

In general one can show that the best linear predictor of Y given X is

E(Y)+ 383 corr(X,Y)(X — E(X)),

and the mean square error of it is

Var(Y) (1 — (corr(X,Y))?).
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Proposition 5.16. With the correlation we can derive the direction of the linear depen-
dence of the related random variables, namely

(1) if corr(X,Y) = 0 (uncorrelated case), then does not exist linear dependence between
X andY.

(i) If corr(X,Y) > 0 (positively correlated case), then we have positive linear dependence
between X and Y. If X 1is bigger, then Y is bigger too, and the other way around.

(111) If corr(X,Y) < 0 (negatively correlated case), then we have negative linear dependence
between X and Y. If X s bigger, then Y is smaller, and the other way around.

Proposition 5.17. With the correlation we can derive the level of the linear dependence
of the related random variables as well, namely

(i) if corr(X,Y) is closer and closer to 1 or -1, then the error is closer and closer to 0,
(i1) if corr(X,Y) =1, then we P(Y = aX 4 b) = 1 with some constant a > 0 and b,

(iii) if corr(X,Y) = —1, then we P(Y = aX +b) = 1 with some constant a < 0 and b.

A case study: Mean-Variance portfolio analysis

The task is the following. We have a large capital, 1 million dollars that we want to invest
into stocks. On the market there are two kinds of stocks available let’s label them A and
B, and assume that they both cost 10$. How should you invest your money? What is
the portfolio with the largest expected return? What is the portfolio with the lowest risk?
Given a maximum acceptable level of risk what is the highest expected return we can
reach?

To solve these kind of problems, we can use Mean-Variance portfolio analysis, which
can be used for more complex markets as well.

On this simple market we can describe a portfolio, 7. by a constant ¢ € [0, 1] that
denotes the fraction of capital invested into stock A, then the rest is invested into stock
B. For example if

¢ =1, then m; contains 100 000 pieces of stock A

¢ =0.5, then mg 5 contains 50 000 pieces of stock A
and 50 000 pieces of stock B

¢ =0.9, then 79 contains 90 000 pieces of stock A
and 10 000 pieces of stock B

¢ =0, then my contains 100 000 pieces of stock B

Let S5 and Sp denote the future price of stock A and B respectively. Suppose they have
the following distribution

k |
P(Sa=k) ‘
We can find that

$ | 12$ | 168 k |

$ | 12$ | 20$
206 |02 P(Sp = k) |

310403

8
0

E(S4) =8-0.2412-0.6+16-0.2 = 12
B(Sp) =6-03+12-04+20-0.3 =12.6
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and
Var(54) = E(S3) — (E(S4))” = 6.4
Var(Sp) = E(S2) — (E(Sg))? = 29.64

We can see that stock B has better expected return than A, but it also has larger risk
(variance).
Let X, denote the gain, then by the linearity of the expectation

E(X.) =100 000 E(¢S4 + (1 — ¢)Sg) — 1 000 000
= 100 000(12¢ 4+ 12.6(1 — ¢)) — 1 000 000
= 260 000 — 60 000c

We can plot the expected gain as a function of ¢ (see, Figure . We can see that to achieve

260 &
250
240
230
220

210+

0.2 0.4 0.6 0.8 1.0

Figure 2: The expected gain of portfolio 7. in1000$

the most expected return ($260 000) we would have to invest all of our capital into stock
B. However in this case the risk involved is

Var(X,) = Var(100 000S3 — 1 000 000) = 2.96 x 10",

while investing all our capital into stock A yields a lower expected return, $200 000, but
also a lower risk

Var(X;) = Var(100 0005, — 1 000 000) = 6.4 x 10'°,

At this point we don’t have enough information to find the portfolio with the lowest
risk, that would require some description of how the prices of these two stocks are related
to each other.

Case 1. Independent companies (uncorrelated case).

Let’s assume that the companies’ performance does not affect each other, that is the
random variables Sy and Sp are independent (enough to assume to be uncorrelated). By
the properties of variance we have

Var(X,) = Var(100 000(cS4 + (1 — ¢)Sg) — 1 000 000)
= 100 000*(c* Var(S4) + (1 — ¢)* Var(Sp))
= 10"(29.64 — 59.28¢ + 36.04¢?).
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Figure 3: The risk of portfolio 7. in Case 1

Leaving out the constant multiplier 10'° we can plot the variance (see, Figure [3))
We can find the portfolio with minimal risk by finding the minima of the this function.
It is at ¢ = 0.82242 and then the expected gain and variance is

E(X(.82242) = 210 655, Var (X s2242) = 5.26349 x 10,

It is interesting to note that the least risky strategy is not the one where we invest all our
capital into the least risky stock.

Case 2. Competing companies (negatively correlated case).

In this case we assume that the two stocks are related to two companies that compete for
market share in the same sector. One could imagine Apple and Samsung both competing
for larger smart phone sales. In this case if the value of a stock rises then the value of the
other stock should decrease.

We assume that S4 and Sp are not indepenedent, and corr(S4, Sg) = —0.81. The
expected gain is the same:

E(X.) =100 000E(cS4 + (1 — ¢)Sg) — 1 000 000
= 260 000 — 60 000c.

However the variance changes:

Var(X,) = Var(100 000(cSa + (1 — ¢)Sg) — 1 000 000)
= 10" Var(cS4 + (1 — ¢)Sp)
= 10" (Var(cS4) + Var((1 — ¢)Sg) + 2 Cov(cSya, (1 — ¢)Sp)).

By the properties of covariance we get
Var(X,) = 10'°(29.64 — 81.68c + 58.44c%),

hence we can find the portfolio with minimal risk by finding the minima of the above
function. It is at ¢ = 0.6988 and then the expected gain and variance is

E(Xogoss) = 218 070,  Var(Xogoss) = 1.09952 x 10*.
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Case 3. Cooperating companies (positively correlated case).

In this case we assume that the two stocks are related to two companies that are in
the same sector but instead of competing they are complementing each other. Continuing
our example with smart phones if Apple sales more smart phones then those companies
that produce applications for the iPhone are benefit from this. In this case if the value of
a stock rises then the value of the other stock should rise too.

We assume that S4 and Sp are not independent, and corr(S4, Sg) = 0.81. The expected
gain is the same:

E(X.) = 100 000 E(cSa + (1 — ¢)Sp) — 1 000 000
= 260 000 — 60 000c

By the properties of covariance we get
Var(X,) = 10'°(29.64 — 36.88¢ + 13.64c%)

We can find the portfolio with minimal risk by finding the minima of the this function.
It is at ¢ = 1 and then the expected gain and variance is

E(X;) = 200 000, Var(X;) = 6.4 x 10"

In this case the safest portfolio is the one where we spend all of our capital on the least
risky stock.

30
25
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Figure 4: The expected gain and the variances in the three cases.

Finally, we can answer the last question as well, given a maximum acceptable level
of risk what is the highest expected return we can reach? For example in the Case 2
(negatively correlated case):

If our maximum acceptable level of risk is 2, namely we are looking for a portfolio with
variance 2 x 10, then we get ¢ = 0.574705, hence E(Xq s574705) = 225 518 (see, Figure 5.

Further readings:

e https://en.wikipedia.org/wiki/Value_at_risk
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Figure 5: The expected gain and the variance in Case 2.

e https://en.wikipedia.org/wiki/Expected_shortfall
e https://en.wikipedia.org/wiki/Modern_portfolio_theory

e https://www.buzzfeednews.com/article/kjh2110/the-10-most-bizarre-correlations
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5.1 Exercises

Problem 5.1. In a car factory they produce 1000 cars each week. They test the cars
before shipping them out to the car dealers, 2% of the cars fail the test and are never
shipped out. Find the expected number and the variance of faulty cars.

Problem 5.2. We keep rolling a 7 sided dice until we roll either 7 or a number less than
or equal to 2. Find the expectation and variance of the number of trials necessary.

Problem 5.3. In a casino we can choose between the following two games. We roll two
fair dices. In the first game we win HUF 18,000, if we roll two sixes. Otherwise we do
not win anything. In the second game we win HUF 3,000, if we roll the same numbers,
otherwise we do not win anything. Which game should be preferred?

Problem 5.4. We play a game in which we roll a fair dice. If we get 1, then the game is
over, our score is 1. Otherwise, we can decide to roll again or stop. Our score will be the
result of the last rolling. How should you play this game to maximize your expected score?

Problem 5.5. Suppose that the probabilities are 0.4, 0.3, 0.2, and 0.1, respectively, that
0, 1, 2, or 3 power failures will strike a certain subdivision in any given year. Find the
expectation and variance of the random variable X representing the number of power
failures striking this subdivision.

Problem 5.6. Let X be a discrete random variable such that E((X —1)?) = 10 and
E(X —2)%) =5. Find E(X) and Var(X).

Problem 5.7. Let X and Y represent the results of two independent dice rolling. Find
the variance of the random variables 3X —Y, and X +5Y — 5.

Problem 5.8. Suppose we assign values to the random variables X and Y based on a
fair dice roll in the following ways. Find the covariance and the correlation of X and Y in
each cases.

| Case (a) | | Case (b) |
diceroll (123456 diceroll | 123|456
X 112134156 X 2121414166
Y 615141321 Y 1131571911
| Case (c) | | Case (d) |
diceroll | 1]2[3[4]5]6 diceroll |1 |23 [4] 5 | 6
X 11113336 X 319(7|15] 4 10
Y 515141322 Y 1171514110 2

Problem 5.9. * We roll two dice. Denote the results by Z; and Z, . Determine the
covariance and the correlation of the random variables X = Z; + Zy and Y = 7, - Z,.

Problem 5.10. We investigate a company’s profit in a month, which is the excess of
revenue over cost. We assume that the revenue and the cost are two random variables.
The expected revenue is HUF 120 million with standard deviation HUF 30 million. The
expected cost is HUF 80 million with standard deviation HUF 20 million.

(a) What is the expectation and the standard deviation of the profit in the case when the
revenue and the cost are independent?
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(b) What is the expectation and the standard deviation of the profit in the case when the
revenue and the cost are not independent and their correlation is 0.87

Problem 5.11. * There are two stocks that you can buy for HUF 1,000 Ft each. A year
later the first stock can have a price of HUF 800, HUF 1,200 or HUF 1,600 with probability
0.2, 0.6 and 0.2 respectively. The second stock can have a price of HUF 600, HUF 1,200 or
HUF 2,000 with probability 0.3, 0.4 and 0.3 respectively. Let m, denote the future value
of the portfolio where we buy « € [0, 1] from the first stock and 1 — « from the second.

(a) Assume that the two stock prices are independent and find the expected return and
risk of m,,.

(b) Assume that the prices are distributed in the following way

w 1 2 3 4 5 6 7 8 9 10
Xi(w) | 800 | 800 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1600 | 1600
Zy(w) | 600 | 600 | 600 | 1200 | 1200 | 1200 | 1200 | 2000 | 2000 | 2000

Find the expected return and risk of 7.

(c) Assume that the prices are distributed in the following way

w 1 2 3 4 5 6 7 8 9 10
Xo(w) | 800 | 800 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1600 | 1600
Zo(w) | 2000 | 2000 | 2000 | 1200 | 1200 | 1200 | 1200 | 600 | 600 | 600

Find the expected return and risk of m,.

The final answers to these problems can be found in section [I0}

51



6 Conditional probability

In some cases, we have a background information about the outcome of a random experi-
ment. In this situation the probability of an event can change.

Example 6.1 (Motivational example). Someone rolls a dice. What is the probability that
the outcome is odd if the only information we have is

(i) the outcome is a prime number, or
(ii) the outcome is less then 57

Answer: The heuristic answers are the following. In the first case, we know that the
outcome cannot be 1, 4 or 6, so the probability is 2/3. And in the second case, we know
that the outcome must be 1,2,3 or 4, so the probability of getting an odd number is 1/2.
O

This idea, which we used is the base of the following definition.

Definition 6.2 (Conditional probability). The conditional probability of the event A
given the event B (i.e., if we know that the event B has occurred):

_ P(AnB)
P(A|B) = 5
provided that P(B) > 0.

We can interpret conditional probability as a fraction (see, Figure @

Q

Figure 6: Conditional probability is a fraction.

Proposition 6.3 (Properties of the conditional probability). Let event B be fized. The
conditional probability P(A | B) is a probability. Consequently all the properties of the usual
probability are valid in the conditional case.

Namely, e.g.:
(i) 0<P(A|B) <1,
(ii) P(A|B) =1—P(A|B).
Theorem 6.4 (Connection with the independence). The following are equivalent.

(i) A and B are independent.
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(ii)) P(A|B) = P(A).
(iii) P(B|A) =P(B).
Theorem 6.5 (Chain rule (product rule)). For any event Ay, ..., A,
P(AiNAyNn---NA,) =P(A) P(Ay| A1) P(A3| A1 NAy) - P(A, | AN NA, 1),
provided that P(A;N---NA,_1) > 0.
Proof: The right-hand side takes the form

P(A )P(AlmAg) P(AiNnAsnNA;) PANAN---NA,_1NA,)
YUP(A) P(A; N Ay) P(A;NAy--NA,_y)

O

Example 6.6. A bag contains 5 green and 7 yellow balls. We pull a ball 3 times without
replacement. What is the probability that the first ball is green, the second ball is yellow
and the third ball is green?

Answer:

Aq = the 1th ball is green.
Ay = the 2nd ball is yellow.
Az = the 3rd ball is green.

O

Theorem 6.7 (Bayes formula). If A and B are events such that P(A) > 0 and
P(B) >0, then

Proof: P(A|B) =552 and P(ANB)=P(A)-P(B|A). O

Definition 6.8 (Partition of ). It is a countable decomposition of € into pairwise
disjoint events,

i.e., it is a finite or infinite set of events {Bj, B, ...} such that

they are pairwise disjoint and their union is €2, i.e.,

B:NB;=0 if i#j, and | JB =0

An important remark is that if {Bj, By,...} is a partition of , then exactly one of
these events occurs. The simplest partition is an event with its complement.

Theorem 6.9 (Law of total probability). If {Bi, Bs,...} is a partition of Q such that
P(B;) >0, i € N, then for any event A, we have

P(4) = > P(A] Bi) - P(B).
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Proof: Using the o-additivity, we get
P(A) =) P(ANBy),

because the events A N B; are disjoint. Then using the chain rule, we get the right-hand
side. U

We have already used the Law of total probability, when we gave the expectation of
the hypergeometric distribution.

Example 6.10. Lets investigate the case of the hypergeometric distribution, namely sam-
pling without replacement. Take a bag with K green balls and N — K red balls. We pull
2 balls out without replacement. The question is what is the probability that the second
ball is green?

Answer: Let A be the event that the first ball is green and let B be the event that the
second ball is green. Then {A, A} is a partition. Using the Law of total probability, we get

K-1 K K N-K

N1l NTNZT W

K?—-K+KN K(N-
N(N—-1)  N(N -

P(B) =P(B|A)P(A)+P(B|A)P(A) =

1 JR—
1)
The same can be shown for the further pulls as well. O

Definition 6.11 (Conditional expectation). Let A be an event with positive probability,
and X be a discrete random variable. Then the conditinal expectation of X given the
event A is

E(X|A) =) kP(X =k[A).

Proposition 6.12 (Law of total expecation). If {Aj, As,...} is a partition of Q, then
for any discrete random variable X, we have

B(X) = > E(X |4 - P(4).

We have already used the Law of total expectation when we gave the expectation of
the geometric distribution. Indeed, let X be a geometric distributed random variable
with parameter p, thus the number of trials needed until the first success. Let A be the
event that the first trial is successful. Then {4, A} is a partition. Using the Law of total
expectation, we get

E(X) = E(X | A)P(A) + E(X | A)P(A) = 1-p + B(X | A)(1 — p).

Finally, as we have already discussed, the remaining trials until the first success, in the case
when the first trial is failure, has the same distribution as X, hence E(X | A) =1+ E(X).

Further readings:
e https://en.wikipedia.org/wiki/Law_of_total_probability
e https://en.wikipedia.org/wiki/Memorylessness

e https://en.wikipedia.org/wiki/Markov_chain
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6.1 Exercises

Problem 6.1. In an exam you have to speak about 1 topic out of 10 possible topics. There
are 4 easy and 6 difficult topics. One day there are 3 students, and they pull 1 topic with
replacement.

(a) What is the probability that everybody pulls an easy topic?

(b) What is the probability that the first student pulls an easy and the third one pulls a
difficult topic?

(c) What is the probability that exactly 2 students pull an easy topic?

(d) In the case when they pull the topics without replacement, which student has the
greatest probability of pulling an easy topic?

Problem 6.2. There is a city, where the number of men and women are the same. The
probability that a man is color-blind is 5%, and 2.5% for a women.

(a) What is the probability that a randomly chosen person is color-blind?

(b) What is the probability that a randomly chosen color-blind person is man?

Problem 6.3. You have to write a test, where for each question there are 3 possible
answers, but only one is good. Assume that you know the proper answer with probability
p. If you don’t know the right answer, you randomly choose one of the answers.

(a) What is the probability that you choose the right answer?

(b) During the checking, the teacher sees a good answer. What is the probability that you
knew it?

Problem 6.4. There is a packaging factory, where apples are packed. There are 4 produc-
ers who deliver apples to the factory. The fractions of the apples delivered by the producers
are 10%, 30 %, 40% and 20%. We sort the apples to 2 class, first-class and second-class.
For each producer 40%, 50%, 20% and 100% of the delivered quantity is first class.

(a) What is the probability that a randomly chosen apple is first class?

(b) What is the probability that a randomly chosen apple is delivered by the first producer,
if we know that the apple is second-class?

Problem 6.5. There is a serious sickness. 1% of the people suffer from this disease. We
have a test for it. The test has 99% confidence, which means that if the patient is sick,
then the test will be positive with probability 99%, and if the patient is not sick, then the
test will be negative with probability 99%. Assume that you test yourself and the result is
positive. What is the probability that you are sick, indeed?

Problem 6.6. * We play the following game. We roll a dice and then toss as many coins
as the result was at the dice rolling. We get as many points as the number of heads we
get. What is the expected number of gained points?

Problem 6.7. * (Randomized response) We have to make a query, but there is a embar-
rassing question in it which might not be answered honestly even if the query is anonymous.
For example have you ever make a crime, or do you sing in the shower.

The idea is the following. We change the question for this one: Toss a coin twice, and
answer the question depending on the result:
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two heads Is that true that you sing in the shower?
anything else | Is that true that you do not sing in the shower?

Because the result of the coin tossing is secret for us, we cannot know the right answer to
the original question.

Then we have 2000 people who answered this query, and we see 875 answer yes. Can
we derive the fraction of people who sing in the shower?

The final answers to these problems can be found in section [10]
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7 Continuous random variables

Distribution function

So far we only discussed random variables with countable (finite or countable infinite) many
possible values, and we called it discrete random variables. In this section we introduce
another kind of random variables, which are called continuous random variables. The most
important feature is that the set of possible values of a random variable is not countable.
Usually it is an interval.

Example 7.1 (Motivational example). Choose a (real) number randomly in the interval
[0,1] and denote it by X. What is the probability of X is less then 2/37

The problem is that X is not a discrete random variable, because the number of its
possible values is not countable. (The cardinality of the interval [0, 1] is not countable,
but continuum.) Hence, the probability distribution cannot be defined, and so we cannot
calculate probabilities like in the discrete case.

However, we can calculate the probability in question by introducing a special proba-
bility space.

Definition 7.2 (Geometric probability on an interval). We choose a number in the interval
[a,b]. Denote the interval [a, b] by €. Then the probability space (2,4, P) can be defined,
where the probability of choosing from a subset A C [a,b] is the length of A divided by
the length of [a,b], which is b — a, hence

_ Al 1A

P(A) = = —

where |A] is the length of A. In this case (€2, 4, P) called by a geometric probability space.

In some sense the geometric probability space is the continuous version of the classical
probability space, because we can calculate probability with the classical formula. However,
in this case, we should not count the cases as on a classical probability space, but measure
it by measuring the length in question.

Definition 7.3 (Uniform distribution). If we denote by X the randomly chosen number
on the interval [a, b], then we said that X has uniform distribution on the interval |a, b].

Answer to Example X is a random variable on the geometric probability space
(Q, A, P), where Q = [0, 1], and if we denote by A the event of X is less then 2/3, then we

get
Al 2/3 2
P(4) =1 =22 -2
(4) o 1 3

O

Example 7.4 (Motivational example). Choose a number randomly in the interval [0, 1]
and denote it by X. What is the probability of X is equal to 1/27?

Answer: X is a random variable on the geometric probability space (2, A, P), where
Q2 =10,1], and if we denote by B the event of X is equal to 1/2, then we get

B _0
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O
It is important to see that event B is an example for an event with probability O,
which is not the impossible event. This fact can be weird, but this is a common feature of
continuous random variables.
The same proof implies that for any arbitrary number z € R, we get

P(X =z) =0,

hence the distribution of X cannot be defined like in the discrete case. Instead of P(X = z),
calculate the probability P(X < z). This idea is the base of the following general definition
of a random variable and the so-called distribution function.

Definition 7.5 (Random variables and distribution function). If (2,.4,P) is a probability
space, then a function X : 2 — R is called a random variable, if for all z € R, we have
{we: X(w) <z} e A Then the function Fy :R — [0,1],

Fx(z)=P(X <2), zeR,
is called the (cumulative) distribution function of X.

Using the distribution function, we can calculate probabilities in general. The following
result can be used in the continuous case.

Proposition 7.6 (Calculation of probabilities of a continuous random variable using the
distribution function). If X is a continuous random variable, then for any constants a and
b, we have

Pla < X <b) = Fx(b) — Fx(a), Pla < X)=1- Fx(a), P(X <b) = Fx(b).
The distribution function is well defined in the discrete case as well, but we do not
discussed it in this course.

Example 7.7. Choose a number randomly in the interval [0, 1] and denote it by X, namely
X is a uniformly distributed random variable on [0, 1]. What is the distribution function
of X7

Answer: X is a random variable on the geometric probability space (2, A, P), where
2 = [0, 1], so the distribution function of X is

0, z < 0,
Fx(z)=P(X <z)=<¢ 2z, 0<2z<1,
1, 1<z

We can draw this function as well, see Figure

Density function

In the continuous case there is an other crucial object, which is called the density function.

Definition 7.8 (Continuous random variables and density function). If (Q,A4,P) is a
probability space, X : {2 — R is a random variable and there exists a function fx : R —
[0,00) such that

Fx(z) = /z fx(t)dt, x € R,

then fx is called the density function of X and we say that the random variable X is
(absolutely) continuous.
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Fx(2)

1 z

Figure 7: The distribution function of the uniform distribution on [0, 1].

Due to this definition we can see that we can calculate probabilities using the density
function as well. The probability of belonging to an interval is equal to the area under the
density function on the interval in question.

Proposition 7.9 (Calculation of probabilities using density function). If X is a continuous
random variable, then for any constants a and b, we have

Pla< X <b) = /b fx(®)dt, Pla<X)= /OO fx(t)dt,  P(X <b)= /b Fx(t)dt.

The definition of continuous random variables and density function seems to be com-
plicated. It is useful to investigate the analogical connection between the discrete and
continuous case. The density function is the continuous version of the probability distri-
bution. Recall Proposition [3.8f We know that for any discrete random variable X with
distribution pr = P(X = k)

b
P(aﬁXﬁb):Zpk.

k=a

a b k a b <
Figure 8: Analogical connection between discrete and continuous case.

Furthermore recall Theorem [3.5] We know that for any discrete random variable X
with distribution p; the following are valid.

(i) pr >0 forall k€ Z,

(ﬂ) ZkeZ pr = 1.

Theorem 7.10 (Properties of density function). For any continuous random variable X
with density function f the following are valid.
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(i) f(t) >0 forall te€R,
(i) [ (0 de = 1.

Due to these results we can imagine the density function as a mass distribution. We
have unit mass (e.g. 1 kg sugar ) and we distribute this mass continuously on the interval
of the possible values, and the amount of mass in each interval represents the probability

that the random variable is in this interval.

Proposition 7.11 (Connection between distribution and density function). If X is a

continuous random variable, then
!
Fle = fx.

Example 7.12. What is the density function of X, which is a uniformly distributed

random variable on [0, 1]?

Answer: We know the distribution function of X
0,

z < 0,
0<2<1,
1<z

Hence the density function fx is the derivative of F', namely

fx(t) =

{L 0<t<l,

0, otherwise.

We can draw this function as well, see Figure [9

fx(t)

Figure 9: The density function of the uniform distribution on [0, 1].

Expectation, variance

The expectation can be defined in the same way as in the discrete case. Indeed, the
expectation of a continuous random variable is a weighted average of the possible values.
Due to the fact that the range is typically an interval, the average is an integral-average,

and the weighting is based on the density function.

Definition 7.13 (Expectation). If X : Q@ — R is a continuous random variable with

density function fx : R — [0,00), then the quantity

B(X) = /Oo t fx(t)dt

o0

is called the expectation of X, provided that [ |¢|fx(t)dt < oco.
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After the definition, all of the results and heuristics learned in the discrete case are
valid.

Proposition 7.14 (Expectation of a function of a continuous random variable). Let g :
R — R be a function. If X : Q — R s a continuous random variable with density
function fx, then

B(x) = [ o)

—00

Proposition 7.15 (Linearity of expectation). Let X and Y be random variables whose
expectations exist and finite, further let a,b € R be arbitrary constants. Then

E(aX +0Y) = a E(X) + b E(Y).

Definition 7.16 (Independence of random variables). The random variables X and Y
are called independent if for any = € Z and y € Z, the events {X <z} and {Y <y}
are independent.

Proposition 7.17 (Expectation of products of independent random variables). Let X
and Y be independent random variables whose expectations exist and is finite. Then

E(XY) = E(X)E(Y).

The definition and the properties of the variance are exactly the same as in the discrete
case.

Definition 7.18 (Variance). Let X be a random variable such that E(X) exists and
finite. Then the variance of X is defined by

Var(X) :=E (X — E(X))?).

Proposition 7.19 (Properties of variance). Let X and Y be random variables such
that their variances exist and are finite. Then

(i) Var(X) = E(X?) - (E(X))?,
(11) for any constants c¢,d € R, Var(cX + d) = ¢® Var(X),
(11i) Var(X £Y) = Var(X) + Var(Y) £ 2Cov(X,Y).

Finally, a summary is listed to emphasize to analogical connection between the discrete
and the continuous case, see Figure [10]

Further readings:

e https://en.wikipedia.org/wiki/List_of_probability_distributions
e https://en.wikipedia.org/wiki/Integral

e https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)

e https://en.wikipedia.org/wiki/Non-measurable_set
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If X is a discrete random variable with dis-

tribution py, k € Z:

If X is a continuous random variable with

density function f(t), t € R:

pr>0 and ), pp=1.
Range: X € {k € Z : p;, > 0}.

Pla< X <b) =33,
E(X) = Zk k py.

f(t)>0and [ f(t)dt =1.
Range: X e {t e R: f(t) > 0}.
Pla < X <b)= [’ f(t)dt.
E(X) = [Z .t f(t)dt.

E(X?) = 5, K pi. B(X?) = [ ¢ f(#)dt.

Figure 10: Summary of the analogical connection between the discrete and the continuous
case.

7.1 Exercises

Problem 7.1. Consider an investment with initial capital $900. The future value of this
investment is random, denote it by X in thousand of dollars. We know the density function
of X, which is the following

t, 0<t<l,
flt) =< c(2—-1), 1<t<2,
0, otherwise,

where ¢ is an unknown parameter.
(a) Determine the value of ¢, such that f is a density function. Plot the density function.
(b) What are the possible values of X7

¢) What is the probability that the future value is at least $15007

e) Based on these results, is this investment valuable or not?

(
(

)
)
()
(d) What is the expectation of X7 What is the standard deviation of X7
)
) * Determine the distribution function of X, and plot it.

(g) * Determine the value of ty, such that P(X > ¢y) = 0.9.

Problem 7.2. Consider the previous problem, but with the following density function:

(a)
£ = c, 0<t<2,
1 0, otherwise,

(b)

ct, 0<t <2,
1) = { 0, otherwise,
(c)
c, 0<t<1,
flt)=¢9 —ct+2c, 1<t<2,
0, otherwise,
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2c, 0<t<1,
fit)y =< ¢ 1<t<2,
0, otherwise,
()

ct?, 0<t<2,
1) = { 0, otherwise.

Problem 7.3. * Let’s denote by X a continuous random variable with uniform distribution
on the interval [a, b]. It means that X is randomly chosen number in the interval [a, b].

(a) Determine the distribution function and plot it.
(b) Determine the density function and plot it.
(c) Calculate the expectation.

Problem 7.4. We investigate the corn production in Hungary. We assume that the pro-
duction has uniform distribution on the interval [3.5,5.5] in million tons. If the production
is greater then the market price is lower, so we assume that if the production is z, then
the market price of a ton of corn is 100 — 10z in thousand of forints.

(a) Denote by X the corn production in million tons. What is the density function of X7
What is the probability that X is greater then 5 million tons. What is the expectation
of X7 *Determine the value of to, such that P(X > ¢y) = 0.9.

(b) Denote by Y the market price of a ton of corn in thousand forints. What is the
probability that Y is less than 50 thousand forints. What is the expectation of Y7

(¢) * Denote by Z the value of the corn production in billion forints. What is the expec-
tation of Z7

Problem 7.5. Let’s investigate the arrivals of the customers in a shop. Denote by X the
time between two arrivals. We know that the expectation of X is 6 minutes, and assume
that X has exponential distribution with parameter A\, which means that

e M t>0
t — ) - bl
/) {0, t<0.

(a) Determine the value of the parameter A, such that the expectation of X is 6 minutes.

(b) What is the probability that X is greater then 10 minutes?

(c) What is the probability that X is between 5 and 10 minutes?
)

(d) *What is the probability that the next customer comes after at least 10 minutes, if we
know that the previous one came before 1 hour?

The final answers to these problems can be found in section [10}
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8 Normal distribution

There is a notable continuous distribution, which plays a crucial rule in the theory and in
applications of probability.

Definition 8.1 (Normal distribution). If X is a continuous random variable with a

density function
1 _-m)?
fx(t) = e 27, teR,

vV 2mo?

where p € R, o > 0, then we call X a normally distributed (or Gaussian) random
variable with parameters (u,0?). Notation: X ~ N(u,o?).

Proposition 8.2 (The meaning of the parameters). If X ~ N(u,c?), then
E(X) =ypu, Var(X) = o°.

The meaning of the parameters can be seen by investigating the density function.
The parameter p is connected to a linear transformation of the density function. The
parameter ¢ describes the shape of the density function, see Figure [11].

H u=0,0°=5
out[7]=
- p=0,0%=0.2

— u=-2,0%=1

4
Figure 11: The meaning of the parameters.

We have a special element in the family of normal distributions.
Definition 8.3 (The standard normal distribution). In the case of p =0 and o = 1, that
is if
o(t) = e 2, teR,

7 has standard normal distribution.

The density function of the standard normal distribution sometimes called by the bell
curve, see Figure [I2] and it is traditionally denoted by .

If we are working with normal distributions, we have a problem with calculating prob-
abilities. The problem is that the integral

1 2
e~ Tdt

P(agZSb):/abgo(t)dt:/ab

2
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Figure 12: The bell curve.

can not be calculated explicitly. Instead of the density function, we use the approximated
values of the distribution function. The distribution function of the standard normal
distribution is conventionally denoted by @,

D(2) =P(Z < z2), z e R.

3 2 1 1 2 3

Figure 13: The distribution function @ of the standard normal distribution.

Proposition 8.4 (Properties of @). The function @ is a continuous and strictly monotone
increasing, and
D(—2z)=1—-P(z), zeR.

Proposition 8.5 (Calculating probabilities with the distribution function).
Pla < Z <b) =®(b) — &(a), a,b e R,
P(Z<b)=&(b), beR,
Pla<Z)=1-9(a), acR.

We have already discussed how we can calculate probabilities connected to the standard
normal distribution. In the general case, we use the method of standardization.

Proposition 8.6 (Standardization). Let be X ~ N (u,0?). Then the random variable

is the standardization of X, which has standard normal distribution.
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Further readings:
e https://en.wikipedia.org/wiki/Normal_distribution
e https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss

e https://en.wikipedia.org/wiki/Gaussian_integral
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8.1 Exercises

Problem 8.1. There is a machine in the milk factory which fills the 1 litre milk box
automatically. This machine does not work perfectly, the amount of the milk in a milk box
has normal distribution with an expected value of 1000 ml and a standard deviation of 10
ml.

(a) What is the probability that the amount of the milk in a milk box is greater then 1010
ml?

(b) What is the probability that the amount of the milk in a milk box differs only with up
to 20 ml?

(c) Give an interval (the interval, which is around the expectation symmetrically) such
that the amount of the milk in a milk box is in this interval with probability 95%.
Namely, find the value of d such that P(u —d < X < p+d) = 0.95.

Problem 8.2. The intelligence quotient (IQ) is a score derived from several tests de-
signed to assess human intelligence. These tets are constructed to assess IQ in a normal
distribution with an expected value of 100 and a standard derivation of 15.

(a) What is the probability that the 1Q) is between 90 and 1207
(b) What is the probability that the IQ is at least 1317

(c) Give an interval (the interval, which is around the expectation symmetrically) such
that the IQ is in this interval with probability 95%.

Problem 8.3. Given a random variable X having a normal distribution with p = 50
and ¢ = 10, find the probability that X assumes a value between 45 and 62.

Problem 8.4. Given a normal random variable with =40 and ¢ =6, find the value
of x that has

(a) P(X <z)=0.45;
(b) P(X > z) = 0.14.

Problem 8.5. A certain type of storage battery lasts, on average, 3.0 years with a
standard deviation of 0.5 year. Assuming that battery life is normally distributed, find
the probability that a given battery will last less than 2.3 years.

Problem 8.6. In an industrial process, the diameter of a ball bearing is an important
measurement. The buyer sets specifications for the diameter to be 3.0 £20.01 cm. The
implication is that no part falling outside these specifications will be accepted. It is known
that in the process the diameter of a ball bearing has a normal distribution with mean
= 3.0 cm and standard deviation o = 0.005 cm. On average, how many manufactured
ball bearings will be scrapped?

Problem 8.7. A lawyer commutes daily from his suburban home to his midtown office.
The average time for a one-way trip is 24 minutes, with a standard deviation of 3.8 minutes.
Assume the distribution of trip times to be normally distributed.

(a) What is the probability that a trip will take at least half an hour?
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(b) If the office opens at 9:00 A.M. and the lawyer leaves his house at 8:45 A.M. daily,
what percentage of the time is he late for work?

(c) If he leaves the house at 8:35 A.M. and coffee is served at the office from 8:50 A.M.
until 9:00 A.M., what is the probability that he misses coffee?

(d) Find the length of time above which we find the slowest 15% of the trips.
(e) *Find the probability that 2 of the next 3 trips will take at least half an hour.

The final answers to these problems can be found in section [10}
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9 Approximation to normal distribution

It is mentioned before that normal distribution plays an important role in the theory and
in the applications of probability as well. The reason is that in many situations when the
outcome of a random experiment depends on a lot of small random effects, basically the
outcome is equal to the sum of these random variables, then the distribution of the result is
close to a normal distribution. This means that we can approximate the original, typically
unknown distribution with a normal distribution, and the approximation is better if there
are more summands. This approach is covered by the de-Moivre-Laplace and the central
limit theorem which are presented in this part.

Example 9.1 (Motivational example). We toss a coin 10 times. What is the probability
that the number of heads will be between 4 and 67

Answer: We can solve this problem. Denote by X the number of heads, then X ~
binom(n, p), with n = 10 and p = 1/2, hence we get

P(4< X <6)

> P(X =k)=P(X =4)+P(X =5) +P(X =6)

6
k=

(140> 727+ (150> 1/2)°+ (160) (1/2)" = 0.6563.

N

O

Example 9.2 (Motivational example). We toss a coin 1000 times. What is the probability
that the number of heads will be between 480 and 5207

Answer 1.: We can solve this problem in the same way as before. Indeed, if X = number
of heads, then X ~ binom(n, p), with n = 1000 and p = 1/2, hence we get

520 520

P(480 < X <520)= » P(X =k)= > (10130) (1/2)1000,

k=480 k=480

O

However, this is difficult to calculate and impossible to solve with a simple calculator.

Using a computer one can derive the exact answer, which is 0.8052. It would be good if we

could calculate or approximate at least this probability in an easier way. The next result
can help us to solve this problem.

Theorem 9.3 (De Moivre-Laplace theorem). Let S, ~ binom(n,p). Then we have for all
a,be RU{too}, a<b

lim P(a < S, <b)=Pa < X <),

n—oo

where X ~ N (u,0?), with

w=E(S,) =np and o =D(S,) = vnp(l—Dp).

As a consequence, we can give an approximate answer for probabilities P(a < S, < b)
using the de-Moivre-Laplace theorem, if n is large enough (e.g. if n > 100 is a good rule
of thumb).
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Answer 2.: Denote by S,, = the number of heads, then S,, ~ binom(n, p), with n = 1000
and p = 1/2, hence using the de-Moivre-Laplace theorem, because n is large enough
(n > 100), we get

P(480 < S, <520) =~ P(480 < X < 520),

where X ~ N (u,0?), with u = E(S,,) = np = 500 and D(S,,) = v/np(1 — p) = 15.81.
P(480 < X < 520) = P(—1.27 < Z < 1.27) = 26(1.27) — 1 = 0.796.

O
We can see, that the approximated solution (0.796) is close to the real one (0.8052).
To illustrate the accuracy of the approximation, we plot the binomial distribution with

parameter n = 10 and n = 1000, and the density function of the corresponding normal
distribution, see Figure [14] and Figure [L5]

0.25[
0.20+
0.15+
0.10+

0.05]-

0 2 4 6 8 10

Figure 14: The distribution of binom(n, p) with n = 10 and p = 1/2 (blue) and the density
function of A(p, 0?) with =5 and o = 1.581 (red).

The de-Moivre—Laplace theorem is a special case of the following so-called central limit
theorem, which can be used in a more general case.

0.025 -

0.020

0.015
0.010}

0.005 -

460 480 500 520 540

Figure 15: The distribution of binom(n,p) with n = 1000 and p = 1/2 (blue) and the
density function of N (p,0?) with = 500 and ¢ = 15.81 (red).
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Theorem 9.4 (Central limit theorem). Let be X1, Xo,... a sequence of independent and
identically distributed random variables with finite standard deviation and let S, := X; +
-+ + X,,. Then we have for all a,b € RU{+o0}, a <b

lim P(a < S, <b)=P(a <X <),

n—oo

where X ~ N (u,0?), with
w=E(S,) and o =D(S,).

Using the properties of the expectation and the variance, we can express the above
quantities with the common expectation E(X) and common standard deviation D(X).
Indeed,

E(S,) =EXi1+ -+ X,) =E(Xy) +--- + E(X,) = nE(X),

and
Var(S,) = Var(X; + -+ + X,,) = Var(X;) + - - - + Var(X,,) = n Var(X),

D(S,) = /Var(S,) = v/n Var(X) = v/nD(X).
As a consequence, we can give an approximate answer for probabilities P(a < S, < b)
using the central limit theorem, if S,, is a sum of independent and identically distributed
random variables and if n is large enough (e.g. if n > 100 is a good rule of thumb).

The de-Moivre—Laplace theorem is a special case of the central limit theorem if the
common distribution of X; is Bernoulli and hence §S,, is a binomial distributed variable.
The strength of the central limit theorem is that we do not have to know the distribution
of the summands to approximate probabilities connected to the sum. It is enough to know

the expectation and the standard deviation. To illustrate this result, we plot the case if
X has uniform distribution on the interval [0,1] with n =2 and n = 4, see Figure

and Figure [I7

1.0:—
0.8}
0.6}
0.4:—
02

0.5 1.0 1.5 2.0

Figure 16: The density function of Sy (blue) and the corresponding normal distribution
(red).

Example 9.5. Consider a certain type of insurance at an insurance company. We know
that the expected value of the amount of loss is $300 and the standard deviation is $50,
but we do not know the distribution of it. If the number of contracts with loss is 100,
what is the approximate probability that the total amount of losses is between 29 and 31
thousand of dollars?
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Figure 17: The density function of S; (blue) and the corresponding normal distribution
(red).

Answer: Denote by X the amount of a single loss. Then E(X) =300, D(X) =50 and
S100 = X1 + ... Xq00. Hence using the central limit theorem, we get
P (29000 < Sjpp < 31000) ~ P(29000 <Y < 31000),

where Y ~ N (p,0?) with g =nE(X) = 100-300 = 30000 and o = /nD(X) = 10-50 =
500. Finally, this probability can be calculated after standardization, so

P(29000 <Y < 31000) = 0.9545.

Further readings:
e https://en.wikipedia.org/wiki/Bean_machine

e https://en.wikipedia.org/wiki/Central_limit_theorem
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9.1 Exercises

Problem 9.1. We roll a fair dice 200 times. What is the approximate probability that
the number of sixes is between 30 and 407

Problem 9.2. There are 490 students on the microeconomics lecture. Every student
visits the lecture with probability 5/7 independent of each other. Find the approximate
probability that the number of attendees on a given day is between 338 and 362.

Problem 9.3. In a hotel there are 600 guests, but because of the fire alarm we have
to evacuate the building. The hotel manager ask nearby hotels for the number of rooms
they could provide for the night. Hotel A has 375, while hotel B has 255 open rooms.
The manager has no time to find a room for everyone, so he suggests that guests go to
whichever hotel they like more. Given that each guest chooses hotel A with probability
0.6, find the approximate probability that everyone can find a room in the first hotel they
visit.

Problem 9.4. We want to optimize train travel between Chicago and Los Angeles. We
want to offer two trains departing form two different stations in Chicago. We think that
1000 people would want to use our trains and each of them would choose between the two
options with equal probability. Choose the carrying capacity k& for the trains in a way
that the approximate probability of a traveller missing the train because there is no seat
available is less than 0.01.

Problem 9.5. An insurance company has 10 000 contracts. Each of the contract is asso-
ciated with a loss with probability 1%, independently in a certain year. Denoted by Z the
number of contracts with loss. What is the approximate probability that Z is between 85
and 1157 Find the value of ¢ such that P(Z > ¢) = 0.1.

Problem 9.6. There is an elevator at the dorm with a maximum capacity of 800 kg.
What is the approximate probability that 10 people cannot use this lift, if we know that
the weight of a person has expectation 80 kg and standard deviation 15 kg?

Problem 9.7. * A statistician wishes to examine p, the ratio of smokers in the population
of Budapest. She devises the following method: choose n person to ask about their smoking
habits with everyone being equally likely to be selected, then use p’ = k/n as an estimate
of p where k is the amount of smokers among the survey participants. Find a lower bound
for n such that the estimate p’ is at most 0.005 off with probability at least 0.95.

The final answers to these problems can be found in section 10}
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10 Final answers and solutions to the exercises

Final answers to the Exercises 1.1
Problem 1.1. 7!

Problem 1.2. 4!; 3!; 4% 43
Problem 1.3. 5!; 2-4!

Problem 1.4. 3,9—'2,

Problem 1.5. ‘2%; g—:

Problem 1.6. #1,'3,

Problem 1.7. 123
Problem 1.8. 6

Problem 1.9. (g)

Problem 1.10. (%); 31-30-29

Problem 1.11. (552)
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Final answers to the Exercises 2.1

Problem 2.1. 1. 1%'

b

3
6

Problem 2.2. A: Z; B: 22° .

3
Problem 2.3. A: % S22 Q - F: 2

N
w)
[\

1— 654 [ 3. R 1—2—2

B
Problem 2.4. A: L: B: % (C: &34, Rt 55
B

Problem 2.5. A: 6%; 5 6:543. .1 — 6343, R, 3. F: 1 — g—i

64 y 64>

3. 5 B) B G) g () p GG
Problem 2.6. A: oF B: ) C:1 ()’ D: 2 E: Bk F: ©)

Problem 2.7. A: ;42) B: &10°4. ¢ 138, . 133
¢ PR L @ | e
(%) (%)

Problem 2.8. A: %; B: 3. C Z

Problem 2.9. (a) 55; (b) 5; (c) =
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Final answers to the Exercises 3.1

Problem 3.1. (a) P(X = k), k € {1,...,6}, namely the discrete uniform distribution on
the set {1,...,6}.
(b) P(Y = k), k € {1,...,6}, namely the discrete uniform distribution on the set

{1,...,6}.
() Z=X+Y
kl2]3[4|5]6[7[8]9]10]11]12
P(Z=k) |5 5| 3 |35 |5 |35 |3 |53
(d) Z =max{X,Y}
kl1]2]3]4]5]6
_ 1 3 5 7 9 1T
P(Z=Fk) 5% |3 |3 |33 5%
(e) Z =min{X,Y}
kl1]2]3]4]5]6
_ 1T 9 7 5 3 1
P(Z=Fk) 5% |3 |3 | 3|35
(f) Z = (X —Y)
kO] 1[4]9]16]25
P(Z=F) |35 |3 | 3 |3 | 3 | %

Problem 3.2. Denote by X the number generated by rolling this modified dice.
k|1]4]|5]6
PX=K[515[5]

1
6

Problem 3.3. Denote by X the number of tails shown. Then X ~ binom(20, 0.5), namely

()
P(X:k'):ﬁ, kE{O,l,,QO}
Problem 3.4. This can be described by a classical probability space, where || = 3! = 6.
So the distribution of X is the following.
k|l0]1]3
PX=K 151513

Problem 3.5. Denote by X the number of yellow balls drawn. In the first case, when we

put the balls back: X ~ binom (5, 1—72>

In the second case, when we don’t put the balls back: X ~ hypergeo(13,7,5).

klo|1]2
Problem 3.6. PX = &) % ‘ % ‘ %
k|l o | 1] 2|3
Problem 3.7. 5 e 130,06 [0.29 | 0.44 | 0.21
k| 0| 1000 | 3000 | 9000
Problem 3.8.
Px=K121 5 [ % | %
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Final answers to the Exercises 4.1

Problem 4.1. Denote by X the number of winning tickets. Then X ~ binom(6,0.4).

P(X =4) = (2)0.44 - 0.6 E(X) =24

Problem 4.2. Denote by X the number of throws. Then X ~ geo(0.5), so E(X) = 2.
Denote by Z the amount of earnings. Then we should pay E(Z) Ft, which is the fair price
of the game. Using that Z = 100X, we get

E(Z) = E(100X) = 100 E(X) = 200.
Problem 4.3. Denote by X the number of tests needed. Then X ~ geo(0.15).

P(X = 5)

(1 —0.15)*-0.15 = 0.85* - 0.15 ~ 0.0783.

Denote by Z the total cost of the tests. Then Z = 10000.X, so the expected cost is

100
E(Z) = E(10000X) = 10000 E(X) = 10000 - = ~ 66667.

Problem 4.4. Denote by X the number of stop for a light. Then X ~ binom(5,0.6).
Denote by Z the amount of delay in seconds. Then Z = 10X, so

E(Z) = E(10X) = 10E(X) = 10 - 3 = 30.

bt

P(Z = 30) = P(10X = 30) = P(X = 3) = (3

)0.63 - 0.42.

Problem 4.5. Denote by Z the amount of earnings. Then the distribution of Z is the
following.

k100 ]300
PZ=k[ 5% 5% %
Then we should pay E(Z) Ft, which is the fair price of the game.
F(Z) = 100 = +30- 2 ~ 10.56
B 36 36

Problem 4.6. Denote by Z the amount of earnings. Then the distribution of Z is the
following.
k | 500,000,000 | 2,000,000 | 300,000 | 2,000 | 0
5) (85 5) (85 5Y) (85 85
P(Z =k 1 (4)(1) (3)(2) (2)(3) @
( ) (950) (950) (950) (950> (50

L () (%)
E(Z) = 500,000,000 - -5 + - - - + 2,000 - ~555~ ~ 319.36.
(5) (5)
Problem 4.7. Denote by Z the amount of earnings. Then the fair price of this game is
E(Z).

©

2 1
E(Z) =250 - G -+ 1000 - 6= 250.

Problem 4.8. Denote by Z the amount of earnings. Then the fair price of this game is
E(Z).

1
E(Z) = 54,000 - i 250.
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Problem 4.9. Denote by X the number of attempts needed. Then X ~ geo(0.17), so
E(X) =12 ~5.88.
Denote by Z the amount of time to finish the map (in minutes). Then Z = 10X, so

1000
B(Z) = E(10X) = 10E(X) = —— ~ 583,

6 6
P(Z <60) =P(10X <60) =P(X <6) =) P(X =k =) 08017~ 0.67.
k=1 k=1

Problem 4.10. Denote by X the number of popcorns needed. Then X ~ binom(100, 0.2).

35 35 100
HX§3®:§:HX:Jj:§:(k>0ﬁ'mw°kzO%,
k=0 k=0

so we have not a real problem. :)

Problem 4.11. Denote by Z the amount of earnings. Then the distribution of Z is the
following.

k|-32]64]16
CEUIRRE R
2 3 3
E(Z) = (—32)-§+64-§—|—16-§:22.
In the biased coin case the distribution of Z is changed.
k| -32 | 64 | 16
P(Z =k) ] 0.25%-(0.75)% | (5)0.25%-0.75 | (3)0.25-0.75?
E(Z) = 15.54.

Problem 4.12. Denote by X the number of upwards steps in the first 10 minutes. Then
X ~ binom(10, 0.5).

10

P(he will be back at the pub after 10 minutes) = P(X =5) = ( 5

>O§-055%024ﬂ.

Denote by Y the number of upwards steps in the first 20 minutes. Then Y ~ binom(20, 0.5).

20

P(he will be back at the pub after 20 minutes) = P(Y = 10) = (10

)QEWQEOzOJWZ

In the case when he prefers to go up the street with probability 2/3, then X ~
binom(10,2/3), and Y ~ binom(20, 2/3).

10

P(he will be back at the pub after 10 minutes) = P(X =5) = ( 5

)(2/3)5(1/3)5:3(11332.

20
10

Further reading: https://en.wikipedia.org/wiki/Random_walk

P(he will be back at the pub after 20 minutes) = P(Y = 10) = ( )(2/3)10-(1/3)10 ~ 0.0516.

Problem 4.13. https://en.wikipedia.org/wiki/Coupon_collector’,27s_problem
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Final answers to the Exercises 5.1

Problem 5.1. Denote by X the number of faulty cars. Then X ~ binom(n,p) with
n = 1000 and p = 0.02.

E(X)=np=1000-0.02=20  Var(X) = np(1 — p) = 1000 - 0.02(1 — 0.02) = 19.6

Problem 5.2. Denote by X the number of trials necessary. Then X ~ geo(p) with
p=23/T.

7 1—-p 28
E(X):—:g Var(X): p2 :E

Problem 5.3. Denote by Z; the amount of earnings in the first game, and Z5 in the second
game. Then

1
E(Z1) = 18000 P(Zy = 18000) = 18000 - 5= = 500,
6
E(Zs) = 3000P(Z; = 3000) = 3000 - = = 500.

Hence the expectation are the same. To choose between the games, we should calculate
the variances (risk).

E(Z}) =9 000 000,  E(Z3) =1 500 000,

Var(Z,) = E(Z}) — E*(Z;) =8 750 000,  Var(Z,) = 1 250 000.

In the first game we have more risk than in the second one, thus we should play the second
game instead of the first one.

Problem 5.4. Denote by Z4 our score using the following strategy. If we roll 3,4,5,6, then
we stop, if we roll 2, then roll again.

Z4 € {1,3,4,5,6}

P(Z4 =1) =P(roll 1 in the 1th round) + P(roll 1 in the 2nd round)
+ P(roll 1 in the 3rd round) +

Eé N S 0)

CDI'—‘ @Ir—‘

Similarly, one can get

hence

1+43+4+54+6
E(Z,) = - = 4.

Denote by Zp our score using the following strategy. If we roll 4,5 or 6, then we stop,
if we roll 2 or 3, then roll again.

Zp €{1,4,5,6}
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P(Zg =1) = P(roll 1 in the 1th round) + P(roll 1 in the 2nd round)
+ P(roll 1 in the 3rd round) + ...

P

121 [2\%1 12\
~i+55+(3) 6+"'_6<;(6)>
1( 1 )_1

6\1-2

4

Similarly, one can get

1
P(Zp=1)=P(Zp=4)=P(Zg=5)=P(Zp=6) = 7
hence L 44546
E(Zp) = — =4.

Thus, we have derived, that the strategy A and B has the same expected score. To
choose between the strategies, we should calculate the variances (risk).

Var(Z4) = 1.4, Var(Zg) = 3.5,
so we should choose the strategy A, because it is less risky then strategy B.

Problem 5.5.
EX)=1, EX? =2 Var(X)=1

Problem 5.6.
E(X —1)?) =E(X? —2E(X) +1, E((X —2)?) = E(X?) —4E(X) +4,
hence we have to solve this system

E(X?) -2E(X)—-9=0
E(X?) —4E(X)-1=0,

We get E(X) =4 and E(X?) = 17, which implies Var(X) = 1.

Problem 5.7. We known, that Var(X) = Var(Y) = % ~ 2.92. Using the properties of
the variance, we get

Var(3X —Y) = Var(3X) + Var(—Y) = 9 Var(X) + Var(Y) ~ 29.17.
Var(X + 5Y —5) = Var(X + 5Y) = Var(X) + Var(5Y) = Var(X) + 25 Var(Y) ~ 75.92.

Problem 5.8. We can use the identity Cov(X,Y) = E(XY) — E(X)E(Y).
Case (a).
E(X) =35 E(Y) =35,
1-6+2-5+3-4+4-3+5-2+6-1

E(XY) = : =9.33

Cov(X,Y) = —2.92.

Furthermore
D(X)=171, D(Y)=1T71,
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hence using the definition of the correlation, we get

Cov(X,Y)

corr(X,Y) = DX)D(Y)

=1,

so we have deterministic negative linear dependence between X and Y. Indeed, Y = 7— X.

Case (b). Cov(X,Y) = 5.33 and corr(X,Y) = 0.96, hence we have found a strong
positive linear dependence between X and Y.

Case (c¢). Cov(X,Y) = —1.75 and corr(X,Y) = —0.83, hence we have found a strong
negative linear dependence between X and Y.

Case (d). Cov(X,Y) = —0.44 and corr(X,Y) = —0.057, hence we have found a weak
negative linear dependence between X and Y.

Problem 5.9.
Var(X) = 5.84 Var(Y') = 80.07 Cov(X,Y) = 20.42 corr(X,Y) =0.95

Problem 5.10. Denote by R and by C' the revenue and the cost of the company. Then
we know that
E(R)=120 D(R)=30  Var(R) = 30> = 900

E(C)=80 D(C)=20  Var(C) = 20* = 400

and denote by P the profit, hence P = R — C.
In both cases, (a) and (b), the expectation will be the same.

E(P) = E(R - C) = E(R) — E(C) = 120 — 80 = 40

The variance will be different.
(a) The case of independence.

Var(P) = Var(R — C) = Var(R) + Var(C) = 900 + 400 = 1300

(b) The case of dependence. We know that corr(R,C') = 0.8.

Var(P) = Var(R — C) = Var(R) + Var(C) — 2Cov(R, C)
— 900 + 400 — 2 corr(R, C)D(R)D(C) = 1300 — 2- 0.8 - 30 - 20 = 1300 — 960 = 340

Problem 5.11. This is connected to the so-called Mean-Variance portfolio analysis, see
the case study.
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Final answers to the Exercises 6.1

Problem 6.1. Denote by A; the event that the ith student pulls an easy topic, ¢ = 1,2, 3.

a)
P(A; N Ay N Ag) = P(A)) P(4:) P(43) = (%)

because the events A;, Ay and Aj are independent. We know that, because they pull the
topics with replacement.
b)
P(A, N 75) = P(A)(1 — P(Ag)) = —. &
1 3 1 3 10 10

¢) Denote by X the number of pulled easy topics. Then X ~ binom(n,p) with n = 3

and p = 4/10. 2
e () ()5

d) They pull the topics now without replacement, so the events A;, As and Az are not
independent anymore. P(A;) = 4/10. Further, P(Ay) can be calculated by the law of total
probability.

3 4 4 6 4

P(Ay) = P(As | A1) P(A)) + P(Ay | A)) P(A)) = T

The same can be derived for P(A3), so the order doesn’t matter to getting an easy topic.

Problem 6.2. Denote by A the event that a person is color-blind, and denote by B that
a person is a man. Then we know that

P(B)=P(B)=05  P(A|B)=0.05 P(A|B)=0.0.25
a) By the law of total probability, we get
P(A) =P(A|B)P(B) +P(A|B)P(B) =0.05-0.5+0.025 - 0.5 = 0.0375
b) By the Bayes formula, we get

P(A|B)P(B) _ 0.05-0.5

P(B]4) = P(4A)  0.0375

= 0.67

Problem 6.3. Denote by A the event that we know the right answer, and denote by B
that we choose the right answer. Then we know that

P(A)=p P@A=1-p

— 1
P(B|A) =1 PB|A=3
a) By the law of total probability, we get
_ 1 1+2
P(B) = P(B|A)P(A) + P(B|A)P(A) = 1-p+ g (1—p) = —5—

b) By the Bayes formula, we get

P(B|A)P(A) 1-p  3p

P(A]B) = P(B) =T R
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Problem 6.4. Denote by B; the event that the apple delivered by the ith producer,
i =1,2,3,4, and denote by A that the apple is first class. Then we know that
P(B;) =0.1 P(By) =03 P(B3) =04 P(By) =02
P(A|By) =04 P(A|By) =05 P(A|B3)=02 P(A|By) =1
a) By the law of total probability, we get
4
P(A) =Y P(A|B;)P(B;) = 047
i=1
b) By the Bayes formula, we get
P(A|B))P(B;) (1—0.4)0.1
P(A) 1—-0.47
Problem 6.5. Denote by A the event that you are sick, and denote by B that the result
of the test is positive. Then we know that

P(B; | A) = =0.11

P(A) =0.01 P(A) =0.99
P(B|A)=099  P(B|A)=0.99
By the Bayes formula and the law of total probability, we get

_P(B|A)PA) _ P(B|A)P(A)
PALB) = =55 = b1 A P(A) + PB D) PO
0.99-0.01 05

= 0.99-0.01 + (1 — 0.99) - 0.99

Problem 6.6. Denote by Z the random variable of number of gained points. Then the
question is the value of E(Z). Denote by A; the event that we roll 7 with the dice. Then
1

Ay, ..., Ag is a partition, and P(4;) = ; forany i =1,...6.

7
B(Z] 4) = ;.

because the conditional distribution of Z given A; is binomial(z, %) Hence, we can use the
Law of total expectation
: i1 7
E(Z) =) E(Z|A)P(4) = 361
i=1 i=1

Problem 6.7. Denote by A the event that somebody sings in the shower. Then the
question is P(A). Denote by B the event that tossing two heads with the coins, and denote
by C' the event that somebody gives the answer yes to the question. Then we know

1 875

Furthermore, we known that
P(C|B) =P(A), P(C|B) = P(A).
Using the Law of total probability and the information above, we get
P(C)=P(C|B)P(B) +P(C|B)P(B)

=P(A)P(B) + P(A)P(B),
thus we get an equation for P(A). After ordering and substituting, we get

_PO)-(A-P(B)) _5
PO=""pm -1 &
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Final answers to the Exercises 7.1

Problem 7.1. (a) f is a density function if and only if f(¢) > 0 for all ¢ € R and
ffooo f(z)dz = 1.

f(t)

1 2 t

Using the formula for the area of a triangle (or calculating the integral), we get

/Z flx)dz =c.

So we derive that ¢ = 1, thus

t, 0<t<1,
fty=4 2-t, 1<t<2,
0, otherwise.

(b) The possible values of a continuous random variable are the numbers ¢, for which

f(t) > 0.
Hence now X € [0,2].
()

P(X >1.5) = /:: f(z)dzx = %

(d) E(X) =1, D(X) = 1//6.

(e) The expected income is $1000, the initial capital $900, so the expected profit is
$100, positive, hence this investment is valuable.

(f) We known that F(t) = [*_ f(z)dz.

If t <0, then F(t) =0, and if ¢ > 2, then F(t) = 1.
Further if ¢ € [0, 1], then

F(t) = /_toof(x)da: = /Ota:dx = g,

and if ¢ € [1,2], then

F(t):/_t f(x)dx:/olzvdx+/1t(2—x)dx:—g—l—Qt—l.

So finally,
0, t <0,
t2
F(Z): 772 0§t§17
—L 421, 1<t<2,
1, t>2,



to = v 0.2 = 0.447.

Problem 7.2. (a)

(a) c=1/2. (b) X €0,2]. (c) P(X < 1500) = 0.25. (d) E(X) =1, D(X) = 1/v/3. (e)
Valuable.

b

ga)) c=1/2. (b) X €[0,2]. (¢) P(X < 1500) = 7/16. (d) E(X) = 4/3, D(X) = v/2/3.
(e) Valuable.

()

(a) c=2/3. (b) X €10,2]. (¢) P(X <1500) =1/12. (d) E(X) =7/9, D(X) = é.
(e) Not valuable.

(d)

(a) c=1/3. (b) X €10,2]. (c) P(X <1500) =1/6. (d) E(X) =5/6, D(X) = g. (e)
Not valuable.

(e)

(a) c=3/8. (b) X €[0,2]. (c¢) P(X <1500) =37/64. (d) E(X) =3/2, D(X) =
(e) Valuable.

[\
ot

Problem 7.3. This problem is just for proving that the density and the distribution
function and the expectation of the uniform distribution are really the same as in the
formula sheet.

(a) The distribution function is F'(z) = P(X < z) by definition.
If 2 < a, then P(X <2)=0,s0 F(z) =0.
If z > b, then P(X < 2z)=1,5s0 F(z) = 1.
If 2z € [a,b], then because of it it a geometric probability, we get

z—a
F(z)=P(X <2z = :
() =P(X <2)="—"
So finally, we get
0, z < a,
F(z)=<¢ = a<z<b,
1, z > b,
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a b z

(b) We know that F’ = f, where f is the density function. Hence we get

1
= a < z<hb,
fz) = { 0, otherwise,
1
b—a
f(z)
a b 2z

Problem 7.4. (a) X has uniform distribution on [3.5,5.5], so

0.5, 3.5 <t <55,
1) = { 0, otherwise.

P(X >5) = /5 Sf(x)dr = 0.25.

P(X >ty) =0.9
(5.5 — 1)0.5 = 0.9
to = 3.7.

a+b 35455

EX) == 2

4.5.

(b) Y =100 — 10X, so
P(Y < 50) = P(100 — 10X < 50) = P(5 < X) = 0.25.

E(Y) = E(100 — 10X) = 100 — 10E(X) = 100 — 10 - 4.5 = 55.
(¢) Z = XY, so we get

E(Z) = E(XY) = E(X (100 — 10X)) = E(100X — 10X?) = 100 E(X) — 10 E(X?)
=100 - 4.5 — 10 - 20.58 = 244.2.
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Problem 7.5. Proof of that the density function of the exponential distribution is a real
density function:

We need [7_ f(z)dz = 1.

00 ) [e'S) —Ax ] > —Az 1
/;f@ﬁle MA%w:AA emh:A{fx:hﬂ:A(gng +X>:L

So we get that f is a density function for all A > 0. This is the so-called exponential
distribution with parameter .

(a) E(X) = 1/A, hence A\ = 1/6.

(b) .
HX>m:/-%@mze?zmg
10 6
(c)
10 1 1 10 5
P@<X<un:/ g¢ dr=eTV 4ot 2025
5

Or if you calculate the distribution function F', which is

1—e™  t>0,
F(t) = { 0, otherwise,

then you can calculate the probabilities with it as well:

10

P(X >10)=1— F(10) =¢ s,

-
°ls
at

=

1S
ol

PH<X<10)=F(10)—F()=1—e6 —(l—e6)=e" 6 +e
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Final answers to the Exercises 8.1

Problem 8.1. X = the amount of milk in a milk box in ml. X ~ N(u,c?), with g = 1000
and o = 10. (a)

X —pu - 1010 — 1000
o 10

P(X>1010):P< ):P(Z>1)

with Z = % which has standard normal distribution, hence
P(Z>1)=1—®(1) =1-0.8413 = 0.1587.

(b)

930 — 1000 X —p 1020 — 1000
P(980<X<1020)—P( <R )

10 o 10
=P(-2<Z<2)=3(2)—B(-2) =d(2) — (1 - B(2)) =
—20(2) — 1 =2-0.9772 — 1 = 0.9544.

P(pu—d< X <p+d) =095
1000 —d — 1 X—p 1 — 1000
p (1000 —d — 1000 _ p_ 1000 +d 1000\ _ o
10 o 10

d d
— < < —]=0.
P(10< <10) 0.95

(ORIEE
() (o[

1
d
2¢ <1—0> —1=0.95
d
o (E =0.975
d
0 1.96
d=19.6

Hence we get that the interval is [980.4, 1019.6], namely
P(980.4 < X < 1019.6) = 0.95.

Problem 8.2. (a) 0.6568.
(b) 0.0192.
(c) d = 29.4, so the interval is [70.6, 129.4].

Problem 8.3. 0.5764.

Problem 8.4. (a) z = 39.28.
(b) = = 46.48.
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Problem 8.5. 0.0808.

Problem 8.6.
P(X <2.99 cm or X > 3.01 cm) = 0.0456.

Thus on average, 4.56% of the manufactured ball bearings will be scrapped.

Problem 8.7. X = time for a one-way trip in minutes. X ~ N(u,0?) with g = 24 and

o =3.8.
(a) P(X > 30) = 0.0571.
(b) P(X > 15) = 0.9911.
(¢) P(X < 15 or X > 25) = 0.4051.
(d) P(X >2)=0.15 =z = 27.94.

(e) Y=number of trips of the next 3 trips will take at least 30 minutes. Then Y ~
binom(3,p), with p = P(X > 30) = 0.0571.
3\ o
PY =2) = 5)P (1 —p) = 0.0092.

Final answers to the Exercises 9.1

Problem 9.1. X = number of sixes, X ~ binom(n,p) with n = 200 and p = 1/6. Using
the de-Moivre-Laplace theorem, we get

P(30 < X < 40) ~ P(30 < Y < 40),

where Y ~ N (u,0?) with u = E(X) = np = 33.33 and 0 = D(X) = y/np(1 — p) = 5.27.
Hence this probability can be calculated after standardization, so

P(30 <Y < 40) = 0.6335.

Problem 9.2. X = number of attendees, X ~ binom(n,p) with n = 490 and p = 5/7.
Using the de-Moivre-Laplace theorem, we get

P(338 < X < 362) ~ P(338 < Y < 362),

where Y ~ N(u,0%) with o = E(X) = np = 350 and ¢ = D(X) = /np(1 —p) = 10.
Hence this probability can be calculated after standardization, so

P(338 <Y < 362) = 0.7699.

Problem 9.3. X = number of people who choose the hotel A, X ~ binom(n,p) with
n = 600 and p = 0.6. Of course, the number of people who choose the hotel B is 600 — X,
so we have to calculate the probability

P(X <375 and 600 — X < 255) = P((X <375 and 345 < X) = P(345 < X < 375).
Using the de-Moivre-Laplace theorem, we get
P(345 < X < 375) = P(345 <Y < 375),

where Y ~ N(u,0?) with 4 = E(X) = np = 360 and ¢ = D(X) = /np(1l —p) = 12.
Hence this probability can be calculated after standardization, so

P(345 <Y < 375) = 0.7887.
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Problem 9.4. X = number of people who choose the train A, X ~ binom(n,p) with
n = 1000 and p = 0.5. Of course, the number of people who choose the train B is
1000 — X ,;so we have to calculate

P(X <k and 1000 — X < k) = P(1000 —k < X < k)

such that the above probability is equal to 0.99. Using the de-Moivre—Laplace theorem,
we get
P(1000 — £ < X < k) = P(1000 — k <Y < k),

where Y ~ N (1, 0%) with p = E(X) = np = 500 and ¢ = D(X) = y/np(1 — p) = 15.81.
Hence this probability can be calculated after standardization, so

k —
P(1000—k§Y§k):q>( 500)

15.81

Finally, we have to solve the equation

k — 500
i) = 0.
( 15.81 ) 099,

which implies that & = 540.63, so at least 541 seats are needed.

Problem 9.5. P(85 < Z < 155) ~ 0.8683, t = 112.75.

Problem 9.6. X = the weight of a person. E(X) =80, D(X) = 15. Sjp = X1 + ... X0
Then using the central limit theorem (n = 10, so the approximation may be not so good),
we get

P(S10 > 800) ~ P(Y > 800),

where Y ~ N (i, 0%) with p = n E(X) = 10-80 = 800 and 0 = /nD(X) = v/10-15 = 47.43.
Hence this probability can be calculated after standardization, so

P(Y > 800) = 0.5.
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