10. Data Handling JPA
(JSR 338)-Hibernate

IENSIS
UNIVERSITY OF SZEGED

Vilmos Bilicki PhD
University of Szeged
Department of Software Engineering

UNIVERSITAS SCIENTIARUM SZEGED

o
S

Oveview

» JDBC
» JPA
» Hibernate

ITY OF SZEGED
ment of Software Engineerin

DIENSIS
ERS

UN
Depart

UNIVERSITAS SCIENTIARUM SZEGE

2017. 05. 10. Program systems development

Issues

Accessing the database from Java -
JDBC

ACID vs. Long Processes (Unit of Work?)
Relation vs. Object Oriented
Memory vs. Database

ITY OF SZEGED

NSIS
RS

UNIVE

UNIVERSITAS SCIENTIARUM SZEGEDIE

2017. 05. 10.

Peristence

Persitent object: it is saved on durable storage

Saving/Loading a part of object hierarchy

Into file (Object Serialization API)
Types (byte series)
References? Searching? Update? Security?

Object Oriented database

No need for conversion(object->relation)
The data handling is not efficient
New unstable technology
Relational Database
The object realtional mapping is painfull

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development 4

o
S

JDBC

» Platform and solution provider

Qv

W=

O3

W=

N

mLL]: . .

3 o Independent Java Application

> - -

B » A simple Java API for developers —

®- » JDBC driver manager

E; » Provider specific drivers Joec Dl

2- » Similar solution to that of ODBC | 1
QQ) (C) JDBC Driver] JDBC Driver JDBC Driver]

» The encryption of the data is the
duty of the proivdier

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

Program systems development

2- Estabilishing a JDBC connection
L]

N . .

%) Connection Pooling

o .
o> ConnectionPoolDataSource = S
25 interface

Y

> 1:X connection /T s O\
z . . .

> Using logical connection Cache of

PooledConnection objects

inseatad of physical one
It is transpartent for the

client

In mOSt Cases thiS iS ConnectionPoolDataSource API E Ezgisﬁi‘:la(lfonneclion
prOVided by the é object
application server DEC Driver

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

o
S

UNIVERSITY OF SZEGED

partment of Software Engineerin

De

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

JDBC objects

Connection

Statement

~ subclasses

Y

e

PreparedStatement

~ subclasses

o
%
o
3
%
[
2

Input to
PreparedStatement

CallableStatement

Input/Output of
CallableStatemer

Data types

executeQuery

|

getXXX

ResultSet

Program systems development

Statement

Simple expressions without parameters
String based SQL expression

executeQuery (
Simple query Select * from t
executeUpdate
INSERT
UPDATE
DELETE
CREATE TABLE
DROP TABLE
The return value is an intereger giving the number of affected rows
execute
It is applied when more than one answer is expected
Connection con = DriverManager.getConnection(url, "sunny", "");
Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table2");

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development 8

Prepared Statement

Is a sublclass of the Statement class
Precompiled SQL expressions
One or more parameters (IN)

One can use multiple methods for setting the IN
parameteres

It is more efficient than the simple statement (it is
precomplied)

It is shuold be used in the case of freqgeuently applied
queries

It could run multiple times, the parameteres are retained

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development 9

i Callable Statement

f We can use it for executing stored procedures
‘ﬁ; on server side.
2 supportsStoredProcedures()

2 getProcedures()

=

{? = call procedure_namel[(?, ?, ...)]}
IN parameters

OUT parameters
It should be registered
There not other way for handling the data

INOUT parameteres

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

2= Result Set
w The result of the prevous three statements
> In default scenarion it is not writeable and it can be
o iterated only once
oF The JDBC 2.0 API enables this
i The capabiliyt depends on the driver (eg.: postgresql)
@E getXXX(name or serial) method (select a, select *)
T getMetaData
= updateRow(), insertRow(), deleteRow(), refreshRow()
Z JDBC 2.0
= previous
L first
% last
‘|<’_c) absolute
c@ relative
W afterLast
% beforeFirst

Program systems development

Result set (JDBC 3.0)

Cursor:
TYPE_FORWARD_ONLY
TYPE_SCROLL_INSENSITIVE
TYPE_SCROLL_SENSITIVE

Paralell issues
CONCUR_READ ONLY
CONCUR_UPDATABLE

Holding:
HOLD CURSORS_OVER_COMMIT
CLOSE_CURSORS_OVER_COMMIT

Example:
Connection conn = ds.getConnection(user, passwd);
Statement stmt = conn.createStatement(
ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_READ _ ONLY,
ResultSet. CLOSE_ CURSORS_AT_COMMIT);

ResultSet rs = stmt.executeQuery(“select author, title, isbn from
booklist”);

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

con.setAutoCommit(false);
bError = false;
try
{
for(...)
{
if(bError)
{

break;

}

stmt.executeUpdate(...);
}
if(bError) { con.rollback(); }
else
{ con.commit(); }
|2
catch (SQLException SQLe)
{ con.rollback();
... } I/l end catch
catch (Exception e)
{ con.rollback();
... } I/l end catch

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Distribueted transactions

(JDBC Application)

L | 3
. DataSource API g logical logical
Tra nsa Ctlon manager(J TA) H Connection A; |Connection B

XAResource

. Application Server
JDBC driver:)

XADataSource —— —
XAConnection

transaction
manager

XAResource i Tonysicat i [onysicat
. . § XAConnection § XAConnection
Appllcat|0n Server XAD:lt:lSo;;:;;Ieé AlD XAD:nt:aSo;:\x;Ieé BID_

JDEC JDEC
Driver A Driver B
S 1
“-_.—-—"‘ "‘-_.—-—""
resource resource
manager manager
————er® ———

Program systems development

2 Isseues with JDBC
s » ORM
% Caching
> » Business logic
[Transactions

UNIVERSITAS SCIENTIARUM SZEGED

2017. 05. 10. Program systems development

2 ORM questions?

L]

N

g How should we store a persisted object?
o How can we describe the mapping metadata?
Zg How can we persist the inheritance hierarchy?

=-» ORM vs. Business logic?

-

What is the life cycle of the object?

Beyond the ORM what level of aggregation, query is
supported?

How to handle the assiociations?
Transactions?
Caching?

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

s ORM vs RDBM
§ Collections
% |dentity
>) Inheritance
[Navigation

UNIVERSITAS SCIENTIARUM SZEGED

2017. 05. 10. Program systems development

ORM benefits

Development cycle (CRUD - @Entity +
@Id)

Maintainabillity

Speed

Vendor independence

SIS
ITY OF SZEGED

DIEN
VERS

UNI

mm
O
L1l
N
n
=
)
rx
<
|_
pa
L
@)
%)
2
=
%)
Y
mm
=
Z
)

Java Persistence API

Java Community Program: JSR 317

Handling the entities (in the past EJB 2.x
< Entity Bean)
Lightweight persistent domain objects
Inheritance, polymorfic behaviour

ITY OF SZEGED

N
VERS

UNIVERSITAS SCIENTIARUM SlZJI%‘(%E[%IE SIS

2017. 05. 10. Program systems development

Field vs. Property access
Side effects (Field+)
Access(FIELD/PROPERTY)

Table @Table

Multiple tables @SecondaryTable
View

Replication

History

: Entity

*) @Entity + @Id
o @Embeddable
>

UNIVERSITAS SCIENTIARUM SZEGEDIE

2017. 05. 10. Program systems development

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Identity

Refernce vs. Databased
primary key

It iIs not recommended to
use database based key

It is recommended to use
database based key

Many diiferenct ID
geneartion solution

@Ild, @Embeddedld,
@IldClass

Inherited identity

@Entity

public class Employee {
@Id long empId;
String empName;

public class
String name;
long emp; //

DependentId {
// matches name
matches

of @Id attribute
name of @Id attribute and type of Employee PK

@Entity

@IdClass (DependentId.class)

public class Dependent {
@Id String name;

// id attribute mapped by join column default
@Id @ManyToOne Employee emnp;

}

@Embeddable

public class DependentId ({
String name;
long empPK;

}

// corresponds to PK type of Employee

@Entity
public class Dependent {
@EmbeddedId DependentId id;

// 1id attribute mapped by join column default
@MapsId("empPK") // maps empPK attribute of embedded id
@ManyToOne Employee emp;

!

2017. 05. 10.

Program systems development

Collections

Java.util.Map

Basic type, embedded (hashCode,
equelas)

@ElementCollection
@MapKeyColumn

@OneToMany, @ManyToMany
@MapKeydJdoinColumn

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

2017. 05. 10. Program systems development

Associations

(o)
Id "9.(00
Ne Address
Name Person_ID

Association(one- o
way/two-way) .
@O n eTOO n e parent parentchild child

(JoinTable, mappedBy)

id ~———>| parentid id

@OneToMany "
(JoinColumn, JoinTable Pt —

IENSIS
UNIVERSITY OF SZEGED

cname

i

)

L

o

5 , mappedBy) i

< @ManyToOne

% (J oln Ta b I e) author author_book book
3 @ManyToMany e [[
I%) (JOInTabIe, mappedBy) authorName * authorld bookName
2 Cascade (remove)

L ~———> many-to-many ———p

- orphanRemoval (null) oy

)

2017. 05. 10. Program systems development

One - to - one two way

Q

1L

O

L]

@Entity GEntity .

public class Employee ({ publlclclass Cubicle { .

private Cubicle assignedcCubicle; private Employee residentEmployee;
@OneToOne (mappedBy="assignedCubicle")

78 @OneToOne _ . public Employee getResidentEmployee () {
(—,_ public Cubicle getAssignedCubicle () { return residentEmployee;
> return assignedCubicle; }
L } public void setResidentEmployee (Employee employee) {
- public void setAssignedCubicle (Cubicle cul this.residentEmployee = employee;
E this.assignedCubicle = cubicle; }
¢« |
N !}
v.
=
=

Entity Emp loyee 1s mapped to a table named EMPLOYEE.
Entity Cubicle 1s mapped to a table named CURICLE.

Table EMPLOYEE contains a foreign key to table CUBICLE. The foreign key column 1s named
ASSIGNEDCUBICLE <PK of CUBICLE>, where <PK of CUBICLE> denotes the name of
the primary key column of table CUBICLE. The foreign key column has the same type as the
primary key of CUBICLE, and there 1s a unique key constraint on it.

Un

2017. 05. 10. Program systems development

gineering

UNIVERSITY OF SZEGED

partment of Software En

De

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

2017. 05. 10.

One - to — one one way

@Entity
public class Employee {
private TravelProfile profile;

@OneToOne
public TravelProfile getProfile() {
return profile;

}

public void setProfile (TravelProfile profile) {
this.profile = profile;

}

@Entity
public class TravelProfile {

}

Entity Employee 1s mapped to a table named EMPLOYEE.
Entity TravelProfile is mapped to a table named TRAVELPROFILE.

Table EMPLOYEE contains a foreign key to table TRAVELPROFILE. The foreign key column
1s named PROFILE <PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE>
denotes the name of the primary key column of table TRAVELPROFILE. The foreign key col-
umn has the same type as the primary key of TRAVELPROFILE, and there is a unique key
constraint on it.

Program systems development

One - to - many two way

@Entity
public class Employee {
private Department department;

gineering

Q
L
(O]
l-l-l.
N
GDLS @ManyToOne
| THN public Department getDepartment () {
o \:’ return department;
N
Y }
>'§£ public voild setDepartment (Department department) {
l:(/% this.department = department;
&)
W=)
> 2
>
< S @Entity
:g public class Department {
N private Collection<Employee> employees = new HashSet();

D

@OneToMany (mappedBy="department")
public Collection<Employee> getEmployees () {
return employees;

}

public void setEmployees (Collection<Employee> employees) {
this.employees = employees;
}
. } .
Entity Employee is mapped to a table named EMPLOYEE.
Entity Department is mapped to a table named DEPARTMENT.

Table EMPLOYEE contains a foreign key to table DEPARTMENT. The foreign key column is
named DEPARTMENT <PK of DEPARTMENT>, where <PK of DEPARTMENT> denotes
the name of the primary key column of table DEPARTMENT. The foreign key column has the
same type as the primary key of DEPARTMENT.

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

2017. 05. 10. Program systems development

Many - to - many two way

@Entity
public class Project {
private Collection<Employee> employees;

o
S

@ManyToMany
public Collection<Employee> getEmployees () {
return employees;

}

public void setEmployees (Collection<Employee> employees) |
this.employees = employees;

}

@Entity
public class Employee {
private Collection<Project> projects;

UNIVERSITY OF SZEGED

epartment of Software Engineerin

D

@ManyToMany (mappedBy="employees™)
public Collection<Project> getProjects() {
return projects;

}

public void setProjects(Collection<Project> projects) {
this.projects = projects;

}

e Entity Project is mapped to a table named PROJECT.

Entity Employee is mapped to a table named EMPLOYEE

There is a join table that is named PROJECT EMPLOYEE (owner name first). This join table
has two foreign key columns. One foreign key column refers to table PROJECT and has the
same type as the primary key of PROJECT. The name of this foreign key column is
PROJECTS <PK of PROJECT>, where <PK of PROJECT> denotes the name of the primary
key column of table PROJECT. The other foreign key column refers to table EMPLOYEE and
has the same type as the primary key of EMPLOYEE. The name of this foreign key column is
EMPLOYEES <PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the
primary key column of table EMPLOYEE.

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

2017. 05. 10. Program systems development

2= Inheritance

N

w The root class shoud be decorated in
§§ order to specify the persistence strategy
Lipe .

g One table per class hierarchy

s Special column for identification

One table for each subclass

Weak polymorfic behaviour (Union)
Join strategy only the own data properties
are stored in a table

Slow (many JOIN)

UNIVERSITAS SCIENTIARUM SZEGED

2017. 05. 10. Program systems development

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

2017. 05. 10.

Cascade operations

CascadeType.PERSIST : means that save() or
persist() operations cascade to related entities.

CascadeType.MERGE : means that related
entities are merged into managed state when the
owning entity is merged.

CascadeType.REFRESH : does the same thing
for the refresh() operation.

CascadeType.REMOVE : removes all related
entities association with this setting when the
owning entity is deleted.

CascadeType.DETACH : detaches all related
entities if a “manual detach” occurs.

CascadeType.ALL : is shorthand for all of the
above cascade operations.

Program systems development

Entity manager

The life cycle of the entities is managed by the
EM
Handled by the container

Automatic propagation
Transaction lifetime
Extenede

Handled by the application

The transaction should be handled dierctly @PersistenceUnit
EntityManagerFactory emf;
Not threadsafe

Few important methods

@PersistenceContext
EntityManager em;

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

persist()
flnd() @Stateless public class OrderEntryBean implements OrderEntry {
update() @PersistenceContext EntityManager em;
public void enterOrder (int custID, Order newOrder) {

remove() Customer cust = em.find(Customér.class, custID);

cust.getOrders () .add (newOrder) ;
merge() newOrder.setCustomer (cust) ;

em.persist (newOrder) ;

}

detach())

2017. 05. 10. Program systems development

o
S

4

UNIVERSITY OF SZEGED

epartment of Software Engineerin

D

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

New (transient): an entity is
been instantiated using the

States of the Entity

new if it has just
new operator, and it

is not associated with a persistence context. It
has no persistent representation in the
database and no identifier value has been

assigned.

Managed (persistent): a managed entity
instance is an instance with a persistent identity
that is currently associated with a persistence

context.

Detached: the entity instance is an instance
with a persistent identity that is no longer
associated with a persistence context, usually
because the persistence context was closed or
the instance was evicted from the context.

Removed: a removed entity instance is an
instance with a persistent identity, associated
with a persistence context, but scheduled for

removal from the database.

o

get()
set()
find()
iterate()
stb...

* Hatdssal van az 6sszes
session példanyra.

Atmeneti

save() Szemét
saveOrUpdate()

delete()

Allandé

evict()
close()*

clear()*
update()
saveOrUpdate()
lock(

Szemét

)

Levalasztott

2017. 05. 10.

Program systems development

Lifecycle

Database vs. Cache vs. Memory
load()

Creating an entity
save()/saveOrUpdate()

Removing an entity

Synchronization
merge(), refresh()

Refreshing

Detached entities
evict()

Managed entities

Loading a state

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

2017. 05. 10. Program systems development

Synchronization

At the end of the transaction the
persistence contetxt is going to be
synchronized

Other persistence context could also be
accessed: EntityManager joinTransaction

The enitity itself could be synchronized
with refresh

merge()
detach()

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

2017. 05. 10.

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Navigation

Navigation?
Java exact
Object graf admittance x.d.g.getZ();

SQL arbitrary:

N+1 select issue
We should minimalize the number of queries — join

We should know beforehead what we would like to
query

User
User join BI||Ing details select * from USER u where u.USER_ID = 123

select *

from USER u

left ocuter join BILLING_DETAILS bd on bd.USER_ID = u.USER_ID
where u.USER_ID = 123

Program systems development

3 Loading
g Lazy
oF Only proxy
£) Batch
:“wa,g More than one proxies are resolved
Eager
Loads all

UNIVERSITAS SCIENTIARUM

Program systems development

3= Concurency
[
N
> In the case of concurrent access the data is accessed from
o multiple threads simultaneously
%E Optimistic
Z r . . .
0 Optimistic locking assumes that multiple transactions can
3 complete without affecting each other, and that therefore
g transactions can proceed without locking the data resources

that they affect. Before committing, each transaction verifies
that no other transaction has modified its data. If the check
reveals conflicting modifications, the committing transaction
rolls back[1] (Hibernate prowdes two different mechanisms for
storing versioning information, a dedicated version number or a
timestamp.

Pessimistic

Pessimistic locking assumes that concurrent transactions will
conflict with each other, and requires resources to be locked
after they are read and only unlocked after the application has
finished using the data.

UNIVERSITAS SCIENTIARUM SZEGEDIE

2017. 05. 10. Program systems development

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

2017. 05. 10.

Locking levels

LockMode.WRITE acquired automatically when
Hibernate updates or inserts a row.

LockMode.UPGRADE acquired upon explicit user
request using SELECT ... FOR UPDATE on
databases which support that syntax.

LockMode.UPGRADE_NOWAIT acq1t_Jired upon
explicit user request using a SELECT ... FOR
UPDATE NOWAIT in Oracle.

LockMode.READ acquired automatically when
Hibernate reads data under Repeatable Read or
Serializable isolation level. It can be re-acquired by
explicit user request.

LockMode.NONE The absence of a lock. All objects
switch to this lock mode at the end of a Transaction.
Objects associated with the session via a call to
upddate() or saveOrUpdate() also start out in this lock
mode.

Program systems development

o
S

Bean validation
» Not only JPA eenity

= public class Contact implements Serializable {
Ca pablllty private static final long serialVersionUID = 1L;
@Id
. @GeneratedValue(strategy = GenerationType.AUTO)
} It IS part Of the private Long id;
@NotNull
WEB and EJ B protected String firstName;
. @NotNull
Conta|ners protected String lastName;

UNIVERSITY OF SZEGED

epartment of Software Engineerin

@Pattern(regexp="[a-z0-9!#§%&" *+/=2" ‘{|}~-1+(?:\\."
+'[2-20-9148%56" *+/=2" (| }~-1+)*¢"
) Rules COUId be +'(7:[a-20-9](?: [a-20-9-1*[a-20-9])2\\..)+[a-20-9] (?: [a-20-9-]*[a-20-9]) ?",

message='{invalid.email}")

ataChed to fieIdS protected String email;

) @Pattern(regexp=""\\(?(\\d{3})\\)?[- 12(\\d{3}) [12(\\d{4})$",
a n d p ro pe rtl eS message="{invalid.phonenumber}")
protected String mobilePhone;
@Pattern(regexp=""\\(?(\\d{3})\\)?[- 12(\\d{3})[- 12(\\d{4})$",

D

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

» Javax.validation.c . e
O n Stra i n S —_— gg:r:goral (javax.persistencé.TemporalType.DATE)
exte N d a b I e protected Date birthday;
. }
» Time+ sample+
value

2017. 05. 10. Program systems development

i Query language
s » Similar to the SQL but Object Oriented
£ Itenables the adressing of the nodes on

oject graph

UN
Depart

public List findWithName(String name) {
return em.createQuery(
"SELECT ¢ FROM Customer ¢ WHERE c.name LIKE :custName")
.setParameter("custName", name)
.setMaxResults(10)
.getResultList();

UNIVERSITAS SCIENTIARUM SZEGE

2017. 05. 10. Program systems development

o
S

Hibernate

Business Layer

Interceptor

A

Lifecycle — Persistent
Classes

Validatable —

UserType

A

UNIVERSITY OF SZEGED

epartment of Software Engineerin

D

Persistence Layer

SessionFactory
Session Transaction Query
Configuration
JNDI JDBC JTA
Hibernate API J2EE API

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

Program systems development

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Basics:

SessionFactory (org.hibernate.SessionFactory)

A threadsafe, immutable cache of compiled mappings for a single database. A factory for
Session and a client of ConnectionProvider, SessionFactory can hold an optional (second-
level) cache of data that is reusable between transactions at a process, or cluster, level.

Session (org.hibernate.Session)

A single-threaded, short-lived object representing a conversation between the application
and the persistent store. It wraps a JDBC connection and is a factory for Transaction.
Session holds a mandatory first-level cache of persistent objects that are used when
navigating the object graph or looking up objects by identifier.

Persistent objects and collections

Short-lived, single threaded objects containing persistent state and business function. These
can be ordinary JavaBeans/POJOs. They are associated with exactly one Session. Once the
Session is closed, they will be detached and free to use in any application layer (for example,
directly as data transfer objects to and from presentation).

Transient and detached objects and collections

Instances of persistent classes that are not currently associated with a Session. They may
have been instantiated by the application and not yet persisted, or they may have been
instantiated by a closed Session.

Program systems development

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Basics:

Transaction (org.hibernate.Transaction)

(Optional) A single-threaded, short-lived object used by the application to specify atomic units
of work. It abstracts the application from the underlying JDBC, JTA or CORBA transaction. A

Session might span several Transactions in some cases. However, transaction demarcation,

either using the underlying API or Transaction, is never optional.

ConnectionProvider (org.hibernate.connection.ConnectionProvider)

(Optional) A factory for, and pool of, JDBC connections. It abstracts the application from
underlying Datasource or DriverManager. It is not exposed to application, but it can be
extended and/or implemented by the developer.

TransactionFactory (org.hibernate.TransactionFactory)

(Optional) A factory for Transaction instances. It is not exposed to the application, but it can
be extended and/or implemented by the developer.

Extension Interfaces

Hibernate offers a range of optional extension interfaces you can implement to customize the
behavior of your persistence layer. See the APl documentation for details.

Program systems development

Qo P t
:- Persitence
W =
“-Li new \K .
o: > Transient p--------- -
0P \ A
_P‘; \
D N \
Z N~ \
s 9et) save() \ garbage
ng load() saveOrUpdate() delete() .
2= find() E
(L'BZ§ iterate() \ .
N= 3 etc. V
= Q Persistent @
=)
> /\
,<—f evict() /N |
- close() * update() '
5 clear() * saveOrUpdate() 1
n \V/ lock() ," garbage
2 /
|: —_’,/
%) Detached } -------
n'd
S
:E) * affects all instances in a Session

Program systems development

2 Persistence manager
H%
80

2% 4 CRUD User user = new User();
m:§ user.getName () .setFirstname ("John") ;
c;):%;%) Query user.getName () .setLastname ("Doe") ;
'-LJNS . Session session = sessions.openSession() ;
@gg } TransaCthnS Transaction tx = session.beginTransaction() ;

D2 -

ND S session.save (user) ;
» Cache

tx.commit () ;

Depa

session.close();
Session session = sessions.openSession() ;
Transaction tx = session.beginTransaction() ;

int userID = 1234;
User user = (User) session.get (User.class, new Long(userID)) ;

tx.commit () ;
session.close() ;

UNIVERSITAS SCIENTIARUM SZE

Program systems development

Loading objects
» By ID

User user = (User) session.get (User.class, userID);

» HQL

Query = session.createQuery("from User u where u.firstname = :fname");
g.setString("fname", "Max");
List result = g.list();

R

gineering

of Software En

UNIVERSITY OF SZEGED

epartment

D

» Criteria query

Criteria criteria = session.createCriteria(User.class);
criteria.add(Expression.like("firstname", "Max"));
List result = criteria.list();

User exampleUser = new User();

} By Sample exampleUser.setFirstname ("Max") ;

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

Criteria criteria = session.createCriteria(User.class);
criteria.add(Example.create(exampleUser));
List result = criteria.list();

Program systems development

|

2« Architect

- Arcnitectuure

W =

5‘, Bl ,emTTTToTTSmoomssssssssosssssssssssssssossossssossssssssmes R

w~ First-level Cache

O:! :
(,(Q)It‘% : Session I
Zh_ \ !
g S X
T R R e

S
ﬁ: 5 /,’ e
()] N ' \‘
% Q : Cache Concurrency Query Cache :
x Strategy Y ;
< :
= :
z :
E—J) I Cache Provider ;
7 L
2 E Cache Implementation E :
lcT_)] (Physical Cache Regions) | E
o : : 1 :
T A ———— ;o
= ' 1
Z . Second-level Cache p
-] ‘. -

Program systems development

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

2017. 05. 10.

First level cache

First level cach%,is associat?d with “session” object and

other session objects In application can not see’it.

The scope of cache objects is of session. Once session is
Closeé:, gacﬁed objectsjare gone ?orever.

giigsétblleevi?l cache is enabled by default and you can not
When wé u an entity first time, it is retrieved from
database gng r%/toreg IN ﬁ(rst?evel cache associated with
hibernate session.

If w% eq er% esgr];?g n?t‘)g'ect a%ain with same sessliobneobject, it

will 0 ache and no sql query wi

executede.l qrquery

The loaded entity can be removed from session usin
' 8 met?wod.lyhe next loadi ;

evict t ng of this entity will agai
mg&eoa database call |%(it has bgen removeay using %vict()

The whole session cache can be removed using clear
method. It will remove al?the entities stored in Cgache. ()

Program systems development

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

2017. 05. 10.

Second level cache

never hibernat ses ion. try to load an entity, the very first place jt look for
ggga%% copy of entity in first Ie\ye caceh azasssoct?é\ted wi hyparstlth)JIar%fbernate

, cheghcopy of entity is present in first level cache, it is returned as result of

fthe o cached entlt%/ in first level cache, then second level cache is

ooke or cac ed entity.

ES d IeveI cache as ca he ent| |é|s r tur ed as r%sult of load method
ut, ore re urnln n ity, it.is' s ?yre tlevel c? fa SO sotI at next

Invocation to load for'entity will return t r rst level cache

itself, and there will not e need togoto second%evetl ac e again.

If entlt is not found in flrst IeveI cache and second level cache als? eP
database query Is exec g entl’gl Is stored in both cache levels, before
returning as response o Ioa P) methaod.

gecoqd level %ache validate |tsel'&"__9r modified entities, if modification has been
one through hibernate session

If some user or process make changes directly in database, the the e IS n
wa%/ that seconc? IeveI c che upda egl se? unth/“tlm aIIoLa\\/iS(‘,econdsx ra c|)on

g%aggghef%rn ?etcﬁ%e?nraet%l%rblllg |tslgacc eonc 0%un ga o mval

OuU can use eIow
e snippet to invalidate whole hibernate secon IeveI cache.
@Entity

@Cacheable
public class Employee {

}

Program systems development

o
S

Overview

» JDBC
» JPA
» Hibernate

ITY OF SZEGED
ment of Software Engineerin

DIENSIS
ERS

UN
Depart

UNIVERSITAS SCIENTIARUM SZEGE

2017. 05. 10. Program systems development

