NSIS
UNIVERSITY OF SZEGED

4. Web Services

Vilmos Bilicki PhD
University of Szeged
Department of Software Engineering

L
&)
L
o
LUl
N
N
=
)
4
<
|_
pa
L
O
%)
2
=
N
14
LU
>
Z
D

Y

- Different approaches

a
a

eering

S

» Web Service
» REST
> RMI, ...

ware Engin

ITY OF SZEGED

ft

SIS

DIEN
ERS
1ent of So

Connection Security

I
/

Scalability Data Security

SOAP

U
Depart

Agility
(maintainability)

RESTHul

Support

Connectivity Productivity

Robustness

UNIVERSITAS SCIENTIARUM SZEGE

Program systems development

Conceptual Overview

Requirements

Requirements supported by REST-enabled
systems stem from the requirements addressed
by any system following Web architecture’:
Simplicity
Low barrier of entry, fast adoption of Web APIs.
Extensibility
Allowing growth and flexibility.
Distributed hypermedia
Relying on the established concepts of hyperlinked content.

Scalability at the Web level

Should rely on technologies/protocols supporting scalable
solutions.

Independent deployment
Coexistence of old and new

Program systems development

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

WWW

OF SZEGED

replicated uniform interface

-demand - simple
visible

reliable shared reusable

cacheable scalable

Program systems development

Conceptual Overview

Requirements - Simplicity

Participation in the creation of information is voluntary
Low entry-barrier is necessary

Hypermedia has simple and general user interface
The same interface is used for all information sources
Hypermedia relationships are flexible — unlimited structuring
Users can be guided through reading by manipulating links
Simple queries are incorporated for searching purposes

IENSIS
UNIVERSITY OF SZEGED

Partial availability of the overall system doesn’t prevent the authoring of
the content

Hypermedia authoring language is simple and capable of using existing tools
Unavailability of referenced information allows further authoring
References to the content are easily exchanged

Communication can be viewed and interactively tested by developers

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

Conceptual Overview

Requirements - Extensibility

User requirements change over time just
as society does

NSIS
UNIVERSITY OF SZEGED

The system must avoid locking to the
deployed solutions

The limitations must be easily resolvable

A system with the goal to be long-lived as
the Web must be prepared for change.

Program systems development

UNIVERSITAS SCIENTIARUM SZEGEDIE

Conceptual Overview

(=]
§ Requirements — Distributed Hypermedia
N
2 Hypermedia includes application control information
2 embedded within the presentation of information.
ok
ZW
i Distributed hypermedia allows the content and control
= information to be stored at remote locations.
=

Transfer of large amounts of data is needed while a user
Interacts with content.

Users are quite sensitive to perceived latency
Time between link selection and information rendering
Information is distributed across the global network
Network interactions must be minimized.

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

Conceptual Overview

Requirements — Internet Scale

The Web is Internet-scale distributed hypermedia system

SIS

The Web must answer to to the problem of anarchic
scalability

The constituent systems are not centrally managed neither
have a common goal

Parts must continue to operate even under unanticipated load,
or when given malformed or maliciously constructed data.

N
UNIVERSITY OF SZEGED

Security becomes a significant concern
Multiple trust boundaries may be present in any communication

Additional authentication must be in place before trust can be
given

Authentication may degrade scalability

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

Conceptual Overview

Requirements — Independent Deployment
Systems must be prepared for gradual and fragmented
change

Old and new implementations may co-exist without preventing
the new implementations to achieve their full potential.

NSIS
UNIVERSITY OF SZEGED

Existing design decisions must acknowledge future
extensions.

Old systems must be easily identifiable

Legacy behavior can be encapsulated without impacting newly
deployed subsystems

The architecture must allow deployment of new elements in
a partial and iterative fashion

Not possible to enforce deployment order.

Program systems development

UNIVERSITAS SCIENTIARUM SZEGEDIE

Conceptual Overview

Representational State Transfer (REST)

Representational State Transfer (REST)

A style of software architecture for distributed
hypermedia systems such as the World Wide Web.

REST is basically client/server architectural style

Requests and responses are built around the
transfer of "representations” of "resources”.

Architectural style means
Set of architectural constraints.
Not a concrete architecture.
An architecture may adopt REST constraints.

HTTP is the main and the best example of a
REST style implementation

But it should not be confused with REST

Program systems development

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Conceptual Overview

Major REST principles

Information is organized in the form of resources

Sources of specific information,
Referenced with a global identifier (e.g., a URI in HTTP).

Components of the network (user agents and origin servers)
communicate via a standardized interface (e.g., HTTP)

exchange representations of these resources (the actual
documents conveying the information).

Any number of connectors (e.g., clients, servers, caches,
tunnels, etc.) can mediate the request, but each does so
without being concern about anything but its own request

an application can interact with a resource by knowing two
things: the identifier of the resource and the action required

no need to know whether there are caches, proxies, gateways,
firewalls, tunnels, or anything else between it and resource

The application needs to understand the format of the
information (representation) returned.

Program systems development

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Conceptual Overview

(=]
(1]
©@° REST Architectural Constrains (1)
N
g Client-server
e Separation of concerns
() == . .
Z0 Clients are separated from servers by a uniform
oW interface.

Networking

Clients are not concerned with data storage, which
remains internal to each server, so that the portability
of client code is improved. Servers are not concerned
with the user interface or user state, so that servers
can be simpler and more scalable.

Independent evolution

Servers and clients may also be replaced and
developed independently, as long as the interface is
not altered.

Program systems development

UNIV

UNIVERSITAS SCIENTIARUM SZEGED

Conceptual Overview

REST Architectural Constrains (2)

Stateless communication
Scalability, reliability

No client context being stored on the server between
requests. Each request from any client contains all of
the information necessary to service the request.

Resources are conversationally stateless
Any conversational state is held in the client.

NSIS
UNIVERSITY OF SZEGED

Uniform Interface
Simplicity (vs. efficiency)
Large-grained hypermedia data transfer
Example: Create, Retrieve, Update, Delete

Program systems development

UNIVERSITAS SCIENTIARUM SZEGEDIE

Conceptual Overview

REST Architectural Constrains (3)

Caching

Efficiency, scalability

Well-managed caching partially or completely eliminates some client-
server interactions, further improving scalability and performance.

Consistency issues

As on the World Wide Web, clients are able to cache responses.
Responses must therefore, implicitly or explicitly, define themselves
as cacheable or not, to prevent clients reusing stale or inappropriate
data in response to further requests.

IENSIS
UNIVERSITY OF SZEGED

Code-on-demand

Extending client functionality

Servers are able to temporarily extend or customize the functionality
of a client by transferring to it logic that it can execute. Examples of
this may include compiled components such as Java applets and
client-side scripts such as JavaScript.

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

Conceptual Overview

Q

§ RESTful Web Service definition

N

»n . .

3 A RESTful Web service is:
e
ok A set of Web resources.
LipZ

[1T]

Interlinked.
Data-centric, not functionality-centric.
Machine-oriented.

UNIV

Like Web applications, but for machines.
Like WS-*, but with more Web resources.

UNIVERSITAS SCIENTIARUM SZEGED

WS-* stands for a variety of specifications related to SOAP-based Web Services.

Program systems development

Conceptual Overview
a:WS-*x vs REST: A quick comparison

w

)

w

"

6 WS-% listEntries()

%’% addEntry()> collection
i getEntry() service
2 deleteEntry() 7

NS updateEntry()

= e e D
-

= RESTful listEntries() > | collection
G addEntry() —
2
? getEntry() —— i
“% deleteEntry() t

5 updateEntry()/ Sl

Program systems development

Conceptual Overview
a:WS-*x vs REST: A quick comparison

A SOAP service (WS-*) has a single
endpoint that handles all the operations —
therefore it has to have an application-
specific interface.

NSIS
UNIVERSITY OF SZEGE

A RESTful service has a number of
resources (the collection, each entry), so the
operations can be distributed onto the
resources and mapped to a small uniform
set of operations.

Program systems development

UNIVERSITAS SCIENTIARUM SZEGEDIE

Technologies

Todays'’s set of technologies, protocols and
languages used to apply RESTful paradigm:

HTTP as the basis
XML and JSON for data exchange
AJAX for client-side programming (e.g. browser)

NSIS
UNIVERSITY OF SZEGED

There exists an attempt to develop WSDL-
like definition language for describing
RESTful services

Web Application Description Language (WADL)

Program systems development

UNIVERSITAS SCIENTIARUM SZEGEDIE

HTTP

Overview

Hypertext Transfer Protocol (HTTP)

A protocol for distributed, collaborative, hypermedia information
systems.

A request/response standard typical of client-server computing.
Currently dominant version is HTTP/1.1.

IENSIS
UNIVERSITY OF SZEGED

Massively used to deliver content over the Web
Web browsers and spiders are relying on HTTP.

The protocol is not constrained to TPC/IP
It only presumes a reliable transport.

Resources accessed by HTTP are identified by URIs (more
specifically URLs), using the http URI schemes.

Program systems development

UNIVERSITAS SCIENTIARUM SZEGED

HTTP

Request-response format

Request consists of

Request line, such as GET /images/logo.gif HTTP/1.1, which
requests a resource called /images/logo.gif from server.

Headers, such as Accept-Language: en
An empty line
An optional message body

IENSIS
UNIVERSITY OF SZEGED

Response consists of

Status line which includes numeric status code and textual
reason phrase

Response headers
An empty line
The requested content

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

HTTP

Request methods

HTTP request methods indicate the desired action to
be performed on the identified resource:

GET

Requests a representation of the specified resource. GET
should not be used for operations that cause side-effects
(problematic with robots and crawlers). Those operations are
called safe operations.

POST

Submits data to be processed (e.g., from an HTML form) to the
identified resource. The data is included in the body of the
request.

PUT

Uploads a representation of the specified resource.

DELETE

Deletes the specified resource.

Program systems development

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

XML

Overview

eXtensible Markup Language (XML)
A set of rules for encoding documents electronically.
De-facto standard (W3C Recommendation).

NSIS
UNIVERSITY OF SZEGED

Ubiquitous presence on the Web and the Semantic
Web

Storage and transportation of data (RDF/XML and
SOAP),

Visualization of data (XHTML),
Application configuration (XML configuration files), etc.

As such it can not be avoided as a possible data
format for Web 2.0 Web Services.

Program systems development

UNIVERSITAS SCIENTIARUM SZEGEDIE

XML

Characteristics

As opposed to JSON XML can be verified against a schema expressed in a number of
languages such as Document Type Definition (DTD), and XML Schema:

the vocabulary (element and attribute names),
the content model (relationships and structure), and
the data types.

NSIS
UNIVERSITY OF SZEGED

Founded on the standards laying in the core of Web
Uniform Resource Identifiers (URI)
Unicode

Well-formedness an XML document
Properly encoded legal Unicode characters,
Special syntax characters such as < and & are used only as markup delineation,
Element tags are correctly nested,
Element tags are case sensitive,
There exists a single “root” element.

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

XML

<phoneNumber type="home">212 555-1234</phoneNumber>
<phoneNumber type="fax">646 555-4567</phoneNumber>
<newSubscription>false</newSubscription>
<companyName />

a
w- Example
B
mf <?xml version="1.0" encoding="UTF-8"7?>
mg,:: <Person>
T =iy <firstName>John</firstName>
E@?‘ <lastName>Smith</lastName>
a§§ <age>25</age>
ﬁgg <address>
N= =
U)ES <streetAddress>21 2nd Street</streetAddress>
% <city>New York</city>
% <state>NY</state>
- <postalCode>10021</postalCode>
% </address>
%
2
=
%
e
L]
>
Z
-

</Person>

Program systems development

JSON

Overview

JavaScript Object Notation (JSON)
A lightweight computer data interchange format.
Specified in Request For Comment (RFC) 4627.

Represents a simple alternative to XML

A text-based, human-readable format for representing simple
data structures and associative arrays (called objects).

Used by a growing number of services

JavaScript-friendly notation
Its main application is in Ajax Web application programming.

A serialized object or array
No namespaces, attributes etc.
No schema language (for description, verification)

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

JSON

Data types

JSON basic data types are

Number (integer, real, or floating point)

NSIS
UNIVERSITY OF SZEGED

String (double-quoted Unicode with backslash escaping)
Boolean (true and false)

Array (an ordered sequence of values, comma-separated and enclosed in square
brackets)

Object (collection of key:value pairs, comma-separated and enclosed in curly
braces)

null

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

- JSON

(=
W=
Q- Example
N 5,
e
O§ "firstName": "John",
Qt§= "lastName": "Smith",
D=y "age": 25,
Ze
EE: "address": {
a>§ "streetAddress": "21 2nd Street",
ﬁzg "city": "New York",
('>|)=§ "state": "NY",
%CQ "postalCode": "10021"
EE Y
- "phoneNumbers": [
E { "type": "home", "number": "212 555-1234" },
8 { "type": "fax", "number": "646 555-4567" }
o)] r
é "newSubscription": false,
g "companyName": null
S
>
Z
-

Program systems development

Legend

A References to service descriptors
O Pointers to WSDL documents

------- Originates from

2= Elements of SOA
W=
N§0 UDDI
gm » XML
| oo
é%;% } SOAP Q4 WSIL
gg <
%) WSDL ! AOA
Z -
(ZJ):§ } WSIL Publish ——————— vjqi ‘ Discover
D) WSDL Discover
% } U D DI Provider Requestor l
= 1
g :’e?\lfjnce 3?:: ::% Client |
0p)]
-
9]
i
=
Z
-

Program systems development

o
S

Web Services

User

Experience
- SEssscssssasana, SERSRSERRREERRRRERERRERRRRe.,
Business Business Process s 8. .
Process Execution Language [WS-CDL i WS-CAF E

Sessscsscsssssssssssew?’ “sssssscssssssssssssssssem®

Service Provisioning Markup
Language
[WS-AtomicTransaction j [WS-BusinessActivity][WS-Coordination]
Liberty / SAML 2.0 SAML WS-Security E WS-Federation
federated identity family ' WS-Trust

WSDM

Management

IVERSITY OF SZEGED

epartment of Software Engineerin

Transactions

U

D

Description and R :""""st""""t =,

escription an t . ;

Discovery -. WS-Discovery .' WS-Policy § : WSDL } MetadataExchange .: : E
..--..-.-...- esccccsccsccsssss -

’..o..oo.. ®@cccsscsscn eseccsccccccccccsccnsn,

% *
[SOAPwAttachment] : MTOM E E ASAP
e

WS-ReliableMessaging

m [WS-Addressing][WS-Notification][WS-Resource]

XML family of specifications

csew
seeee

Messaging and
Encoding

Foundation

£
3
g
-1
o
2
E
3
8
2
3
(2}
2
o
=

Other transports

‘..............-...

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

Early work

Notation:

in progress

maturity specification

.

Specification E Reaching Approved
L]
.

Secssssssssed Ssesssscscsss

Program systems development

o
S

WS-l Conformance (R1015)
Must generate Fault if envelope namespace is not
"hitp:ischemas xmlsoap.orgisoapienvelopel”

|

WS-l Conformance (R4001) WS-l Conformance (R1008) WS-l Conformance (R1012)
Must handle BOM MNo DTD {document type declaration) Must serialize as UTF-8 or UTF-16
N — =
N WS-| Conformance (R1009) 4
\\ No Pl {(processing instructions) WS- Conformance (R1013)
N — Use charset to indicate
Global attributes: N WS-1 Conformance (R1011) ~| correct character encoding
encodingStyle \\ No element after SOAP Body -7 —
actor: header recipient ~ 1 L // - -
mustUnderstand: must process header b o AT
ﬁ e - =S0AP-ENY:Envelope

Envelone ¥mins:SOAP-ENV="hitp:ifschemas xmlsoap.orgfsoapienvelopel”
WS-l Confarmance (R1013) IAI actor Ill P SOAP-ENY:encodingStyle="http:fischemas ¥xmlsoap.orgfsoapiencoding=

mustUnderstand uses 1 or 0 —

UNIVERSITY OF SZEGED

partment of Software Engineerin

Header =S0AP-ENV:Header= Bl
WS- Conformance (R1025) L1
Must process all mustUnderstand Header entry 1
Aftributes first || | _| =tTransaction

xmins:t="some-URI"
WS-1 Conformance (R1027) |§| SOAP-ENV:mustUnderstand="1"=

De

e Header entry 2 5
Must generate fault if fail to process

mustUnderstand attributes =it Transaction=

mustUnderstand =ISOAP-ENV:Header= |l|

1

Body | | | <soar-envBogy- lll
Body entry 1
WS-l Confarmance (R1014) . A " e "
e R G _ L | _| sm:GetLastTradePrice xmins:m="Some-URI">
- =gymbol=DIS</symhol=

encodingStyle i/ Body entry 2 =im:GetLastTradePrice=
=/SOAP-ENY:Body= [ﬁ
WS- Conformance (R1005-1007) — 1 —

Avoid soap:encodingStyle attribute
Prefer literal, non-encoded XML

_| <1508P-ENV:ENVEIopE> ll|

N
N
pd
L
&)
L
O
LUl
N
N
=
)
e
<
|_
pa
L
O
%)
2
=
N
a4
LU
>
Z
D

2017. 03. 08. Program systems development

2= WSDL Parts

2 Used to define custom message types

o
%’E Abstraction of request and response messages that my client
20 and service need to communicate.

1]

>

g Contains a set of operations.

Operations organize WSDL messages.
Operation->method name, portType->java interface

Etltn%s the portType to a specific protocol (typically SOAP over
P).

You can bind one portT;lfFe to several different protocols by
using more than one port.

Gives you one or more URLs for the service.
Go here to execute “echo”.

Program systems development

UNIVERSITAS SCIENTIARUM SZEGEDIE

Namespaces

The WSDL document begins with several XML namespace
definitions.

Namespaces allow you to compose a single XML document
from several XML schemas.

Namespaces allow you to identify which schema an XML tag
comes from.

IENSIS
UNIVERSITY OF SZEGED

Avoids name conflicts.

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

o
S

Schema Built In Types

Built—in Datatype Hierarchy

anyType

all cowmplex types I

anySimpleType

UNIVERSITY OF SZEGED

epartment of Software Engineerin

2
90)
EE |duration||dateTimeIltimelldatelngearMonth ”gYearIlgMonthDay||gDay1hmMonth|
2
Q) Ibooleanllba3e64Binary ”hexBinaryllfloatI IdoublellanyURIIlQNameIINOTATIONI
L
('>I) string decimal
= 2 [
) |normalized$tring | integer
e
=< [|
EE |token InonPositiveInteger ||lon91InonNegativeInteger]
LL]
O
(p] Ilanguagellﬁamel INMTOKEN' lnegativeInteger ”intllunsignedLong “positiveIntegerl
(7)))
|<£ [meHare ||1~m’ro;<ENs | [short | [unsignedInt |
%)
e
g [IDREF | [ENTITY | [bvte |lunsignedshort |
¥ ¥
—]
:Z) IIDR;EFS ”ENTI'II‘IES | [unsignedByte |

Program systems development

2 WSDL Messages

N

- The "message” section specifies
% communications that will go on between
i endpoints.

5 Gives each message a name (to be used

later for reference).

Specifies the type of message
Can be primitive types, like strings
Can be defined types, as we saw previously.

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

The echoServicelnterface messages

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions>
<wsdl:types />

IENSIS
UNIVERSITY OF SZEGED

<wsdl:portType name="Echo">
<wsdl:operation name="echo" parameterOrder="in0">
<wsdl:input message="impl:echoRequest™ name="echoRequest" />

<wsdl:output message="impl:echoResponse"
navr¥1e=|"ecl:lh% esponsgﬁbI P P

</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

i Structure of a Message

7]

N

" WSDL <message> elements have name attributes
92 and one or more parts.
"5’5 The message name should be unique for the
o document.

= <operation> elements will refer to messages by

name.

| need one <part> for each piece of data | need to
send Iin that message.

Each <part> is given a name and specifies its type.

<part> types can point to <wsdl:type> definitions if
necessary.

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

WSDL portTypes

WSDL messages are only abstract
messages.

We bind them to operations within the
portType.
The structure of the portType specifies
(still abstractly) how the messages are to
be used.

Think of operations->java methods and
portTypes->java interfaces.

Program systems development

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

The echoServicelnterface portType

m
O
",H <?xml version="1.0" encoding="UTF-8" ?>
2 <wsdl:definitions>
o <wsdl:types />
(‘%E <wsdl:message name="echoResponse">
Z‘g <wsdl:part name="echoReturn" type="xsd:string" />
g </wsdl:message>
= <wsdl:message name="echoRequest">
=)

<wsdl:part name="in0" type="xsd:string" />
</wsdl:message>

UNIVERSITAS SCIENTIARUM SZEGEDIE

</wsdl:definition>

Program systems development

EchoService portType

<wsdl:portType name="Echo">
<wsdl.operation name="echo" parameterOrder="in0">

SIS

<wsdl:input
message="impl:echoRequest" name="echoRequest" />

N
UNIVERSITY OF SZEGED

<wsdl:output

message="impl:echoResponse" name="echoResponse”
[>

</wsdl.operation>
</wsdl:portType>

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

portType Message Patterns

PortTypes support four types of messaging:

One way: Client send a message to the service and doesn’t
want a response.

<input> only.

Request-Response: Client sends a message and waits for a
response.

<input>, then <output>

Solicit-Response: Service sends a message to the client first,
then the client responds.

<output>, then <input>
Notification: <output> only.

These still are abstract. We must implement them using some
message protocol.

HTTP units of transmission are request and response, so
mapping Solicit-Response to HTTP will take some work.

Program systems development

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

portType for EchoService

The echo service has one method, echo.
It takes one string argument and returns one string.
In WSDL, the portType is “Echo”, the operation is “echo”.

The messages are organized into input and output.
Messages are placed here as appropriate.
That is, <input> takes the <echoRequest> message.

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

Parameter Order

This attribute of operation is used to
specify zero or more space-separated
values.

The values give the order that the input
messages must be sent.

IENSIS
UNIVERSITY OF SZEGED

0
L
O
Ll
N
%)
=
)
4
<
|_
p
L
@)
%)
2
=
%)
i
i
>
Z
)

icture So Far...

P

The

SuL12ou13us 24vmfos fo N:m@E\SQwQ

a3aon3azZs 410 ALISUIAINN
SISN3IAI9O3ZS WNAEVILNIIOS SVLISHIAINN

-—
c
O]
£
o

o
()
>
(]

o
(/2]
=
]

-—
n
>
(V2]
£
Q)
—
(®))
(@]
—

o

Binding tags
Binding tags are meant to bind the parts of
portTypes to sections of specific protocols.

SOAP, HTTP GET/POST, and MIME are provided in the
WSDL specification.

Bindings refer back to portTypes by name, just as
operations point to messages.
They are mirror images of the portTypes.

Each part is extended by schema elements for a particular
binding protocol (i.e. SOAP).

In WSDL bindings messages:
Each corresponds to SOAP body sections, described later.

Additionally, we specify that the body should be encoded.
That is, RPC encoded.
Alternatively, could also be “literal” (or “document”).

Program systems development

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

ing

* WSDL Internal References

Software Engineer

SIS

(=]
w
T
w
w
»n
L
o
>
=
ZW
+4
w
>
<
=

L
&)
L
o
LUl
N
N
=
)
4
<
|_
pa
L
O
%)
2
=
N
e
LU
>
pd
D

Program systems development

Structure of the Binding

<binding> tags are really just placeholders.
They are meant to be extended at specific places by
wsdl protocol bindings.

These protocol binding rules are defined in supplemental
schemas.

The following box figure summarizes these things
Green boxes are part of WSDL
From the wsdl namespace, that is.

Red boxes are parts of the document from other schemas
From wsdlsoap namespace in the echo example.

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

inding Structure

[vy)

gin

UNIVERSITY OF SZEGED

epartment of Software En

D

<P
)]
=z
L
a
(I
O
L
N
n
=
-
i
<
|_
=z
L
O
o
2
=
7))
4
L
>
Z
o

Program systems development

i A little more on encoding...
w
§ We specify SOAP encoding
wg SOAP is a message format and needs a transport
o protocol, so we specify HTTP.
i Operation styles may be either “RPC” or “Document”.

UNIV

SOAP Body elements will be used to actually convey
message payloads.

RPC requires “encoded” payloads.

Each value (echo strings) is wrapped in an
element named after the operation.

Useful RPC processing on the server side.
Documents are literal (unencoded)
Use to just send a payload of XML inside SOAP.

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

Binding Associations to SOAP

WSDL SOAP

UNIVERSITY OF SZEGED
Department of Software Engineering

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

Program systems development

Binding Restrictions

Binding elements point by name to
portTypes.

WSDL allows more than one binding
element to point to the same port type.
Why?
Because a service may support multiple,
alternative protocol bindings.

NSIS
RSITY OF SZEGED

UNIVE

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

Port and Service Tags

The service element is a collection of
ports.

That's all it is for.
Ports are intended to point to actual Web
service locations

The location depends on the binding.
For SOAP bindings, this is a URL.

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

Port Associations to Bindings

UNIVERSITY OF SZEGED
Department of Software Engineering

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

Program systems development

Summary of WSDL

WSDL decouples remote service operations.
Types=custom message definitions.
Any data types not in the XML schema.

Message=name the messages that must be exchanged and
their data types, possibly defined by <type>.

PortTypes=service interfaces
Operations=remote method signatures.

Bindings=mappings of portType operations to real message
formats

Ports=locations (URLSs) of real services.

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

“E

s SOAP and Web Services

W=

N5,

B

g§> WSDL

E- = Defines the interfaces for

E§ remote services.

=- = Provides guidelines for

=] constructing clients to SOAP SOAP

Q the service. Request Resbonse
= Tells the client how to — =P

communicate with the

service.

» The actual communications
are encoded with SOAP.

m Transported by HTTP

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

Program systems development

SOAP in One Slide

SOAP is just a message format.
Must transport with HTTP, TCP, etc.

ze-) SOAP is independent of but can be connected
2 to WSDL.

SOAP provides rules for processing the
message as it passes through multiple steps.

SOAP payloads

SOAP carries arbitrary XML payloads as a body.
SOAP headers contain any additional information
These are encoded using optional conventions

Program systems development

S
TY OF SZEGED

UNIVERSITAS SCIENTIARUM S

:= SOAP Basics

[

N

" SOAP is often thought of as a protocol extension for
m: doing Remote Procedure Calls (RPC) over HTTP.
ke .. oy
Z5 This is how it is often used.
Ol

This is not accurate: SOAP is an XML message
format for exchanging structured, typed data.

It may be used for RPC in client-server applications
May be used to send XML documents

Also suitable for messaging systems (like JMS) that
follow one-to-many (or publish-subscribe) models.

SOAP is not a transport protocol. You must attach
your message to a transport mechanism like HTTP.

UNIV

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

SOAP Request

<?xml version=°1.0" ?>
<soapenv:Envelope
xmiIns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlns:xsi="http:// www.w3.org/2001/XMLSchema-instance'>
<soapenv:Body>
<nsl:echo
soapenv:encodingStyle="http://schemas.xmlsoap.org/soa
p/encoding/"
xmlins:ns1="http://.../axis/services/EchoService'>
<in(xsi:type="xsd:string''>Hollow World</in0>
</nsl:echo>
</soapenv:Body>
</soapenv:Envelope>

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

SOAP Response

<?xml version=°1.0" ?>
<soapenv:Envelope
xmlIns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance''>
<soapenv:Body>
<nsl:echoResponse

NSIS
UNIVERSITY OF SZEGED

soapenv:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
xmlns:ns1=""http://../axis/services/echoService''>

<echoReturn xsi:type=*“String“>
Hollow World

</echoReturn>

</nsl:echoResponse>
</soapenv:Body>
</soapenv:Envelope>

UNIVERSITAS SCIENTIARUM SZEGEDIE

SOAP Structure

» SOAP structure is very
simple.

m 0 or 1 header elements
= 1 body element
m Envelop that wraps it all.

» Body contains XML
payload.

» Headers are structured the
same way.

m Can contain additional
payloads of “metadata”

m Security information,
quality of service, etc.

UNIVERSITY OF SZEGED
Department of Software Engineering

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

Program systems development

SOAP Envelop

The envelop is the root container of the SOAP message.

Things to put in the envelop:

Namespaces you will need.

http://[schemas.xmlsoap.org/soap/envelope is required, so that the recipient
knows it has gotten a SOAP message.

Others as necessary

Encoding rules (optional)
Specific rules for deserializing the encoded SOAP data.
More later on this.

Header and body elements.
Headers are optional, body is mandatory.
Headers come first in the message, but we will look at the body first.

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

SOAP Headers

SOAP Body elements contain the primary message contents.

Headers are really just extension points where you can
include elements from other namespaces.

l.e., headers can contain arbitrary XML.
Headers may be processed independently of the body.
Headers may optionally define encodingStyle.
Headers may optionally have a “role” attribute

Header entries may optionally have a “mustUnderstand”
attribute.

mustUnderstand=1 means the message recipient must
process the header element.

If mustUnderstand=0 or is missing, the header element is
optional.

Headers may also have a “relay” attribute.

Program systems development

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Example Uses of Headers

Security: WS-Security and SAML place additional security
information (like digital signatures and public keys) in the
header.

Quality of Service: SOAP headers can be used if we want to
negotiate particular qualities of service such as reliable
message delivery and transactions.

Session State Support: Many services require several steps
and so will require maintenance of session state.

Equivalent to cookies in HTTP.
Put session identifier in the header.

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

Example Header from SOAP

a .

5 Primer

N

2 <?xml version='1.0' 7>

g <env:Envelope xmins:env="http://www.w3.0rg/2003/05/soap-envelope">
e <env:Header>

= <m:reservation xmins:m="http:/ xample.com/"

= env:role='ﬁ1lt’g): www.w3.orngégg/gS/asogp-enve(ope/role/next"

env:mustUnderstand="true

<m:reference>uuid:093a2da1-q345-739r-bad5d-pqff98fe8;7d
</m:reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00
</m:dateAndTime>
</m:reservation>
<n:passenger xmlns:n="..."

env:role="htt ://www.w3.org;2003/05/soap-envelope/role/next"
env:mustUnderstand="true

<n:name>Ake Jégvan @yvind</n:name>
</n:passenger>
</env:Header>

UNIV

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

Header Processing

SOAP messages are allowed to pass through many
intermediaries before reaching their destination.

Intermediary=some unspecified routing application.

Imagine SOAP messages being passed through
many distinct nodes.

The final destination processes the body of the
message.

Headers are allowed to be processed independently
of the body.

May be processed by intermediaries.

This allows an intermediary application to determine if
It can process the body, provide the required secuirity,
session, or reliability requirements, etc.

Program systems development

ITY OF SZEGED

SIS

IEN
ERS

UNIV

UNIVERSITAS SCIENTIARUM SZEGED

Roles, Understanding, and

Relays

Yes

RSITY OF SZEGED

IENSIS
epartment of Software Engineering

D
NIVE

U

D

No

Yes

Program systems development

UNIVERSITAS SCIENTIARUM SZEGE

Header Roles

SOAP nodes may be assigned role designations.

SOAP headers then specify which role or roles
should process.

Standard SOAP roles:

None: SOAP nodes MUST NOT act in this role.

Next: Each SOAP intermediary and the ultimate SOAP
receiver MUST act in this role.

UltimateReceiver: The ultimate receiver MUST act in
this role.

In our example, all nodes must process the
header entries.

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

SOAP Body

Body entries are really just placeholders for XML
from some other namespace.

The body contains the XML message that you
are transmitting.

It may also define encodingStyle, just as the
envelop.

The message format is not specified by SOAP.

The <Body></Body> tag pairs are just a way to notify
the recipient that the actual XML message is contained
therein.

The recipient decides what to do with the message.

NSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

SOAP Body Element Definition

<xs:.element name="Body" type="tns:Body" />
<xs:complexType name="Body">
<xs:.sequence>
<xs:any namespace="##any"

processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</xs.sequence>

<xs:anyAttribute namespace="##other"
processContents="lax" />

</xs.complexType>

IENSIS
UNIVERSITY OF SZEGED

UNIVERSITAS SCIENTIARUM SZEGED

Program systems development

2 SOAP Body Example
[
N
«. <soapenv:Body>

e <ns1:echo soapenv:encodingStyle=

pd /] . "
E http://schemas.xmlsoap.org/soap/encoding/
Z xmins:ns1=

"http:/l.../]axis/services/EchoService">

<in0 xsi:type="xsd:string">Hollow
World</in0>

</ns1:echo>
</soapenv:Body.

UNIVERSITAS SCIENTIARUM SZEGEDIE

Program systems development

|

2- WS hitect

- arcnitectiure

ws oo -

> ' ¥

L External Internal ! Business !

o Service Service : Service !
‘Qi Requesters Requesters I Choreography !
%)a : N g4
Lz ; :
Ol |
LLI> : r s T :
O= I . i
“J§ . Enterprise Service Bus |
N . |
2 | | ESB Gateway Routing, transformation, ESS Namespace | |!
% : mediafions, security, efc. Directory !
m : A L I
< o |
=] ,] : :
L ’ : :
S !
cL/)D Exterpal N Bl . | Business Service | |

Service) Service . , |
n . . | Directory X
< Providers N Providers | |
I

n r‘| . :
e ¢ e e e e e e e e e e = - - |
LL Infrastructure components
= .
= for service-oriented
) architecture

Program systems development

