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Preface

These lecture notes were written based on the lectures of the course Application of Linear Pro-

gramming at the University of Szeged, and primarily dedicated as an excipient to that course and

may serve as a textbook to similar courses. The Application of Linear Programming is an MSc

course, the participants have already had introductory courses to Discrete Mathematics, Graph

Theory, Operations Research, Probability Theory, etc. We do not assume deep knowledge on

these subjects. In some places we do not give a detailed description/reminder, but expect some

prerequisite knowledge at some places.

The subject of Linear Programming has its roots in the study of linear inequalities, which can

be traced as far back to the work of Fourier in the early 19th century; a significant development

of the field has started at the time of World War II. The United States Army launched a research

group to support military operations using mathematical tools and models and the field Operations

Research developed. A notable member of the group was George Dantzig who re-created the linear

programming model and the developed the simplex algorithm to solve it. After WW II, when the

first results were published, the number of applications quickly emerged. Even more, new math-

ematical fields emerged or re-boosted, such as Game Theory, Network Flow Theory, Nonlinear

Programming, Stochastic Programming, Combinatorial Optimization, Semidefinite Optimization,

etc.

In this notes we concentrate mainly on the models of some important real-life problems and

some solution methods, and pay less attention to the classical (and deep) theoretical results and

algorithms.

After providing a brief overview of the basic elements of Linear Programming in Chapters 1-3,

we give an introduction to Integer Programming and present the Branch-and-Bound method by

example in Chapter 4. In Chapters 5 and 7 we establish a connection between network flows and

linear programming. The cornerstone is the notion and properties of totally unimodular matrices,

discussed in Chapter 6, which enables us to get integer solutions in some cases. We also give an
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introduction to Stochastic problems (Chapter 8), Game theory (Chapter 9) and their relation to

mathematical programming. The efficiency of the described algorithms is also briefly discussed

(Chapter 10). Finally we present the basics syntax of the AMPL language to help the Reader for

solving problems by computer.

The notes were meant to provide a succinct summary of the material, most of which was

loosely based on the lecture notes Juraj Stacho: Introduction to Operations Research (Columbia

University), the book Wayne L. Winston: Operations Research, the book Robert R. Vanderbei:

Linear Programming: Foundations and Extensions (Princeton University) and the lecture notes

András Pluhár: Operations Research (University of Szeged). Some parts were inspired by other

lecture notes (see cited Literature) and sources available on the Internet.

Finally, I would like to thank András Pluhár for carefully reading and lecturing this work. The

lecture notes benefited greatly from his thoughtful comments and suggestions.
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Chapter 1

Introduction

In this chapter we give a brief overview of the history, motivation and some important applications

of Linear Programming. We introduce LP modeling by various examples.

1.1 Motivation: Why LP?

1.1.1 Brief history

The subject of linear programming has its roots in the study of linear inequalities, which can be

traced back to the work of Fourier. The applied side of the subject got its start in 1939 when L.V.

Kantorovich noted the practical importance of a certain class of linear programming problems

and gave an algorithm for their solution. During World War II, he developed methods to plan

expenditures and returns in order to reduce costs of the army and to increase losses imposed on

the enemy. For several years, Kantorovich’s work had been unknown in the West and unnoticed

in the East. About the same time as Kantorovich, the Dutch-American economist T.C. Koopmans

formulated classical economic problems as linear programs. Kantorovich and Koopmans later

shared the 1975 Nobel Memorial Prize in Economics. In 1941, F.L. Hitchcock also formulated

transportation problems as linear programs and gave a solution very similar to the simplex method

invented in 1947 by George Dantzig for solving the linear programming problems that arose in

U.S. Air Force planning problems. The earliest published accounts of Dantzig’s work appeared

in 1951. In the same year that Dantzig invented the simplex method, Koopmans showed that

linear programming provided the appropriate model for the analysis of classical economic theories.

Dantzig discussed his simplex method with János Neumann who immediately conjectured the
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theory of duality by realizing that the problem he had been working in game theory was equivalent

to what we call now Strong Duality Theorem. The linear programming problem was first shown to

be solvable in polynomial time by Leonid Khachiyan in 1979, but a larger theoretical and practical

breakthrough in the field came in 1984 when Karmarkar introduced a new interior point method

for solving linear programming problems.

The field is still actively researched; currently applying of LP models effectively in various

domains from logistic to energy market pricing, and developing efficient implementations of LP,

IP (integer programming) and MIP (mixed integer programming) solvers are the biggest challenges

in the field.

1.1.2 Applications

Linear programming is a widely used field of optimization for several reasons. Many practical

problems in operations research can be expressed as linear programming problems. Certain spe-

cial cases of linear programming, such as network flow problems are considered important enough

to have generated much research on specialized algorithms for their solution. Linear programming

was heavily used in the early formation of microeconomics and it is currently utilized in company

management, such as planning, production, transportation, technology and other issues. Although

the modern management issues are ever-changing, most companies would like to maximize profits

and minimize costs with limited resources. It is widely known that many issues can be character-

ized as linear programming problem and the number of successful applications has been increasing

continuously.

1.2 Modeling by example

1.2.1 Product mix

Example. A toy company makes two types of toys: toy soldiers and trains. Each toy is produced

in two stages, first it is constructed in a carpentry shop, and then it is sent to a finishing shop, where

it is varnished, vaxed, and polished.

To make one toy soldier costs $10 for raw materials and $14 for labor; it takes 1 hour in the

carpentry shop, and 2 hours for finishing. To make one train costs $9 for raw materials and $10 for

labor; it takes 1 hour in the carpentry shop, and 1 hour for finishing.
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There are 80 hours available each week in the carpentry shop, and 100 hours for finishing. Each

toy soldier is sold for $27 while each train for $21. Due to decreased demand for toy soldiers, the

company plans to make and sell at most 40 toy soldiers; the number of trains is not restricted in

any way.

What is the optimum (best) product mix (i.e., what quantities of which products to make)

that maximizes the profit (assuming all toys produced will be sold)?

1.2.2 Notations

We try to code the given information into mathematical language. This is a crucial step in any

application, so it is worth to spend time on it now and in the later examples too.

• Decision variables: x1, x2, . . . , xi, . . .

• Variable domains: x1, x1 ≥ 0, . . . , xi ∈ R, . . .

• Goal/objective: maximize/minimize

• Objective function: function to minimize/maximize: 2x1 + 5x2

• Constraints (equations, inequalities): 3x1 + 2x2 ≤ 10

1.2.3 LP model for the product mix

Decision variables:

• x1: number of soldiers will be produced

• x2: number of trains will be produced

Goal: maximizing the profit

• $27− $10− $14 = $3 is the profit after selling a soldier⇒ 3x1 after selling x1 soldiers

• $21− $9− $10 = $2: is the profit after selling a train⇒ 2x2 after selling x2 trains

Objective function:

• z = 3x1 + 2x2: profit if selling x1 soldiers and x2 trains

3



Constraints:

• to produce x1 soldiers and x2 trains

– 1x1 + 1x2 hours are needed in the carpentry shops; there are at most 80 hours available

– 2x1 + 1x2 hours are needed for finishing; there are at most 100 hours available

• the number of soldiers, x1, cannot be more than 40

Sign of variables x1 and x2 are non-negative (and integer).

Thus, we have formulated the following problem.

max z = 3x1 + 2x2

x1 + x2 ≤ 80

2x1 + x2 ≤ 100

x1 ≤ 40

x1, x2 ≥ 0

We call this system program. It is linear, since

• the objective function is a linear function of the decision variables,

• the constraints are linear inequalities (or equalities).

1.2.4 Formulating a linear program

Often, the following steps are used to formulate a linear program.

1. Choose decision variables

2. Choose an objective and an objective function that is a linear function of the decision vari-

ables

3. Choose constraints that are linear inequalities

4. Choose sign restrictions of variables
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1.2.5 Basic definitions

The Linear Program (LP) in standard form (maximization) is

max c1x1 + c2x2 + . . . + cnxn = z

s.t. a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2
...

am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, . . . , xn ≥ 0

A feasible solution (or feasible point) is a p = (p1, . . . , pn) ∈ Rn vector, such that putting pi to

xi (∀i = 1, . . . , n) p satisfies the all constraints of the LP. The set of feasible solutions, also called

feasible region is the set of all feasible points.

The optimal solution is a feasible solution with the maximum value of the objective function.

1.3 Solving linear programs

1.3.1 Graphical method

We may plot (in 2D or 3D) each constraint as an equation (that is a line in the plane in 2D). In case

of ‘≤’ constraints, feasible points are on one side of the line, see Fig. 4.3.

A corner (extreme) point X of the region R: every line through X intersects R in a segment

whose one endpoint is X . Solving a linear program amounts to finding a best corner point by the

following theorem.

Theorem 1.1 If a linear program has an optimal solution, then it also has an optimal solution
that is a corner point of the feasible region.

Exercise. Try to find all corner points of the feasible region of the product mix problem. Evaluate

the objective function 3x1 + 2x2 at those points.

5



Figure 1.1: Set of feasible solutions of the product mix problem. Source: Juraj Stacho’s lecture

notes

Note that the graphical solving process always yields one of the following cases.

Theorem 1.2 Every linear program has either

1. a unique optimal solution, or

2. multiple (infinity) optimal solutions, or

3. is infeasible (i.e. has no feasible solution), or

4. is unbounded (i.e. no feasible solution is maximal).
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1.4 More examples

1.4.1 Blending

A company wants to produce a certain alloy containing 30% lead, 30% zinc, and 40% tin. This

is to be done by mixing certain amounts of existing alloys that can be purchased at certain prices.

The company wishes to minimize the cost. There are nine available alloys with the following com-

position and prices.

Alloy 1 2 3 4 5 6 7 8 9 Blend

Lead (%) 20 50 30 30 30 60 40 10 10 30

Zinc (%) 30 40 20 40 30 30 50 30 10 30

Tin (%) 50 10 50 30 40 10 10 60 80 40

Cost ($ / kg) 7.3 6.9 7.3 7.5 7.6 6.0 5.8 4.3 4.1 minimize

Decision variables are x1, x2, . . . , x9, where xi is the amount of Alloy i in a unit of blend. In

particular, the decision variables must satisfy x1 + x2 + · · · + x9 = 1. (It is a common mistake

to choose xi the absolute amount of Alloy i in the blend. That may lead to a non-linear program.)

With that we can setup constraints and the objective function.

min z = 7.3x1 + 6.9x2 + 7.3x3 + 7.5x4 + 7.6x5 + 6.0x6 + 5.8x7 + 4.3x8 + 4.1x9

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 = 1

0.2x1 + 0.5x2 + 0.3x3 + 0.3x4 + 0.3x5 + 0.6x6 + 0.4x7 + 0.1x8 + 0.1x9 = 0.3

0.3x1 + 0.4x2 + 0.2x3 + 0.4x4 + 0.3x5 + 0.3x6 + 0.5x7 + 0.3x8 + 0.1x9 = 0.3

0.5x1 + 0.1x2 + 0.5x3 + 0.3x4 + 0.4x5 + 0.1x6 + 0.1x7 + 0.6x8 + 0.8x9 = 0.4

x1, . . . , x9 ≥ 0

Do we need all the four equations?

1.4.2 Post office problem

In a post office (or in any vegetable shop) the following number of workers are needed from Mon-

day to Sunday, respectively): M:27 T:24 W:23 T:20 F:25 Sa:27 Su:28 (this is necessary to run

the business, but we are flexible, means that a bit more employees in each day is not a big prob-

lem). Further requirement that an employee must work in 5 consecutive days, e.g. from Monday
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to Friday, from Tuesday to Saturday, etc. The task of the manager to satisfy all conditions with a

minimum number of employees (therefore minimize the wage cost).

Let the decision variables be x1, . . . , x7, where xi is the number of employees start working on day

i (i = 1, . . . , 7 for Monday i = 1, etc.).

With that we can setup constraints and the objective function.

min z = x1 + x2 + x3 + x4 + x5 + x6 + x7

x1 + x4 + x5 + x6 + x7 ≥ 27

x1 + x2 + x5 + x6 + x7 ≥ 24

x1 + x2 + x3 + x6 + x7 ≥ 23

x1 + x2 + x3 + x4 + x7 ≥ 20

x1 + x2 + x3 + x4 + x5 ≥ 25

x2 + x3 + x4 + x5 + x6 ≥ 27

x3 + x4 + x5 + x6 + x7 ≥ 28

xi ≥ 0(i = 1, . . . , 7)

1.5 Exercises

1.5.1 (Winston, Ch.3. Problems) Leary Chemical manufactures three chemicals: A, B, and C.

These chemicals are produced via two production processes: 1 and 2. Running process 1 for an

hour costs $4 and yields 3 units of A, 1 of B, and 1 of C. Running process 2 for an hour costs $1

and produces 1 unit of A and 1 of B. To meet customer demands, at least 10 units of A, 5 of B, and

3 of C must be produced daily. Graphically determine a daily production plan that minimizes the

cost of meeting Leary Chemical’s daily demands.

1.5.2 (Winston, Ch.3. Problems) Furnco manufactures desks and chairs. Each desk uses 4 units

of wood, and each chair uses 3. A desk contributes $40 to profit, and a chair contributes $25.

Marketing restrictions require that the number of chairs produced be at least twice the number of

desks produced. If 20 units of wood are available, formulate an LP to maximize Furnco’s profit.

Then graphically solve the LP.

1.5.3 Furniture company manufactures four models of chairs. Each chair requires certain amount

of raw materials (wood/steel) to make. The company wants to decide on a production that maxi-

mizes profit (assuming all produced chair are sold). The required and available amounts of mate-
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rials are as follows.

Chair 1 Chair 2 Chair 3 Chair 4 Total available

Steal 1 1 3 9 4400 (kg)

Wood 4 9 7 2 600 (kg)

Profit $12 $20 $18 $40 max

1.5.4 The Bloomington Brewery Inc. produces pilsner type beers and ale type beers. The price

of the pilsner type is 40 euros per barrel, while the price of the ale type is 30 euros per barrel. To

produce one barrel pilsner they need 5 kg barely malt and 2 kg hop. On the other hand, to produce

one barrel ale 3 kg barely malt and 1 kg hop are needed. In a given day, they have 60 kg barley malt

and 25 kg hop in storage. The task is to determine the production numbers in order to maximize

the expected income.

1.5.5 The Dorian Cars company distribute luxury cars and lorries/trucks. The management ob-

served that the costumers are mostly men and women with high income. To reach this group the

company is going to start an advertising campaign and buy 30 seconds advertising space during

two kind of TV broadcasts: comedies and football games. Estimations show that each commercial

during a comedy is watched by 7 million women (with high salary) and 2 million men, while in

case of a football game the numbers are 2 millions and 12 millions, respectively. The cost of a

commercial is 5,000 dollars in case of a comedy and 10,000 dollars in case of a football game. The

ownership wants that the commercials would be seen by at least 28 million women and 24 million

men reached by the minimum commercial cost.

9
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Chapter 2

Simplex Method

In this chapter we present the simplex method as it applies to linear programming problems in

standard form. At the end of the chapter we briefly discuss the connection of LP with convex

geometry.

2.1 Simplex algorithm

Let us consider again the following LP:

max z = 3x1 + 2x2

S.t. x1 + x2 ≤ 80

2x1 + x2 ≤ 100

x1 ≤ 40

x1, x2 ≥ 0

To change an inequalities to an equations, we add a new non-negative variable to each constraint.

We call these slack variables or artificial variables.

max z = 3x1 + 2x2

S.t. x1 + x2 + x3 = 80

2x1 + x2 + x4 = 100

x1 + x5 = 40

x1, x2, x3, x4, x5 ≥ 0
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Now we can express the slack variables from the individual equations and obtain

x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

This is called the first dictionary. In the general case, the LP is

a11x1 + a12x2 + . . . + a1nxn + xn+1 = b1

a21x1 + a22x2 + . . . + a2nxn + xn+2 = b2
...

am1x1 + am2x2 + . . . + amnxn + xn+m = bm

c1x1 + c2x2 + . . . + cnxn = z

and the corresponding first dictionary is defined as

xn+1 = b1 − a11x1 − a12x2 − . . . − a1nxn

xn+2 = b2 − a21x1 − a22x2 − . . . − a2nxn
...

xn+m = bm − am1x1 − am2x2 − . . . − amnxn

z = c1x1 + c2x2 + . . . + cnxn

We will use the following definitions and terminology:

• Decision variables: variables of the original LP (given in standard form) (x1, x2, . . . , xn).

• Slack variables: new non-negative variables to construct the dictionary (xn+1, xn+2, . . . , xn+m).

• Basic variables: variables on the left-hand side of the constraint equalities of the dictionary.

The set of basic variables is called basis.

• Non-basic variables: variables on the right-hand side of the constraint equalities of the

dictionary.

• Basic solution: vector x, such that the non-basic-variables are zero (and the basic variables

are constant values of the respective equations on the right-hand side).
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• Feasible basic solution: a basic solution which is feasible, i.e. bi ≥ 0 i = 1, 2, . . . ,m is

satisfied.

The importance of basic solutions is revealed by the observation that they are precisely the

corner points of the feasible region. We have discussed that to find an optimal solution to an LP,

it suffices to find a best solution among all corner points. The above tells us how to compute them

since they are the basic feasible solutions.

At first we suppose that b1 ≥ 0, . . . , bm ≥ 0, thus the basic solution of the initial dictionary is

x = (0, 0, . . . , 0, b1, b2, . . . , bm) is a feasible solution. The algorithm we are seeking is an iterative
search of the optimal solution that in each iteration tries to find a new dictionary such that

1. Every two consecutive dictionaries are equivalent

2. In each iteration the value of the objective function is larger or equal to that in case the

previous dictionary

3. The basic solution is feasible in each iteration

The following terminology is used:

• Pivot step: calculate a new feasible by changing the roles of a basic and non-basic variable

(i.e. re-arranging a constraint equation).

• Incoming variable: a non-basic variable that become a basic variable of the new dictionary

in a simplex iteration.

• Outgoing variable: a basic variable that become a non-basic variable of the new dictionary

in a simplex iteration.

Two dictionaries are equivalent if the two have the same set of solutions with equal objective

function values for the same solutions.

Proposition 2.1 Each dictionary, obtained by using the above defined pivot steps, is equivalent to

the original system.
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2.1.1 Improving the solution

In our initial dictionary, x1 and x2 are non-basic variables, x3, x4 and x5 are basic variables and the

set {x3, x4, x5} is the basis.

x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

The basic (feasible) solution of this dictionary is x1 = 0, x2 = 0 and then x3 = 80, x4 = 100, x5 =

40, and z = 0. How can we improve the solution, i.e. the value of z? We can see, that if x1 or x2
increases then z increases.

• For example consider x1 = 20 and x2 = 0. Then x3 = 60, x4 = 60, x5 = 20, and z = 60.

This is a feasible solution.

• Now let x1 = 40 and x2 = 0. Then x3 = 40, x4 = 20, x5 = 0, and z = 120. This is also a

feasible solution and better then the previous one.

• Next we consider x1 = 50 and x2 = 0. Then x3 = 30, x4 = 0, x5 = −10, but this is not a

feasible solution since x5 < 0.

How much we can increase x1 before a (dependent) basic variable becomes negative?

Let x1 = t and x2 = 0. The the basic solution is feasible if

x3 = 80 − t − x2 ≥ 0 ⇒ t ≤ 80

x4 = 100 − 2t − x2 ≥ 0 ⇒ t ≤ 50

x5 = 40 − t ≥ 0 ⇒ t ≤ 40

The maximal value is x1 = 40 at which point the variable x5 becomes zero. Thus we perform a

pivot step by changing the role of x1 (incoming variable) and x5 (outgoing variable). The above

analysis can be easily done using the following simple “ratio” test.

• the ratio for x3 is 80/1 = 80

• the ratio for x4 is 100/2 = 50

• the ratio for x5 is 40/1 = 40
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The minimum ratio achieved with x5, thus x5 will be the outgoing variable. After the first pivot

step, we arrive the the following dictionary:

x1 = 40 − x5

x3 = 40 − x2 + x5

x4 = 20 − x2 + 2x5

z = 120 + 2x2 − 3x5

The basic solution of this dictionary is x2 = 0, x5 = 0; x1 = 40, x3 = 40, x4 = 20 and z = 120.

Now we can observe that z can be increased by increasing x2. The ratio test tells us that x4 will be

the outgoing variable (notice that the first equation does not limit the value of x4). After the second

pivot step we get

x1 = 40 − x5

x2 = 20 − x4 + 2x5

x3 = 20 + x4 − x5

z = 160 − 2x4 + x5

with the basic solution s x4 = 0, x5 = 0; x1 = 40, x2 = 20, x3 = 20 and z = 160. Now we can

increase x5. According to the ratio test x3 is the outgoing variable, and we get the dictionary

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z = 180 − x3 − x4

We can see that no more improvement is possible (since increasing x3 or x4 would decrease

z). The basic solution of this dictionary is the optimal solution of the LP: x1 = 20, x2 = 60

(x3 = 0, x4 = 0, x5 = 20) and z = 180.

In the general case, the following proposition can be proved.

Proposition 2.2 If there is no positive cj (j = 1, 2, . . . , n+m) coefficient in the objective function

and negative bi (i = 1, 2, . . . ,m) constant term in the equations, then the basic solution of the

dictionary is optimal.
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2.1.2 Unbounded LP

Suppose that after an iteration step we arrived to the following dictionary.

x4 = 4 + x1 − 2x2

x5 = 6 + x1 − 4x3

x6 = 2 − 2x2 + 2x3

z = 3x1 − 4x2 − x3

We can observe, that x1 can be arbitrarily large in the actual basic solution, and so z can be

arbitrarily large.

A maximization (minimization) LP is unbounded if its objective function value can be arbi-

trarily large over the set of feasible solutions. In general the following statement holds.

Proposition 2.3 If there is a positive cj (j = 1, 2, . . . , n + m) coefficient in the equation for z

such that all −aij (i = 1, 2, . . . ,m) coefficient of xj in the equations is non-negative, then the

corresponding LP is unbounded.

2.1.3 Simplex algorithm

Preparation: find a starting feasible solution/dictionary

1. Convert LP to canonical form (constraints are equalities) by adding slack variables xn+1, . . . , xn+m

2. Construct a starting dictionary - express slack variables and objective function z

3. If the resulting dictionary is feasible, then we are done with preparation

If not, try to find a feasible dictionary using the Phase I. method (see later)

Simplex step (maximization LP): try to improve the solution

1. Optimality test: If no variable appears with a positive coefficient in the equation for z →
STOP, current solution is optimal

• set non-basic variables to zero

• read off the values of the basic variables (these are the constant terms in respective

equations) and the objective function z

• report this optimal solution
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2. Else pick a variable xi having positive coefficient in the equation for z; xi is the incoming
variable

3. Ratio test: in the dictionary, find an equation for a variable xj in which

• xi appears with a negative coefficient −a

• the ratio b/a is the smallest possible (b is the constant term in the equation for xj)

4. If no such such xj exists→ stop, no optimal solution, report that LP is unbounded

5. Else xj is the outgoing variable→ construct a new dictionary by pivoting:

• express xi from the equation for xj

• add this as a new equation

• remove the equation for xj

• substitute xi to all other equations (including the one for z)

6. Repeat from 1.

2.2 Cycling, degeneracy

Now we will see, that it can happen that in optimality test of the simplex algorithm the answer is

always no, means that the algorithm does not stop in any iteration. Let us run the simplex algorithm

on the following dictionary.

• First iteration

x5 = − 1
2
x1 + 11

2
x2 + 5

2
x3 − 9x4

x6 = − 1
2
x1 + 3

2
x2 + 1

2
x3 − x4

x7 = 1 − x1

z = 10x1 − 57x2 − 8x3 − 24x4

• Second iteration

x1 = 11x2 + 5x3 − 18x4 − 2x5

x6 = − 4x2 − 2x3 + 8x4 + x5

x7 = 1 − 11x2 − 5x3 + 18x4 + x5

z = 53x2 + 41x3 − 204x3 − 20x5
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• Third iteration

x1 = − 1
2
x3 + 4x4 + 3

4
x5 − 11

4
x6

x2 = − 1
2
x3 + 2x4 + 1

4
x5 − 1

4
x6

x7 = 1 + 1
2
x3 − 4x4 − 3

4
x5 − 11

4
x6

z =
29

2
x3 − 98x4 − 27

4
x5 − 53

4
x6

• (...)

• 7th iteration

x5 = − 1
2
x1 + 11

2
x2 + 5

2
x3 − 9x4

x6 = − 1
2
x1 + 3

2
x2 + 1

2
x3 − x4

x7 = 1 − x1

z = 10x1 − 57x2 − 8x3 − 24x4

We get back our initial dictionary after 7 iterations. Several dictionaries may correspond to the

same (degenerate) solution The simplex (pivot) rule may cycle, it is possible to go back to the

same dictionary.

Proposition 2.4 If the simplex algorithm fails to terminate, then it must cycle.

Note that the number of possible dictionaries is
(
n+m
m

)
finite. The simplex algorithm changes the

dictionaries in each iteration, thus if it does not stop, then it must arrive to a dictionary in a certain

step that appeared before. It is crucial to see that the following proposition holds

Proposition 2.5 If the basis of two dictionaries are the same, then the two dictionaries are identi-

cal.

We say that a dictionary is degenerate if bj vanishes for some j = 1, . . . ,m. A degenerate

dictionary could cause difficulties for the simplex algorithm. The problem is that the simplex

method could make a sequence of degenerate pivots (i.e. choosing an outgoing variable xj where

bj = 0) and eventually return to a dictionary that has appeared before.

Proposition 2.6 Cycling caused by degenerate pivots.

Fortunately, there are strategies to avoid cycling. For instance, Bland’s rule says that from

possible options, choose an incoming (outgoing) variable xk with smallest index k.
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Theorem 2.1 The simplex method always terminates provided that both the entering and the leav-

ing variable are chosen according to Bland’s rule.

Another option is e.g. the lexicographic simplex method: choose as outgoing variable one

whose row is lexicographically smallest (when divided by the constant term) - the coefficients in

the objective function are guaranteed to strictly increase lexicographically.

2.3 Two-phase simplex method

We defined the dictionary for LP in standard (maximization) form as

xn+i = bi −
n∑
j=1

aijxj i = 1, 2, . . . ,m

z =
n∑
j=1

cjxj

We assumed till now that every bi ≥ 0 i = 1, 2, . . . ,m and solved the problem with the simplex

algorithm. What happens, if it is not the case? For instance, let us consider the following LP:

max z = x1 − x2 + x3

2x1 − x2 + x3 ≤ 4

2x1 − 3x2 + x3 ≤ −5

−x1 + x2 − 2x3 ≤ −1

x1, x2, x3 ≥ 0

The corresponding dictionary is

x4 = 4 − 2x1 + x2 − 2x3

x5 = −5 − 2x1 + 3x2 − x3

x6 = −1 + x1 − x2 + 2x3

z = x1 − x2 + x3

This is not feasible since x5, x6 < 0 in the basic solution. We need to find a starting feasible

dictionary. In order to do this, we solve a different problem. Idea: introduce one new artificial
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variable x0 and a new objective w = −x0, and solve the following auxiliary problem .

max w = −x0
2x1 − x2 + x3 − x0 ≤ 4

2x1 − 3x2 + x3 − x0 ≤ −5

−x1 + x2 − 2x3 − x0 ≤ −1

x1, x2, x3, x0 ≥ 0

Introduce x4, x5, x6 slack variables as before, we get

max w = −x0
2x1 − x2 + x3 − x0 + x4 = 4

2x1 − 3x2 + x3 − x0 + x5 = −5

−x1 + x2 − 2x3 − x0 + x6 = −1

xi ≥ 0 i = 1, . . . 6

Now perform the following steps:

1. consider the inequality whose right-hand side is most negative (in this case 2nd inequality)

2. this inequality has an associated slack variable (x5), remove this variable from basic variables

→ {x4, x6}

3. add x0 in place of the removed variable→ {x0, x4, x6}

Lemma 2.1 The auxiliary problem become feasible after the above (simple rearranging) steps.

We arrive to the dictionary

x0 = 5 + 2x1 − 3x2 + x3 + x5

x4 = 9 − 2x2 + x5

x6 = 4 + 3x1 − 4x2 + 3x3 + x5

w = −5 − 2x1 + 3x2 − x3 − x5

and this is feasible! (for the auxiliary problem).

Lemma 2.2 The standard LP has a feasible solution if and only if w = 0 is the optimal solution

of the auxiliary problem.
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Proof. Suppose that x is a feasible solution of the original problem. Then (x0 = 0, x) is an opti-

mal solution of the auxiliary problem and w ((x0 = 0, x)) = 0. Conversely, suppose that 0 is the

optimum of the auxiliary problem taken in x∗. Then x∗0 = 0, and leaving x∗0 from x∗ we obtain a

feasible solution of the original problem �

According to Lemma 2.2 the steps of Phase I of the simplex method can be summarized as

follows.

1. If the basic solution of the corresponding dictionary of the LP in is feasible, then go to Phase

II. (simplex algorithm).

2. If not, associate the auxiliary problem and prepare its initial feasible dictionary.

3. Solve the auxiliary problem with the simplex algorithm.

4. If its optimum < 0, then there is no feasible solution of the original problem.

5. If its optimum = 0, then we get a dictionary that is equivalent with the dictionary of the

original LP and its basic solution is feasible. Then

• drop the variable x0(= 0) and remove the auxiliary objective w;

• introduce the original objective z;

• if there are variables in z that are basic variables, substitute them using the new dictio-

nary.

2.4 Fundamental theorem of linear programming

Now that we have a Phase I algorithm and a variant of the simplex method that is guaranteed to

terminate, we can summarize the main result of this chapter.

Theorem 2.2 (Fundamental theorem of linear programming) For an arbitrary linear program

in standard form, the following statements are true:

1. If there is no optimal solution, then the problem is either infeasible or unbounded.

2. If a feasible solution exists, then a basic feasible solution exists.
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3. If an optimal solution exists, then a basic optimal solution exists.

Proof. The Phase I algorithm either proves that the problem is infeasible or results in a basic

feasible solution. The Phase II algorithm either discovers that the problem is unbounded or finds

a basic optimal solution. These statements depend, of course, on applying a variant of the simplex

method that does not cycle, which exists as we noted before. �

Figure 2.1: Two-phase simplex method. Source: Juraj Stacho’s lecture notes

2.5 Connection to convex geometry

Let Rn be the n-dimensional linear space over the real numbers. Its elements are real vectors of

n elements. Let En be the n-dimensional Euclidean space, with an inner product operation and

a distance function that are defined as follows

• inner product: 〈x, y〉 = xTy = x1y1 + x2y2 + . . .+ xnyn

• corresponding norm: ||x|| =
√
〈x, x〉

• distance: d(x, y) = ||x− y||2 =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2

This distance function is called the Euclidean metric. The formula expresses a special case of the

Pythagorean theorem.

A Point is an x ∈ En vector. Note that LP feasible solutions are points in En. The n-
dimensional hyperplane is defined as

{ x : x ∈ En, a1x1 + a2x2 + . . .+ anxn = b } ,
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where a1, a2, . . . , an, b ∈ R given (fixed) numbers.

The n-dimensional closed half-space is defined as

{ x : x ∈ En, a1x1 + a2x2 + . . .+ anxn ≤ b } ,

where a1, a2, . . . , an, b ∈ R given (fixed) numbers.

The linear constraints of an LP are closed half-spaces (in case of ‘≤’ constraints) or hyper-

planes (in case of ‘=’ constraints). The feasible region (i.e. the set of feasible solutions) of a

linear program is the intersection of finite number of half-spaces (and hyperplanes). This is called

polyhedron.

A polytope is a bounded polyhedron. The set of feasible solutions (points) of a linear program

forms a convex polyhedron (either bounded or unbounded). Theorem 1.1 tells us that a linear ob-

jective function achieves its maximal value (if exists) in a corner (extreme) point of the feasible

region (i.e. a polytope).

Example. Let us consider the following LP:

Max z = 2x1 + x2 + 5x3

S.t. 2x1 + x2 ≤ 4

x3 ≤ 3

x1, x2, x3 ≥ 0

Performing the simplex algorithm on this LP using the classical pivoting rule (the entering

variable is the one with the largest positive coefficient) we obtain the following basic solutions:[
x1 x2 x3 x4 x5

]
=
[
0 0 0 4 5

]
→
[
0 0 5 4 0

]
→
[
2 0 5 0 0

]
→
[
0 4 5 0 0

]
.

Exercise. Verify that by solving the problem with the simplex algorithm.

The basic solutions for the decision variables are[
x1 x2 x3

]
=
[
0 0 0

]
→
[
0 0 5

]
→
[
2 0 5

]
→
[
0 4 5

]
that are the corner points of the polyhedron represents the feasible solutions, see Figure 2.2. A

pivot step is a step from an actual basic solution (corner point) to an “adjacent” basic solution

(corner point) through an egde of a polyhedron; this is guaranteed by the above theorems.
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Figure 2.2: Set of feasible solutions (polyhedron), basic solutions (corner points) and pivot steps

(red)

Degeneracy can also be explained in terms of geometry. It means that an n-dimensional corner

point is incident to at least n + 1 hyperplanes (it is easy to consider in the plain, when a vertex is

the intersection of at least 3 lines). Degenerate iteration step means, that the algorithm remains in

the same vertex. The basis chances, but the basic solution remains the same. We learnt that using

an appropriate pivot rule, cycling caused by degeneracy can be avoided.

Also note, that if an LP is unbounded then the set of feasible solutions (i.e. a polyhedron) is

unbounded, but the reverse direction of this statement is not follows.

2.6 Exercises

2.6.1 Solve the following linear programming problem:

max z = 2x1 + x2

S.t. 2x1 + x2 ≤ 4

2x1 + 3x2 ≤ 3

4x1 + x2 ≤ 5

x1 + 5x2 ≤ 1

x1, x2 ≥ 0

2.6.2 Solve the following linear programming problem:
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max z = x1 + 3x2

S.t. −x1 − 3x2 ≤ −3

−x1 + x2 ≤ −1

x1 + 2x2 ≤ 4

x1, x2 ≥ 0

2.6.3 Solve the following linear programming problem:

max z = 6x1 + 8x2 + 5x3 + 9x4

S.t. x1 + x2 + x3 + x4 = 1

xi ≥ 0 (i = 1, 2, 3, 4)

2.6.4 Give an example showing that the variable that becomes basic in one iteration of the simplex

method can become nonbasic in the next iteration.

2.6.5 Show that the variable that becomes nonbasic in one iteration of the simplex method cannot

become basic in the next iteration.

2.6.6 Prove the propositions and theorems of the chapter.
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Chapter 3

Duality

In this chapter we give a short introduction to duality theory. With each linear program another

problem can be associated, called its dual. The dual of this dual linear program is the original

linear program. Hence, linear programs come in primal/dual pairs. It turns out that the objective

function of every feasible solution for one of these two linear programs gives a bound on the value

of optimal objective function for the other. Moreover, if one of them has an optimal solution then

the its pair has too, and the optimal objective function values are equal.

3.1 Duality: pricing interpretation

Let us go back to our usual manufacturing LP problem. For the sake of illustration, we drop the

3rd constraint, and consider the resource items as blocks of wood and cans of paint (instead of

working hours).
max z = 3x1 + 2x2 [profit]

x1 + x2 ≤ 80 [wood]

2x1 + x2 ≤ 100 [paint]

x1, x2 ≥ 0

The manufacturer owns 80 blocks of wood and 100 cans of paint. He can sell his stock at market

prices or buy additional stock at market prices. He can also produce and sell goods (toys) using

the available stock. What is his best strategy (assuming everything produced can be sold)?

Let y1 be the (market) price of one block of wood and y2 be the price of one can of paint. The

manufacturer can

27



1. Produce toys using the available resources and sell them.

2. Sell his resources in market prices.

3. Buy additional wood and paint in market prices.

Selling stock generates a profit of 80y1 + 100y2. If the cost (in market prices) of producing one

toy soldier is strictly less than the sale price, i.e. if y1 + 2y2 < 3, then there is no limit on the profit

of manufacturer. He can generate arbitrarily large profit by buying additional stock to produce toy

soldiers in arbitrary amounts. Why?

The production cost of one toy soldier is y1 + 2y2, thus producing x1 toy soldier costs (y1 +

2y2)x1. Suppose that y1+2y2 = 2.9$, and the selling price is 3$. Therefore the profit by selling one

toy soldier is 0.1$ and the profit by selling x1 is 0.1x1, that can be arbitrarily large. The situation

is similar in the case of trains.

In long term, market (the market competition) will “not allow” the manufacturer to make

arbitrarily large profit (why and how?). It will set its prices so that the manufacturer makes as little

as possible. The market thus “solves” the following:

min 80y1 + 100y2

y1 + 2y2 ≥ 3 [soldiers]

y1 + y2 ≥ 2 [trains]

y1, y2 ≥ 0

The above LP is called the dual of the manufacturing problem. In general, the primal-dual pair
is defined as

n∑
j=1

aijxj ≤ bi i = 1, 2, . . .m

Primal xj ≥ 0 j = 1, 2, . . . n

max
n∑
i=1

cixi = z
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m∑
i=1

aijyi ≥ cj j = 1, 2, . . . n

Dual yi ≥ 0 i = 1, 2, . . .m

min
m∑
i=1

biyi = w

Writing them in matrix form the primal is

max cTx = z

Ax ≤ b

x ≥ 0

while its dual pair is
min bTy = w

ATy ≥ c

y ≥ 0

Observe that the dual can be obtained easily form the primal (in standard form):

• transposing matrix A

• swapping vectors b and c

• switching the ≤ inequalities to ≥

• changing max to min.

Proposition 3.1 The dual of the dual is the primal LP.

Proof. Re-writing the dual to standard maximization form we get

m∑
i=1

(−aij)yi ≤ −cj j = 1, 2, . . . n

Dual yi ≥ 0 i = 1, 2, . . .m

max
m∑
i=1

(−bi)yi = w
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n∑
j=1

(−aij)xj ≥ −bi i = 1, 2, . . .m

Dual of dual xj ≥ 0 j = 1, 2, . . . n

min
n∑
j=1

−(cj)xj = z

that is equivalent to the standard primal LP. �

Finally here, consider that our LP is the model of a production process to maximize profit with

limited resources (like our toy example). In this problem m is the number of resources, n is the

number of different products. The number of units produced from product j is xj . Producing one

unit of product j requires aij units of resource i, while bi is the available quantity (units) of resource

i. The profit of selling one unit of product j is cj
In the dual optimal solution y∗i is the marginal price (or also called shadow price) of resource

i (in the primal). Increasing the quantity bi with one unit the objective function value (of the primal)

is increasing by y∗i . On the other hand, if there is “too much” form resource i then the value of this

resource cannot be high. Moreover one may observe that it does not worth to pay more than y∗i to

a unit of resource i.

3.2 Duality theorems and feasibility

Theorem 3.1 (Weak duality) If x = (x1, . . . , xn) is feasible solution for the primal and y =

(y1, . . . , ym) is feasible solution for the dual, then cTx ≤ bTy, i.e.

n∑
j=1

cjxj ≤
m∑
i=1

biyi.

It means that any feasible solution of the dual is an upper bound of all feasible solution (also the

primal optimum, in particular) of the primal.

Proof. The proof is a simple chain of obvious inequalities:

n∑
j=1

cjxj ≤
n∑
j=1

(
m∑
i=1

yiaij

)
xj =

m∑
i=1

(
n∑
j=1

xjaij

)
yi ≤

m∑
i=1

biyi,
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or in matrix form:

cTx ≤ (ATy)Tx = (yTA)x = yT (Ax) ≤ yT b = bTy.

�

Theorem 3.2 (Strong duality) If the primal has an optimal solution x = (x1, . . . , xn) then the

dual has an optimal solution y = (y1, . . . , ym) such that cTx = bTy, i.e.

n∑
j=1

cjxj =
m∑
i=1

biyi.

Furthermore the following equalities hold:

yT (b− Ax) = 0 and xT (ATy − c) = 0.

Simply, if ith constraint inequality is not sharp (no equality) in the primal optimum, then the corre-

sponding dual yi variable is 0. Backwards, if primal xi variable is strictly positive in the optimum,

then the corresponding dual constraint is sharp (equality holds). This is called complementary
slackness.

As a consequence of the duality theorems, if primal is unbounded, then dual must be infeasible

and likewise, if dual is unbounded, then primal must be infeasible. Note that is it possible that both

primal and dual are infeasible. But if both are feasible, then neither of them is unbounded.

Primal / Dual No feasible solution Feasible solution exists Unbounded

No feasible solution X × X

Feasible solution exists × X ×
Unbounded X × ×

Proof. We omit the details of the proof. The complementary slackness property can be seen easily

as

0 ≤ yT (b− Ax) = yT b− yTAx = bTy − (ATy)Tx ≤ bTy − cTx = 0,

and

0 ≤ xT (ATy − c) = (yTA− cT )x = yT (Ax)− cTx ≤ yT b− cTx = bTy − cTx = 0.

�
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3.3 Dual simplex method

The dual simplex method is simply a new way of choosing the entering and leaving variables in a

sequence of primal dictionaries. Let us consider the following example:

m z = −x1 − x2

s.t. −2x1 − x2 ≤ 4

−2x1 + 4x2 ≤ −8

−x1 + 3x2 ≤ −7

x1, x2 ≥ 0.

The dual problem is

min w = 4y1 − 8y2 − 7y3

s.t. −2y1 − 2y2 − y3 ≥ −1

−y1 + 4y2 + 3y3 ≥ −1

y1, y2, y3 ≥ 0.

Introducing slack variables x3, x4, x5 ≥ 0 for the primal, and y4, y5 ≥ 0 for the dual and trans-

forming the dual to standard maximization problem we obtain the following dictionaries

x3 = 4 + 2x1 + x2

x4 = −8 + 2x1 − 4x2

x5 = −7 + x1 − 3x2

z = 0 − x1 − x2

for the primal, and

y4 = 1 − 2y1 − 2y2 − y3

y5 = 1 − y1 + 4y2 + 3y3

−w = 0 − 4y1 + 8y2 + 7y3

for the dual. Note that the dual dictionary is feasible, but the primal is not. This suggest that it

could be useful to apply the simplex algorithm for the dual and apply the “corresponding”pivots to

the primal using the complementary slackness property.

The entering variable in the dual is y2 and the leaving variable is y4. Since x4 is complementary

to y2 and x1 is complementary to y4, we use x4 and x1 for the leaving and entering variables in the
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primal. The results of the pivots are

x3 = 12 + x4 + 5x2

x1 = 4 + 0.5x4 + 2x2

x5 = −3 + 0.5x4 − x2

z = −4 − 0.5x4 − 3x2

and
y2 = 0.5 − y1 − 0.5y4 − 0.5y3

y5 = 3 − 5y1 − 2y4 + y3

−w = 4 − 12y1 − 4y4 + 3y3.

Going on with the work on the dual, now y3 is the entering and y2 is the leaving variable.Thus, in

the primal we use x5 and x4 as the leaving and entering variables, respectively. We get

x3 = 18 + 2x5 + 7x2

x1 = 7 + x5 + 3x2

x4 = 6 + 2x5 + 2x2

z = −7 − x5 − 4x2

and
y3 = 1 − 2y1 − y4 − 2y2

y5 = 4 − 7y1 − 3y4 − 2y2

−w = 7 − 18y1 − 7y4 − 6yy.

We notice that both dictionaries are optimal. Observe that in each of the above dictionaries, the

table of numbers in each dual dictionary is the negative-transpose of the corresponding primal

table. Therefore, it is not needed to write the dual dictionary; the dual simplex method can be

entirely de- scribed in terms of the primal dictionaries. The procedure is the following:

1. Select the leaving variable by choosing that basic variable whose constant term in the dic-

tionary is the most negative.

• If there are none, then the current dictionary is optimal.

2. Ratio test.

• Select the entering variable by scanning across this row of the dictionary and comparing

ratios of the coefficients in this row to the corresponding coefficients in the objective

row, looking for the largest negative ratio (just as in the primal simplex algorithm)

3. Pivot to the next dictionary and go to 1.
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3.4 General LP and its dual

LP contains equalities or unrestricted variables can be also handled. Concretely, equality constraint

corresponds to an unrestricted variable, and vice-versa (in primal and its dual pair, respectively).

Suppose that x1 + x2 = 80. Then

3x1 + 2x2 ≤ 5x1 + 2x2 = (−1) (x1 + x2)︸ ︷︷ ︸
=80

+3 (2x1 + x2)︸ ︷︷ ︸
≤100

≤ −80 + 3× 100 = 220

thus now y1 = −1, but is in unrestricted. On the other hand, suppose that x1 has no sign restriction.

Then we could not conclude, for instance, that x1+2x2 ≤ 4x1+2x2 holds for all feasible solutions.

In the dual we had y1 + 2y2 ≥ 3, and if we fix y1 + 2y2 = 3, then (y1 + 2y2)x1 + 2x2 ≤
3x1 + tx2 (for all t > 2) upper bound always works. In a similar way we can conclude that ≥
constraint corresponds to a non-positive variable and vice-versa. In general the following rules can

be summarized:

Primal (Max) Dual (Min)

i-th constraint ≤ yi ≥ 0

i-th constraint ≥ yi ≤ 0

i-the constraint = yi unrestricted

xi ≤ 0 i-th constraint ≤
xi ≥ 0 i-th constraint ≥

xi unrestricted i-th constraint =

Example. The primal LP is

max z = 3x1 + 2x2 + x3

x1 + x2 + 0.5x3 ≤ 80

2x1 + x2 + x3 = 100

x1 + x3 ≥ 40

x1 unrestricted

x2 ≤ 0

x3 ≥ 0

34



then its dual is
min w = 80y1 + 100y2 + 40y3

y1 + 2y2 + y3 = 3

y1 + y2 ≤ 2

0.5y1 + y2 + y3 ≥ 1

y1 ≥ 0

y2 unrestricted

y3 ≤ 0

3.5 Complementary slackness

Recall that strong duality theorem says that if x is an optimal solution to the primal and y is an

optimal solution to the dual, then cTx = bTy. In fact, more is true.

Theorem 3.3 (Complementary slackness) Assume that x is an optimal solution to the primal.

Then

1. If y is an optimal solution to the dual, then x and y are complementary.

2. If y is a feasible solution in the dual and is complementary to x, then y is optimal in the dual.

3. There exists a feasible solution y to the dual such that x and y are complementary.

A consequence is of this theorem is the following.

Proposition 3.2 If x is a basic feasible primal solution and π is the vector contains the corre-

sponding shadow prices, then x is optimal if and only if π is a feasible solution of the dual.

To understand the relevance of Theorem 3.3 let us consider the following LP:

max z = 6x1 + x2 − x3 − x4

x1 + 2x2 + x3 + x4 ≤ 5

3x1 + x2 − x3 ≤ 8

x2 + x3 + x4 = 1

x1 unrestricted

x2, x3, x4 ≥ 0

We would like to check if one of the following assignments is an optimal solution

35



1. x1 = 2, x2 = 1, x3 = 0, x4 = 0

2. x1 = 3, x2 = 0, x3 = 1, x4 = 0

To check this, we need the dual LP:

min w = 5y1 + 8y2 + y3

y1 + 3y2 = 6

2y1 + y2 + y3 ≥ 1

y1 − y2 + y3 ≥ −1

y1 + y3 ≥ −1

y1, y2 ≥ 0

y3 unrestricted

The first suggestion is: x1 = 2, x2 = 1, x3 = 0, x4 = 0; suppose that this is optimal. Then there is

a y = (y1, y2, y3) feasible solution that is complementary to x.

• the first primal constraint: x1 + 2x2 + x3 + x4 = 2 + 2 + 0 + 0 = 4 < 5 not tight→ y1 = 0

• the second primal constraint: 3x1 + x2 − x3 = 6 + 1− 0 = 7 < 8 not tight→ y2 = 0

• then the first dual constraint: y1 + 3y2 = 0 + 0 = 0 6= 6→ (y1, y2, y3) not feasible solution

of the dual, but we assumed that it is⇒ x not optimal solution of the primal

The second suggestion is: x1 = 3, x2 = 0, x3 = 1, x4 = 0; suppose that this is optimal. hen there

is a y = (y1, y2, y3) feasible solution that is complementary to x.

• the first primal constraint x1 + 2x2 + x3 + x4 = 3 + 0 + 1 + 0 = 4 < 5 not tight→ y1 = 0

• the second primal constraint: 3x1 + x2 − x3 = 9 + 0− 1 = 8 tight

• the third primal constraint: x2 + x3 + x4 = 0 + 1 + 0 = 1 tight

• check sign constraints (x1, x2, x3, x4 ≥ 0)⇒ x feasible in the primal

Now check the values in x with respect to the dual constraints

• x1 is unbounded→ the first dual constraint y1 + 3y2 = 6 is tight (by necessity)

• x3 > 0→ the third dual constraint is tight: y1 − y2 + y3 = −1
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Summarizing the above we get:

y1 = 0

y1 + 3y2 = 6

y1 − y2 + y3 = −1

The unique solution of this system is: y1 = 0, y2 = 2, y3 = 1; this is complementary to x =

(x1, x2, x3, x4) by construction. The last step is to check if y is also feasible in the dual. The

answer is true, thus x is optimal solution of the primal.

3.5.1 Complementary slackness: summary

1. Given x, check if x is feasible;

2. find which variables y1 should be 0;

3. find which dual constraints should be tight;

4. this yields a system of equations;

5. solve the system;

6. verify that the solution is feasible in the dual.

If all these steps succeed, then the given x is optimal; otherwise, it is not.

3.6 Exercises

3.6.1 What is the dual of the following linear programming problem:

max z = 2x1 + x2

S.t. 2x1 + x2 ≤ 4

2x1 + 3x2 ≤ 3

4x1 + x2 ≤ 5

x1 + 5x2 ≤ 1

x1, x2 ≥ 0
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3.6.2 What is the dual of the following linear programming problem:

max z = x1 + 3x2

S.t. −x1 − 3x2 ≤ −3

−x1 + x2 ≤ −1

x1 + 2x2 ≤ 4

x1, x2 ≥ 0

3.6.3 What is the dual of the following linear programming problem:

Max z = 6x1 + 8x2 + 5x3 + 9x4

S.t. x1 + x2 + x3 + x4 = 1

xi ≥ 0 (i = 1, 2, 3, 4)

3.6.4 Find an available LP Solver a check the primal and dual solutions of the above tasks.

3.6.5 (Diet problem). A master student was trying to make ends meet on a very small stipend. He

went to the library and looked up “Recommended Dietary Allowances” and was able to determine a

minimum daily intake quantity of each essential nutrient for a male in his weight and age category.

Let m denote the number of nutrients that he identified as important to his diet, and let bi for

i = 1, . . . ,m denote his personal minimum daily requirements. Next, he made a list of his favorite

foods (which, except for pizza and due mostly to laziness and ineptitude in the kitchen, consisted

almost entirely of frozen prepared meals). He then went to the local grocery store and made a list

of the unit price for each of his favorite foods. Let us denote these prices as cj for j = 1, . . . , n.

In addition to prices, he also looked at the labels and collected information about how much of the

critical nutrients are contained in one serving of each food. Let us denote by aij the amount of

nutrient i contained in food j. (Fortunately, he was able to call his favorite pizza delivery service

and get similar information from them.)

• In terms of this information, formulate a linear program minimizes the student’s cost.

• Make your on diet. Consider at least 5 nutrients and 7 different foods.

• Formulate the dual of the problem.

• Can you introduce another person into the above story whose problem would naturally be to

solve the dual?
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Chapter 4

Integer Programming

A (mixed) integer programming problem (IP or MIP) is an LP in which (some) all of the variables

are required to be non-negative integers. Many real-life situations may be formulated as IPs and

MIPs, but unfortunately, we will in this chapter that IPs are usually much harder to solve than LPs.

We begin with necessary definitions and then present the so-called Branch-and-Bound technique

to solve IPs. We also discuss the basics of dynamic programming and some practical solutions that

an be formulated as IPs.

4.1 Introduction to IP

An LP in which all variables are required to be integers is called a pure integer programming
(IP) problem. For example,

max z = 3x1 + 2x2

st x1 + x2 ≤ 6

x1, x2 ≥ 0

x1, x2 integer

An IP in which only some of the variables are required to be integers is called a mixed integer
programming problem (MIP). In the example above let x1, x2 ≥ 0 and x2 be an integer (x1 is not

required to be an integer). An integer programming problem in which all the variables must equal

0 or 1 is called a 0− 1 IP.

The LP obtained by omitting all integer or 0 − 1 constraints on variables is called the LP
relaxation of the IP.
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Proposition 4.1 The following statements holds.

• The feasible region for any IP must be contained in the feasible region of the corresponding

LP relaxation.

• Optimal objective function value for LP relaxation ≥ optimal value for IP (for max prob-

lems).

• If all corner points of the feasible region of the LP- relaxation is integer, then it has an integer

optimal solution that is also optimal solution of the corresponding IP.

• The optimal solution of the LP-relaxation can be arbitrarily far from the IP solution.

4.2 The Branch & Bound method

The first method to solve IPs is based on the the divide and conquer principle. A large problem

is divided into a few smaller ones. (This is the “branch” part.) The conquering part is done by

estimate how good a solution obtained for each smaller problems (to do this, we may have to

divide the problem further, until we get a problem that we can handle); that is the “bound” part.

We will use the linear programming relaxation to estimate the optimal solution of an integer

programming. The steps of the method are the following:

1. Divide a problem into sub-problems

2. Calculate the LP relaxation of a sub-problem

• The LP problem has no feasible solution, done;

• The LP problem has an integer optimal solution; done. Compare the optimal solution

with the best solution we know (the incumbent).

• The LP problem has an optimal solution that is worse than the incumbent, done.

3. In all the cases above, we know all we need to know about that sub-problem. We say that

sub-problem is fathomed.

4. The LP problem has an optimal solution that are not all integer, better than the incumbent.

In this case go to 1 and repeat.

40



Example. We are given the following IP1:

max z = −x1 + 4x2

st −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1, x2 ≥ 0

x1, x2 integer

We illustrate how the B&B method works. The set of feasible solutions is shown if Fig. 4.1 The

LP relaxation of the problem is

max z = −x1 + 4x2

st −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1, x2 ≥ 0

Figure 4.1: Illustration of the B&B method.

1The example is adapted from the lecture notes of Mustafa Celebi Pinar, available at https://www.ie.

bilkent.edu.tr/~mustafap/courses/bb.pdf
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Optimal solution of the relaxation is (x1, x2) = (3.8, 3) with z = 8.2. Then we consider

following two cases: Case 1: x1 ≥ 4; Case 2: x1 ≤ 3.

Observe that the set of feasible solutions is divided into two parts according to the different

cases, see Fig. 4.2.

Figure 4.2: Illustration of the B&B method.

In Case 1, the relaxed LP

max z = −x1 + 4x2

st −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

4 ≤ x1 ≤ 5

x1, x2 ≥ 0

has optimal solution at (4, 2.9) with z = 7.6 (see Fig. 4.3).

Now we should consider following two sub-cases: Case 1-1: x2 ≥ 3; Case 1-2: x2 ≤ 2.

In Case 1-1, the relaxed LP

max z = −x1 + 4x2

st −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

4 ≤ x1 ≤ 5

x2 ≥ 3

x1, x2 ≥ 0
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Figure 4.3: Illustration of the B&B method.

has no feasible solution (since 5x1 + 10x2 ≥ 50) so the IP has no feasible solution either.

In Case 1-2, the relaxed LP

max z = −x1 + 4x2

st −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 5

x1 ≥ 4

x2 ≤ 2

x1, x2 ≥ 0

has an optimal solution at (4, 2) with z = 4. This is the optimal solution of the IP as well. Currently,

the best value of z for the original IP is z = 4. (The corresponding figure is Fig. 4.4)

Now we should consider the branch of Case 2, when x1 ≤ 3. The relaxed LP

max z = −x1 + 4x2

st −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 3

x1, x2 ≥ 0
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Figure 4.4: Illustration of the B&B method.

has an optimal solution at (3, 2.6) with z = 7.4. We branch out further to two cases: Case 2-1:

x2 ≥ 3 (not feasible!); Case 2-2: x2 ≤ 2 (see Fig. 4.5).

Figure 4.5: Illustration of the B&B method.
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In Case 2-1, the relaxed LP

max z = −x1 + 4x2

st −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 3

x2 ≤ 2

x1, x2 ≥ 0

has an optimal solution at (1.8, 2) with z = 6.2. In Case 2-2 the relaxed LP has no feasible solution,

thus the IP has no solution either. We branch further with two cases: Case 2-1-1 x1 ≥ 2 and Case

2-1-2 x1 ≤ 1 (we still have the constraint x2 ≤ 2!; see Fig. 4.6).

Figure 4.6: Illustration of the B&B method.

In Case 2-1-1 the LP relaxation

max z = −x1 + 4x2

st −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

2 ≤ x1 ≤ 3

x2 ≤ 2

x1, x2 ≥ 0

has an optimal at (2, 2), with z = 6. Since this is better than the incumbent z = 4 at (4, 2), this

new integer solution is our current best solution.
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In Case 2-1-2 the LP relaxation

max z = −x1 + 4x2

st −10x1 + 20x2 ≤ 22

5x1 + 10x2 ≤ 49

x1 ≤ 1

x2 ≤ 2

x1, x2 ≥ 0

has an optimal at (1, 1.6) with z = 5.4. Then any integer solution in this region can not give us a

solution with the value of z greater than 5.4. This branch is fathomed (see Fig. 4.7).

Figure 4.7: Illustration of the B&B method.

4.2.1 Rule of fathoming

A sub-problem is fathomed if

1. The relaxation of the sub-problem has an optimal solution with z < z∗ where z∗ is the

current best solution;

2. The relaxation of the sub-problem has no feasible solution;

3. The relaxation of the sub-problem has an optimal solution that has all integer values (or all

binary if it is a 0-1 IP).
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4.2.2 Branching tree

A display of all sub-problems that have been created is called a tree. Each sub-problem is referred

to as a node of the tree, and each line connecting two nodes of the tree is called an arc. The

constraints associated with any node of the tree are the constraints for the LP relaxation plus the

constraints associated with the arcs leading from the original relaxed LP problem to the node. We

will see an example for a branching tree in the following section.

Exercise. Construct the branching tree for the above example.

4.3 Knapsack problem

A knapsack problem is an IP with a single constraint.

Example: Josie Camper is going to a 2-day trip. There are 4 items that he wants to pack, but the

total weight cannot exceeds 14kg. The following table shows the weight and utility of each item.

Item Weight(kg) Utility Relative utility Rank

1 5 8 1.6 1.

2 7 11 1.57 2.

3 4 6 1.5 3.

4 3 4 1.3 4.

The Mathematical model of the problem is the following. Let xi = 1 if he brings item i and

xi = 0 if not. Then the task is to solve

max z = 8x1 + 11x2 + 6x3 + 4x4

st 5x1 + 7x2 + 4x3 + 3x4 ≤ 14

xi ∈ {0, 1} (i = 1, . . . , 4)

The LP-relaxation can be solved easily. Put the items to the knapsack according to their relative

utility (the most important first). If there is no more space for the item, put just an appropriate

“part" of it. We put the first 2 items of 12 kg total, and “half” of the 3rd item: x1 = 1, x2 = 1, x3 =

0.5, z = 8 + 11 + 0.5 ∗ 6 = 22. Partitioning: x3 = 1 (and we have 10kg free space) or x3 = 0 (and

we can use the rest of the item).
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Figure 4.8: Branching tree for the knapsack problem

Sub-problem 1 is the following:

max z = 8x1 + 11x2 + 4x4

st 5x1 + 7x2 + 3x4 ≤ 14

x3 = 0

while Sub-problem 2 is:

max z = 6 + 8x1 + 11x2 + 4x4

st 5x1 + 7x2 + 3x4 ≤ 10

x3 = 1

Note that every sub-problem is characterized by the set of remaining objects (variables) and

the total budget (the right-hand side). Observe that the above two sub-problems only differ in the

value of budget (since we can ignore the constant term in the objective function). We can exploit

this symmetry.

4.3.1 Dynamic programming for the knapsack problem

Instead of solving the problem just for 10 and 14, we solve the sub-problem for all meaningful

values of the right-hand side (here for values 1, 2, ..., 14). Having done that, we pick the best solu-

tion. This may seem unnecessary but surprisingly it can be faster. To make this work efficiently,

we branch systematically on variables x1, x2, and so on.

In general, the knapsack problem is given by

max z = c1x1 + c2x2 + . . . + cnxn

st d1x1 + d2x2 + . . . + dnxn ≤ B

xi ∈ {0, 1} (i = 1, . . . , n)
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For every i ∈ {1, . . . , n} and k ∈ {1, . . . , B} we solve a subproblem with variables x1, . . . , xi and

budget constraint k:

max z = c1x1 + c2x2 + . . . + cixi

st d1x1 + d2x2 + . . . + dixi ≤ k

xi ∈ {0, 1} (i = 1, . . . , i)

Let fi(k) be the value of the optimal solution. Then, the optimal solution to the original problem

is fn(B). The optimal solution consisting of first i items either contains the ith item or it does

not. If it does not contain the ith item then fi(k) = fi−1(k). On the other hand, if the optimal

solution using the first i items contains the ith item, then removing this item from the solution

gives an optimal solution for first i − 1 items with budget k − di. We do not know which of the

two situations happens, so we take the better of the two.

If from optimal solutions to smaller sub-problems we can build an optimal solution to a larger

sub-problem we say that the problem has optimal sub-structure. A method that works based on

this strategy called dynamic programming.

Based on the above considerations, he function fi(k) satisfies the following recursion:

fi(k) =

{
0, i = 1

max{fi−1(k), ci + fi−1(k − di)}, i ≥ 1

We can calculate it by filling the table of all possible values. For example

f3(10) = max{f2(10), 6 + f2(10− 4)} = max{11, 8 + 6} = 14,

see bold numbers in the table.

fi(k) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8

2 0 0 0 0 0 8 8 11 11 11 11 11 19 19 19

3 0 0 0 0 6 8 8 11 11 14 14 17 19 19 19

4 0 0 0 4 6 8 8 11 11 14 15 17 19 19 21

Dynamic programming characteristics

1. Problem can be divided into stages.
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2. Each stage has a (finite) number of possible states, each associated a value.

3. Next stage only depends on the values of states of the previous stage.

4.4 Equivalent formulations

Finally in this chapter we show how practical solutions can be formulated as IP.

4.4.1 Fix-charge problems

Suppose activity i incurs a fixed charge if undertaken at any positive level. Let xi > 0 be the level

of activity (e.g. the number of units of production). In the model

• Let y1 = 1 if activity i is undertaken at positive level (xi > 0) and y1 = 0 if xi = 0.

• Constraint of the form xi ≤Miyi must be added to the formulation, where Mi must be large

enough to ensure that xi will be less than or equal to Mi.

4.4.2 Minimum level of production

If we produce the product i, then at least L must be produced. In the model

• Let yi = 1 if we produce at least one i and yi = 0 otherwise.

• Constraint of the form xi ≥ Lyi must be added.

4.4.3 Either-Or constraint

Suppose we want to ensure that at least one of the following two constraints (and possibly both)

are satisfied: f(x1, x2, . . . , xn) ≤ 0 and g(x1, x2, . . . , xn) ≤ 0. In the Model

• Let y = 1 if g ≤ 0, and y = 0 ha f ≤ 0.

• Add constraint f(x1, x2, . . . , xn) ≤My,

• add constraint g(x1, x2, . . . , xn) ≤M(1− y)

• where M ≥ max{f, g} for all (x1, x2, . . . , xn).
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4.4.4 If-Then constraint

Suppose we want to ensure that f(x1, x2, . . . , xn) > 0 implies g(x1, x2, . . . , xn) ≥ 0. In the model

• Let y = 1 if f > 0, while y = 0 if f ≤ 0.

• Add constraint f(x1, x2, . . . , xn) ≤My,

• add constraint g(x1, x2, . . . , xn) ≥ −M(1− y)

• where M ≥ max{f, g} for all (x1, x2, . . . , xn).

4.5 Exercises

4.5.1 The Telfa Corporation manufactures tables and chairs. A table requires 1 hour of labor and

9 square board feet of wood, and a chair requires 1 hour of labor and 5 square board feet of wood.

Currently, 6 hours of labor and 45 square board feet of wood are available. Each table contributes

$8 to profit, and each chair contributes $5 to profit. Formulate and solve an IP to maximize Telfa’s

profit.

4.5.2 (Capital Budgeting) Stockco is considering four investments. Investment 1 will yield a net

present value (NPV) of $16,000; investment 2, an NPV of $22,000; investment 3, an NPV of

$12,000; and investment 4, an NPV of $8,000. Each investment requires a certain cash outflow at

the present time: investment 1, $5,000; investment 2, $7,000; investment 3, $ 4,000; and invest-

ment 4, $3,000. Currently, $14,000 is available for investment. Formulate an IP whose solution

will tell Stockco how to maximize the NPV obtained from investments 1-4. Modify the Stockco

formulation to account for each of the following requirements:

1. Stockco can invest in at most two investments.

2. If Stockco invests in investment 2, they must also invest in investment 1.

3. If Stockco invests in investment 2, they cannot invest in investment 4.

4.5.3 (Facility location) There are six cities (cities 1-6) in county. The county must determine

where to build fire stations. The county wants to build the minimum number of fire stations needed

to ensure that at least one fire station is within 15 minutes (driving time) of each city. The times

(in minutes) required to drive between the cities in the county are shown in Table 6. Formulate an

IP that will tell Kilroy how many fire stations should be built and where they should be located.
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City 1 City 2 City 3 City 4 City 5 City

City 1 0 10 20 30 30 20

City 2 0 25 35 20 10

City 3 0 15 30 20

City 4 0 15 25

City 5 0 14

City 6 0

4.5.4 (IP with piecewise linear functions) Ewing Gas produces two types of gasoline (gas 1 and

gas 2) from two types of oil (oil 1 and oil 2). Each gallon of gas 1 must contain at least 50 percent

oil 1, and each gallon of gas 2 must contain at least 60 percent oil 1. Each gallon of gas 1 can be

sold for 12 cent, and each gallon of gas 2 can be sold for 14 cent. Currently, 500 gallons of oil 1

and 1,000 gallons of oil 2 are available. As many as 1,500 more gallons of oil 1 can be purchased

at the following prices: first 500 gallons, 25 cent per gallon; next 500 gallons, 20 cent per gallon;

next 500 gallons, 15 cent per gallon. Formulate an IP that will maximize Ewing’s profits (revenues

– purchasing costs).

4.5.5 To graduate from CountryCollege University with a major in operations research, a student

must complete at least two math courses, at least two OR courses, and at least two computer

courses. Some courses can be used to fulfill more than one requirement: Calculus can fulfill

the math requirement; operations research, math and OR requirements; data structures, computer

and math requirements; business statistics, math and OR requirements; computer simulation, OR

and computer requirements; introduction to computer programming, computer requirement; and

forecasting, OR and math requirements. Some courses are prerequisites for others: Calculus is

a prerequisite for business statistics; introduction to computer programming is a prerequisite for

computer simulation and for data structures; and business statistics is a prerequisite for forecasting.

Formulate an IP that minimizes the number of courses needed to satisfy the major requirements.
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Chapter 5

Network problems

Network problems are widely spread in operations research, due to following main reasons:

1. They can be applied well to model real-life problems,

2. Efficient algorithms have been designed to solve them,

3. They have nice and elegant theoretical background.

In this section, at first we briefly discuss the basic elements of graph theory, then exhibit the

most important graph algorithms, namely, the shortest path problem, the minimum spanning tree

problem and the maximum flow problem. In Chapter 7 we will see the IP formulation of these

problems, as well.

5.1 Graphs

Formally, an undirected (directed) graph (or network) G = (V (G), E(G)) = (V,E) consists

of two sets V and E, where V 6= ∅, while E is a set of (ordered) unordered pairs of elements

of V . The elements of V = {1, 2, . . . , n} are called nodes (or vertices) and the elements of E

are called links (or edges). A graph can mathematically be represented by its adjacency matrix
A = [aij]i,j=1,...,n, which is an n× n matrix with entries aij = 1 if there is an edge (directed edge)

between i and j and aij = 0 otherwise. For an undirected graph if the (i, j) edge exists, then

aij = aji = 1, i.e. A is symmetric. If a function w : E → R that assigns a real number wij to

each edge (i, j) is given, then we say that the graph is weighted. Similarly one can introduce node

weighting using a function w : V → R
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For a graph G without self loops and multiple edges of n nodes1 the number of links lies

between 0 (empty graph) and n(n− 1)/2 (complete graph).

The degree di of node i is the number links that are connected to i. If the network is directed,

we can define the in-degree d+i and out-degree d−i of a node i, these being the number of incoming

links to u and the number of outgoing links from u, respectively. The weighted degree of a node

can be calculated in a similar way using wi =
∑

uwij (i = 1, . . . , n), which is sometimes called

the strength of i.

A subgraph G′ = (V ′, E ′) of G = (V,E) is a graph where V ′ ⊆ V and E ′ ⊆ E. If it contains

all links of G that connects two nodes in V ′, it is said to be the induced subgraph by V ′. A clique
is a maximal complete subgraph of three or more nodes.

A walk (i, k1), (k1, k2), . . . , (km, j) between two nodes i and j is an alternating sequence of

nodes and edges, starting and ending at i and j, resp., in which each edge in the sequence is

adjacent to its two endpoints. The length of the walk is the number of edges on it; for weighted

graphs this is the the sum of wights of the edges on it. If all the nodes along the walk are distinct,

then the walk is a path. The shortest path between i and j is a path between them where the

length of the path is minimized. The (sub)graph is (strongly) connected if, for every pair of nodes

i and j of the subgraph, there is a (directed) path from i to j. The connectedness is an equivalence

relation, the equivalent classes called components (undirected) or strongly connected components

(directed) of the graph.

A bipartite graph G = (A,B,E) triple where X, Y ⊆ V (G), A ∩ B = ∅ and E ⊆ A × B.

Less formally, a bipartite graph is a graph whose nodes can be divided into two separate classes

(A and B) and links connects nodes of different classes only. An M ⊆ E(G) is a matching if any

u ∈ V (G) incident to at least one edge of M . M is maximal, if its size cannot be increased, and

complete, if for all u ∈ V there is an e ∈M such that u is incident to e.

5.2 Shortest path problem

One of the most important optimization problem on networks is finding shortest paths between

vertices. It is widely-used, from GPS navigation and network communication to project manage-

ment, layout design, robotics, computer graphics, among others. Often many problems reduce to

finding shortest paths or use shortest paths as guidelines to optimal solutions.

1These graphs are called simple graphs.
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Given a directed and weighted graph G with edge weights (lengths) `(i, j). The length of a p

path is `(p) equals the sum of the length of edges that p contains. We also assume, that `(i, i) = 0

for all (i, i) ∈ E(G), i ∈ V (G). We draw the following to problems.

(1) Let s and t two distinguished vertices, find a shortest path p from s to t such that `(p) is

minimal.

(2) In general the task is to find all shortest paths from s to v 6= s.

Surprisingly all known algorithm that solves (1) also solves (2). Before presenting the solution

we need to check when the shortest path exists. If there is negative weight cycle C (`(C) < 0)

reachable from s then there is no solution to the problem (we can “go around” in this cycle many

times to decrease the path length arbitrarily). On the other hand, if there is no such cycle, then the

set of possible solutions is finite, and if it is not empty, then there is an optimal solution.

5.2.1 Bellman’s algorithm

To solve problem (1) Bellman developed the dynamic programming method. Let `(v) is the

length of shortest path from s to v and `k(v) is the length of shortest path from s to v contains at

most k edges. If the above defined paths do not exist, then let the value of `(v) and `k(v) infinity.

Let us use the function p : V (G)→ V (G) ∪ {∅} to record these paths. Bellman’s algorithm is the

following.

1. Initially let `0(s) := 0, p0(s) := ∅, `0(v) :=∞, p0(v) := ∅, if v 6= s.

2. In step k let `k(v) := min{`k−1(w) + `(w, v) : (w, v) ∈ E(G)}, and change the value of

pk−1(v) to such w that achieves the minimum, if `k(v) < `k−1(v).

Theorem 5.1 The above algorithm correctly calculates the function `k therefore `k ≡ `k. If there

is no negative cycle in G then `n−1(v) = `(v) for all v ∈ V (G), where n = |V (G)|. Moreover the

vertices of a shortest s − v path in reverse order are v, p(v), p2(v), . . . , pi(v) = s, if `(v) < ∞,

where p = pn−1.

Proof. The first part of the statement can be proved by induction according to k. For k = 0 the

statement is trivial. Suppose that for v the shortest s−vpath contains at most k+1 is (s, . . . , w, v).

From induction hypothesis it follows that there exist an s − w path of length `k(w) = `k(w)
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contains at most k edges, thus `k+1(v) ≥ `k(w) + l(w, v) ≥ `k+1(v). Since `k+1(v) ≤ `k+1(v), the

proof is done.

If there is no negative cycle in G then any walk can be reduced to path of length not longer

than of the walk. It follows that `n−1 ≡ `n−1+i for all i ∈ N and thus `n−1 ≡ `.

The role of p can also be proved by induction according to k. (Since (p(v), p2(v), . . . , pi(v) =

s) is a shortest s− p(v) path according to the assumption. Then adding (p(v), v) edge to this path

we obatin a shortest s− v path.) �

Example: Let G be the following graph; then the steps of the algorithm can be summarized as

follows.
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0 1 2 3 4 5

`0 p `1 p `2 p `3 p `4 p `5 p

s 0 ∅ 0 ∅ 0 ∅ 0 ∅ 0 ∅ 0 ∅
x ∞ ∅ 1 s -1 y -1 y -1 y -1 y

y ∞ ∅ -2 s -2 s -2 s -2 s -2 s

z ∞ ∅ ∞ ∅ 3 x 1 x 1 x 1 x

u ∞ ∅ ∞ ∅ 2 x 0 x 0 x 0 x

w ∞ ∅ ∞ ∅ ∞ ∅ 2 z 0 z 0 z

The table is filled column by column. Initially `0(s) = 0, `0(v) = ∞ for all v 6= s, while p = ∅.
Then `k and pk is calculated via recursion for k ≥ 1. The last column of the table contains not

only the length of shortest s − v paths (v ∈ G), but the edges of the path can be read there. If we

depict only the edges contained in the shortest path, these are the values of function p, then we get

the so-called shortest-path tree. This is rooted tree with root s, each vertex is reachable from s,

means that d−(s) = 0 and d−(v) = 1, if s 6= v ∈ V (G).
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We can easily get the all shortest s− v paths and their length:

1. s− x path: (s, y, x), length: d(x) = −1

2. s− y path: (s, y), length: d(y) = −2

3. s− u path: (s, y, x, u), length: d(u) = 0

4. s− z path: (s, y, x, z), length: d(z) = 1

5. s− w path: (s, y, x, z, w) length: d(w) = 0

Remarks:

1. The method can be applied in case when G contains negative cycle C. In this case, the

existence of a negative cycle is shown by v = pi(v) for some v ∈ V (G) and i ∈ N, moreover

p can be used to determine C. Also it can be decided wheter a given vertex v is on negative

walk or not. Add a new vertex q to the graph and edges (q, v), (v, q) with zero weight. It is

clear that `n(q) < 0 if and only if v is on the negative walk.

2. The connectedness of an undirected graph G can be tested with the algorithm. Add directed

edges (i, j) and (j, i) instead of the undirected (i, j) with weight one. If all s−v shortest paths

has finite length then G is connected; if `(v) =∞, then s and v are in different components.

3. The main substance of the algorithm is that all v ∈ V (G) there is a w ∈ V (G), such that

`k(v) = `k−1(w) + `(w, v). It roughly means that there is connection between the optimal

structures: the “larger” can be obtained by the “smaller” one. Such observation can often be

used to design efficient algorithms. The method is called dynamic programming.
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5.2.2 Dijkstra’s algorithm

Given a directed graph G, assume that the weight `(v, w) of each edge is non-negative. Since there

is no negative cycle in G, therefore there is a shortest path from s to v (or it is infinity if there is

no path from s to v). The shortest path starting from a node s and the shortest-path tree can be

obtained by n = |V (G)| iteration using Dijkstra’s algorithm published in 1956. The steps of the

algorithm are the following.

1. Let X1 := {s}, d(s) = 0, d(v) =∞ if v 6= s and T1 := {s}, a single vertex tree.

k. Assume thatXk−1 and d(v) (v ∈ Xk−1) are defined already. Choose aw ∈ V (G)\Xk−1 such

that d(v)+`(v, w) minimal, where v ∈ Xk−1. LetXk := Xk−1∪{w}, d(w) := d(v)+`(v, w),

and Tk is the tree obtained by Tk−1 by adding w and (v, w) path.

Theorem 5.2 Using Dijkstra’s algorithm, after n steps the value d(v) is the length of the shortest

s− v path for all v ∈ V (G). Furthermore Tn is the s-rooted tree contains all shortest paths from

s.

Proof. We prove by induction according to the iteration steps. The induction hypothesis says that

if v ∈ Xk−1 then d(v) is the length of the shortest s − v paths; assume that for w ∈ Xk\Xk−1,

d(w) = minv∈Xk−1
d(v) + `(v, w) calculates the length of the shortest s − w path. Then the p

shortest s − w path leaves Xk−1 from u as its final node. Let y is the upcoming node in p after u

(it can be assumed that y 6= w).

'

&

$

%
b b b

b b
-

HHHHj

s

u

v

y

w
Xk−1

Since the length of p is smaller than d(w), the length of s − y path contained in p is also smaller

than d(w). (We used the non-negativity of weights here!) But then the algorithm had to choose y in

step k, that is a contradiction. The proof of the role Tn is also done by induction. Thus Tk−1 stores

the shortest s− v paths if v ∈ Xk−1; Tk is obtained by adding such (v, w) where w is reachable by

a length d(w) path from s. �
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Example. On the left-hand side given undirected weighted graph G with distinguished node s. On

the right-hand side there is the shortest-path tree with root s; the numbering indicates that in which

step a node added to the tree.
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The length of the shortest paths can be read easily, by using d(s) = 0 and for v 6= s simply sum up

the edges weights on the unique s− v path on the tree.
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Remark. Dijkstra’s algorithm is simple and faster than Bellman’s, but it can be applied only if the

weights are non-negative.

Example. On the left-hand side the given graph, in the middle is the correct shortest-path tree

obtained by Bellman’s algorithm, on the right-hand side the tree obtained by using Dijkstra’s algo-

rithm.
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Observe that Dijkstra’s method does not find the shortest s− t paths, since d(t) = 0, but d(t) 6= 2

and s− t path is not {s, x, t} but {s, y, t}.
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5.2.3 An application: largest probability path

Suppose that we are given a directed graph. Each edge e is assigned a number pe ∈ [0, 1] represents

the passage probability (i.e. the probability that the edges is usable/open) on it. The probabilities

are fixed in advance and independent from each other. Given two nodes, s and t, we are finding

the s− t path of the largest probability.

Example.
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If we pick some edges, the probability that all can be used is the product of the respective

probabilities due to the independence condition. In the example above, the highest probability

s − t path is (s, x, y, v, t) and the probability is 0, 8 × 0, 8 × 0, 7 × 0, 7 = 0, 3156. In general we

can do the following: change pe to − ln p(e) for each edge e and find the shortest s − t path with

respect to this weighting. Let R and Q be the edge sets of two different s − t paths. Then the

probability of usability of these paths are∏
e∈R

pe and
∏
e∈Q

pe,

respectively, while their length (with respect to the transformation) are

−
∑
e∈R

ln pe and −
∑
e∈Q

ln pe.

If

−
∑
e∈R

ln pe < −
∑
e∈Q

ln pe, then
∑
e∈R

ln pe >
∑
e∈Q

ln pe.

From this follows that

ln
∏
e∈R

pe > ln
∏
e∈Q

pe,
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and due to the monotonicity of the logarithm function we get the∏
e∈R

pe >
∏
e∈Q

pe

inequality, which proves that finding the shortest path (using any of the previously discussed meth-

ods) of the transformed graph is the solution to the largest probability path problem.

5.3 Minimum spanning tree

The minimum spanning tree problem also has a rich history and it has numerous applications

too. Let us start with an example. A power company delivers electricity from its power plant to

neighboring cities. The cities are interconnected by power lines operated by various operators. The

power company wants to rent power lines in the grid of least total cost that will allow it to send

electricity from its power plant to all cities. An optimization problem can phrased in mathematical

terms as follows.

Given a weighted network G = (V,E), the problem is to find a set of edges F ⊆ E where

w(F ) =
∑

e∈F w(e) is minimal so that (V, F ) is a tree. We say that (V, F ) is a spanning tree
because it spans all vertices.

5.3.1 Kruskal’s and Prim’s algorithms

Kruskal (1956) and Prim (1957) independently developed algorithms fro the problem having al-

most linear-time implementations.2 The two algorithms are very similar, the difference can be

captured only in one step. Kruskal’s algorithm is the following.

1. Let F = ∅ and all edges initially unprocessed.

2. Find an unprocessed edge e of smallest weight w(e).

3. If (V, F ∪ {e}) is a forest, then add e to F . Mark e as processed and repeat until all edges

have been processed.

4. Report (V, F ) as a minimum spanning tree.

2We should note here that the first know algorithm for the problem was discovered by Borůvka in 1926.

61



Prim’s algorithm changes 1. to 1.’: Find an unprocessed edge e of smallest weight w(e) that

shares an endpoint with some edge in F .

Example. On the left hand-side given the weighted graph G, on the right-hand side its minimum

spanning. In brackets the number indicates the step number when the edge added to the tree using

Kruskal’s algorithm.
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5.4 Maximum flow problem

Let us start with a classic example. An Small Airlines runs a network between the major US cities.

In each route (between two cities) the maximum number of flights are given (per day, indicated by

the numbers in the table). The management is interested in the maximum number of passengers

(i.e. number of flights) from San Francisco to New York on a daily basis.

Source Target Trucks

San Francisco Denver 5

San Francisco Houston 6

Denver Atlanta 4

Denver Chicago 2

Houston Atlanta 5

Atlanta New York 7

Chicago New York 4
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From the table we can readily define a directed graph; the weight of an edge represents the

number of flights run between the two represented cities per day. We need to formalize the follow-

ing rules on the delivery plan:

1. If k flights run on route (v, w) k is equivalent to −k flights run on route (w, v).
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2. The number of flights run in a route cannot exceeds the maximum number of flights can run.

3. Except SF and NYC, the incoming and outgoing flights of each city should be equal (i.e.

there sum is zero using 1.).

Let G be a directed graph with two special points: s is called source and t is called target (or
sink). Let c(v, w) be the capacity of (v, w), that is the maximum number of flights on that edge.

Furthermore, let c(v, w) = 0, if (v, w) is not an edge in G. The function f : V (G) × V (G) → R
is a flow if it satisfies the following 3 conditions:

(1) Skew symmetry. For all v, w points f(v, w) = −f(w, v). If f(v, w) > 0, we say that there

is a flow from v to w.

(2) Capacity constraint. For all v, w points f(v, w) ≤ c(v, w). If for (v, w) f(v, w) = c(v, w)

holds, we say that the flow saturates (v, w).

(3) Flow conservation rule. Except s and t, for each v point
∑

w∈V (G) f(v, w) = 0 holds.

The value of the flow is |f | :=
∑

w∈V (G) f(s, w), i.e. the quantity leaves the source. The

maximum flow problem is the finding the maximum value flow. The central concept of the

investigations is the cut. An X,X cut is a partition of V (G) such that any node is either s ∈ X or

t ∈ X = V (G)\X . The capacity of cut X,X is c(X,X) :=
∑

v∈X,w∈X c(v, w). A cut with the

minimum capacity is called minimum cut If f is a flow, X,X is a cut, then the flow goes through

on the cut is f(X,X) :=
∑

v∈X,w∈X f(v, w).

Lemma 5.1 For each flow f and cut X,X flow goes through on the cut equals to the value of the

flow.

Proof.

f(X,X) =
∑

v∈X,w∈X

f(v, w) =
∑

v∈X,w∈V (G)

f(v, w)−
∑

v∈X,w∈X

f(v, w) = |f |,

since
∑

v∈X,w∈V (G) f(v, w) = |f | due the conservation rule and
∑

v∈X,w∈X f(v, w) is zero due to

skew symmetry �

This means that the value of the flow equals to the quantity that leaves X . Since f(v, w) ≤
c(v, w), thus

|f | =
∑

v∈X,w∈X

f(v, w) ≤
∑

v∈X,w∈X

c(v, w)
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for each f flow andX,X cut. Therefore the value of the maximum flow does not exceeds the value

of the minimum cut. It is more surprising that the two values are equal. In fact, this is a special case

of the strong duality theorem, and we are going to prove it after introducing some further notions.

The residual capacity of a flow f between nodes v and w is r(v, w) := c(v, w)− f(v, w). In

fact we can increase the value of the flow by r(v, w) from v to w (by decreasing the f(w, v) by the

same value). The R residual graph of a flow is graph where V (R) = V (G) and (v, w) is an edge

if r(v, w) > 0. Note that it may contain edges that are not in G. A p is called an augmenting path
for flow f if it is a path from s to t in R. The residual capacity of p, r(p), is an edge weight of p

with a minimum capacity. The “augmenting nature” of p is straightforward. Increasing the flow by

r(p) in each edge of p the value of the flow is increased by r(p). (Note that if f(v, w) is changing,

f(w, v) is changing too!)

Lemma 5.2 Let f be an arbitrary and f ∗ be a maximal flow of G, respectively. If R is the residual

graph of f , then the value of the maximum flow of R is |f ∗| − |f |.

Proof. Let f ′ be an arbitrary flow on R and define the f + f ′ flow as (f + f ′)(v, w) := f(v, w) +

f ′(v, w). Then f + f ′ is a flow on G and its value is |f | + |f ′| ≤ |f ∗|, thus |f ′| ≤ |f ∗| − |f |.
Similarly define f ∗ − f as (f ∗ − f)(v, w) := f ∗(v, w)− f(v, w) on R and its value is |f ∗| − |f |,
thus it is a maximum flow on R. �

Theorem 5.3 (Max-Flow-Min-Cut) The following statements are equivalent:

(i) The flow f is maximal.

(ii) There are no augmenting paths to f .

(iii) There is a cut X,X such that |f | = c(X,X).

Proof. (i)⇒ (ii) If there is a p augmenting path to f , then increase the value of the flow through

the edges of p. (ii)⇒ (iii) Suppose that there is no augmenting path to f . Let X be the set of points

that are reachable from s using the edges of R and let X = V (G)\X . Then X,X is a cut (s ∈ X ,

t ∈ X), and

|f | =
∑

v∈X,w∈X

f(v, w) =
∑

v∈X,w∈X

c(v, w) = c(X,X),

since v ∈ X , w ∈ X follows that (v, w) is not an edge of R, thus f(v, w) = c(v, w). (iii)⇒
(i) Since |f | ≤ c(X,X) for each flow f and X,X cut, from |f | = c(X,X) follows that f is a
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maximum flow and X,X is a minimum cut. �

The above theorem is the basis of the augmenting path method of Ford and Fulkerson. It

starts from a zero flow (f(v, w) = 0 for each (v, w) edge), and then repeats the augmenting step

until arrives to a flow, in which there is no augmenting path. The augmenting step is following:

Find a p augmenting path of the current flow. Increase the value of f by r(p) on the edges of p.

Theorem 5.4 (Integrality) If the capacities are integer values in the maximum flow problem, then

there is an integer valued maximum flow.

Proof. Assume that the capacities are integer values. Then the augmenting path method increases

the value of the flow at least by one, thus f ∗ maximum flow is obtained at most |f ∗| steps. On

the other hand the initial integer value (zero) is changed by an integer number in every step, thus

f ∗(v, w) is integer for all (v, w) edge. �

In the following example we illustrate the Ford-Fulkerson method. On the left side, we show

the actual value of the flow, on the right side there is the corresponding residual graph with the

augmenting path.

Initialization. The augmenting path: SF-H-A-NYC, r(p) = 5
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Remark: The augmenting path method does not necessarily converge, moreover the number of

steps can be large even in case of integer numbers on the edges. However, Edmonds and Karp

showed in 1969, that selecting an augmenting path with a minimum number of edges the running

time is cnm2 steps, where c is a constant, n is the number of nodes and m is the number of edges

in G

Example: The first figure shows the capacities, the rest shows the possible solutions if the aug-

menting path uses the vertical edge. (We show just the process, and do not the residual graph).

Then the number of steps is k. If we chose the shortest augmenting path in every step, then we

reach the optimum in two steps.
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5.5 Exercises

5.5.1 Show that if the edge weights of a graph are all different then the minimal spanning tree is

unique.
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5.5.2 We say that (e, e′) directed edges are anti-parallel if their endpoints are the same but their

direction is different. Show that in any flow network there is a maximal flow that does not uses at

least one of e and e′.

5.5.3 Suppose that there are more than one source and more than one sink in a low network. Show

that how the Ford-Fulkerson algorithm can be used in that case.

5.5.4 Suppose that in a flow network each edge capacity is even. Show that then the maximum

flow is also even.

5.5.5 Given a directed graph G and two distinguished nodes s and t. Design an algorithm that

counts the number of edge-disjoint s− t paths.

5.5.6 Given a directed graph G and two distinguished nodes s and t. Design an algorithm that

counts how many edges should be deleted make t non-reachable from s.

5.5.7 Given a directed graph G and two distinguished nodes s and t. Design an algorithm that

counts the number of node-disjoint s− t paths.
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Chapter 6

Matrix formulation and totally unimodular
matrices

We shall see that many graph problems can be formulated as a linear (LP), or integer programming

(IP) problem. The difficulty of IP is that polyhedrons contains the feasible solutions may not have

corner points of integer coordinates. However, if we know that the corner points have integer

coordinates then solving the relaxed problem (using the simplex algorithm) we obtain the integer

optimal solution immediately. Hoffman and Kruskal proved in 1956 that this condition holds for an

important class of problems. Their result is of central importance in the study of network problems.

In this section, first we give a brief overview of the basics of linear algebra. Then define totally

unimodularity of matrices and discuss some important results of TU matrices and their connection

to LP.

6.1 Linear algebra overview

We start with the very basic definitions and notations we will use.

• scalar = a number; can be real (π = 3.14 . . . ), rational (3/4), integer (5, -8), etc.

• vector = sequence of numbers, for example (3, 1, 0, 2), we often write x =
[
3 2 0 1

]

raw vector, or x =


3

1

0

2

 column vector
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• multiplying x =
[
x1 x2 . . . xn

]
by a :

ax =
[
ax1 ax2 · · · axn

]
• addition of x =

[
x1 x2 . . . xn

]
and y =

[
y1 y2 . . . yn

]
vectors (of the same size):

x+ y =
[
x1 + y1 x2 + y2 . . . xn + yn

]
• scalar product of x =

[
x1 x2 . . . xn

]
and y =

[
y1 y2 . . . yn

]
vectors (of the same

size) :

xy = x1y1 + x2y2 · · ·+ xnyn

• x and y orthogonal, if xy = 0.

• matrix = 2-dimensional array of numbers, for example

A =


1 0 3 1

3 2 4 0

2 3 0 1

0 4 1 2


• in general, an m×n matrix is A with entry aij in the i-th row and j-th column. The i-th row

is
[
ai1, ai2, . . . , aim

]
, while the j-th column is


a1j

a2j
...

anj


• multiplying a matrix by a scalar:

2 · A = 2 ·


1 0 3 1

3 2 4 0

2 3 0 1

0 4 1 2

 =


2 0 6 2

6 4 8 0

4 6 0 2

0 8 2 4


• adding matrices of the same size

A+B =


1 0 3 1

3 2 4 0

2 3 0 1

0 4 1 2

+


3 1 0 2

1 2 5 1

6 0 1 0

3 1 2 3

 =


4 1 3 3

4 4 9 1

8 3 1 1

3 5 3 5


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• multiplying matrices: A of size n×m-es multiplied by B of m× k

A ·B =


1 0 3 1

3 2 4 0

2 3 0 1

 ·


3 1 4

2 0 1

0 2 1

3 0 3

 =


6 7 10

13 11 18

15 2 14


– Note that AB 6= BA generally

– except for this, matrix addition and multiplication obey similar laws as numbers

– from now on vector with m entries is to be treated as a m× 1 matrix (column)

• multiplying matrix by a vector is just like multiplying two matrix

• transpose of a matrix:

A =


1 0 3 1

3 2 4 0

2 3 0 1

 , AT =


1 3 2

0 2 3

3 4 0

1 0 1


– Note that (AT )T = A and (AB)T = BTAT

• inverse matrix of a A is matrix A−1 such that A−1 · A = A · A−1 = I (if such A−1 matrix

exists), where is is the identity matrix1

• A system of linear equations has the following form
1 0 3 1

3 2 4 0

2 3 0 1

0 4 1 2



x1

x2

x3

x4

 =


2

1

3

0


– Using the matrix notation we can simply write it as Ax = b.

1Its diagonal elements are 1, its non-diagonal elements are 0.
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6.2 Simplex algorithm in matrix form

We are given a LP in standard form:
n∑
j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n

max
n∑
j=1

cjxj

Adding the non-negative artificial variables we get
n∑
j=1

aijxj + xn+i = bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n+m

max
n∑
j=1

cjxj

In matrix form we can write as:


a11 a12 · · · a1n 1

a21 a22 · · · a2n 1
... . . .

am1 am2 · · · amn 1

 ·



x1

x2
...

xn

xn+1

...

xn+m


=


b1

b2
...

bm



[
c1 c2 · · · cn 0 · · · 0

]
·



x1

x2
...

xn

xn+1

...

xn+m


= z
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Matrices and vectors used above:

A =


a11 a12 · · · a1n 1

a21 a22 · · · a2n 1
... . . .

am1 am2 · · · amn 1



x =



x1

x2
...

xn

xn+2

...

xn+m


c =



c1

c2
...

cn

0
...

0


b =


b1

b2
...

bm



The problem in matrix form is written as

max cTx = z

Ax ≤ b

x ≥ 0

We know that a dictionary is uniquely determined by its basic variables. Let B be the index set of

the basic variables, N be the index set of the non-basic variables. Divide the matrices and vectors

to two parts, based on the role (basic or non-basic) of their elements in the dictionary.

Let B denote the basis matrix formed by taking the columns of A corresponding to the basic

variables xB. Let N denote the columns of A corresponding to the non-basic variables in xN .

Divide the vectors as

c =

[
cB

cN

]
and x =

[
xB

xN

]
.

We obtain that

Ax =
[
B N

] [xB
xN

]
= BxB +NxN ,

cTx =
[
cB cN

] [xB
xN

]
= cTBxB + cTNxN
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and hence the optimization problem is given in the form:

BxB +NxN = b

x ≥ 0

max cTBxB + cTNxN

Assuming that B is invertible, we can rewrite:

Ax = b

BxB +NxN = b

B−1(BxB +NxN ) = B−1b

B−1BxB +B−1NxN = B−1b

xB +B−1NxN = B−1b

xB = B−1b−B−1NxN

Now we can substitute xB to the objective function

z = cTx = cTBxB + cTNxN

= cTB(B−1b−B−1NxN ) + cTNxN

= cTBB
−1b+ (cTN − cTBB−1N)xN

We put it together to obtain the corresponding dictionary:

xB = B−1b−B−1NxN

z = cTBB
−1b+ (cTN − cTBB−1N)xN

The basic solution, when xN = 0, is given as xB = B−1b, with the value of the objective function

z = cTBB
−1b. The solution is optimal (maximal) if cTN − cTBB−1N ≤ 0, means that the constant

coefficients of the non-basic variables are non-positive.

6.3 TU matrices

A matrix A is totally unimodular (TU) if its every square submatrix has determinant 1, −1, or 0.

(It follows that a TU matrix has only 0, +1 or −1 entries)
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Theorem 6.1 (Hoffman-Kruskal) If A is totally unimodular and all entries of b and c vectors are

integers, then the basic solutions of the max cTx s.t. Ax ≤ b linear program are integers. In other

words, the coordinates of the corner points of the P = {x : Ax ≤ b} polyhedron are integers.

Proof. The dictionary for xB basic solution is given in the form

xB = B−1b−B−1NxN

z = cTBB
−1b+ (cTN − cTBB−1N)xN

We can calculate the entries of B−1 using the Cramer-rule, such that

(B−1)i,j =
(−1)i+j det(Bji)

det(B)
,

where Bij is the matrix obtained from B by omitting raw j and column i. Since now A is TU and

det(B) 6= 0, then det(B) = ±1. It is easy to see that each entry ofBji is integer. Since xB = B−1b

it immediately follows that xB is an integer vector. �

Remark. Obviously, if we solve the problem using the simplex method, then the other elements of

the dictionary (namely cTBB
−1b and (cTN − cTBB−1N)xN ) are also integers and no numerical errors

occur.

The following theorem is essential for solving network problems (will be discussed in the next

chapter) formulated as linear programs.

Theorem 6.2 An incidence matrix A of a directed graph G is totally unimodular.

Proof. We use induction according to the size of sub-determinants. The 1× 1 sub-matrices are ±1

or 0, thus the statement holds for k = 1. If B is a (k + 1) × (k + 1) sub-matrix, then there are

two cases. If B has a column with at most one non-zero element, then calculate the determinant

expressed from this column. Due to the induction hypothesis this is 0 or ±1. If all column of B

contains exactly two non-zero elements (i.e. +1 and −1), then summing all the rows of B we get

the zero vector, means that the rows of B linear dependent. Then det(B) = 0, and this finishes the

proof. �
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Remark. Combining 6.1 and 6.2 theorems we get that any integer programming problem defined

by using the incidence matrix of a graph can be solved as a relaxed LP problem. This illustrates

why these problems are easy to solve (in polynomial time), on the other hand the duality theorems

can also be exploited. A detailed discussion on this is out of our scope. Instead, we show another

application, namely finding maximal matching in bipartite graphs. We need the following theo-

rem.

Theorem 6.3 The incidence matrix of a bipartite graph is totally unimodular.

Proof. Similar to the proof of theorem 6.2, we can use induction according to the size of sub-

determinants �

The maximal matching problem can be formulated as the following integer programming prob-

lem
max

∑
e∈E

xe

∑
e∼u

xe ≤ 1 (∀u ∈ V )

xe ∈ {0, 1}

where e ∼ u denotes the incidence. Writing it a compact form and relaxing it we get the max1Tx,

subject to Ax ≤ 1, x ≥ 0 problem, where A is the incidence matrix of the bipartite graph and 1 is

the vector whose all element is 1. Since this is totally unimodular, the solution of the LP is integer.

6.4 Characterization of TU matrices

There do not seem to be any easily tested necessary and sufficient conditions for total unimodu-

larity. There exist some characterization theorems for totally unimodular matrices. There is also

an easily tested set of sufficient (but not necessary) conditions for total unimodularity. Here we

provide two results, without discussing their proofs.

Theorem 6.4 (Camion, 1965) A 0,±1 matrix A totally unimodular if and only if the sum of the

elements of its each squared sub-matrix whose each row sum and column sum is even2 is a multiple
2Such matrices are called Eulerian.
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of 4.

Theorem 6.5 (Ghouila-Houri, 1962) An m × n integral matrix A is totally unimodular if and

only if for each set R ⊆ {1, 2, . . . ,m} can be divided into two disjoint sets R1, R2 such that∑
i∈R1

aij −
∑
i∈R2

aij ∈ {0,±1}, (j = 1, 2, . . . , n).

Finally we provide a sufficient condition that can be easily checked.

Theorem 6.6 A 0,±1 matrix A totally unimodular, if it contains no more than one +1 and no

more than one −1 in each column.

Remark. Theorem 6.2 immediately follows from above statement.

6.5 Exercises

6.5.1 Prove that if A matrix is totally unimodular, then multiplying any of its row or column by

−1 the obtained matrix is still totally unimodular.

6.5.2 Prove that if A matrix is totally unimodular, then AT is also totally unimodular.

6.5.3 The edge-path incidence matrix3 of a graph is totally unimodular.

6.5.4 Let A be 0,±1 matrix, where in each column after the first cell that is 1 every cell is also 1

(top-down). Prove that A is totally unimodular.

6.5.5 Define a polyhedron ({x : Ax ≤ b, x ≥ 0}) with integer corner points, where A is an 3× 3

matrix, the elements of A and b are integers, but A is not totally unimodular. Can we give an

example, where A is a 0,±1 matrix. What is A is a 0,+1 matrix?

3Each row of the matrix corresponds to an edge, while each column corresponds to a path of the graph. There is 1

in a cell, if the corresponding edge contained in the corresponding path, and 0 otherwise.
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Chapter 7

The transshipment problem

Given a directed graph G with c : E(G) → R edge weighting. In this context c(e) refers to the

transportation cost on edge e per unit quantity. We assign numbers to the vertices of the graph

too. If this number if positive we say the vertex is a target, if negative we say it is a source, and

if zero we say that the vertex is an inner point. We may assume that sum of the number assigned

to vertices is zero (if not, we can force this condition by adding a new vertex to the graph with an

appropriate weight).

Suppose that we need to transport some cargo from source vertices to target vertices through to

edges of the graph, such that the supply in each source and demand in each target is the absolute

value of the assigned number (and zero in the inner points). The transportation cost in each edge

is the cost of the edge multiplied by the transported quantity, while the total cost is the some of all

transportation costs.

7.1 Problem formulation

Example. The numbers on the vertices are the names of them, the demand/supply marked in the

brakets. In the two solutions we depicted only the edges that are involved in the transportation.
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The transshipment problem can be written as an LP, where A is the incidence matrix of G,

xij is the quantity transported on edge (i, j), cij transportation cost on edge (i, j) per unit quantity,

while b vector represents the demand and supply of each vertex.

The LP formulation of the transshipment problem is the following.

min
∑

(i,j)∈E(G)

cijxij = cTx

(∗) Ax = b

x ≥ 0

In our example matrix A is the following:

1,3 1,4 1,5 2,1 2,3 2,4 2,5 5,4 6,1 6,2 6,3 6,7 7,2 7,5

1 -1 -1 -1 1 0 0 0 0 1 0 0 0 0 0

2 0 0 0 -1 -1 -1 -1 0 0 1 0 0 1 0

3 1 0 0 0 1 0 0 0 0 0 1 0 0 0

4 0 1 0 0 0 1 0 1 0 0 0 0 0 1

5 0 0 1 0 0 0 1 -1 0 0 0 0 0 1

6 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0

7 0 0 0 0 0 0 0 0 0 0 0 1 -1 1

and

xT = [x13, x14, x15, x21, x23, x24, x25, x54, x61, x62, x63, x67, x72, x75]

while

bT = [0, 0, 6, 10, 8,−9,−15].

Observe that we can delete the last (or any) row of the matrix A and last coordinate of vector b in

(∗) due to linear dependency.

The transshipment problem can be solved, for instance, in the following ways. IfG is connected

(aside from edge directions) then the edges, corresponding to the (positive) basic variables of any

basic solution of (∗) LP, form a tree. Defining appropriate transformations of such trees leads to

the network simplex algorithm. This algorithm is a variant of the well-known simplex algorithm

that can be used effectively in practice. Other methods use the special structure of the problem

more directly, at least theoretically, and exceed the performance of the simplex algorithm. We will

provide more insights by analyzing a simpler task, the a maximum flow problem. Now we will

prove the so called integrality theorem.
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Theorem 7.1 (Integrality) Assume that the each coordinate of the b vector of the above defined

transshipment problem is integer. If the problem has feasible solution, then it has integer solution.

If it has optimal solution, then it has integer optimal solution too.

Proof. The fundamental theorem of LP says that if there is a feasible solution, then there is a

basic feasible solution. Earlier we saw that A matrix is totally unimodular, therefore any feasible

solution is integer. If there is an optimal solution, then there is an optimal basic solution, that is

now necessarily integer. �

The transshipment problem and its formalism with the integrality theorem is a fortunate con-

junction of operations research and combinatorics. In fact it is generalization of numerous earlier

problem and model. Here we follow the reverse direction and discuss some problems as special

cases of the general problem. First let us see a non-trivial application.

7.2 The caterer problem

Originally the model is a scheduling problem developed to maintenance schedule of the US air-

force’s plains. Later, the inventors of the model (Jacobs, who published it as an engine restoration

problem; Gaddum, Hoffman and Sokolowsky, who mentioned the problem as caterer problem;

Prager, who investigated the case q = p− 1 as a transportation problem; and Ford and Fulkerson,

who solved it as a network problem) published it as the caterer problem without mentioning its

original application.

Given a canteen that needs clean napkins for n consecutive days. Each day j the number dj
of napkins needed is known in advance. The manager can buy new napkins (for a cent per piece)

and re-use old ones (after washing them) to satisfy the demand. In case of washing he can choose

from two options: the fast washing (q days, b cent per piece) and slow washing (p days, c cent per

piece). Naturally, p > q and a > b > c, the goal is to minimize the total cost.

Example: Let n=10, d1=50, d2=60, d3=80, d4=70, d5=50, d6=60, d7=90, d8=80, d9=50, d10=100;

while p=4, q=2, a=200, b=75, c=25 be the parameters required in the caterer problem
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Day Re-used Bought Fast wash Slow wash Stored

1 0 (0) 50 (50) 50 (0) 0 (50) 0 (0)

2 0 (0) 60 (60) 60 (0) 0 (60) 0 (0)

3 50 (0) 30 (80) 50 (0) 30 (80) 0 (0)

4 60 (0) 10 (70) 60 (0) 0 (70) 10 (0)

5 50 (50) 0 (0) 60 (10) 0 (0) 0 (40)

6 60 (60) 0 (0) 60 (10) 0 (90) 0 (0)

7 90 (90) 0 (0) 50 (50) 0 (0) 40 (40)

8 60 (80) 20 (0) 100 (10) 0 (0) 20 (110)

9 50 (50) 0 (0) 0 (0) 0 (0) 70 (160)

10 100 (100) 0 (0) 0 (0) 0 (0) 170 (260)

The table shows a possible and an optimal (numbers in brackets) strategy. The optimal is an

optimal basic solution of a transshipment problem assigned to caterer problem. We also show the

graph that represents the task and its tree related to the optimal basic solution.
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A transshipment model and tree of the optimal solution are the following. The vertices of the

left side of the left figure represent the napkin used each day. From these vertices (as sources)

napkins can be sent to re-use after 2 days by fast washing (horizontal edges, b is the cost), or re-

use after 4 days by slow washing (skew edges, c is the cost), or can be stored until the next day

(vertical edges, 0 cost). The dj napkins required in day j can be supplied form node (storage) j− q
(fast washing), node j − p (slow washing) or from the shop using an edge with cost a. It may be

expedient to assume that there is enough number of napkins in the shop to cover the total demand.

On the last day we put the remaining napkins (from the previous day and from the shop) to a virtual

storage (with zero cost). By this description we formulate the caterer problem as a transshipment

problem. On the right figure we show the edges correspond to the variables of the basis of the

optimal basic solution. The numbers on the edges are the values of the variables. Observe the some

variables are zero, means that the basic solution is degenerated. This phenomena frequently occurs

in case of network problems. On the other hand, the integrality theorem guarantees that there

is integer optimal solution, thus the obtained scheduling plan can be applied without numerical

rounding.

7.3 Shortest path as transshipment

We have already discussed efficient algorithms to solve the shortest path problem. Now we just

illustrate the power of the general transshipment model with the integrality theorem.

Assume that given a directed and edge weighted graph G and the task is to find the shortest

s − t path. Assign −1 demand to s and +1 demand to t. Consider that the edge weights are the

costs solve the resulting transshipment problem, that is

max
n∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij −
n∑
j=1

xji =


1, if i = s

−1, if i = t

0, otherwise

(i = 1, . . . , n)

xij ∈ {0, 1} (1 ≤ i, j ≤ n).
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If there is no negative cycle in G then the variables assigned to edges can only take the values 0

or 1. The edges for which the values of the corresponding variables takes the value 1 in the optimal

solution designate the shortest path. (We note that partially the reverse is also true: finding shortest

paths is an important sub-task of various algorithms for the transshipment problem.)

7.4 Transportation problem

The problem was first investigated by F. I. Hitchcock in 1941, and sometimes it is called Hitch-
cock’s transportation problem:

min
m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij = ri, (i = 1, 2, . . . ,m)

m∑
i=1

xij = sj, (j = 1, 2, . . . , n)

xij ≥ 0

It is easy to see, that it is a transshipment problem defined on a bipartite graph. Let us define G

such that V (G) = U ∩ V , where U = {u1, u2, . . . , um} are the sources, V = {v1, v2, . . . , vm} is

the set of target nodes, while E(G) = {uivj : ui ∈ U, vj ∈ V }. Furthermore let the supply be

ri at node ui (i = 1, . . . ,m), and the demand be sj at node vj (j = 1, . . . , n). The transportation

problem can be solved according to the integrality theorem. Besides the most straightforward one

the transportation problem has many other applications. There discussion is beyond the scope of

this lecture.

7.5 Assignment problem

We introduce the problem through an example. Suppose that there are 5 men and 5 different task,

and the performance (ability) of man i on the task j can be given by single number (0 ≤ i, j ≤ 5).

The problem is to assign each man to exactly one task such that the sum of performances is to be

maximized. The man-task performance matrix is given as
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1 2 3 4 5

1 7 5 4 4 5

2 7 9 7 9 4

3 4 6 5 8 5

4 5 4 5 7 4

5 4 5 5 8 9

We can model the problem as an integer programming task. Let xij = 1, if ith man gets the task

j and xij = 0 otherwise. The constraints are
∑5

j=1 xij = 1 (i = 1, . . . , 5) (each men gets exactly

one task) and
∑5

i=1 xij = 1 (j=1, . . ., 5) (each task is done by exactly one men). The objective

function is
∑

i

∑
j cijxij . In general, the assignment problem is defined by the IP

max
n∑
i=1

n∑
j=1

cijxij

(∗)
n∑
j=1

xij = 1 (i = 1, . . . , n)

n∑
i=1

xij = 1 (j = 1, . . . , n)

xij ∈ {0, 1} (1 ≤ i, j ≤ n).

Observe that (∗) has always n! feasible solutions and one of those of course optimal. Due to

the integrality theorem the optimal basic solution of the following transshipment problem is the

optimal solution of (∗) too:

min
n∑
i=1

n∑
j=1

(−cij)xij

n∑
j=1

xij = 1 (i = 1, . . . , n)

n∑
i=1

xij = 1 (j = 1, . . . , n)

xij ≤ 0 (1 ≤ i, j ≤ n).
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We should mention here that P. R. Halmos and H. Vaughon in 1950 published a quite absurd

application of (∗) problem. There, the marriage of n men and n women need to be optimized

according to a wistfulness point cij assigned to each man i by each woman j (where n is the

best score, 1 is the worst, and a woman gives different points to each man). The total happiness

is measured via
∑

i

∑
j cij-vel. The problem and the corresponding integrality theorem can be

applied well to matching problems of bipartite graphs.

Recall that graph G is bipartite, if V (G) = A∪B, where A∩B = ∅, and every edge connects

a vertex from A and a vertex from B. A matching of a graph is a set of edges without common

vertices. It is easy to see that a maximal M matching (i.e. the maximal cardinality) of a bipartite

G graph can be obtained by solving the following IP:

max
∑
j∈B

∑
i∈A

xij

∑
j:(i,j)∈E(G)

xij ≤ 1 (i ∈ A)

∑
i:(i,j)∈E(G)

xij ≤ 1 (j ∈ B)

xij ≤ 0 (i ∈ A, j ∈ B),

whereM contains such (i, j) edges, where x∗ij = 1 in the optimal solution. Dénes König’s famous
theorem can also be readily obtained in a

Theorem 7.2 Let G be a bipartite graph where |A| = |B| = n and d(v) = k ≥ 1 for each

v ∈ V (G). Then G has a perfect matching (i.e. a matching that matches all vertices of the graph).

Proof. Define a transshipment problem to the graph G as follows. Assign −1 to each point of A

and +1 to each point of B. Let the direction of edges be from Ato B (and now there is no cost

on the edges). The obtained problem has a feasible solution x: simply let xe = 1/k for each edge

e. Thus, due to the integrality theorem there is an x∗ integer feasible solution, where x∗e ∈ {0, 1}
for each edge e. In fact, there is exactly one edge from each node in A, where the corresponding

variable is 1. These edges are the elements of M perfect matching. �
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7.6 Summary

In this section we give a brief summary of the LP models of the most important network problems.

Network G = (V,E) has nodes V and edges E. Each edge (i, j) has a capacity uij and a cost

cij . Each vertex i provides a net supply bi.

An X,X cut is a partition of V (G) such that any node is either s ∈ X or t ∈ X = V (G)\X .

The set of edges of the cut is denoted by E(X,X). The capacity of cut X,X is c(X,X) :=∑
i∈X,j∈X cij . Where applicable, there are two distinguished nodes: s = source and t = sink.

7.6.1 Minimum spanning tree

Primal.

min
n∑
i=1

n∑
j=1

cijxij

n∑
(i,j)∈E(X,X)

xij > 0 (∀X ⊂ V,X 6= ∅)

xij ∈ {0, 1} (1 ≤ i, j ≤ n).

Feasibility: if there is no X ⊆ V (∅ 6= X 6= V ) such that E(X,X) = ∅.

7.6.2 Shortest path problem

Primal.
min

n∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij −
n∑
j=1

xji =


1, if i = s

−1, if i = t

0, otherwise

(i = 1, . . . , n)

xij ∈ {0, 1} (1 ≤ i, j ≤ n).

Dual.
max ys − yt

yi − yj ≤ cij ∀(i, j) ∈ E
yi unrestricted ∀i ∈ V

Feasibility: if there is no X ⊆ V with s ∈ X , t ∈ X such that E(X,X) = ∅.
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7.6.3 Maximum-flow problem

Primal.
max z

n∑
j=1

xij −
n∑
j=1

xji =


z, if i = s

−z, if i = t

0, otherwise

(i = 1, . . . , n)

0 ≤ xij ≤ uij (1 ≤ i, j ≤ n).

Dual.
min

n∑
i=1

n∑
j=1

uijvij

yi − yj + vij ≥ 0 ∀(i, j) ∈ E
yt − ys = 1

vij ≥ 0 ∀(i, j) ∈ E
yi unrestricted ∀i ∈ V

Feasibility: no flow bigger than the capacity of the corresponding cut.

7.6.4 Minimum-cost (s, t)-flow problem

Primal.
min

n∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij −
n∑
j=1

xji =


f, if i = s

−f, if i = t

0, otherwise

(i = 1, . . . , n)

0 ≤ xij ≤ uij ∀(i, j) ∈ E

Dual.
max fys − fyt −

n∑
i=1

n∑
j=1

uijvij

yi − yj − vij ≤ cij ∀(i, j) ∈ E
vij ≥ 0 ∀(i, j) ∈ E
yi unrestricted ∀i ∈ V

Feasibility: there is no set X ⊆ V with s ∈ X and t ∈ X such that f >
∑

(i,j)∈E(X,X)

uij .
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7.6.5 Transshipment problem

Primal.
max

n∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij −
n∑
j=1

xji = bi (i = 1, . . . , n)

xij ≥ 0 ∀(i, j) ∈ E

Dual.
min

∑
i∈V

biyi

yi − yj ≤ cij ∀(i, j) ∈ E
yi unrestricted ∀i ∈ V

Feasibility: there is no set X ⊆ V such that
∑

i∈X bi > 0 and E(X,X) = ∅

7.6.6 Minimum cost network flow problem

Primal.
min

n∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij −
n∑
j=1

xji = bi (i = 1, . . . , n)

0 ≤ xij ≤ uij ∀(i, j) ∈ E

Dual.
max

∑
i∈V

biyi −
n∑
i=1

n∑
j=1

uijvij

yi − yj − vij ≤ cij ∀(i, j) ∈ E
vij ≥ 0 ∀(i, j) ∈ E
yi unrestricted ∀i ∈ V

Feasibility: there is no set X ⊆ V such that
∑

i∈X bi >
∑

(i,j)∈E(X,X)

uij .

7.7 Exercises

7.7.1 Give an example of a minimum-cost network flow problem with all arc costs positive and

the following counter intuitive property: if the supply at a particular source node and the demand

at a particular sink node are simultaneously reduced by one unit, then the optimal cost increases.
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7.7.2 (Vanderbei’s book, Ch.14. Exercises) Bob, Carol, David, and Alice are stranded on a desert

island. Bob and David each would like to give their affection to Carol or to Alice. Food is the

currency of trade for this starving foursome. Bob is willing to pay Carol 7 clams if she will accept

his affection. David is even more keen and is willing to give Carol 9 clams if she will accept it.

Both Bob and David prefer Carol to Alice (sorry Alice). To quantify this preference, David is

willing to pay Alice only 2 clams for his affection. Bob is even more averse: he says that Alice

would have to pay him for it. In fact, she’d have to pay him 3 clams for his affection. Carol and

Alice, being proper young women, will accept affection from one and only one of the two guys.

Between the two of them they have decided to share the clams equally between them and hence

their objective is simply to maximize the total number of clams they will receive. Formulate this

problem as a transportation problem. Solve it.

7.7.3 (Stacho’ lecture notes, Sec. 10.1)A new car costs $12,000. Annual maintenance costs are as

follows: m1 = $2, 000 first year,m2 = $4, 000 second year,m3 = $5, 000 third year,m4 = $9, 000

fourth year, and m5 = $12, 000 fifth year and on. The car can be sold for s1 = $7, 000 in the first

year, for s2 = $6, 000 in the second year, for s3 = $2, 000 in the third year, and for s4 = $1, 000

in the fourth year of ownership. An existing car can be sold at any time and another new car

purchased at $12,000. What buying/selling strategy for the next 5 years minimizes the total cost of

ownership?

7.7.4 (Winston’s book, Sec. 7.1.) Powerco has three electric power plants that supply the needs

of four cities. Each power plant can supply the following numbers of kilowatt-hours (kwh) of

electricity: plant 1-35 million; plant 2-50 million; plant 3-40 million (see table). The peak power

demands in these cities, which occur at the same time (2pm), are as follows (in kwh): city 1-45

million; city 2-20 million; city 3-30 million; city 4-30 million. The costs of sending 1 million kwh

of electricity from plant to city depend on the distance the electricity must travel. Formulate an LP

to minimize the cost of meeting each city’s peak power demand.

Machine/Time Job 1 Job 2 Job 3 Job 4

1 14 5 8 7

2 2 12 6 5

3 3 8 3 9

4 2 4 6 10
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7.7.5 (Winston’s book, Sec. 7.5) Machineco has four machines and four jobs to be completed.

Each machine must be assigned to complete one job. The time required to set up each machine for

completing each job is shown in table. Machineco wants to minimize the total setup time needed

to complete the four jobs. Use linear programming to solve this problem.

From/To City 1 City 2 City 3 City 4 Supply

Plant 1 8 ($) 6 10 9 35

Plant 2 9 12 13 7 50

Plant 3 14 9 16 5 40

Demand (m kwh) 45 20 30 30

7.7.6 (Winston’s book, Sec. 7.6 - Problems) General Ford produces cars at L.A. and Detroit and

has a warehouse in Atlanta; the company supplies cars to customers in Houston and Tampa. The

cost of shipping a car between points is given in the table 60m where “-” means that a shipment is

not allowed). L.A. can produce as many as 1,100 cars, and Detroit can produce as many as 2,900

cars. Houston must receive 2,400 cars, and Tampa must receive 1,500 cars.

1. Formulate a transportation problem that can be used to minimize the shipping costs incurred

in meeting demands at Houston and Tampa.

2. Modify the model if shipments between L.A. and Detroit are not allowed.

3. Modify the model if shipments between Houston and Tampa are allowed at a cost of $5.

From/To L.A Detroit Atlanta Houston Tampa

L.A 0 140 100 90 225

Detroit 145 0 111 110 119

Atlanta 105 115 0 113 78

Houston 89 109 121 0 –

Tampa 210 117 82 – 0
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Chapter 8

Stochastic problems

Stochastic optimization problems are optimization problems that involve uncertainty. Whereas de-

terministic optimization problems are formulated with known parameters, “real world” problems

often include some unknown parameters. Stochastic programming models are similar in style to

linear (or non-linear) programming models, but take advantage of the fact that probability distri-

butions governing the data are known or can be estimated. In this chapter give a brief introduction

the field by discussing some classical stochastic problems and some of their possible mathematical

models.

8.1 Newsboy problem

A newsboy sells newspapers at the corner of Dóm square Szeged, and each day she must determine

how many newspapers to order. She pays the company 20 (cent) for each paper and sells the papers

for 25 each. Newspapers that are unsold at the end of the day are worthless. She knows that each

day she can sell between six and ten papers, with each possibility being equally likely.

Note that two different problem may occur:

1. Suppose that she order 8 but sells just 6 by the end of the day. Then she pays 8× 20 = 160

but her income is only 6× 25 = 150, thus she will be in negative 10.

2. If she orders 6, but there would be 8 buyer, then her profit will be 6×(25−20) = 30, however

it could have been more, and she may loose prospective customers whom she cannot serves.
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Papers demanded

Papers ordered 6 7 8 9 10

6 30 30 30 30 30

7 10 35 35 35 35

8 -10 15 40 40 40

9 -30 -5 20 45 45

10 -50 -25 0 25 50

8.1.1 Solution

We present four decision criteria that can be used here to make decision under uncertainty.
The set S = {6, 7, 8, 9, 10} contains the possible values of the daily demand for newspapers.

We are given that p6 = p7 = p8 = p9 = p10 = 1/5, that is the probability of a certain number of

buyers come (note that the probabilities can be given by any probability distribution).

The vendor should determine the supply, that can be 6, 7, 8, 9 or 10 (obviously it is not worth

to order less than 6 or more than 10 for her!).

If she purchases i papers and j papers are demanded, then i papers are purchased at a cost of

20i cent, and min(i, j) papers are sold for 25 cent each. Then the profit is

rij =

{
25i− 20i = 5i, if i ≤ j

25j − 20i, if i ≥ j

The following table shows the possible payoffs (profits).

Maximin criterion

According to this criterion, the vendor orders i papers such that minj∈S rij is maximal. For each

action, determine the worst outcome (smallest reward). The maximin criterion chooses the action

with the “best” worst outcome.

Thus, the maximin criterion recommends ordering 6 papers. This ensures that she will, no

matter what will be the daily demand, earn a profit of at least 30 cent.

Maximax criterion

According to this criterion, the vendor orders i papers such that maxj∈S rij is maximal. This

provides the maximum potential payoff (with high risk, naturally). For each action, determine the
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Papers ordered Worst case Reward

6 6,7,8,9,10 30

7 6 10

8 6 -10

9 6 -30

10 6 -50

best outcome (largest reward). The maximax criterion chooses the action with the “best” best

outcome.

Papers ordered Best case Best outcome

6 6,7,8,9,10 30

7 7,8,9,10 35

8 8,9,10 40

9 9,10 45

10 10 50

Thus, the maximax criterion would recommend ordering 10 papers. In the best case (when 10

papers are demanded), this yields a profit of 50 cent. Of course, making a decision according to the

maximax criterion leaves vendor open to the worst possibility that only 6 papers will be demanded,

in which case she loses 50 cent.

Minimax regret

The minimax regret criterion (developed by L. J. Savage) uses the concept of opportunity cost to

arrive at a decision. For each possible demand j it first determines the best action, i.e. the action

maximizes ri∗j . Then the opportunity loss (or regret) is ri∗j − rij for each possible action i.

For example, if j = 7 papers are demanded, the best decision is to order 7 papers, yielding a

profit of r77 = 35. Suppose the vendor chooses to order i = 6 papers instead of 7. Since r67 = 30,

the opportunity loss, or regret for i = 6 and j = 7 is 35-30= 5. The regret table is given as follows:

The minimax regret criterion chooses an action by applying the minimax criterion to the regret

matrix. In other words, the minimax regret criterion attempts to avoid disappointment over what

might have been. The minimax regret criterion recommends ordering 6 or 7 papers.
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Demand

Papers ordered 6 7 8 9 10

6 30− 30 = 0 35− 30 = 5 40− 30 = 10 45− 30 = 15 50− 30 = 20
7 30− 10 = 20 35− 35 = 0 40− 35 = 10 45− 35 = 10 50− 35 = 15

8 30 + 10 = 40 35− 15 = 20 40− 40 = 0 45− 40 = 5 50− 40 = 10

9 30 + 30 = 60 35 + 5 = 40 40− 20 = 20 45− 45 = 0 50− 45 = 5

10 30 + 50 = 80 35 + 25 = 60 40− 0 = 40 45− 25 = 20 50− 50 = 0

Expected value criterion

The expected value criterion chooses the action that yields the largest expected reward. Suppose

that the demand is given by the probability distribution (p6, p7, . . . , p10), where pi ≥ 0 is the

probability that the demand will be i (i = 6, . . . , 10) and
∑10

i=6 pi = 1. For instance, in case of

pi = 1/5 (i = 6, . . . , 10), the expected outcomes are:

Papers ordered Expected outcome.

6 1
5
(30 + 30 + 30 + 30 + 30) = 30

7 1
5
(10 + 35 + 35 + 35 + 35) = 30

8 1
5
(−10 + 15 + 40 + 40 + 40) = 25

9 1
5
(−30− 5 + 20 + 45 + 45) = 25

10 1
5
(−50− 25 + 0 + 25 + 50) = 0

and this would recommend ordering 6 or 7 papers. In the general case the expected values∑
i pirij values should be calculated for each j.

8.1.2 General problem of discrete demand

Let c be the vendor price, d be the selling price (d > c), the demand is given by (p1, . . . , pk)

probability distribution, where

pi = Pr(xi the demand).

Let X be a random variable such that Pr(X = xi) = pi (thus X represents the demand). Then the

expected profit is

E[(d− c)X].
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Suppose that the vendor orders t papers. The goal is to determine the value t such that the expected

profit would be maximal.

• if t ≥ x ∈ (x1, . . . , xn) then dx− ct = −c(x− t) + (d− c)x

• if t < x ∈ (x1, . . . , xn) then dt− ct = −(d− c)(x− t) + (d− c)x

We can see that maximizing the profit is equivalent to the minimization of the following function:

g(t) =
∑
xi:t>xi

c(t− xi)pi +
∑
xi:t≤xi

(d− c)(xi − t)pi

The first term is the loss due to the papers not sold while the second term represents the opportu-
nity cost. If X would follow not a discrete but a continuous probability distribution then, similarly

as in the discrete case, we obtain

g(t) = c

t∫
−∞

(t− x)f(x)dx+ (d− c)
∞∫
t

(x− t)f(x)dx

and the goal is the minimization of g(t). From this, we can get

g(t) = c

t∫
−∞

(t− x)f(x)dx+ c

∞∫
t

(t− x)f(x)dx+ d

∞∫
t

(x− t)f(x)dx =

= ct

∞∫
−∞

f(x)dx− c
∞∫

−∞

f(x)dx− dt
∞∫
t

f(x)dx+ d

∞∫
t

xf(x)dx.

Differentiating according to t we get

g′(t) = c− d
∞∫
t

f(x)dx+ dtf(t)− dtf(t) = d(FX(t)− 1) + c,

where FX(t) =
∫ t
−∞ f(x)dx is the probability distribution function of X . The minimum of g is

obtained by solving the g′(t) = 0, that is t = F−1((d− c)/d).

An LP model

Let d is the selling price and c is the vendor price (d > c) per unit as before, X is the random

variable stands for the demand, and the vendor orders quantity t of a certain product (e.g. a news-

paper).
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If X = x > t, the a “back order penalty” b ≥ 0 per unit is incurred. The total cost of this is

equal to b(x − t) if x > t and zero otherwise. Similarly, if X = x < t, then a “holding cost” h is

incurred. The total cost of this is equal to h(t− x) if x < t and zero otherwise. The cost function

is then

g(t, x) = ct+ b[x− t]+ + h[t− x]+,

where [a]+ = max{a, 0}. The objective is to minimize g(t, x) First, let X ≡ x a constant parame-

ter. The objective function can be rewritten as

g(t, x) = max{(c− b)t+ bx, (c+ h)t− hx}

which is a piecewise linear function with minimum attained at t = x. Evidently, if the demand

x is known in advance, the best decision is to order exactly the demand quantity t = x. We can

formulate the problem as an LP:

min z = y

st y ≥ (c− b)t+ bx

y ≥ (c+ h)t− hx
x ≥ 0

Next, we consider now the case when the ordering decision should be made before a realization

of the demand becomes known. Thus, the demand X is now a random variable. In this case, it is

usually assumed that the probability distribution of X is known (e.g. estimated statistically from

historical data). The corresponding optimization problem is

min
t

E[g(t,X)]

that is, minimizing the total cost “on average”. If the distribution of X is discrete, and it takes

values x1, . . . , xk with probabilities p1, . . . , pk (pi ≥ 0, i = 1, . . . , k and
∑k

i=1 pi = 1), then the

expected value is

E[g(t,X)] =
k∑
i=1

pig(t, xi).

The problem can be formulated as an LP as follows:

min z =
∑k

i=1 piyi

st yi ≥ (c− b)t+ bxi i = 1, . . . , k

yi ≥ (c+ h)t− hxi i = 1, . . . , k

xi ≥ 0 i = 1, . . . , k
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8.2 Reliability

8.2.1 Network reliability

Similarly to the largest probability path problem, we are given a graph G with two distinguished

nodes s and t, and each edge e is assigned a probability pe. In our interpretation this is the prob-

ability of the usability or existence the edge. Existence of an edge is independent to the existence

of other edges. We saw that the finding the largest probability s − t is equivalent to finding the

shortest s− t path after transforming the weights appropriately. However, it is much more difficult

to calculate the reaching probability of t starting from s: there is not known any efficient algorithm

to solve the problem, moreover, it is not hoped to find one soon. Fortunately, for not too big graphs

the problem can be handled using a recursion algorithm (that requires exponential running time in

the number of edges.)

Let G be the given graph and chose an edge e exists with probability pe. Let G \ e be the graph

obtained fromG by deleting e andG/e be the graph obtained fromG by contracting e. Then, since

Pr(G) = (1− pe)Pr(G \ e) + pePr(G/e),

the original problem is reduced to two smaller problems.
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Observe that a parallel edge pair, with assigned probabilities p1 and p2, can be substituted by

one edge with probability p1 + p2 − p1p2. The calculation for the lower branch goes similarly.

Moreover, if we arrive to an already calculated subgraph we can simply use the result obtained

previously. Thus Pr(G) = 0.72× 0.9 + 0.501× 0.1 = 0.6981.
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8.2.2 System reliability

Reliability of a system or a product is defined as the probability that the product will not fail

throughout a prescribed operating period. Most products are made up of a number of compo-

nents. The reliability of each component and the configuration of the system consisting of these

components determines the system reliability (i.e., the reliability of the product).

Suppose now, that a system (product) has n different components and all should work together

properly. The components go to ruin independently. For a component i, we have two options:

1. cheaper: price si with probability of proper working qi;

2. more expensive: price ri with probability of proper working pi.

Assume that si < ri and qi < pi (i = 1, . . . , n). According to technical obligations the system

should work with probability p. The goal is to choose the components properly with minimum

cost.

We can formulate the problem as a 0− 1 IP. Let xi ∈ {0, 1} such that xi = 0 if we choose the

component which price is ri and xi = 1 if we choose the component which price is si. Then, the

probability that the system works properly is

n∏
i=1

qi

n∏
i=1

(pi
qi

)xi
,

while the cost is
n∑
i=1

(ri − si)xi +
n∑
i=1

si.

By introducing b = log(p/
∏n

i=1 qi) and ai log(pi/qi) we can formulate the following LP for the

problem:
min z =

∑n
i=1(ri − si)xi

st
∑n

i=1 aixi ≥ b

xi ∈ {0, 1} i = 1, . . . , n

That is a knapsack problem and it can be solved using e.g. the branch-and-bound method.

8.3 Portfolio Selection problem

Suppose that we are planning to invest our capital to various assets (i.e. activities, bonds, stocks,

or properties, etc). Consider n different assets where asset i will give a return Ri (that is a random
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variable) and relative amount of capital invested in i is xi (i = 1 . . . , n). Let x = (x1, x2, . . . , xn)

be the portfolio vector with
∑n

i=1 xi = 1. The expected return of the portfolio is calculated as

Rp =
n∑
i=1

E[Ri]xi = µixi.

Maximizing the expected return of a portfolio can be formulated as a knapsack problem:

maxRp =
∑n

i=1 µixi

st
∑n

i=1 xi = 1

xi ≥ 0 i = 1, . . . , n

If µ1 ≥ µ2 ≥ · · · ≥ µn, then the optimal solution of the problem is x1 = 1, x2 = x3 = · · · = xn =

0. In reality, following this strategy leads to a bankruptcy with probability 1.

8.3.1 The Markowitz model

Markowitz portfolio theory provides a method to analyze how good a given portfolio is based on

only the means and the variance of the returns of the assets contained in the portfolio. An investor

is supposed to be risk-averse, hence he wants a small variance of the return (i.e. a small risk) and

a high expected return. The variance of the portfolio is calculated as

σ2
p = Var[

n∑
i=1

Rixi] = E[(
n∑
i=1

(Ri − µi)xi)2] =
n∑
i=1

n∑
j=1

σijxixj,

respectively, where σij is the covariance between asset i and j (while σii is the variance of asset i).

A portfolio is called efficient (or optimal) if it provides the best expected return on a given

level of risk, or alternatively, the minimum risk for a given expected return. The Markowitz model

(1952) is a quadratic programming problem with the goal of minimizing the variance (risk)

given a desired value ρ > 1 of return:

min σp =
∑n

i=1

∑n
j=1 σijxixj

st Rp =
∑n

i=1 µixi ≥ ρ∑n
i=1 xi = 1

xi ≥ 0 i = 1, . . . , n

Remark. Observe that the objective function of the model is a quadratic function of the decision

variables. We do not deal with the solution of such non-linear problem, just mention that there

are many efficient algorithms available to solve such problems. Another difficulty is to estimate

the individual asset returns and variances and covariances.
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Estimating the expected return and variance

A classical approach is to consider the price time series of n assets, where the closure price of asset

i at time t is denoted by Pi(t) (t = 0, 1, . . . , T ). The daily logarithmic return of i is defined as

Ri(t) = log
Pi(t)

Pi(t− 1)
= logPi(t)− logPi(t− 1), (t = 1, . . . , T )

Often, the expected return of asset i is estimated as the average of the past daily returns, thus

µi =
1

T

T∑
t=1

Ri(t).

In case of stationary independent normally distributed returns this is the maximum likelihood esti-

mator of the return.

Remark. We note that there are other estimators, for instance the James-Stein estimator.

The covariance between asset i and j can be estimated by the formula

σ̂2
i,j =

1

T

T∑
t=1

(Ri(t)− µi)(Rj(t)− µj).

8.3.2 The Mean Absolute Deviation model

We may avoid the difficulty of both the non-linear objective function and estimating the elements

of the covariance matrix Σ = (σij)i,j if instead minimizing the covariance we minimize the mean
absolute deviation

E[|
n∑
i=1

(Ri − µi)xi|].

Konno and Yamazaki provided a method (in 1990) with this goal by avoiding the calculation of µi
and, even more importantly, σij values. Let

Ri =
1

T

T∑
t=1

Ri(T ) and ai(t) = Ri(t)−Ri.

The portfolio optimization problem can be written in the form

min 1
T

∑T
t=1 |

∑n
i=1 ai(t)xi|

st
∑n

i=1Rixi > ρ∑n
i=1 xi = 1

xi ≥ 0 i = 1, . . . , n
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This is not an LP (because of the absolute value in the objective function), but it can be rephrased

to an LP using simple tricks:

min 1
T

∑T
t=1 yt

st −yt ≤
∑n

i=1 ai(t)xi ≤ yt t = 1, . . . , T∑n
i=1Rixi > ρ∑n

i=1 xi = 1

xi ≥ 0 i = 1, . . . , n

8.4 Exercises

8.4.1 Solve the news vendor problem for the following scenario. The vendor price of the newspa-

per is c = 50, the selling price is d = 70. According to past observations the demand X is between

40 and 60 uniformly at random.

8.4.2 (Winston’s book Ch. 13 problems) Pizza King and Noble Greek are two competing restau-

rants. Each must determine simultaneously whether to undertake small, medium, or large adver-

tising campaigns. Pizza King believes that it is equally likely that Noble Greek will undertake a

small, a medium, or a large advertising campaign. Given the actions chosen by each restaurant,

Pizza King’s profits are as shown in the following table. For the maximin, maximax, and minimax

regret criteria, determine Pizza King’s choice of advertising campaign.

Noble Greek chooses

Pizza King chooses small medium large

small 6000 ($) 5000 2000

medium 5000 6000 1000

large 9000 6000 0

8.4.3 Assume that the following two assets yield to following yearly returns How to divide and

Year 1 Year 2 Year 3

Property 0.05 -0.03 0.04

Security -0.05 0.21 -0.10

invest our money to the different assets according to the Markowitz model (using the standard

statistical estimators of return and variance)?
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8.4.4 Solve the Markowitz portfolio optimization problem for two variables analytically using the

Lagrange-method.

8.4.5 Solve the Markowitz portfolio optimization problem in the general case using the Lagrange-

method.
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Chapter 9

Game theory

Game Theory is the study of decision making under competition. More specifically, Game Theory

is the study of optimal decision making under competition when one individual’s (agent’s) deci-

sions affect the outcome of a situation for all other individuals involved. Here we only deal with

Classical Game Theory, that focuses on optimal play in situations where one or more people must

make a decision and the impact of that decision and the decisions of those involved is known. It

has a wide-range applications in many fields of social science and economics, as well as in logic

and computer science.

In this chapter we discuss the main definitions and concepts of the topic, zero-sum games and

their relationship with linear programming. Finally we give a short introduction to non-zero sum

games too.

9.1 Pure and mixed strategies

9.1.1 Pure strategies

Two TV networks compete for an audience of 100 million viewers in a specific time slot. The

networks announce their schedule ahead of time and do not know of the decision of the other until

the show time. Based on that a certain number of people will tune to N1 while the rest will watch

N2. The market research revealed the following expected number of viewers of N1.

For example, if N1 shows Western while N2 shows a Comedy, then 60 million people will

watch N1, and 100 − 60 = 40 will watch N2. The question is that what strategy should the net-
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N2

N1 Western Action Comedy

Western 35 15 60

Action 45 58 50

Comedy 38 14 70

works use to maximize their viewership?

The following terminology is used.

• N1 is called row player

• N2 is called column player

• The above defined matrix is called payoff matrix (of the row player)

• Σ1 = {Western, Action, Comedy} (= Σ2) is the set of strategies of the row player (and

column player, resp.)

• The game is constant-sum game if the outcome for both players sums up to a constant (now

100 million, but usually 0) in each case (i.e. strategy pairs)

Let us look at the structure of outcomes.

• For instance, if N1 chooses to show Western, then it can expect 60 million viewers if N2

chooses to show a Comedy; however it can expect only 15 million if N2 shows an Action⇒
this choice can guarantee at most 15 million for N1 in the worst case.

• If the N1 instead chooses to show a Comedy, the situation is even worse, since then only 14

million viewers are guaranteed by expectations (that is the minimum in the 3rd row).

• Since N1 does not know what N2 will show, the best is to choose to show an Action in which

case 45 million or more viewers will tune to N1 ( regardless of what N2 does.)

Observe that in this strategy N1 (as row player) simply calculates the row minimum of each row

and then chooses the one with largest row minimum.

Similarly, N2 (as column player) can maximize its viewership (regardless of what N1 does) by

calculating each column maximum and choosing column with the smallest column maximum.

106



It is easy to see that the two outcomes will satisfy the following inequality:

max
all row

(row minimum) ≤ min
all column

(column maximum)

In the example

N2

N1 Western Action Comedy MIN
Western 35 15 60 15

Action 45 58 50 45
Comedy 38 14 70 14

MAX 45 58 50

N1 chooses Action and N2 chooses Western. Then 45 million viewers will watch N1 and 55

million will watch N2; that this choice is simultaneously best for both networks. Now

max
all row

(row minimum) = min
all column

(column maximum)

This is called saddle point, and the common value of both sides of the equation is called the value
of the game. An equilibrium point of the game: choice of strategies for both players such that

neither player can improve their payoff by changing his strategy.

In the above example each player’s strategy was deterministic; they each examined possible

outcomes and made a specific single choice to follow. This is called a pure strategy.

Theorem 9.1 Let Σ1 and Σ2 is the set of strategies of Player1 (row) and Player2 (column), respec-

tively, in a constant-sum game. A pure strategy pair (σ, τ) ∈ Σ1 × Σ2 is an equilibrium strategy if

and only if the pair realizes the saddle point.

9.1.2 Mixed strategies

On the other hand, there are games where following a pure strategy may not give the players the

best outcome. Let us consider the following game.

1. Player 1 draws a French card from a card deck (and hides it from Player 2). She has the

following options (i.e. strategies):
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• Pass: she discards the card and pays $1 to Player 2.

• Bet: Player 2’s turn follows.

2. Player 2 has the following options:

• Fold: she pays $1 to Player 1.

• Call: the card is revealed.

3. If the revealed card is high (10, Jack, Queen, King, Ace), then Player 2 pays $2 to Player 1.

Otherwise, the card is low (2 through 9) and Player 1 pays $2 to Player 2.

Observe, that Player 1 can choose one of the following strategies:

• pass on both high and low card (PP)

• pass on high and bet on low (PB)

• bet on high and pass on low (BP)

• bet on both high and low (BB)

The possible expected outcomes of the game are then as follows.

Player 2

Player 1 Call Fold MIN
PP -1 -1 -1

PB -21/13 3/13 -21/13

BP 2/13 -3/13 -3/13

BB -6/13 1 -6/13

MAX 2/13 1

For example suppose that Player 1 plays BP, while Player 2 calls. The probability of getting a

high card is 5/13 and getting a low card is 8/13. Therefore Player 1 expects 5/13·2+8/13·(−1) =

2/13 $.

This is a zero-sum game since either Player 1 pays Player 2 or vice-versa (the sum of the

players’ gains is zero). Observe that the game does not have a pure strategy saddle point.

Also notice that some strategies are better then others regardless of the other player’s strategy.

For instance, playing BP instead of PP always gives better outcome for Player 1. We say that a

108



strategy strongly (weakly) dominates another strategy if always gives better (or equal outcome).

Clearly, if a strategy is dominated, it can be removed from the strategy set without changing the

problem (its the optimal solution). After the possible simplifications, we obtain the following

pay-off matrix:

P2

P1 Call Fold
BP 2/13 -3/13

BB -6/13 1

Instead of choosing a fix move, the players may consider to follow any strategy randomly

according to a probability distribution. Now

• Player 1 chooses BP with a probability x1 and BB with a probability x2;

• clearly, x1, x2 ≥ 0 and x1 + x2 = 1.

• The expected payoff if Player 2 calls is: 2
13
x1 − 6

13
x2,

• while if Player 2 folds, the expected payoff is − 3
13
x1 + x2.

The worst-case outcome for Player 1 is simply the minimum of the two:

min
(x1,x2)

{ 2

13
x1 −

6

13
x2,−

3

13
x1 + x2}

Since x1 + x2 = 1, then we can simplify:

payoff = min
x1
{ 8

13
x1 −

6

13
,−16

13
x1 + 1}

We can plot the possible payoffs based on x1:

From this we determine the best mixed strategy for Player 1. That is the point E corre-

sponds to strategy (x1, x2) where x1 = 19/24 and x2 = 5/24. The player’s expected payoff is

1/39 ≈ $0.025.

Similarly,

• Player 2 chooses call with a probability y1 and fold with a probability y2;

• clearly, y1, y2 ≥ 0 and y1 + y2 = 1.
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Figure 9.1: Source: Juraj Stacho’s lecture notes.

• The expected payoff (loss) if Player 1 plays BP is: 2
13
y1 − 3

13
y2,

• while if Player 1 plays BB, the expected payoff (loss) is − 6
13
y1 + y2.

The worst-case outcome for Player 2 is the maximum of the two:

max
(y1,y2)

{ 2

13
y1 −

3

13
y2,−

6

13
y1 + y2}

Since y1 + y2 = 1, thus

payoff = min
y1
{ 5

13
y1 −

3

13
,−19

13
x1 + 1}

We can plot the possible payoffs based on y1:

From this we determine the best mixed strategy for Player 2. That is the point F corresponds

to strategy (y1, y2) where y1 = 2/3 and y2 = 1/3. The Player 2’s expected payoff is −1/39 ≈
$− 0.025.

Theorem 9.2 (Mimimax, due to John Neumann) Every zero-sum game has an equilibrium.

9.2 Zero-sum games and LP

We could see that layer 1 tries to choose probabilities x1, x2 (x1 + x2 = 1) such that maximize

min(x1,x2){ 2
13
x1− 6

13
x2,− 3

13
x1+x2}; similarly, Player 2 chooses her probabilities y1, y2 (y1+y2 =
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Figure 9.2: Source: Juraj Stacho’s lecture notes.

1) such that minimize max(y1,y2){ 2
13
y1− 3

13
y2,− 6

13
y1+y2}. Both these problem can be transformed

into linear programs as follows. For Player 1 the LP is

Max z

S.t. 2
13
x1 − 6

13
x2 ≥ z

− 2
13
x1 + x2 ≥ z

x1 + x2 = 1

x1, x2 ≥ 0

and for Player 2

Min w

S.t. 2
13
y1 − 3

13
y2 ≤ w

− 6
13
y1 + y2 ≤ w

y1 + y2 = 1

y1, y2 ≥ 0
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After rewriting we get

Max z

S.t. − 2
13
x1 + 6

13
x2 + z ≤ 0

2
13
x1 − x2 + z ≤ 0

x1 + x2 = 1

x1, x2 ≥ 0

z unrestricted

and
Max w

S.t. − 2
13
x1 + 3

13
y2 + w ≥ 0

6
13
y1 − y2 + w ≥ 0

y1 + y2 = 1

y1, y2 ≥ 0

w unrestricted

Notice that the two programs are duals of each other. It is always the case in zero-sum (constant-

sum) games. It tells us that the optimal solutions to the two programs have the same value by

strong duality theorem (the result dates back to Gale and Tucker). The optimal solution is the

value of the game. Moreover, the optimal strategies for the two players satisfy complementary
slackness. The solutions to the two problems form an equilibrium point (neither play can do

better by changing his/hers strategy). In the literature, this is a special case of the so-called Nash
equilibrium. Providing deeper insights to zero-sum games is beyond the scope of the lecture, we

only refer the cited literature for further reading.

We close this section by highlighting the deep connection between zero-sum games and linear

programming.

Theorem 9.3 (Gale-Tucker, Luce-Raiffa) For each zero-sum game there is a linear program-

ming problem whose solution yields an equilibrium of the game and for each linear programming

problem there is a zero-sum game whose equilibrium solution yields an optimal solution to the LP.

9.3 Non-zero sum games

In many real situations we find that the gains/losses of the players are not necessarily sum up to

zero (constant). This happens, for instance, in cases where players who cooperate can gain more
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together than by competing alone.

9.3.1 Prisoner’s dilemma

The following example, called Prisoner’s Dilemma, is a classic problem in Game Theory. Two

prisoners, say Bonnie and Clyde commit a bank robbery. They stash the cash and are driving

around wondering what to do next when they are pulled over and arrested for a weapons violation.

The police suspect Bonnie and Clyde of the bank robbery, but do not have any hard evidence. They

separate the prisoners and offer the following options to Bonnie:

(1) If neither Bonnie nor Clyde confess, they will go to prison for 1 year on the weapons viola-

tion.

(2) If Bonnie confesses, but Clyde does not, then Bonnie can go free while Clyde will go to jail

for 10 years.

(3) If Clyde confesses and Bonnie does not, then Bonnie will go to jail for 10 years while Clyde

will go free.

(4) If both Bonnie and Clyde confess, then they will go to jail for 5 years.

A similar offer is made to Clyde. The following payoff matrix describes the situation:

Clyde

Bonnie Confess Don’t confess
Confess (-5, -5) (0, -10)

Don’t confess (-10, 0) (-1, -1)

Here payoffs are given in negative years (for years lost to prison). Obviously, the payoffs do

not sum up to the same value each time.

It is easy to show that the strategy Confess dominates Don’t Confess for Bonnie, and also

for Clyde. Then we can simplify the payoff matrix, and conclude that game has only one Nash

equilibrium, in which both player confess. (Notice, that both not confessing is not an equilibrium,

since either player can change his mind and confess and thus not go to jail, while the other player

gets 10 years).
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Observe, that the Nash-equilibrium is not best possibility for the players, since they both can

improve their situation by both changing strategy to Don’t confess. This leads to the concept

Pareto efficiency, that we do not discuss in this lecture.

9.3.2 Hawk and Dove game

Non-zero sum games have also been used to model various situations in Evolutionary Biology1.

An important example is the hawk-dove game. Given a species with two subtypes or morphs with

different strategies. The Hawk first displays aggression, then escalates into a fight until it either

wins or is injured (loses). The Dove first displays aggression, but if faced with major escalation

runs for safety. If not faced with such escalation, the Dove attempts to share the resource they

fighting for. The payoff matrix of the game given as follows.

Dove Hawk
Dove (2, 2) (0, 4)

Hawk (4, 0) (-3, -3)

Explanation of the values:

• The value of the resource is 4, the damage when loosing a fight is −10

• If a Hawk meets a Dove he gets the full resource 4 to himself, while Dove gets 0

• If a Hawk meets a Hawk: half the time he wins, half the time he loses, so his average outcome

is then 1/2 · 4 + 1/2 · (−10) = −3

• If a Dove meets a Dove both share the resource and get 4/2 = 2

Let the proportion of Hawks in the population is x, while proportion of doves is (1− x).

• The expected gain of a hawk is

−3x+ 4(1− x) = 4− 7x;

• the The expected gain of a dove is

2(1− x)− 0x = 2− 2x.

1A book we suggest to the reader is Sir John Maynard Smith: “Evolution and the Theory of Games” (1982)
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• Equilibrium means that there is not worth to change behavior to any individual while the

behavior of the others does not chance. Then we get

4− 7x = 2− 2x⇒ x =
2

5
.

Consider now that two individuals, whose behavior can either be hawk-type or dove-type, meet

and decide behavior independently. Notice that there is no optimal pure strategy, thus suppose that

individual A follows the mixed strategy (x, 1 − x), while individual B plays the mixed strategy

(y, 1− y). The Nash-equilibrium can be found by solving

max
[
x 1− x

] [2 0

4 −3

][
y

1− y

]
= maxxTAy, s.t. x ≥ 0

for individual A, and

max
[
x 1− x

] [2 4

0 −3

][
y

1− y

]
= maxxTBy, s.t. y ≥ 0

for individual B. Separately, if either x or y would be known, these are linear programs. The

problem is that we do not know any of these values. To solve the problem leads us the theory

of non-linear optimization, now as a special case called quadratic programming, that we have

already seen in Ch. 8. The discussion of the theory is beyond the scope of this lecture, we only

refer to cited literature.

Theorem 9.4 (Existence of equlibria, Nash, 1949) Every (n-player) game has at least one Nash

equilibrium.

9.4 Exercises

9.4.1 What is best mixed strategy of the players in the zero-sum game given by the following

payoff matrix. [
1 −2

−3 1

]
What is the value of the game? Formulate the corresponding LP problems.

9.4.2 How to chose λ in order to find dominance and thus simplify the game given by the following

payoff matrix: [
λ λ2

1 2

]
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9.4.3 What is best mixed strategy of the players in the zero-sum game given by the following

payoff matrix. [
0 2

t 1

]
where t is a real number?

9.4.4 Suppose that two players play the Rock-Scissors-Paper game and who lose pay $1 to the

winner. In case of a draw nothing happens. Show that the unique mixed equilibrium strategy of

the game is (x1, x2, x3) = (y1, y2, y3) = (1/3, 1/3, 1/3)

9.4.5 Two player, independently to each other, write a number from 1 to 100 to a paper, then

compare them. If the difference is exactly 1, then the player who wrote the smaller number pays

$1 to the other player. If the difference is at least 2, then, conversely, the player who wrote the

larger number pays $2 to the other player. If the numbers are equal nothing happens. What is the

best strategy for each player?

9.4.6 Give various real-life situations, where the Prisoner’s dilemma game reflects well (applica-

ble) the scenario.
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Chapter 10

Efficiency

We have discussed various methods to solve optimization problems such as linear programs (sim-

plex method), minimum spanning tree, shortest paths and flows in networks (Kruskal, Prim, Bell-

man, Dijkstra, Ford-Fulkerson), integer linear programs (branch-and-bound, cutting planes). We

have seen that the same problems can be solved using different approaches (for instance, we can

solve shortest paths using the simplex method, or Dijkstra’s algorithm, or dynamic programming).

In this section we compare these methods in a uniform way.

10.1 Analysis of efficiency

Firstly we discuss in rough numbers the number of steps (operations) of the different methods.

10.1.1 Simplex algorithm

The number of steps of the simplex algorithm is proportional to the number of bases (dictionaries)

we go through. The Bland’s rule, for instance, guarantee that the same basis is not counted twice

during the iterations. In general there are n variables andm equations (after introducing slack vari-

ables), thus the number of iterations is at most the number of different bases, that is
(
n+m
m

)
.This

is roughly nm for small m, but for large m (say m = n/2), using the Stirling-formula, is around

2n. But this is a very pessimistic estimate. Unfortunately, there are examples which exhibit this

worst-case behavior.
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Example. (Klee and Minty, 1972)

max
∑n

j=1 10n−jxj

2
∑i−1

j=1 10i−jxj + xi ≤ 100i−1 i = 1, 2, . . . , n

xj ≥ 0 j = 1, 2, . . . , n

In a special case, when n = 3, it looks as follows.

max z = 100x1 + 10x2 + 1x3

st x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000

x1 , x2 , x3 ≥ 0

If at each step the entering variable is the one with largest coefficient in z (classic pivot rule), then

the Klee-Minty examples go through 2n − 1 bases before finding the optimum.

R. Jeroszlov showed that using steepest ascent rule (means that the entering variable is chosen

to be the one that provides largest rate of increase in the objective function) the number of iterations

can also be exponentially large.

Good news is that in practice, according to e.g. Dantzig observations, if m < 50 and n+m <

200 then the number of iterations is around 3m/2 and rarely happens that more than 3m iterations

is needed. Moreover, there are polynomial time algorithms to solve LP problems (see e.g L.G

Khachiyan’s ellipsoid method, N. Karmarkar’s projective method and some so-called interior point

methods). The discussion of these is beyond a scope of these lecture notes.

10.1.2 Integer programming

Branch-and-bound

Solving integer programming problems with branch-and-bound each sub-problem is a linear pro-

gram (can be solved by simplex or other methods) and only bounds on variables change. Thus,

the size of each LP is the same in each sub-problem. There are 2n possible sub-problems, that is

unavoidable in general.
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Cutting planes

Using cutting planes for solving IP problems, at each point we have only one linear program (there

are no sub-problems). Each step adds one new constraint and one new variable to the problem,

so the linear program grows at each step. There are possibly 2n steps before optimum reached

(unavoidable in general). The performance could be much worse than branch-and-bound if the

size of the LP becomes too big (note that with branch-and-bound the LP remains the same size in

all sub-problems).

10.1.3 Network problems

Kruskal and Prim algorithms

Given a network with n nodes, m edges. First we need to order the edges to a list according to

their weights. By quick-sort this can be done by O(m logm) steps. Guaranteeing that no cycle

produced in any step requires less using efficient implementations.

Dijkstra algorithm

Given a network with n nodes, m edges and we are finding the shortest s − v path. Each of the n

nodes can be the source node s. Each step involves finding a smallest value d(v) and updating other

values d(w). This is roughly 2n calculations. All together this is about 2n2. It can be improved to

O(m log n) using special data structures.

Bellman algorithm

For a single source at step k we consider paths using k edges, thus we need at most m calculations

in each step, and all together O(nm) operations are needed.

Ford-Fulkerson algorithm

Given a network with n nodes, m edges. Each step constructs the residual network, finds an

augmenting path and augments the flow. This is roughly 2(n + m) operations for each step. At

most nm steps needed if shortest augmenting path is used (see Edmonds-Karp algorithm). That is

altogether roughly n2m operations. This can be improved to O(nm) by additional tricks.
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Solving transportation problem

It can be solved using the so-called transportation simplex method (did not discuss here, but it

can be found in the cited literature). It takes ≈ nm iterations.

Solving assignment problem

he number of required steps can be shown to be at most
√
n, thus the number of operations needed

is O(
√
nm)

10.2 Summary of complexity results

Given algorithm A that takes an input x (numbers), performs a certain number of operations (ad-

ditions, multiplications) and produces an outputA(x) (e.g. a number, an answer yes/no, etc.). The

time complexity ofA is the number of (elementary) operations performed. The space complexity
A is the size of memory used during the computation. Let f(n) be the worst case time complexity
ofA for inputs of size n. That is the maximum number of operations thatA performs on any input

of size n.

The following “classification”, in terms of complexity, is often considered:

• Fast or practical algorithms: f(n) ≈ log n, f(n) ≈ n f(n) ≈ n log n

• Efficient algorithms: f(n) ≈ nα, where α = 1.5, 2, . . . , 4, . . .

• Algorithms for hard problems: f(n) ≈ 2n, f(n) ≈ n!, f(n) ≈ nn, . . .

The following table is summarize the complexity of the discussed problems. The input to each of

the problems will consist of n numbers (or n+m numbers, or nm numbers where n ≥ m in case

of LP). Here, L denotes the number of bits needed to represent any of these numbers (in a typical

computer using IEEE754 floating point numbers L = 24, 53, 64, or 113).

10.3 Solving LP with computer: AMPL

Practical mathematical programming means running some algorithmic method on a computer and

printing the optimal solution. The full sequence of the method is usually the following.
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Problem Time complexity Space complexity

Linear programming (simplex): n variables, m constraints 2O(n) O(nm)

Linear Programming (Interior point): n variables, m constraints O(n3L) O(nm)

Shortest path (Dijkstra): n nodes, m edges O(m+ n log n) O(n)

Shortest path (Bellman): n nodes, m edges O(nm) O(n)

Minimum Spanning tree (Prim, Kruskal): n nodes, m edges O(m logm) O(m)

Transportation problem: n nodes, m edges O(nm)

Assignment problem: n nodes, m edges O(
√
nm)

Maximum flow: n nodes, m edges O(nm) = O(n3) O(m)

0-1 Knapsack (Integer LP): n items 2O(n) O(n)

1. Formulate a model, the abstract system of variables, objectives, and constraints that represent

the general form of the problem to be solved.

2. Collect data that define a specific problem instance.

3. Generate a specific objective function and constraint equations from the model and data.

4. Solve the problem instance by running a program, or solver, to apply an algorithm that finds

optimal values of the variables.

5. Refine the model and data as necessary, and repeat.

AMPL offers an interactive command environment for setting up and solving mathematical pro-

gramming problems. A flexible interface enables several solvers to be available at once so a user

can switch among solvers and select options that may improve solver performance. The AMPL

web site, www.ampl.com, provides free “student” versions of AMPL and representative solvers

can easily handle problems of a few hundred variables and constraints.

Consider first our classic toy example:

Max z = 3x1 + 2x2

x1 + x2 ≤ 80

2x1 + x2 ≤ 100

x1 ≤ 40

x1, x2 ≥ 0
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To use AMPL, we need to create the following text file with the mathematical program code.

##Toy example

## Define variables

var Soldier; #number of toy soldiers will be produced

var Train; #number of toy trains will be produced

##Define objective function

maximize profit: 3*Soldier + 2*Train;

##Add constraints

subject to

Paint: Soldier + Train <= 80;

Wood: 2*Soldier + Train <= 100;

Demand: Soldier <= 40;

Note the followings about the AMPL language:

• The # symbol indicates the start of a comment. Everything after that symbol is ignored.

• Variables must be declared using the var keyword.

• All lines of code must end with a semi-colon (;).

• The objective starts with maximize or minimize, a name, and a colon (:). After that, the

objective statement appears.

• constraint list start with subject to, a name, and a semi-colon. After that, the equation

or inequality appears that must end wiht a semi-colon (;).

• Names must be unique. A variable and a constraint cannot have the same name.

• AMPL is case sensitive. Keywords must be in lower case.

After the file is created, it should be saved with the extension .mod. Once the model file is suc-

cessfully loaded, tell AMPL to run the model by typing:
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solve;

Although it was easy to transform the previous LP into a format AMPL understands, it is

clear that if the problem had more details, or changed frequently, it would be much harder. For

this reason, we typically use a more general algebraic way of stating linear programming models.

Consider the following:

Given:

n: the number of different products

m: the number of different resources

cj: the profit after selling one unit of product i

aij: the number of unit of resources i needed to produce one unit of product j

bi: the available quantity (units) of resource i

uj: the upper bound (e.g. demand) on the number of product j

Variables: xj: the number of units produced from product i

The goal is to maximize profit: z =
∑n

i=1 cjxj

Subject to:
∑n

j=1 aijxj ≤ bi (i = 1, . . .m) and 0 ≤ xj ≤ uj (j = 1, . . . n).

Clearly, if n = 2, m = 3, c1 = 3, c2 = 2, a11 = 1, a12 = 1, . . . , a32 = 0, b1 = 80, b2 = 100,

b3 = 40, then this is exactly the LP model for the toy example. The AMPL code can be the fol-

lowing:

##Resource allocation

##Define parameters

param n;

param c{j in 1..n};

param b{i in 1..m};

param usage {c, b};

param u{j in 1..n};
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##Define variables

var product{j in 1..n};

##Define objective function

maximize z: sum{j in 1..n} c[j]*product[j];

##Constraints

subject to capacity {i in 1...m}:

sum{j in 1..n} usage[i,j]*product[j] <= b[i];

subject to ubound {j in 1...n}:

0<= product[j] <= u[j];

Note the followings AMPL syntax rules:

• Each parameter declaration starts with the keyword param;

• Indexed parameters are declared using the syntax varname in range. For example, cj, j =

1, . . . , n is de declared as param c{j in 1..n};

• Indexed variables are declared in the same way, starting with the var keyword.

• Summations are written similarly:
∑n

j=1 is written sum{j in 1..n}

• Variable and parameter names can be anything meaningful, made up of upper and lower case

letters, digits, and underscores.

In addition to specifying the model, we also must specify the data. There are different ways to do

that, here we show one possibility.

param n := 2;

param m := 3;

param c := 1 3 2 2;

param b := 1 80 2 100 3 40;

param usage: 1 2 :=
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1 1 1

2 2 1

3 1 0

;

The data file should be saved with the extension .dat.

By adding the keyword integer to the var declaration, we can restrict the declared variable

to integral values. Furthermore, by adding the keyword binary to the var declaration, we can

restrict the declared variable to the values 0 and 1. For a deepest introduction to AMPL, see e.g.

[].

10.4 Exercises

10.4.1 Solve the exercises in Ch. 1 and Ch. 2 using AMPL.

10.4.2 Formulate the diet problem in AMPL with parameters. Solve it using specific parameters.

10.4.3 Formulate the shortest path problem in AMPL with parameters. Solve it using a given

weighted and directed graph G

10.4.4 Formulate the transportation problem in AMPL with parameters.

10.4.5 Solve the IP exercises of Ch. 4 using AMPL. Implement problems with Either-Or and

If-Then constraints.

10.4.6 Solve some special cases of the Klee-Minty problem with different available solvers in

AMPL. Compare the running times.
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