Practical textbook for the course

Biostatistics

Molecular Biology MSc.

University of Szeged

Written by
Csaba Toélgyesi, Ph.D. & Zsolt Pénzes, Ph.D.

2018.

Contents

PrE aCE . . 3
1. The R language and the R environment (CST).ot o e 4
2. Data acquisition in biology - what and how? (CST) 21
3. Descriptive statistics and graphics (CST) 30
4. One- and two-sample tests (CST). . .. oottt 45
5. Correlation (CST) . .ottt 54
6. Linear regression (CST) . ..ottt 60
7. Analysis of variance (CST)ot 75
8. Tests for probabilities and proportions (CST)ottt 85
9. Survival analysis (CST) v it 89
10. Multivariate statistics (ZSP) oo 4
11, SIMUIAtioNS (ZSP) . . .o oo 117
12. Phylogenetics (ZSP) . ..ot 130
Description of the subject 151

Preface

This book is written for Biology BSc and MSc students who are new to data analysis. Our aim
was to provide practical directions, while avoided elaborate descriptions of theory. Interested
students may find plenty of online and printed sources for further reading, like Crawley’s R
book series, Dalgaard’s Introductory Statistics with R or the freely available R tutorials.

Topics covered in the book include the guidelines all biologists should consider when
designing data collection, processing and evaluating data, as well as the basics of preparing
visual representations of results. In the first nine chapters we cover only fundamental
statistical applications, while in the last three chapters some more advanced techniques are
introduced using examples from various sources. For other, more specific data handling and
processing methods, specific textbooks and free R package descriptions are available.

All data analysis and representations are done in the freely available software called R. Unlike
most statistical programs, R requires users typing in commands instead of clicking on icons or
menu items. This may be difficult to get used to in the beginning but after sufficient practice,
this will no more be a problem and users can enjoy the advantages of the program, such as its
high versatility and the quick repeatability of calculations. At the end of each chapter, we
provide a list of all new R functions used in the chapter.

CsT & ZsP
Szeged
August 2018

Chapter 1

The R language and the R environment

Getting started

R is a freely available software, downloaded from https://www.r-project.org.

For the most user-friendly option, we recommend downloading RStudio as well from
https://www.rstudio.com and operating R through it. RStudio will not be functional without
having an appropriate version of R on the computer. Select your software versions according
to the specifications of your computer and the operation system you use.

Once installed on your computer, the icons of both R and RStudio will appear among your
programs. By clicking on the icon of RStudio, the following window will display:

Comein Drmenment alon

Sayonlrtses

1} Computing B Gt Ernvorment »

with aSSOLUTELY MO W
it under certain
gtstributior

Ties Male Padagers Help Ewoe

The main window contains three smaller windows; the left one is identical to the basic R, i.e.
the surface offered without using the RStudio. The upper right window will contain a list and
some characteristics of data loaded in or prepared locally with R. The lower right window has
five menus; Files lists all files available for R; Plots stores all figures and graphs created
recently; Packages is a list of available working packages - somewhat like the apps on a smart
phone; Help is the help menu, which we recommend consulting as frequently as possible; and
using Viewer is a quick way to review stored datasets.

A new working session can be started by clicking on the first icon under the upper menu row
and selecting R script. Alternatively, you can click on the hierarchical menus File - New File

https://www.r-project.org/
https://www.rstudio.com/

- R script. In either situation, a new window appears on the upper left side, as shown in the
following screenshot:

1) Rohude - -

Fie B0 Cade View Pats Sesn Budd Oobuy Poddle Tock Melp

e Pty Padkapes M Viewet

The new window will be the place where most scripts are written, edited or pasted to. In this
book, we refer to all command lines typed in this window as ‘scripts’.

R can also function as a calculator, so to start-up, try some basic calculations. Type in 2+2 in
the upper left window and click Ctrl+Enter. With this, you asked R to calculate 2 plus 2. The
result appears in the console (lower left window):

> 2+2
[1] 4

>

The console prints the script first and then the result in the second line. The > sign at the end
indicates that the console is ready for accepting new commands. Whenever this sign is absent,
the script was incorrect or incomplete.

Simply pressing Enter is not enough, the command will run only if it is pressed together with
Ctrl. Enter alone will insert a line break in the script line, which is useful in complex scripts
but will not prompt R to run the command.

Any basic arithmetical calculations can be performed the above way.

One-dimensional datasets

R is of course much more than a calculator. An important basic feature is that it can store
datasets and can do the calculations on them without a need for retyping data over and over
again. The most basic data type is a series of numbers. This is a one-dimensional data set
type, which we will always refer to as a vector. For storing vectors, the c() function can be
used. Type in data = c(1,2,3) and press Ctrl+Enter. Records in a vector are always
delimited by comma; using space is optional. (Decimal delimiter in numbers is a dot!)

Instead of the = sign, you can also use <- with the same meaning but in this book we will stay
with the equation sign.

Please also notice, that the function (in this case a simple letter c) is followed by a parenthetic
part. The function’s effect always ends at the closing bracket; R helps to place it correctly as
when you open a bracket the ending one also appears. However, in complex scripts you need
to double check the appropriate number and location of brackets.

Now you stored this short vector under the name of “data”, which appears in the upper right
window as a stored item:

data | num [1:3] 1 2 3

So, “data” is a numeric vector (num), which has 3 records ([1:3]) and the records are 1, 2 and
3. If the vector or any other type of item is large, only the first few records will be listed here.

Once you stored an item, you can make operations on it. For instance the script sqrt(data)
will calculate the square root of all records in the data vector and will return the following
output in the console:

> sqrt(data)
[1] 1.000000 1.414214 1.732051

You can create new vectors by merging already existing ones, too, so not only the raw records
can be used with the c() function. By applying the following two scripts, you will end up with
a new stored vector (data2) with six records in it.

datal=sqrt(data)

data2=c(data,datal)

The upper right Environment window will show data2 as follows:
data?2 | num [1:6] 1 2 3 11.41 ...

Data?2 is too long for this window to show all records, this is why the “...” ending. If you want
to check the records, simply write the name of the item in the upper left window and press
Ctrl+Enter. The console will return the full list of records:

> data2
[1] 1.000000 2.000000 3.000000 1.000000 1.414214 1.732051

Vectors with preset structure can by generated by built-in functions, so it is not always
necessary to type in records. VVectors generated by sequencing are frequently useful. For such
vectors, you need to define the starting and ending numbers and the increments between each
neighboring record. The script seq(from=4,t0=9,by=1) will return integer numbers from 4 to
9:

> seq(from=4,to=9,by=1)
[1]456789

If you would like to work with a sequence later or if it is simply too large, it may be necessary
to store it immediately. The sl=seq(from=1,t0=100000,by=1) script will lead to a large
stored numeric vector in the Environment window as follows:

sl | Targe numeric (100000 elements, 781.3 Kb)

The basic data of the vector can be retrieved by clicking on the triangular arrow at the
beginning of the line.

Please note the structure of the seq() function. It contains three parts within the brackets.
These are called the arguments of the function (from, to and by). You need to provide values
for each of these to run the function properly. It is of course impossible to remember all
arguments for all functions. Use the Help menu of the lower right window to check for
arguments (or type in ?seq in the script window and press Ctrl+Enter).

If you type in the function name into the Help menu, the full description will be displayed,
along with the arguments. Generally speaking, some arguments are compulsory to provide,
others have default values (to be changed only if needed), while the use of the rest is optional.
The default order of the arguments is shown in the Help menu, so it is not necessary to type in
the name of each argument into the script if you keep the order, so s2=seq(1,100000,1) will
be identical to the s1 vector. If using the argument names, you can change the order as you
wish, s0 s3=seq(to=100000,by=1, from=1) leads to the same vector as s1 or s2.

The sequencing script can be shortened by using colon, if the increment should equal one:

seq(2:7) will return
> seq(2:7)
[1] 234567

Similar to the above type of sequencing, sequences of records can also be generated by
repetitions. For example rep(1, 3) returns

> rep(1,3)
11111

The arguments can be stored vectors as well, so using the previously stored data vector in
rep(data,2), you will receive

> rep(data,2)
[11123123

The data vector was repeated as many times as the second argument required, i.e. two times.
It is also possible to repeat each record individually by using the “each” argument:

> rep(data,each=2)
[11112233

(This is the console output, the script line that has to be used is shown in the first line. To
reduce redundancy, we will show only console outputs from now on; scripts can be extracted
from the first line)

In the rep() function, both arguments can be vectors:

> rep(data,data)
[11]122333

The first record in data was repeated once as it was one, the second twice as it was two... Of
course, the vectors used do not need to be the same but be careful to have identical records in
the vectors, or at least the number of the records should be the multiple of each other. In the
latter case, R will recycle the shorter one to match the length of the longer one.

Vectors can contain records other than numbers too. A vector can be a string of characters,
which we call a character vector. Each record is indicated by a “” sign when storing it:
names=c(“Peter”,”Tom”,”Julie™) will be stored in the Environment as

names | chr [1:3] “Peter” “Tom” “Julie”

chr indicates that this is a character vector. By typing in names into the Script window and
pressing Ctrl+Enter, the console will list the content of names (just like for any other stored
items):

> names
[1] "Peter" "Tom" "Julie"

By now, you have probably noticed that numbers appear blue in the script window, while
character items in green. If an item does not match the intended color, it is a clear indication
that you made an error. The “” sign is a way to indicate character items in scripts but you can
also use the # sign in the Script window to turn entire scripts into character lines. This way the
entire line will become green and will be considered as a note or comment and you will not be
able to run it as a command. In long scripts, this may be useful for titling and structuring.

A third type of vectors is the logical vector; it can have two types of records: true (T) or false
(F). This vector type is not so straightforward as the other two types but can come very handy
for sorting from larger numeric or character vectors or for some more abstract applications.
We will see some of these in later chapters.

The method of generating and storing logical vectors is identical to those of the other vectors.
logic=c(T,F,F,F,T) will create the logical vector called logic, which will appear in the
Environment window as

Togic | Togi [1:5] TRUE FALSE FALSE FALSE TRUE

Logical operations are very commonly used in R. One situation is when you aim to check
records of a vector by relating them to something. If you are interested in or would like to use
those records of a numeric vector that meet a some criteria, you can also encounter logical
outputs, like here:

> data>1.2
[l] FALSE TRUE TRUE

This script checks the records in the data vector, whether they are larger than 1.2.

Regarding the three types of vectors, practical applications may require some crosswalk
between them. There are cases when, for ease of data collection, character-type information is
numerically stored.

Let’s see an example: In a medical study, pain grades are recorded from patients. Pain is
difficult to measure as it is very subjective, but one can grade it like “none”, “mild”,
“moderate” “severe”. This is typically coded in studies as 0, 1, 2 and 3, respectively. Storing
pain grades of five patients in a vector may be done with the pain_grade=c(0,3,3,2,1)
script. However, R interprets it as a numeric vector, but this is not the case. The numeric
nature of the pain_grade vector can be checked by looking at the upper right Environment
window, but you can also ask this with the is.numeric() function, which returns the following
output in the console:

> is.numeric(pain_grade)
[1] TRUE

It is possible to get rid of the numeric interpretation of the vector and change it something
closer to a character vector. In R terminology, these numbers can be turned into levels of pain
and pain will be considered as a factor. This can be achieved with
pain_grade=as.factor(pain_grade). After running this script, you can check again
whether the vector is still numeric or not:

> is.numeric(pain_grade)
[1] FALSE
> is.factor(pain_grade)
[1] TRUE

This can also be checked in the Environment window, which now writes

pain_grade | Factor w/ 4 levels “07,71”,72”,73”": 1 4 4 3 2

Please also note here that R is able to perform circular commands by modifying a stored item
and store it under the same name, meaning that it overwrites it without asking for
confirmation.

Back to pain_grade vector, it is also possible to provide the exact meaning of the levels using
the levels() function: Tevels(pain_grade)=c("none","mild", "moderate","severe")
If you call the pain_grade vector again, you get the following output:

> ?ain_grade)
[1] none severe severe moderate mild
Levels: none mild moderate severe

Now the original pain_grade vector has almost been turned into a character vector, but it is a
bit more than that. Levels can be handled by a variety of statistical functions, whereas these

9

are not available for simple character vectors. The level names also appear in the Environment
window.

Two-dimensional data sets

Vectors, as indicated earlier, are one dimensional datasets. R can handle two- or more
dimensional datasets too. A two-dimensional dataset is called a matrix. A matrix is basically a
table of records, typically numbers, arranged into rows and columns.

A matrix can be created from a string of numbers using the matrix() function. As arguments,
you have to provide the records to be included, the number of rows (or columns) and
arrangements of the records. For example, the matl=matrix(1:12,nrow=3,byrow=T) script
creates a matrix from the first 12 positive integer numbers by arranging them into 3 rows. The
matrix is filled up with the numbers row by row, as requested by the byrow argument. The
matrix is stored in the Environment but can be visualized simply by its name:

> matl

[,11 [,2] [,3] [,4]
[1, 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

If setting the byrow argument to false, the matrix will be filled up column by column:

> matl=matrix(1:12,nrow=3,byrow=F)
> matl

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10

[2.] 2 5 8 11
[3,] 3 6 9 12

It is possible to give names to the rows and columns:

> colnames(matl)=c("A","B","C","D")
> matl

In the latter script the LETTERS[1:3] call provides the first three letters of the English
alphabet - LETTERS is a built-in character vector of R, containing the English alphabet in
upper case. Lower case letters are stored in the Tetters vector.

It is frequently necessary to transpose matrices, meaning that rows have to be turned into
columns and vice versa. The t() function can do this:

> mat2=t(matl)
> mat2

10

oNnw>

ONPDR D>
RoUINT
NOOoOWwWN

10 11 1

Another frequently used operation on matrices is to retrieve certain subsections of it or single
records. For this, the “coordinates” of the requested section have to be provided in square
brackets. This procedure is called indexing. For example, the third record in the second row of
mat2 matrix is retrieved this way:

> mat2[2,3]
[1] 6

The first number within the square brackets is for the row and the second one is for the
column.

It is possible to retrieve entire columns or rows or any subsection of a matrix. If an entire row
or column is to be returned, the respective “coordinate” is left out but the comma is needed.
For example the B and C columns can be retrieved from mat2 as follows:

\%
=

ONw>

Since for an entire column all rows are needed, the first “coordinate”, which defines rows, is
left out. The use of a colon in the second coordinate allows for retrieving both the second and
the third columns.

Matrices can be created not only by breaking a vector into a preset number of rows or
columns but also by sticking vectors together by either rows or columns. For this, the length
of the vectors (number of records in them) must be identical. Vector names will remain as row
or column names, depending on the arrangement of the “sticking” procedure. You can use the
rbind() or the c(bind) functions for binding according to row or column, respectively. Let’s
define two vectors and bind them into a matrix:

> weight=c(60,72,57,90,95,72)
> height=c(1.75,1.80,1.65,1.90,1.74,1.91)
> mat2=cbind(weight,height)
> mat2
weight height
[1,] 60 1.75
[2,] 72 1.80
[3,] 57 1.65
[4,] 90 1.90
[5,] 95 1.74
[6,] 72 1.91

> mat3=rbind(weight,height)
> mat3
(,11 [,21 [,31 [,4] [,5]1 [,6]

weight 60.00 72.0 57.00 90.0 95.00 72.00
height 1.75 1.8 1.65 1.9 1.74 1.91

11

By now we have accumulated a large number of stored items in the Environment. If one or
more are no more needed, it is possible to remove them with the rm() function. For example,
mat2 can be removed by running the rm(mat2) script.

Data frame is the R term for a simple data table; it is similar in appearance to matrices but its
structure is more constrained. Columns are always variables (something that you measure,
record, etc), like the weight values of patients, while rows are always study objects, like
individual patients, cells, lab rats, etc. This arrangement makes a data frame easy for
statistical applications to correctly interpret. A data frame can be created from vectors
similarly as matrices but binding is always done by columns, as R assumes that each vector
contains values for a variable. Let’s create a data frame from the weight values of patients
before and after a treatment with the data.frame() function:

> before=c(50,56,59,63,67,70,79,88)
> after=c(55,54,61,68,77,78,85,105)
> d=data.frame(before,after)

> d

before after
1 50 55
2 56 54
3 59 61
4 63 68
5 67 77
6 70 78
7 79 85
8 88 105

> is.matrix(d)
[1] FALSE

> is.data.frame(d)
[1] TRUE

As you can see, the d data frame looks like a matrix but it is not, as confirmed by checking its
identity.

Rows can be named in the same way as shown for matrices:
> row.names(d)=c("John","Jack","Tim","Mike","Jason","Julie","Nancy", "Sue™)
> d

before after

John 50 55
Jack 56 54
Tim 59 61
Mike 63 68
Jason 67 77
Julie 70 78
Nancy 79 85
Sue 88 105

In most real-life applications, you have large data-frames (full lab notes, etc.), but for
individual calculations you will need only certain subsets of it. You can specify variables
(columns) from data frames using the $ sign. The mean of the before weights and the mean of
the weight changes can be calculated the following way:

> mean(d$before)

12

[1] 66.5

> mean(d$after-d$before)
[1] 6.375

Specifying a single record or multiple records or even larger subsets of a data frame can also
be done with square brackets like in matrices. So, for example, the after weights of John and
Jack can be sorted out in the following two ways:

> d[1:2,2]
[1] 55 54

> d[c("Iohn","Jack™),"after"]
[1] 55 54

The output is not aligned vertically because it is a vector with two records.

It is frequently needed to have a brief look at the structure of your data frame (e.g. you may be
interested if it was loaded in R correctly). For this, you can have a look at the top or the
bottom of it using the head() or tail() functions, respectively. These will display the variable
names and six objects:

> head(d)

before after
John 50 55
Jack 56 54
Tim 59 61
Mike 63 68
Jason 67 77
Julie 70 78
> tail({d)

before after
Tim 59 61
Mike 63 68
Jason 67 77
Julie 70 78
Nancy 79 85
Sue 88 105

The str() function can also be useful for assessing the correctness of your data frame.
> str(d)
'data.frame': 8 obs. of 2 variables:

$ before: num 50 56 59 63 67 70 79 88
$ after : num 55 54 61 68 77 78 85 105

If you are interested only in the variable names, you can use the names() function:

> names(d)
[1] "before" "after"

13

Conditional indexing

It is frequently necessary to sort out records or objects that meet some requirements, such as
patients that have a before weight higher than 60. It can happen, that you would like to do
calculations only on this subset of the patients. For this kind of sorting, you have to use
conditional indexing with mathematical operators within the square bracket:

Listing (or storing in new vectors) those after values whose before values are bigger than 60:

> after[before>60]
[11] 68 77 78 85 105

Listing those before values whose after values are bigger than or equal to 68:

> before[after>=68]
[1] 63 67 70 79 88

Listing those before values whose after values are equal to 61:

> before[after==61]
[1] 59

R packages

A main feature of R is its modular structure. Those functions that were used above are built-in
functions but more specific functions are contained in separate thematic packages. These have
to be downloaded (also freely available) and loaded in the working environment if you need
to use them. This feature of R makes it always up-to-date; if a new statistical method is
developed by researchers, the first thing is that they prepare an R package and make it
available for users. In other softwares, you need to wait for new versions, which may or may
not have all new functionalities.

For downloading new packages, go to the Packages menu of the lower right window and click
on Install. Type the name of the required package into the empty cell of the pop-up window
and install it. Once installed, the package is on your computer but not loaded in the current
working environment. To load it in, checkmark it in the User library list. The console will
inform you about the successful completion of loading. Sometimes some warning messages
appear, but these usually mean no real problem. Try installing and loading in the “ISwR”
package.

14

Fie o Code View Pobs Seswom Butd Oebug Profée Tooh Melp
SR L B A S ot navn £« peone - 8 Progest: pownes ~

| Pl ueities o _- tnwvenment tdery ..f—l
L HDSeunsontae 2 v | - Sl 5% sdower -+ F Bl SwpedDeteet s e &
| 3) Gickel tnmrarevert - & |
'ln-_m
oo i i LAY Regatinlios
3 (TN, CRANet) =l
Lo Pop Lewd ¢

Conesle

- Viewer -

R version 3.3.2 (3006-10-31) — “sincere Ul oo o o "

Copyright (C) 2016 The R roundation for Sta oo veruus
Platform: 1386-wd -mingwi2 /1386 (32-bit) "
R 15 Tree software and Comes with ABSOLUTEL [tosta ’ Canced Muttrrarsens’ Ane 145 B
you are walcome to redistribute it under ¢ o —— o# Eeologeca Deta - Daglanaeory wad 179
Type ‘Heerme{)' o ‘Vcence(}” for distribution detsils. fuchdesn Methent: o {marmrmamal Samce

> natpies of Fivybogenetis and Erckibion
R 15 & collaborative project with sany contributors. 5 e e Dvameis ond S e

‘comridutors ()’ for more inforsation and ™ ttgant Parttmreng bets drencty wits tusncver snd 13

‘citation()’ on how tc cite ¥ or & packages in publicarions, nedesvers Cprtrenty

o oo Coreanze = igwied lagesucn il
Type ‘deso()’ for some demas, "help()” for on-Tine belp, or o 7 (%
‘help.start()’ for an wma browser inTerface To help. colompace olof Spece Semputshon i
type ‘g0 to quit & T Schesmat Cister Sehermes Par Dectrumets 0.0
~ gerr Craate Commpas Hawn ligests of R Ofyesny AL

T tawyy Foncmm and Datesen 1y Books Uy Adies Farawiy

& Pigent ey «

[¥ Uit o T G ey - "
U Dvmantme § 7 - | L T RIS TR A T I T e
‘ i B Glenel tnarareem + A

Wl Mg Lot 1 N home |
Consote e T PR Pl Pacoger ey Ve -
Copyright (€) 2016 The & roundation For Statintical Computing S T R \ A
PIatfars! TR0 -wbd coingwd /108 (R2-01L) i X [wriee
W43 free software and comes with ABSOLAUTILY NO wARNANTY, e Irbarprebeiarn onh | sbaperbetint (i Sowaros TRY
YOu At welcose 10 redistr ibute (1 under certaln conditiom, Diverety
Type Teense()' o "Heence()™ for gistribution detatls, ¥ S boradiunter) Datuives woth 8.
P el T 1
N4y 8 collsborative project with sany contributors. e atphmanor. | e
Type ‘comributors ()" for more deforsat ton and Sl Lawy (Nun Damdant) | wdiistmn 240
‘Ciration()” on how to Cite B or B packages tn pubiications r— i Mbart E¥eets Madete jmmg |igen wad 9 SR
.

Type ‘deso()’ for some demas, ‘help()’ for on-line help, or) -k FRE S nailipie Maga spuns >4
Pelp svart ()’ for an Wmw Bieowser (nter face 10 help. T -y AV matil Py Opastus et)
type ‘90 1o quit . »

LAt at Vo hon Mistalhng woth Lrarse bevd Camsee Matiineg 4
w Vihrary (e, T Toce </ wine L ihe ey /0. 0%) " ome [1
warInNYy nna?o st agp
package "Ioem’ wad BUITE wedlar o veraton 3000 L T MU Moded Dfteseis s Lmp
»

- el (LTS RQUAERY EIVERT ST
[— S S—

Note that package names are case sensitive and remember that you need live internet
connection. Packages contain functions but also some sample datasets, mostly in the form of
data frames. ISWR, for example, contains the thuesen data frame. Once you loaded in the
ISWR package, you have access to this data frame as well.

15

> head(thuesen)
blood.glucose short.velocity

1 15.3 1.76
2 10.8 1.34
3 8.1 1.27
4 19.5 1.47
5 7.2 1.27
6 5.3 1.49

> str(thuesen)
'data.frame': 24 obs. of 2 variables:
$ blood.glucose : num 15.3 10.8 8.1 19.5 7.2 5.3 9.3 11.1 7.5 12.2 ...
$ short.velocity: num 1.76 1.34 1.27 1.47 1.27 1.49 1.31 1.09 1.18 1.22 .

Searching sequences

If you want to work with data in thuesen or other available data frames in longer scripts, you
may not want to use the $ sign for specifying variables, as it can make scripts lengthy. To
avoid this, you can attach a data frame to the searching sequence of R using the attach()
function. With this, all variables will be accessible without specifying the source data frame.
Be careful, however, that variable names can be similar in different data frames, which can
make things messy. So use the attach function with caution and detach the dataframe from the
searching sequence when finished with working with it:

> bTood.glucose
Error: object 'blood.glucose' not found

> thuesen$blood.glucose

[1] 15.3 10.8 8.1 19.5 7.2 5.3 9.3 11.1 7.5 12.2 6.7 5.2 19.0 15.1
6.7 8.6 4.2

[18] 10.3 12.5 16.1 13.3 4.9 8.8 9.5

> attach(thuesen)
> search()

[1] ".GlobalEnv" "thuesen" "package:ISwR" "tools:rst
udio"

[5] "package:stats" "package:graphics" 'package:grbDevices" "package:u
tils"

[9] "package:datasets" "package:methods" "Autoloads™ "package:b
ase"

> bTood.glucose
[1] 15.3 10.8 8.1 19.5 7.2 5.3 9.3 11.1 7.5 12.2 6.7 5.2 19.0 15.1
6.7 8.6 4.2
[18] 10.3 12.5 16.1 13.3 4.9 8.8 9.5
> detach(thuesen)

> search()

[1] ".GlobalEnv" "package:ISwR" "tools:rstudio" "package:s
tats"

[5] "package:graphics" "package:grbevices" "package:utils" "package:d
atasets"

[9] "package:methods" "Autoloads" "package:base"

First, if you simply ask for the blood.glucose variable (the first column of thuesen), R will
not know where to look for it; thus you receive an error message. Using the $ sign helps to
find it, but if you attach thuesen, it will appear in the searching sequence of R after the global
environment (this contains those items that appear in the upper right window) and there is no
need for the $ anymore. Once detached, thuesen disappears from the searching sequence.

16

Importing data from external sources

Most data used in the R workspace are imported from external sources, e.g. from your lab
notes or from the output files of measuring devices. The first step is always to set the working
directory of R to the folder your files are located at. Click on Session - Set Working
Directory > Choose Directory.

i e g T T — — Tehia
1) #hde)
Fie Bde Code View Dlots [awion | Duld Debuy Prefle Yook Heln |
Qis ¥+ M B Mo Serion K Peajest ane| « !
*) Usitiedt Wt N e Erwernnmenst Maslory P
b4 Smueant Termeate K., Bowrte « * |4 *impont ODataaet « 5 Ut =
. Sostart Cirte St 110 B Olnsl Erattunmest «
Sot Wurkoreg Dueetory) To Source Fiie Lacation
Load Workipacs, To Foe: Pane Location
Save Workspace As. Choaoge Diectary.. CorlsShere
Clear Wirtgpace -
Quit Senmun.. AR TR
A Mg Leved o st b |
Canuele w0 e Pl Pachages Bty Viewsr gl
0Lt @ Upaete
R version 1.31.2 2016-30.-71) ‘Sincers Pumpkin Patch’ "
Copyright (€) 2016 The ¥ Foundation for statistical Cosputing Lo Destnption Wit
Platform: 1186 whd-mingwl2/ 1386 (12-bit) Uswr Liarary
KIS Fros SOTtwars And comes with ADSOLUTELY WO WARNANTY, atanil urriine Whdiden 44
YOU Are selcome to redistribute 1t undar certalin conditiom, oded x of Eund and 1
Type "Tcense()” or "Ticence()" for distribution detalls, Meth e
"t 13 a collaborative project with mary contributors v e -
Type 'contributors()' for sore information and Betapant Par Patning boets ity (Mo lumos e and 11
citation()' on how to cite &k or 0 packages in publications, eAbeLna ¢ e ent
o pmpasan te bpphel Begrniion 14
Type ‘demo()’ for soee demos, "halp()” for on-11re help, or " TR
nelp.start()’ for an wive browser Intarface to help, bbb el OV APICA NESNPRmON
Type 'q()" to quit =, ichramael it be s fur Do trereennt
Agevt reers Cmergpact Havn Digeste of § O bty
Tareway Finctinsts and Dutasats ut fiowba try Adian Farawiay
e— _ —— E— —

17

L) #Stude

Usbitiedt Errnment Matory
Soune an Sane ' v Ahn e T L y * Inport Datanet « Ut =
] o
e ———————————————————— Y — S —
£ Chosne Working Dvmedory Ve
" - Q @) [
Ay My Carmpurton fare - - Cate Mexh el
2 \ i A 16012001
&0 418,07
o £ 20180
‘A 100
o ! "
s W7 \
maede
N oversion 1.1 (2010-30.21
Copyrigh) 0 The d ro
Flatfor 115 d-mingwl
LI fre oftww nd “
re 1Come disirl 5
v " e ¢
n a collaborat! prod i
¥ ntr fbutor far of d
tatior n he o cite -
I ! for sove demaf| " twe Corvied
Tp.start()” Tor an @
¥ (| TR v ey

o

Note that the window used for choosing the directory shows only folders and no data files are
shown, so you need to know where your files are!

Files to be imported can be of various formats; the most simple is a tab delimited text file with
a .txt extension. The function for importing such a file, like the ‘lessonl.txt’ file from
Coospace (the online educational surface of the University of Szeged), is read.table():

> tablel=read.table("data2.txt",header=T)

> tablel

names before after
1 Petre 70 66
2 Ji11 56 58
3 sam 90 78
4 Zach 87 80
5 Mike 67 65
6 Ali 81 77
7 Mary 51 50
8 Kerim 69 71
9 Jose 86 86
10 m™mark 100 90

The header=T argument informs R that the first row in the file is a header, containing the
names of the variables (columns).

Another frequently used file type is the .csv (comma-separated values). For these, use the
read.csv() function; the names will be interpreted correctly without including the header=T
argument. If the .csv file was created in an MS Excel file with German-type (or Hungarian)
settings, where the comma is used for the decimal delimiter and values (records) are separated
with semi-colon, you need to use the read.csv2() function.

18

A quick method for data importation is to simply copy it to clipboard (e.g. from an MS Excel
sheet) and using the read.table(“clipboard”) script. If not storing under a name, the file
will just be pasted in your console but if you store it in the R Environment you will be able to
work with it.

Exporting data into external files

Crosswalk between the R workspace and external sources is bidirectional, you can also export
data frames or other types of data to external destinations. For this, you have to prepare a
script that writes the intended file. The file will be placed to your working directory, so
double check whether it is correctly set, otherwise you may encounter some difficulty
relocating it. For a tab limited text file, use the write.csv() function.

The tablel data frame can be exported into a new .txt file called exported_data.txt with the
write.txt(tablel,file="exported_data.txt”) script. Files in.csv format can be created
the same way using the write.csv() or write.csv2() functions. Be careful to use the version that
fits the settings on your computer, otherwise you may encounter problems when opening the
file with your spreadsheet processor.

19

R functions in Chapter 1

c

sqrt

seq

rep
is.numeric
is.facotr
levels
matrix
colnames
rownames
t

chind
rbind
data.frame
is.matrix
is.data.frame
mean

head

tail

str

names
attach
search
read.table
read.csv
read.csv2
write.table
write.csv
write.csv2

20

Chapter 2

Data acquisition in biology - what and how?

Biology, like all nature sciences works with data. Data are the representations of some aspects
of the real world that we would like to describe in a study. Data are used for analysis, whose
results are used to answer study questions, back up hypotheses or reject them. For this,
repeatability and a considerable confidence in the results are prerequisites. Therefore, data
acquisition need to follow some basic guidelines. Here we discuss only some basics and will
introduce the main terms. Data are mostly acquired by measurements/observations, which we
carry out on subjects (e.g. patients, lab animals, etc.) or sampling units (e.g. a preset volume
of blood sample, a preset area of a rain forest, etc.). A sample is a central term, it means a set
of measurements/observations carried out on a set of subjects/sampling units (this can also be
the same subject/sampling unit, if we carry out repeated observations/measurements. A
sample usually appears as a variable vector in R, such as a column section of a data frame that
belongs to a subset of patients forming a group according to the study question. It should be
noted, that a sample in statistics differs a bit from the everyday use of the word; a blood
sample is not a sample in statistics but a sampling unit, from which we can make
measurements.

Another central term is sample size. This is the number of measurements/observations in the
sample, i.e. the number of records. Again, do not mix it up with the size of the sampling unit!
Sample size is usually abbreviated with a lower or upper case letter N and is frequently added
to figures because it carries essential information on the reliability of the results. As a rule of
thumb, the bigger the sample size, the more reliable the results (but reaching a larger sample
size needs more time and money).

The method for sampling can vary but the most frequently recommended and applied
approach is the simple random sampling (with or without replacement). In this case,
subjects/study units are selected from the set of all potential subjects/study units. The
complete set of potentially available subjects are called a population (not to be mixed up with
the usage of the word in ecology!). So, if doing a cancer research, the population includes all
patients with that type of cancer ever existed: past, present and any future patients - some of
which are technically unavailable for the study, but the results of the study will apply for them
too with some confidence. A random sampling from this population means that there will be
no bias for other features of the patients, including race, profession, gender, age, place of
living, comorbidities, education, etc.

Usually no replacement is applied but in some cases it is not possible to rule out the chance
for double measurements. It is easy to avoid measuring the same patient more than once if
you know their identity. However, if you measure other living organisms (e.g. fish from a
pond) and cannot ID-tag them, it may happen that you pick and measure an individual more
than once. This is not a problem if known, as there are statistical methods that can easily
handle the situation.

21

In some cases it may be advantageous to slightly violate complete randomity, if the
population is structured. Let’s see an example of a human population with a minority making
up 5% of the total population. If you chose randomly from the population, it can happen that
the minority will be underrepresented or even overrepresented. The latter may particularly be
a problem, if there are differences regarding the measured feature between the majority and
the minority. Usually, the effect of belonging to an ethnic group is not known (or nowadays
may not be politically correct to point it out...); therefore, it can be advisable to rule its effect
out at the beginning of the study. One solution is to split up the intended sample size
according to the ethnic groups and then make the random selection in each of them. So, if the
intended sample size in the above example is 100, five subjects will have to be selected
randomly from the minority and 95 from the majority. This is called a stratified random
sampling.

In some cases random selection may be inappropriate or impractical. If you aim to prepare a
geographically explicit map of a biological variable, like a blood iodine map for Germany and
you plan to relate it to iodine levels in tap water, you first need to prepare a grid of the study
area and make measurements in every grid cell. This is a systematic sampling.

A fourth design of sampling is the nested sampling. This is never a preferred situation but
financial, logistical and ethical constraints may make it necessary. A typical situation is when
you have cell clones in Petri dishes but there are more than one clone per dish. The substrate
in each dish may be slightly different in composition and texture, they may be exposed to
different air currents and temperatures and so on. So, cells from different clones but from the
same dish can be more similar to each other (e.g. in growth rate or survival rate) than cells
from different dishes. If you had a single clone in every dish, the problem would not occur but
this is usually impractical. The non-independence of the data acquired from different clones
of the same dish will then need to be taken into account when analyzing the data. Fortunately,
there are methods to control for nested design but researchers tend to ignore them...

Once you identified your population, selected the necessary amount of subjects/sampling
units, you can start the measurements/observations. There are two main types of data you can
collect: qualitative and quantitative data. Qualitative ones cannot be measured with numbers;
typical examples include hair color, blood type, etc. Binary data is a special type of qualitative
data: there are two levels only (yes/no, dead/alive, male/female, present/absent, etc.). In some
cases, data are qualitative, but the values have a certain order. The formerly mentioned levels
of pain is a typical example: none, mild, moderate and severe follow this order on the pain
scale but they are still qualitative as they cannot be measured using real numbers. Ordered
qualitative data are called ordinal data, interpreted on ordinal scales. All quantitative data can
be stored as character vectors in R but if you want to make statistical calculations on them,
most functions will require you to turn them into factors. As discussed earlier, quantitative
data can also be coded with numbers, but remember to convert them into factors if using them
for calculations.

Qualitative data, on the other hand, are stored as numbers of numeric vectors. Qualitative data
can be interpreted on two types of scales, either on an interval scale or an absolute scale. The
interval scale does not have an absolute zero point. A typical example is the Celsius

22

temperature scale, where the zero point is arbitrarily chosen, therefore out of the four main
operations only two, addition and subtraction, can be used. Obviously, multiplication and
division do not make sense: 2°C is not half as cold as 4°C, but the temperature difference
between 20 and 22°C is the same as between 56 and 58°C. Conversely, the Kelvin
temperature scale has a solid absolute zero point, just like the scale of body height, so on these
scales, all operations can be performed. Most statistical methods, including the advanced
ones, can be carried out on quantitative data (interval and absolute alike), but in some cases
you need to know the type of the scale for appropriate interpretation. In contrast, fewer
methods can be used on ordinal data and even fewer on nominal data.

Numeric data can be categorized not only based on the scale they are interpreted on but by the
possible set of values. Some variables like body height can take any values along the scale;
the only limitation is the resolution of the measuring device. These are called continuous
variables. Other values can take only specific values, such as integer values, along the scale.
These are called discrete variables. Count data are typically fall into this category. It is highly
important to know whether your data are continuous or discrete, because it may affect the
choice of statistical methods and may need different parametrization of the calculations.

Distributions

Data usually do not scatter along their scale uniformly. They, of course, can “congregate”
around a mean value, but the way how they congregate can depend on the data types. With
other words, different values have different probabilities to appear in the sample. The
relationship between the values along the scale and their probabilities is described with
specific distributions. The type of a distribution depends on the inherent nature of the data and
the method they were collected.

The distribution of discrete variables can be described with probability functions and
cumulative distribution functions. A probability function assigns probabilities for each value
of the scale. Summing up all probabilities will give 1. A cumulative distribution function is
somewhat similar but it tells the probability that a record will be smaller or equivalent to a
value.

Probability functions cannot be interpreted for continuous variables because there is an
uncountable infinite number of potential values, so each single value has a probability of
nearly zero (actually zero). Instead of a probability function, we use density functions, which
are continuous curves with a surface area under them equaling 1. The probability that a value
is smaller than or equal to a value is equivalent to the surface area section left from the value.
In contrast, the cumulative distribution function works for continuous variables as well, with
the only difference that the function is now a continuous curve and not a series of discrete
points.

Both the probability functions and the density functions have the highest y values around the
most probable values of the x scale and further away from these, the y values decrease. If
there is only one peak of this kind in the functions, we call the distribution unimodal. If there
are two or more, we call the distribution bimodal or multimodal, respectively. The latter two

23

cases are clear indications that the sample is actually made up of two or more groups with
distinct properties. If there is one peak, the shape of the curve can be important. Slopes can be
symmetrical, but sometimes they are asymmetric with one steeper and one more gentle slope.
If the gentle slope extends into smaller values (left side), we call it a left-skewed distribution,
while if it extends to the right, it is a right-skewed distribution. If there is no peak but the
probabilities are independent of the scale, then it is called a uniform distribution.

Besides the above empirical types of distributions, distributions can be categorized according
to the mathematical functions they follow. For discrete data, we discuss the hypergeometric,
binomial and the Poisson distributions.

Data collected to answer biological questions like “How many will be/how many times will I
get ..something.. out of n occasions?” will follow hypergeometric distribution if there is no
replacement and binomial if there is replacement.

Imagine that you have 120 lab rats, 15 of which are infertile. You pick 10 individuals
randomly and ask “How many are infertile among them?” Obviously, you cannot tell without
directly checking their fertility but from the prior information you have you can tell the
probabilities of having 0, 1, 2, ..., 10 infertile ones in your sample. You picked all 10 animals
at once, so there is no replacement. Thus, the probability function follows hypergeometric
distribution. Hypergeometric distribution is defined with three parameters, the total size of the
population, the number of individuals with the character of interest and the sample size. If you
have these parameters, the probability for each value can be calculated. R calculates it with
the dhyper() function.

> dhyper(x=0:10,m=15,n=105,k=10)

[1] 2.485475e-01 3.883555e-01 2.522309e-01 8.922454e-02 1.892642e-02

[6] 2.498287e-03 2.061293e-04 1.039307e-05 3.027109e-07 4.527727e-09
[11] 2.587272e-11

In the dhyper() function, you first need to provide the values whose probabilities you are
interested; these were now all possible outcome values from 0 till 10, then you provide the
arguments that specify the distribution. These mostly overlap with the parameters of the
hypergeometric function: m is the total number of individuals with the character of interest
(infertile), n is the rest of the individuals (total population minus the infertile ones) and k is
the sample size. Of course, you can also ask for the probability of a single value; it is not
necessary to inquire the probability of all possible outcomes.

It is more informative to plot the probabilities, i.e. to draw the probability function. Easy
plotting of basic graphs is a major strength of R. We will go into more detail in a later chapter,
so here let it be enough that you need to use the plot() function and provide vectors for the x
and y coordinates separated with comma and than to specify the type of the graph, which
should be a histogram-like type. The following scripts can generate the plot:

dhy=dhyper (x=0:10,m=15,n=105,k=10)
plot(c(0:10),dhy,type="h")

24

dhy
0z 03 04
| |

0.1

0.0

cl0:10)

As you can see, having one infertile rat in the sample has the highest probability, followed by
having either zero or two. The distribution is unimodal and right-skewed. If you omit the
type="h" argument from the script, only points will be drawn, not the vertical lines.

If there can be replacement in the sampling (you pick one rat at a time and place it back to the
cage, thus having a chance to pick the same one again) or when the sample size is negligible
compared to the population size, meaning that the chance for inclusion in the sample does not
change much for the remaining members of the population as you progress with the selection,
the probabilities follow binomial distribution. Now you will need to know only two
parameters, the proportion of the character of interest in the population (total numbers are not
known/not needed) and the sample size. If you know that the proportion of infertile
individuals in a large population of rats is, say, 0.15 and sample 10 animals, you can calculate
the probabilities of having 0, 1, ... 10 infertile ones as follows:

> dbinom(x=0:10,prob=0.15,size=10)
[1] 1.968744e-01 3.474254e-01 2.758967e-01 1.298337e-01 4.009571e-02
[6] 8.490856e-03 1.248655e-03 1.259148e-04 8.332598e-06 3.267686e-07
[11] 5.766504e-09

The arguments differ a bit, as instead of the k argument, sample size is provided with the size
argument. You can always check the formulation of the arguments of a function in the Help
menu of the lower right window or by directly asking it in the script window by placing a ?’
mark before the function like this: ?dbinom

Plotting the output probabilities is again more informative. The

dbi=dbinom(x=0:10,prob=0.12,size=10)
plot(0:10,dbi,type="h")

script will return the following plot:

25

dbi
020 030
I I

010
I

0.00
I

cl0:10)

The probability function is similar to the previous one but having two infertile ones in the
sample has a higher chance than zero.

A third type of distributions applicable for discrete variables is encountered more frequently
in biological applications than the previous two types. This is the Poisson distribution. It has
only one parameter: sample size is not specified any more but you know only the average
value (i.e. the most probable outcome). If you study blood samples and the average number
red blood cells is 1 in the high power field, then the probability function of having 0, 1,
(maximum number is not necessarily defined!) RBCs follows Poisson distribution. You can
get the probabilities and draw the probability function with the following scripts:

> dpois(x=0:10, Tambda=1)

[1] 3.678794e-01 3.678794e-01 1.839397e-01 6.131324e-02 1.532831e-02

[6] 3.065662e-03 5.109437e-04 7.299195e-05 9.123994e-06 1.013777e-06

[11] 1.013777e-07

> dpo=dpois(x=0:10, Tambda=1)
> plot(c(0:10),dpo,type="h")

26

dpo

0.1

0.0

cl0:10)

According to the probability function, having one or zero cells in the field have equally high
chance, which may be surprising, but since the distribution is right-skewed, it is reasonable to
have high chance for no cells in the field.

For continuous variables we discuss only one distribution, called normal distribution (also
known as Gaussian distribution). Under ideal conditions most continuous biological variables
(body height, blood pressure, amylase activity in saliva, etc.) of populations of organisms
follow this distribution and even in non-ideal situations they are close to it and we assume that
the distribution does not differ much from normal. There are cases when this assumption has
to be declined due severely non-ideal conditions; in such cases it is the responsibility of the
researcher to chose statistical methods that do not assume that data follow normal distribution
(i.e. distribution-free or non-parametric methods).

The density function of normal distribution is defined with two parameters, the mean (located
at the peak of the curve) and standard deviation (the distance between the peak and the
inclination points of the curve). The latter is a measure of the spread of the data and will be
discussed more thoroughly in the next chapter. Probabilities cannot be calculated the same
way as for discrete variables, since now we talk about continuous variables. The function
dnorm() returns the probability of the occurrences of values smaller or equal to the provided
value. For a normal distribution with a mean of 10 and a standard deviation of 1, these
probabilities can be calculated for the first 20 integer values as follows:
> dnorm(x=0:20,mean=10,sd=1)

[1] 7.694599e-23 1.027977e-18 5.052271e-15 9.134720e-12 6.075883e-09

[6] 1.486720e-06 1.338302e-04 4.431848e-03 5.399097e-02 2.419707e-01

[11] 3.989423e-01 2.419707e-01 5.399097e-02 4.431848e-03 1.338302e-04

[16] 1.486720e-06 6.075883e-09 9.134720e-12 5.052271e-15 1.027977e-18
[21] 7.694599e-23

27

Since normal distribution is a continuous variable, these probabilities will be part of the
density function. Plotting the density function together with these points can be done with
these scripts:

dno=dnorm(x=0:20,mean=10, sd=1)

dnol=dnorm(x=seq(0,20,0.01) ,mean=10,sd=1)

plot(seq(0,20,0.01),dnol, type="1")
points(0:20,dno)

=T
=

dno
oDz 03
|

0.1

0.0
l
)
)

| | | | |
0 5 10 15 20

seqil, 20,0.01)

Actually, the curve in this plot is not a real density function but 2000 point probabilities
connected with tiny lines, but it looks exactly like the density function in this resolution.
Circles are the over-plotted points of the dno vector; points therein can be added to the
already existing plot using the points() function.

An important variant of the normal distribution is the standard normal distribution. It is used
in various applications and sometimes data need to be transformed to have this type of
distribution. Standard normal distribution is a normal distribution with a mean of 0 and a
standard deviation of 1.

28

SUMMARY

Sampling from population - Sample

Sample size = number of records in the sample

Sampling design: (1) simple random, (2) stratified random, (3) systematic, (4) nested
Data types according to scales:

e Qualitative
= Nominal (special type: binary)
= Ordinal
e Quantitative
= Interval scale
= Absolute scale

Data types according to possible values:

e Discrete
e Continuous

Distribution types: hypergeometric, binomial, Poisson, normal (Gaussian)

R functions of Chapter 2
dhyper

plot

dbinom

dpois

dnorm

points

29

Chapter 3

Descriptive statistics and graphics

Datasets are not informative. Usually researchers have loads of numbers in tables, so by
simply looking at them, it is difficult to get an idea about the data structure. Descriptive
statistics aim to simplify datasets with the use of one or a few more informative numbers or
graphs.

Let’s create a large dataset first with the rnorm() function

> dataset=rnorm(100)
> dataset

[11] 1.10240865 0.42235592 -0.89690044 0.24762203 -0.63699869 -1.21632528 -1.68049814
[8] 0.17374434 -0.26306700 -0.74928220 -0.38114325 -0.49483667 -1.15165941 -1.23188123
[15] 0.44004799 -0.78528288 0.49173230 0.18631365 0.88005746 -0.51816049 0.14187762
[22] -0.13595818 -1.66765749 0.98479467 0.54834196 -0.22390477 -0.12596422 0.45558192
[29] -0.55056960 1.61835265 0.47859642 0.17606122 1.64544074 -1.02377046 0.58073909
[36] 0.70007765 0.39512866 -0.77814508 -0.10366077 -1.27939373 -0.65102818 0.30676266
[43] 1.11056725 -1.95854180 0.98874347 2.40842759 0.35275148 1.46840945 0.11506030
[50] -0.52136336 -1.72125606 -0.29611370 -0.24465228 -0.44396001 0.90577748 0.38509456
[57] 1.15658626 -1.04602447 -0.56635407 0.07800313 -1.44145195 1.86077022 -0.47488823
[64] -1.14543784 0.61848913 0.30993377 0.19799692 -0.37045973 -1.37024791 -0.28736597
[71] 0.63990594 0.58474099 1.95697201 -0.94246969 0.06270041 0.24101583 1.81843933
[78] -0.34365084 -0.86419245 -0.65312785 -2.09805514 -1.67161128 -0.35204459 -0.54846381
[85] 1.51102912 0.21892089 0.98371907 1.25337709 1.26737644 -0.38780848 0.58132026
[92] -1.01293365 0.58002238 0.94620384 0.05441268 0.87629644 -1.16511294 0.79069429

[99] -1.02669169 -0.60021828

The function rnorm() gives random numbers that follow standard normal distribution, so now
we have a set of 100 such numbers. By simply looking at them will not be too informative.
The most simple descriptive statistics include the mean, median and mode; these inform us
about the middle values of the sample in some way. The mean (i.e. the arithmetical mean) is
calculated by summarizing the values and dividing the sum with the number of values (the
sample size). Data can be summed with the sum() function and the length of a vector (i.e. the
number of records in it) is extracted with the length() function. The mean can also be
calculated simply with the mean() function, which we also used in Chapter 1:

> sum(dataset)/length(dataset)
[1] -0.01800791

> mean(dataset)
[1] -0.01800791

Although the mean of a standard normal distribution is 0, our mean is slightly smaller. This is
because the numbers are randomly generated, which causes some deviation. Increasing the
number of records created with the rnorm() function will make the mean approach 0 more and
more.

The median is the middle value if the records are arranged in an increasing order. If the
number of records is an even number, there will be two middle numbers; in this case the

30

median is the average of these two records. The median is calculated with the median()
function.

> median(dataset)
[1] 0.05855654

The relationship of the mean and the median depends on the shape of the distribution of the
data. If the distribution is symmetric, the mean and the median are close to each other (like in
the present case). If the distribution is skewed, they are systematically farther from each other.
Since the median depends on the order of the values and not the absolute values, it is less
affected by skewness, while the mean is pulled towards the skewed slope of the distribution.
This means that in a left-skewed distribution the median is higher than the mean, while in a
right-skewed distribution the mean is the higher.

The mode of a dataset is the most common value. This measure is rarely used and does not
make much sense for continuous variables. However, for discrete variables, like the grades of
students in a school, it can provide some insight into the general performance of the students.

When assessing data, not only the middle value of some sort is important but the spread of the
data, i.e. their variability. The most simple measure of the spread is the range, which is the
largest value minus the smallest value. It is calculated as follows:

> max(dataset)-min(dataset)
[1] 4.506483

The range() function also exists but it returns the smallest and largest values without doing the
subtraction:

> range(dataset)
[1] -2.098055 2.408428

The average absolute difference between the mean and each value is also informative about
the spread, but historically we do not use the absolute difference but its square and these
squared differences are then averaged. This average is called variance and its square root is
the standard deviation. If you calculate these from a real sample, the averaging is not done by
the total number of records but by the number records minus 1. The reason lies in the fact that
the sample variance and standard deviation just approach those of the total population, and
statisticians thought this modification will yield better results. Further details can be found in
more specialized statistical textbooks.

P)2
T x._X
Variance of the total population: L= (Ki=%)"

‘ P (x;—%)°
Standard deviation of the total population: M

N (x—%)?

Sample variance:
N-1

31

o sV (%)
Sample standard deviation: l_IVT

P is the size of the population (usually unknown or not countable), N is the sample size, X; is
the ith value of the sample and X is the generally accepted abbreviation of the mean (read as

‘x bar’).

Percentiles (aka. quantiles) go even deeper into the structure of the data. They tell, the
location on the scale of the data, below which a certain percent of the data are found. So, the
50 percentile is actually the median. More frequently used are the 25 and 75 percentiles.
These are also called quartiles because one quarter of the data are smaller than the 25
percentile and 25% are larger than the 75 percentile (75% are smaller). The 25 percentile is
the first quartile, while the 75 percentile is the third quartile. The difference between the third
and the first quartiles is the interquartile range, which, by definition, contains half of the data.
Percentiles and the interquartile range can be calculated with the quantile() and IQR()
functions, respectively:
> quantile(dataset,probs=0.2)

20%
-0.870734

> IQR(dataset)
[1] 1.233729

So, 20% of the data are smaller than -0.87 and the difference between the third and first
quartiles is 1.23. This latter measure of the dataset may not seem too informative, but when it
comes to visual representation (boxplots), it will be.

Some of the descriptive statistics discussed above can be extracted using the summary()
function:
> summary(dataset)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.09800 -0.65160 0.05856 -0.01801 0.58220 2.40800

Listed data include the smallest value, the first quartile, the median, the mean, the third
quartile and the largest value.

Calculating descriptive statistics can be done in more structured datasets as well, for instance
in data frames, where one variable can serve as categories for another one. If the first 50
records belong to male subjects and the second 50 records to female ones, we can prepare the
categorizing vector of gender=c(rep(“m”,50),rep(“F”,50)). Now you can calculate the
mean or all other descriptive statistics of dataset according to genders using the tapply()
function. Note that the data vector and the categorizing vector need to be of the same length.

> tapply(dataset,gender,mean)

F M
-0.02389589 -0.01211992

32

> tapply(dataset,gender,IQR)
F M
1.274452 1.135969

The first argument of the tapply() function is the dataset that needs to be described; it is
followed by the categorizing vector and the third argument is the statistics you would like to
calculate for each category of the dataset. The mean and the interquartile range are calculated
in the above two examples.

In most real-life applications the dataset and the categorizing variables are columns of the
same data frame. In these cases you need to attach the data frame first or you specify the
source of the variables using the $ sign as discussed in Chapter 1.

Visual representation of datasets

A simple visualization of data structure is offered by histograms. Histograms cut the range of
the data into smaller intervals and plots the number of records falling in each interval.
hist(dataset) returns the following plot:

Histogram of dataset

o _
(']
w _|
a‘ -
-
Lik]
g o |
8 -
L
w -
o Jd 1
| T T T |
-2 -1 0 1 2
dataset

The historgram indicates that the distribution of the dataset vector is not completely
symmetrical but this is again caused by the random generation of the records. The number of
breakpoints can be customized by specifying the ‘breaks’ argument. If you want six breaks
instead of nine breaks, run the hist(dataset,breaks=6) script:

33

Histogram of dataset

o _
[an]
)
[
2 8-
o
s
L
o _|
CJ—'— I |
| | | | T | 1
-3 2 -1 0 1 2 3
dataset

Interestingly, there are only 5 breaks in the plot. R optimizes the number of breaks according
to the data, so now it decided for 5 instead of 6. If you insist on a certain number of breaks, it
is better to give a vector of exact breakpoint positions and not just the number of breakpoints.
Six breakpoints can be forced to R the following way:

r=(max(dataset)-min(dataset))/7

min=min(dataset)

br=c(min,min+r,min+r*2, min+r*3, min+r*4, min+r*5, min+r*6,min+r*7)
hist(dataset,breaks=br)

VVVYV

Histogram of dataset

25
|

20
|

Frequency
10 15

| | | | |
2 1 0 1 2

dataset

Since six breakpoints lead to seven bars, the range had to be reduced into its one seventh, and
this section and its multiples were used to create the vector for the breakpoints. The smallest

34

and largest values were also included. these are not breakpoints (there is nothing to break
there) but R needs these values in the vector. The min variable was stored only for
convenience. If you know the exact values where you would like to have the breakpoints, you
can also provide a breakpoint vector with raw numbers. The intervals do not need to be
identical; if you prefer, you can add uneven breakpoints.

An observant eye can notice some similarity in shape with the density function of the normal
distribution. The density function of our dataset can also be drawn, using the density()
function with the pTot(density(dataset)) script:

density.default(x = dataset)

0.3
|

Density

0.1

00
|

| | | | | | |
-3 -2 -1 0 1 2 3

Values in the dataset can also be added to this plot as tiny whiskers along the horizontal axis
by running the rug(dataset) script after the plotting script:

density.default(x = dataset)

02 0.3
|

Density

0.1

00
|

| 1 II | | II|IIIII LI IIIII|| /TN IIIII I II |

-3 -2 -1 0 1 2 3

A relatively good fit to normal distribution will be a prerequisite for several statistical
applications. This fit can be visually assessed by the so called QQ-plot (quantile-quantile
plot), which plots the empirical percentiles against the percentiles of a standard normal

35

distribution (theoretical quantiles). If they match, meaning that the points are aligned along
the y=x line, the dataset follows normal distribution. If there is a severe deviation (particularly
if it looks systematic!), like when the upper and/or lower ends gradually slide away from the
line or when the points make a clear curve, we can be sure that the data do not follow normal
distribution. However, do not be too strict, there is always some deviation from the y=x line!
The QQ-plot can be prepared with the ggnorm(dataset) script and the x=y line can be
superimposed to the plot with the qqline(dataset) script:

Normal Q-Q Plot

Sample Quantiles

-1

Thearetical Quantiles

Boxplots

A commonly used visual representation of data is the boxplot. A boxplot can easily be
prepared for the dataset vector using the boxplot(dataset) script:

S
1
o i
1
1
1
1
1
—] 1
1
1
D_
1
1
= 1
! 1
1
1
1
1
1
o 1

36

The thick line is the median, the box encompasses the interquartile range and the end of the
whiskers indicate the smallest and largest values. However, if these are farther from the box
than 1.5-times its size, they appear as outliers and the whisker will terminate at the value,
which is still within the 1.5-times distance from the box. If we add such an outlier to the
dataset vector, it will change the boxplot as follows:

dataset2=c(dataset,-3)
boxpTlot(dataset2)

_
1
o — 1
1
1
1
1
1
= 1
1
D_
— 1
] |
1
1
1
1
{}I_ — 1
o) o

The outlier appears as an empty circle below the lower whisker. Outliers in real-life datasets
can originate from measurement errors or incorrect data input. If so, you can disregard them
in subsequent analysis. However, outliers can also call attention to interesting biological
phenomena. For example, it can happen that certain individuals respond to a treatment in a
dramatically different way than the rest of the subjects (leading to outliers). This deserves
some attention and should not simply be ignored.

A single boxplot is rarely published; boxplots are usually used to visualize the differences
between two or more datasets. Let’s split the dataset vector into two subsets containing 50
records each and prepare two separate boxplots from them using the following script:
par(mfrow=c(1,2))

boxplot(dataset[1:50])

boxplot(dataset[51:100])
par(mfrow=c(1,1))

37

fo) 4 — _
1
1
o™ I
1
_ \
1
i — - .
1 1
— — | !
1
1
1
D_
C:]_
[
1
1 ‘T— 1
— _] 1 1
1 1 1
1 1
1 1
1 1
1 1
1 o 1
Lo B —_l]] PR
]

This will place the two boxplots next each other. The par() function is used to modify the
lower right window; setting the mfrow (multiframe according to rows) argument splits up the
window into a grid according to the values, which are c¢(1,2) in this case, meaning 1 row and 2
columns. This virtually split window will than be filled up with plots according to rows
(although there is only one row in this case). At the end, it is highly advisable to set it back to
the unsplit layout with the par(mfrow=c(1,1)) script, otherwise the layout will remain the
same for future plots as well.

You can see that the two boxes look rather similar, but this is no surprise, given the origin of
the data. Notice also that the first 50 values contain an outlier but this is only a result of the
random generation of the data.

The two boxes can also be placed within one single frame using the following script:
boxplot(dataset[1:50],dataset[51:100])

o]
o -
I
R I
I
i i
1 I
-— — 1 !
1 I
1 I
1
D_
[T
1 I
Y 1 I
! 1 I
1 I
1 I
1 I
1 I
N R I
{}l_ -
| [

38

Here we just split up the original 100 data by indexing, but in most real-life cases the dataset
is structured. For example, some of the data can belong to male patients and some to female
ones as shown for the tapply() function. If so, this structure can be used for boxplotting
females and males separately using the boxplot(dataset~gender) script.

The parenthetic part with the ~ sign is read as ‘dataset as a function of gender’. Such a script
structure is called a formula in R and generates this plot:

o]
o — -
1
1 e e—
1
. i
1 I
— 1 I
1 I
1 I
i
D_
T T
1 I
AP 1 1
! 1 I
1 I
1 I
1 I
1 I
1 -
{"I\.l_
| [

Now the abbreviations used for identifying genders in the Male and Female vectors appear
below the boxes. Although the gender vector starts with 50 “M” characters, the first box is for
females (“F”). This is because R always arranges boxes (or the units of other similar graphs)
so that their tags follow alphabetical order. If this is not appropriate, you can reset the order of
the levels using the relevel() function. This function works only on factors, so the gender
vector, which is a character vector at this point, has to be transformed into factor:

genderl=factor(gender)
genderl=relevel(genderl, ref="mM")
boxplot(dataset~genderl)

39

o]
o™ -
I
B e— I
!
| |
I I
— — 1 I
I I
I I
i
C:_
T T
I I
Y I I
! ! !
I I
I I
! !
I I
I
{'\I.I_
[[
M F

This boxplot is identical to the previous one, the only difference being the order of the boxes.

Boxplots are frequently used in publications, so a bit more elaboration on formatting may be
necessary. A title can be added using the ‘main’ argument, x and y axis labels are added using
the ‘xlab’ and ‘ylab’ arguments. Text is added using the text() function. The figure can be
exported using the icons of the lower right window but it is mostly more advisable to write the
figure directly into an external file, typically a .tiff file, as most scientific journals prefer
submitting tagged image file formats.

tiff(file="gender_plot.tiff”,width=1500,height=1500, res=300)
boxplot(dataset~genderl,main="Sample boxplot”,ylab="random values”,x1ab="gender”)
text(2.3,2.4,”N=50")

dev.off()

Sample boxplot

random values

o - ‘ ‘

M F

gender
First, an empty tiff file is created in the working directory with specified dimensions. The
width and height arguments define the dimensions in pixels and the res argument gives the
resolution in dpi (dot per inch). After this, you fill up the file with the plot and you can add
extra text or lines or whatever you want. The position of these items is defined with

40

coordinates. The horizontal axis is not numeric, but for the placement of extra items it is
considered as numeric, with integer values at the boxes starting with 1. Once you finished
with the composite figure, you need to close the file by terminating its processing with the
dev.off() function.

With some further work, it is possible set colors, box widths, line widths, font types, font
sizes and so on.

Preparing long and complex scripts like this may be tiresome but once you have it, you can
save it, say, in a text file and next time the only thing you need to do is to change the vector
names in the boxplot formula and maybe adjust the argument values a bit and you will have
your new plot.

Stripcharts

Boxplots are not the only graphical illustrations of data. It is possible to plot raw data as well;
this is more advisable when the number of data is rather low and the percentiles are thus less
informative. Let’s create a new data set containing only 20 records, and structure them
similarly as before using genders and plot them accordingly:

> dataset2=c(2,3,4,3,5,4,6,5,7,9,5,6,7,6,7,9,9,8,9,10)

> gender2=c(rep("™M",10),rep("F",10))
> stripchart(dataset2~gender2,pch=1)

= qo o 0 O O 0 !

The pch argument defines the symbol used for the points. By checking the pch argument in
the Help menu, you will see that there are built-in symbols coded by numbers from 0 till 25; 1
is for empty circles. An unfortunate default setting of strip charts is that they show data
horizontally. The layout can be changed to vertical simply by specifying the direction:

> stripchart(dataset2~gender2,pch=1,vertical=T)

41

(-
2 o
o o
w —o
o4 o o
i)
o
now o o
o
]
o o o
= — o]
o
o o
[[

An observant eye can notice that the plot contains only five points for females and seven
points for males but there are 10 records for each of them. This is because there were identical
values in the vector sections, which are fully over-plotted in the plot. However, it may be
advisable to make all points visible. This can be achieved by adding some random horizontal
component to the position of the points with the method argument. If method is set to “stack”
only the over-plotted points will be shifted a bit, while jitter adds a random vertical
component to all points; the extent of jittering can be set with the jitter argument:

stripchart(dataset2~gender2,pch=1,vertical=T,method="stack")

(-
2 o
@ o
w —o
o4 o o
i)
o
m w o o
o
]
o o i)
= — Jiw]
v
o o
| |

42

stripchart(dataset2~gender2,pch=1,vertical=T,method="jitter",jitter=0.05)

dataset?

O
—

43

SUMMARY

Descriptive statistics:
e Middle values

= Mean
= Median
= Modus
e Spread
= Range
= Variance

= Standard deviation
e Distribution-related
= Percentiles (quantiles)

= Quartiles
= Interquartile range
= Qutliers
Visual inspection of data

e Histogram

* QQ-plot

e Boxplot

e Stripchart

R functions of Chapter 3

rnorm
sum
length
median
max

min
range
quantile
IQR
summary
tapply
hist
density
rug
ggnorm
qgline
boxplot
relevel
par

tiff

text
dev.off
stripchart

44

Chapter 4

One- and two-sample tests

In biological studies, we make observations/measurements on samples to estimate properties
of the total populations, like their true means. We are frequently interested whether a true
mean is different from a certain value (called a hypothetical value) or from the true mean of
another population. However, we do not exactly know these true means (or any other true
parameters of the population); they are only estimated with our sample. And indeed, these
empirical means do differ a bit from the true means because of random chance and therefore a
difference between the empirical mean and a hypothetical value or the empirical mean of
another population may not mean real difference. There are methods to test, whether these
differences are real or just caused by randomity. To be more precise, these methods give a
probability for both of these and if the probability of a real difference is big enough, we
accept it. These methods are called statistical tests or hypothesis tests.

The logic of these tests is rather simple, although their mathematical background can be
complex. We formulate two hypotheses and we have to choose one. The null hypothesis
(abbreviated as HO) says the mean (or some other parameter) of the population does not differ
from a certain value or from the mean (or some other parameter) of another population, i.e.
any difference is only due to random chance. The alternative hypothesis (H1) says that there
is real difference. HO is rejected, if its probability is “too low”. This probability is checked by
calculating an appropriate test statistic from the sample. A test statistic is a numeric value and
has a typical standardized distribution. A standardized distribution in general means that its
most probable value is set to 0, like in the case of the standard normal distribution. The larger
the test statistic in absolute value, the smaller its probability, meaning that the probability of
HO is also small. This probability is easily calculated with R, and is called a p-value. They
equal the probability that rejecting HO and accepting H1 is incorrect. However, if the chance
for this incorrect choice is low enough, historically 0.05 (5%), then we vote for H1 and say
that the difference is statistically significant. Since R provides exact p-values, it is easy to
check whether the difference is significant. The values of the test statistic and the p-values are
to be reported in scientific communication (publications, presentations, posters, etc.).

Knowing all details of the calculation of the test-statistic and the p-values is not essential for
biologists (although it is advisable to have some basic understanding), but the selection of the
right test and its correct parameterization are prerequisites for getting reliable data.

45

One-sample tests

One-sample tests are used when a sample from a population is available and you would like to
compare a parameter of it to a hypothetical, preset value. The most common version is when
you are interested, whether the mean of your study population differs from a certain value.

Let’s create a vector containing weight values of patients and check, whether the true mean of
the population they come from differ from 72 kg:

> weight=c(52,54,56,61,63,65,68,75,75,82,87)

> mean(weight)

[1] 67.09091
> t.test(weight,mu=72)

One Sample t-test

data: weight
t = -1.4145, df = 10, p-value = 0.1876
alternative hypothesis: true mean is not equal to 72
95 percent confidence interval:
59.35807 74.82375
sample estimates:
mean of x
67.09091

The mean of the sample is approx. 67 kg, so there is a 5 kg difference from the hypothetical
value. This difference is tested for significance with a one-sample t-test, using the t.test()
function. Its first argumentum is the dataset to be tested, which is the weight vector, and this
is followed by the mu argument, which is the hypothetical value, now set to 72. The output
contains a t-value, which is -1.4145. This is the test statistic mentioned above. The negative
sign (smaller than 0) means that the sample mean is smaller than the hypothetical value. The
df is the degree of freedom; in this case it is the sample size minus 1 and determines
properties of the distribution of the t statistic. Degree of freedom is also a central term in
statistics but here we do not discuss it in more detail. The p-value is of great importance; it is
now 0.1876, which means that if we decide for H1 (the 5kg weight difference is real), the
chance for being wrong is 18.76%. As mentioned earlier, the threshold is 5% (p=0.05), so this
is too much. We stay with the HO (the difference is caused only by random chance).

The 95 percent confidence interval is also essential in statistics. This interval is provided by
the t.test() function; it means the interval that the true mean of the population (from which the
sample was selected) is located in with 95% probability. If the sample mean is outside this
interval, it is also an indication of significant difference. In such a case the p-value is also
smaller than 0.05. Let’s check whether this really works by setting the mu argument a bit
outside the confidence interval:

> t.test(weight,mu=75)
One Sample t-test

data: weight
t = -2.2789, df = 10, p-value = 0.04587
alternative hypothesis: true mean is not equal to 75
95 percent confidence interval:
59.35807 74.82375

46

sample estimates:
mean of x
67.09091

As you can see, 75 is a bit higher than the upper confidence limit, and accordingly, the p-
value is now a bit smaller than 0.05, so we have a significant result. In a publication, for
example, we can report this as follows:

“The weight of the studied population differed significantly from 75 kg (t=-2.28, p=0.046).”

The test statistic and the p-values are used to back-up the statement and, of course, there is no
need to report all decimals shown in the R output.

However, there is one more thing to consider. Statistical tests give reliable results only if the
sample fulfills some conditions, which we call assumptions. A one-sample t-test has at least
two assumptions that have to be met: (1) The sample has to be selected randomly (well, we
thrive for this in most study designs, so this is usually not violated); (2) and the records in the
sample need to follow normal distribution (or at least they should not deviate from it much).
Thus, the normality of the sample needs to be checked in all cases. This is done with the QQ-
plot:

qgnorm(weight)
qqline(weight)
Normal Q-Q Plot
L
fa]
r-l-'l —
£
=
(:ﬁ p—
Joi
= L
= _
2]
[_
£
Lz |
L
o

| I | I | I |
-1 10 05 DO 05 1.0 1.5

Theoretical Quantiles

The points fit the gqline rather well, meaning that the theoretical and sample quantiles match
and thus the normality assumption is not violated.

However, if there is severe deviation from the theoretical quantiles, the t-test will not give
reliable results. In such a case an alternative type of test can be recommended, which is not
dependent on the normality of the sample. These are the non-paramteric tests. They are based
only on the ranks of the records and not their absolute values. As a rule of thumb, non-
parametric tests give reliable results, if the sample size is large, so if you have a small sample

47

size with non-normal distribution, it is better to collect more data than blindly proceed to non-
parametric tests and believe what they return.

The non-parametric alternative of the one-sample t-test is the Wilcoxon signed-rank test. It is
performed in R similar to the t-test. Although the t-test is also suitable for the weight vector,
let’s do a Wilcoxon test on it:

> wilcox.test(weight,mu=75)
wilcoxon signed rank test with continuity correction

data: weight
V = 6, p-value = 0.05758
alternative hypothesis: true location is not equal to 75

warning messages:

1: In wilcox.test.default(weight, mu = 75)
cannot compute exact p-value with ties
2: In wilcox.test.default(weight, mu = 75)

cannot compute exact p-value with zeroes

The test statistic of the Wilcoxon test is the V-value, which, like the t-value, needs to be
reported along with the p-value. Although the t-test yielded significant result, here we got a
non-significant one. Maybe it would have been significant with a lager sample size but with
N=11, the test was not very powerful.

There are two warning messages at the end of the output but these are not serious problems;
the first one, for example, is generated because there are some identical values in the weight
vector, which is a bit problematic (but not critical) for the calculation of p-values.

Two-sample tests

Two sample tests work similarly to one-sample tests, but there are two samples instead of one
and a preset hypothetical value. Let’s create another sample vector, check the records for
normality and compare them to the former weight vector:
weight2=c(72,74,76,78,79,80,81,81,82,83,87,89)

qgnorm(weight2)
qqline(weight2)

48

Normal Q-Q Plot

Sample Quantiles

I | | | | | |
-5 10 05 00 05 10 15

Theaoretical Quantiles

This QQ-plot is not as good as for the weight vector, so now it will make more sense to do the
non-paramteric test as well but let’s start it with the two-sample t-test.

> t.test(weight,weight2)
welch Two Sample t-test

data: weight and weight?2
t = -3.4875, df = 13.284, p-value = 0.003892
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-21.158063 -4.993453
sample estimates:
mean of x mean of y
67.09091 80.16667

The difference between the sample means is nearly 13 kg, so we can expect a highly
significant result, and we did receive it in the form of a large t-value (in absolute value) and a
very small p-value, so the difference is real, the samples come from different populations.

The non-parametric version is called the two-sample Wilcoxon test, also known as the Mann-
Whitney test:

> wilcox.test(weight,weight2)
wilcoxon rank sum test with continuity correction
data: weight and weight?2
w = 23, p-value = 0.008837
alternative hypothesis: true location shift is not equal to O
warning message:

In wilcox.test.default(weight, weight2)
cannot compute exact p-value with ties

49

Although the sample sizes are still small, the large difference in the sample means was
enough to receive significant result with the non-parametric test as well. At this point we also
mention that non-parametric tests also have some assumptions; e.g. Mann-Whitney requires
that the two groups have identical distributions (the probability functions or density functions
should look similar). This is not checked here, but there are methods to assess this feature, too
(see. e.g. the Kolmogorov-Smirnov test).

Paired tests

Sometimes records in two samples are not independent but each record in one sample has a
pair in the other sample, like before treatment and after treatment values of the same set of
subjects. Paired tests are developed exactly for these applications. In these tests, the difference
has to follow normal distribution, not the individual samples. The samples, of course, need to
be of the same length.

> length(weight)

[1] 11

> length(weight2)

[1] 12

> weight3=weight2[1:11]

The weight2 vector was longer than the weight vector, so we removed the last record. This
procedure is only needed for getting data for illustration; no such manipulation of data is to be
done in real-life situations.

> ggnorm(weight3-weight)
> gqgqline(weight3-weight)

Normal Q-Q Plot

20

15

Sample Quantiles
10
|

| I | | | | |
-1 10 05 00 05 1.0 1.5

Theaoretical Quantiles

Apart from the largest difference (the rightmost point), most of the points are close to the qg-
line; so, we can proceed to the parametric test, the paired t-test.

> t.test(weight3,weight,paired=T)

50

Paired t-test

data: weight3 and weight
t =5.4, df = 10, p-value = 0.0003014
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
7.208775 17.336679
sample estimates:
mean of the differences
12.27273

The paired=T argument of the t.test() function specifies the paired nature of the samples. We
received a highly significant result, so the repeated measurement confirms some gain of
weight in the patients, e.g. as a result of some a side-effect of a study medication. The t-value
IS positive, indicating the gain. Be careful to order the samples correctly in the script: the
before weight has to be subtracted from the after weight.

If the differences do not follow normal distribution, proceed to the paired version of the two-
sample Wilcoxon test:

> wilcox.test(weight3,weight,paired=T)
wilcoxon signed rank test with continuity correction

data: weight3 and weight
Vv = 55, p-value = 0.005793
alternative hypothesis: true location shift is not equal to O

warning messages:

1: In wilcox.test.default(weight3, weight, paired = T)
cannot compute exact p-value with ties

2: In wilcox.test.default(weight3, weight, paired = T)
cannot compute exact p-value with zeroes

The test yielded significant result, so we can again state that the after weights are significantly
higher than the before weights (V=55, p=0.006). Ignore the warning messages.

Test for variances

All tests we have discussed so far test middle values of the sample(s) and thus give
information on middle values of the populations. However, other parameters of the population
can also be of interest. Let’s take the example of temperature stability in a cell incubator. The
datasets below are measured internal temperatures of an incubator when set to 24°C and 3°C:

> temp24=c(25,26,23,23,25,24,24,25,24,25,23,24,25)
> temp3=c(3,1,2,6,3,5,1,0,6,7,3,2)

> var(temp24)

[1] 0.8974359

> var(temp3)

[1] 5.113636

The variances greatly differ but is this a real difference or just caused by random chance? This
can be tested with an F-test using the var.test() function of R:

51

> var.test(temp24,temp3)
F test to compare two variances

data: temp24 and temp3
F = 0.1755, num df = 12, denom df = 11, p-value = 0.005604
alternative hypothesis: true ratio of variances 1is not equal to 1
95 percent confidence interval:
0.05117154 0.58291524
sample estimates:
ratio of variances
0.1754986

The test confirms that the variances are different, meaning that the internal temperature
stability of the incubator is lower on 3°C then on 24°C. If you need to incubate at low
temperature, avoid purchasing this instrument but it seems OK for ambient temperature
incubation.

52

SUMMARY

e One sample vs. hypothetical value - one-sample t-test or Wilcoxon signed-rank test
e Two independent samples = two-sample t-test or Mann-Whitney test

e Paired samples > Paired t-test or paired Wilcoxon test

e Test variances: F-test

R functions of Chapter 4
t.test
wilcox.test

var.test

53

Chapter 5

Correlation

Correlation is a symmetric linear relationship between two or more variables. This means,
that if there is correlation between variable A and B, variable A will increase/decrease
gradually as variable B increases/decreases. It can be positive, if the sign of the changes is the
same but when it is opposite, we call it negative correlation. Correlation is symmetrical
because we do not assume that the values of one variable drive the values of the other; so,
correlation is about changing together. Let’s see an example, the daily sales of two goods in a
store:

> coke=c(141,162,113,154,185,224,193,252,231,182,223,171)
> icecream=c(215,325,185,332,406,522,412,614,544,421,445,408)

Obviously, data are paired, meaning that the ith record in each sample belong to the same day.
This also means that vectors to be correlated must be of the same length.

Plotting the values suggest that on the days when more coke is sold, customers tend to buy
more ice-cream as well, and vice versa:

> plot(coke,icecream)

o o]
D_
w

400 500
I I
L]
=]

icecream

300
I

o]

200
I

o

I I I I I I I
120 140 160 180 200 220 240

coke

The exent of correlation, i.e. the measure of how closely the variables follow each other can
be given with the Pearson’s correlation coefficient, abbreviated as “r”. It ranges between -1
and 1. r=-1 mean complete negative correlation, r=1 is complete positive correlation; while
r=0 means that there is no linear relationship between the variables whatsoever. An r with a
high absolute value is always good but be careful. If it is too high in a real biological system,
it may mean that the variables not only correlate, but can be calculated from each other, such

54

as the height of a tree and the length of its shadow. Pearson’s correlation coefficient can be
calculated with the cor() function:

> cor(coke,icecream)
[1] 0.9649818

It seems there is a strong correlation between the sales of the two goods. However, we need to
confirm that the difference from 0 is not caused by random chance. For this, a hypothesis test
can be done, similar to the tests discussed in Chapter 4. The test is the correlation test and
implemented with the cor.test() function:

> cor.test(coke,icecream)
Pearson's product-moment correlation

data: coke and icecream
t = 11.633, df = 10, p-value = 3.91e-07
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.8764776 0.9903970
sample estimates:
cor
0.9649818

The test statistic of the correlation test is a t-value. The p-value is expressed in an exponential
form because it is so low. The 3.91e-07 expression means 3.91x10”. In a report or publication
you need to phrase this result as “We found significant positive correlation between coke and
ice-cream sales (r=0.96, t=11.63, p<0.001)”.

There are, however, lots of relationships between data that are not linear, but follow
exponential, logarithmic, logistic, power, etc. functions. In these cases linear correlation may
not yield appropriate results, but you may need to transform your data to linear scale, if
possible. Exponential and power functions can be transformed using logarithmic
transformation. Let’s see an example with the sales of a third item:

> mineral_water=c(215,325,215,272,576,1490,562,3114,1844,541,1460,408)
> plot(coke,mineral_water)

55

2500
I

mineral water
1500

500
l
o)
)
)

o] o]
I I I I I I I

120 140 160 180 200 220 240

coke

> cor(coke,mineral_water)
[1] 0.8817931
> cor.test(coke,mineral_water)

Pearson's product-moment correlation

data: coke and mineral_water
t = 5.9123, df = 10, p-value = 0.0001486
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.6233409 0.9665566
sample estimates:
cor
0.8817931

The r-value is still rather high and it is significant as well, but this relationship does not seem
linear but looks exponential. So, it is reasonable to transform it to linear by taking the
logarithm of mineral water and perform the analysis again:

> plot(coke,Tog(mineral_water))

56

o o
o
| o
- I~
@ i
=
g o |
||~»
o
o
[=R g
3
o
=l _ O
o
Ty} o]
0o) o

I I I I I I I
120 140 160 180 200 220 240

coke

> cor(coke,Tog(mineral_water))
[1] 0.9748759
> cor.test(coke,log(mineral_water))

Pearson's product-moment correlation

data: coke and log(mineral_water)
t = 13.84, df = 10, p-value = 7.558e-08
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.9102355 0.9931353
sample estimates:
cor
0.9748759

The log() function calculates the logarithm of the parenthetic part. The default base is e, so it
calculates natural logarithm, but using the base argument, this can be changed (for details see
the Help menu).

After logarithmic transformation, the r value became exceptionally good and the p-value also
improved. The plot also indicates that the relationship is linearized.

As all tests, the correlations test also has its assumptions. One was linearity, which can be
improved with transformations. If not, Pearson’s correlation is not a good choice.
Furthermore, normality of at least one of the variables is needed. This can again be checked
with QQ-plot. Another assumption is homoscedasticity, which means that the variation of the
data should not depend on the value of the data. As a graphical representation, this means that
the data in the scatter plot should be arranged in a tube and not a cone. This can, however, be
appropriately assessed if having a very high number of data. There are other measures of
homoscedasticity but we will discuss these in Chapter 6. If data are not homoscedastic, they
are heteroscedastic.

57

If any of the assumptions is severely violated or the scale of the variables is not numeric but
ordinal, or you cannot/do not want to transform your data, you still have alternatives: You can

calculate rank-based correlations, either Spearman’s rho or Kendall’s tau instead of

Pearson’s r. According to contemporary literature, Kendall is preferred but, basically both are
good for the purpose. Since these are rank-based correlations, most transformations do not

affect their results, which we can easily confirm with the available data:

> cor.test(coke,mineral_water,method="kendal1")
Kendall's rank correlation tau

data: coke and mineral_water
z = 4.3303, p-value = 1.489e-05
alternative hypothesis: true tau is not equal to O
sample estimates:
tau
0.9618601

warning message:
In cor.test.default(coke, mineral_water, method = "kendall")
Cannot compute exact p-value with ties

> cor.test(coke,lTog(mineral_water) ,method="kendal1")
Kendall's rank correlation tau

data: coke and log(mineral_water)
z = 4.3303, p-value = 1.489e-05
alternative hypothesis: true tau is not equal to O
sample estimates:
tau
0.9618601

warning message:

In cor.test.default(coke, log(mineral_water), method = "kendall™)

Cannot compute exact p-value with ties

Note that the untransformed and transformed data indeed lead to the same results. The
function used for non-parametric (rank-based) correlation is the same as for the parametric
one (Pearson’s). This can be possible because the default method of the cor.test() function is
the Pearson’s; therefore we did not have to specify it. If you prefer Spearman’s rho, the

method argument has to be set to “spearman’:

> cor.test(coke,log(mineral_water) ,method="spearman)
Spearman's rank correlation rho

data: coke and log(mineral_water)
S = 2.5039, p-value = 3.992e-10
alternative hypothesis: true rho is not equal to O
sample estimates:
rho
0.991245

warning message:

In cor.test.default(coke, log(mineral_water), method = "spearman")

Cannot compute exact p-value with ties

58

SUMMARY
Symmetric relationship between variables - Correlation
Pearson’s correlation

If assumptions not met = Spearman’s rho or Kendall’s tau

R functions of Chapter 5

cor
cor.test

59

Chapter 6

Linear regression

Simple linear regression

Unlike correlation, regression implies cause—effect relationship between the variables,
meaning that one of the variables drives the other. The former is called a predictor, an
explanatory variable or an independent variable (these all mean the same thing), while the
latter is called a response variable or a dependent variable. So, an increase in the predictor
can CAUSE the response variable to increase or decrease. The sales of the mentioned goods
are good examples of response variables, whereas a potential predictor can be air temperature.
If it goes up, people buy more ice-cream and drink more coke and water. So, for the
difference between a correlation and a regression is only conceptual but regression is a
modelling approach, so it also gives a model for the relationship, which in turn can be used
for a variety of purposes, such as to estimate unknown sales for new temperature values.

> temperature=c(14,16,11,15,18,21,19,25,23,20,22,17)
> plot(coke~temperature)

240
I

200
I

coke
i1

160
I
=

120
I

| I | I | I |
12 14 16 18 20 22 24

temperature

Since we assume cause-effect relationship, we used a formula to express it when plotting. Be
careful to arrange the variables in the correct order; the parenthetic part means “coke as a
function of temperature”. This is a linear relationship, so we can express it as a linear function
in the following form: response variable= beta, + betay x predictor + error,

where betay is the value where the model line intercepts the y-axis, beta; is the steepness of
the model line and the model values of the response variable deviate from the expected value

60

due to some measurement or other types of error. Such a model line can be calculated for the
coke~temperature relationship with the Im() function (linear model):

> modl=Tm(coke~temperature)
> modl

call:
Tm(formula = coke ~ temperature)

Coefficients:
(Intercept) temperature
2.844 9.941

The Im() function creates a model type of object in the environment. The function call gave
estimates for the two coefficients (betay and beta;). So, we can see that at 0°C, people by only
2.8 cokes a day on average and every degree of Celsius increase in temperature entails an
increase of 9.9 in the daily coke sales. The model line defined with these parameters can be
added to the scatterplot with the ab1ine (mod1) script:

coke
200 240
| |

160
I

120
I

| I | I | I |
12 14 16 18 20 22 24

temperature

The model line is generated by R by minimizing the sum of squared distances between
modelled and empirical response variable values for each temperature value. This difference
appears in the general equation as the “error” and once having the model, we call these
residuals.

The model can be tested for significance with the summary() function:

> summary (modl)

call:
Tm(formula = coke ~ temperature)

61

Residuals:
Min 1Q Median 3Q Max
-19.6559 -0.5668 0.7252 1.6089 12.4035

Coefficients:

Estimate std. Error t value Pr(>|t])
(Intercept) 2.8443 10.4866 0.271 0.792
temperature 9.9406 0.5572 17.842 6.53e-09 #**

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 “ * 1

Residual standard error: 7.494 on 10 degrees of freedom
Multiple R-squared: 0.9695, Adjusted R-squared: 0.9665
F-statistic: 318.3 on 1 and 10 DF, p-value: 6.534e-09

This output contains a summary of the residuals (like the summary of a vector) and some test
results. Both parameters are tested for significance: the test of the intercept is not interesting
now but that of the temperature is. It has a high t-value and a low p-value, indicating that the
slope of the model line differs from zero (i.e. from a horizontal line with no relationship),
meaning that temperature has an effect on coke sales. An adjusted R*value (coefficient of
determination) is also calculated, which equals the proportion of the variation of the coke data
explained by the model. This is 0.97, which now means that 97% of the variation is explained
by temperature. This proportion of the variation is also tested for significance using an F-test.
Since temperature is the only predictor in the model, the corresponding p-value equals the p-
value received for the slope. However, when there are more predictors in the model, these p-
values differ (see later).

When having a linear model and tested it for significance, you can report it by writing “we
showed that temperature has a significant positive linear effect on coke sales (t=17.84,
p<0.001, R*=0.967)".

Linear modelling also has some assumptions on the data. The residuals need to follow normal
distribution and they must be independent from the predictor. These can be checked visually.
The first with QQ-plot, the other by a simple scatterplot. Residuals can be extracted from a
model object by the resid() function.

> qqnorm(resid(modl))
> qqline(resid(modl))

62

Normal Q-Q Plot

10

Sample Quantiles
-0 -5
|

-15

-20
|

Theoretical Quantiles

Residuals, apart from the smallest and largest ones, pretty much follow normal distribution.
You may consider inspecting and removing the corresponding coke sales...

> plot(resid(modl)~fitted(modl))

10

residimod?)
5 0
| |
o
o

-10

-15

o]
I I I I I I I

120 140 160 180 200 220 240

-20
|

fitted(mod1)

63

This scatterplot shows whether the residuals depend on the value of coke sales. Since points
are aligned horizontally, there is no need to worry; residuals are independent from the fitted
values. There are two points that scatter farther away but lend no alarming structure to the
scatterplot.

These diagnostic plots can also be inquired simply by the plot(mod1) script. There are four
plots to show, the first two being the essential ones we prepared manually above, the rest are
not so important now. After running the script, R will prompt you to press Enter in the
console, so move the cursor to the console and press enter to display the plots. In this case it
can be useful to temporarily split the plot window into a 2 by 2 grid to display all figures at
once but remember to set it back to the original 1 by 1 layout:

> par(mfrow=c(2,2))

> plot(modl)
> par(mfrow=c(1,1))

Residuals vs Fitted Normal Q-Q
o o) Ll_: & ao
- 3= _|
2] [=253 n T
= o % a0 5 2 -8
% ° ? -) E = e o,oeoo'g'ﬂoo
E o R
-] m
=
. E o4
S 10" @ o10
T T T T T T T T T T T T T T
120 140 160 180 200 220 240 16 10 058 00 05 10 14
Fitted values Theaoretical Quantiles
Scale-Location Residuals vs Leverage
Ic: | 1oe] o™ 8o _hm"“—___::h-""‘*-—_ 1
S = T T
=) _E —_ -10.5
E o o %E'Je___‘ib__!
T = 7 o o ks sz,
H . o
5 v | o s T s
= [mm T -1
E G—O____o_,—/"g_“—xa__;_\& g e - CDUE‘::S—dmﬁﬂCE‘_J,—"‘F_J
mn o in o= T
= 2 o -0 -
= | | T T | T T I T | T T
120 140 160 180 200 220 240 0.0 01 0.2 0.3 04
Fitted values Leverage

The dashed line in the first plot indicates complete independence between residuals and fitted
values. The model residuals fit this line rather well, as suspected from the manually prepared
plot. The second plot is identical to the QQ-plot we prepared.

Not related to assumptions, but there is one more thing to consider regarding the reliability of
regression models. This is the leverage, i.e. the effect of individual points on the regression
outcome. If a point has a high leverage, it is considered an influential point. These should be

64

inspected because they can distort the results. The most common problem is to have an
influential point at the lower or upper extreme of the predictor’s scale. These, like levers, can
attract the model line, leading to false results. The farther these points are from the gravity
center of the points, the higher their effect. Including such an influential point in the original
temperature and coke vectors modify the model considerable:

> plot(coke~temperature)
> abline(modl)
> points(30,50,col="red",pch=16)
> coke2=c(coke,50)
> temperature2=c(temperature,30)
> mod2=Tm(coke2~temperature2)
> abline(mod2)
> summary(mod2)
call:
Tm(formula = coke2 ~ temperature2)
Residuals:
Min 1@ Median 3Q Max

-137.571 -16.583 5.754 44.489 70.092

Coefficients:
Estimate std. Error t value Pr(>|t])

(Intercept) 153.595 64.409 2.385 0.0362 *
temperature? 1.133 3.236 0.350 0.7329
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 “ ’ 1

Residual standard error: 56.49 on 11 degrees of freedom
Multiple R-squared: 0.01101, Adjusted R-squared: -0.07889
F-statistic: 0.1225 on 1 and 11 DF, p-value: 0.7329

(=]

o —
(]

cokeZ2
180 200
| |

100
I

50

| | | |
15 20 25 30

temperature2

As you can see, adding a coke sale of 50 to temperature 30°C tilts the model line considerably
and renders the model non-significant (t=0.35, p=0.733, R?=-0.79). Obviously, this outlier

65

should not be considered for modelling; it may by caused by the fact that when it gets really
hot (30°C), people simply go down to the beach and buy their coke there instead of the store
whose sales we analyze. It is the responsibility of the researcher and peers during the peer
review process to identify such sources of misinterpretation.

Predictions with linear models

Using a linear model, several further details can be extracted. The fitted coke sales, i.e. the
values that we would have had without random/unknown effects on sales (equivalent to the
error or the residuals), can be calculated with the fitted() function:

> fitted(modl)

1 2 3 4 5 6 7 8
142.0124 161.8936 112.1907 151.9530 181.7748 211.5965 191.7153 251.3588
9 10 11 12

231.4777 201.6559 221.5371 171.8342

The order corresponds to the order of records in the coke vector. By definition, these values
fit the model line perfectly:

> plot(fitted(modl)~temperature)
> abTine(modl)

L]
q—_
o

— i

— O —

=™

o

E .

o0

[iH]

= O

= D
—
Lo
N_
—

| | | | | | I
12 14 16 18 20 22 24

temperature

The residuals can be easily added to the graph using the segments() function. For segments,
you need to provide the x and y coordinates of the starting and ending points of the segments,
that is, you need to provide four vectors with identical lengths:

> segments(temperature,coke,temperature, fitted(modl),col="red")

66

O
q—_
o

- D

b i —

L= d

o

S -

L=

JiH]

= o

= o
—
L=
N_
—

| | | I | | |
12 14 16 18 20 22 24

temperature

In all but two cases the errors were negligible. For better visibility, the segments are in red.

Predicting coke sales for new temperature values can easily be done using the model. First,
you need to create a data frame, containing the new temperature values you would like to
calculate coke sales for. Let these temperatures be 12 and 14°C:

> new_temperature=data.frame(temperature=c(12,24))
> new_temperature
temperature
1 12
2 24
> predict(modl,newdata=new_temperature)

1 2
122.1313 241.4182

So, the predicted coke sales for 12 and 24°C are approx. 122 and 241, respectively. These can
be placed on the original line to check whether they are correctly calculated. The predicted
values need to be stored in a vector and the plot has to be redrawn:

new_coke=predict(modl, newdata=new_temperature)
plot(fitted(modl)~temperature)

abTine(modl)
points(c(12,24),new_coke,col="red",pch=16)

VV VYV

67

fitted(mod1)

160 200 240
| | |

120
|

|
12

|
14

| I | | |
16 18 20 22 24

temperature

The new coke sales appear as full circles in red.

Using the model, you can predict some further very useful things, like confidence bands and
prediction bands. A confidence band will include the real linear relationship line of the total
population with a preset confidence (95% as default), while the prediction band will include
all future records with a preset probability (again, 95% as default).

First, you need start a new plot, define the temperature interval you would like to calculate the
bands (this should not extend over the smallest and largest predictor values you have response
values for!). Coordinates for bands can be predicted as for new temperature values, the only
difference being that you need to specify you are interested in the confidence or prediction
bands using the interval argument. The output of this prediction will include the lower and
upper band limits and the fitted values. You can to add the band limits to the plot using the
lines() function:

VVVVYV

112
122
132
142

171

OooNOOUVITDWNERE

fit

.1907
.1313
.0719
.0124
151.
161.
.8342
181.
191.
10 201.
11 211.
12 221.
13 231.

9530
8936

7748
7153
6559
5965
5371
4777

101.
112.
123.
134.
145.
156.
166.
176.
186.
196.
205.
214.
224.

Twr
7980
8206
7983
7119
5323
2160
7031
9268
8410
4503
8069
9779
0205

plot(coke~temperature)
abline(modl)
predictframe2=data.frame(temperature=11:25)

fitted2=predict(modl,newdata=predictframe2,interval="confidence")
fitted2

122.
131.
140.
149.
158.
167.
176.
186.
190.
206.
217.
228.
238.

upr
5834
4420
3454
3130
3737
5712
9652
6227
5897
8615
3861
0963
9348

68

14 241.4182 232.9756 249.8609
15 251.3588 241.8705 260.8471

> 1ines(11:25,fitted2[,"Twr"],col="red")
> lines(11:25,fitted2[,"upr"],col="red™)

coke
200 240
| |

160
|

120
|

| | | | | | |
12 14 16 18 20 22 24

femperature

The band is rather narrow, so the real relationship is close to the model line. The prediction
band can be added similarly. It is always a wider band.
> fitted3=predict(modl,newdata=predictframe2,interval="prediction™)

> Tines(11:25,fitted3[,"Twr"],col="green")
> lines(11:25,fitted3[,"upr"],col="green")

coke
200 240
| |

160
|

120
|

| | | | | | I
12 14 16 18 20 22 24

femperature

69

Multiple linear regression

The measurable properties of biological objects can be determined by several different
factors, thus it may be necessary to include more than one of predictors into linear regression
models. Body weight, e.g. is determined by the diet, age, genetic background, etc. of
individuals. In experimental designs, control groups and treatment groups are frequently
selected so that they differ only in the studied variable, but sometimes this is not possible or,
in other cases, we may be interested in the complex effect of multiple drivers at the same
time. In such cases, multiple linear regressions are done, provided all variables are numeric
and are defined on interval or absolute scales.

The following data are based on an antelope reproduction study. The response variable is the
annual number of newborn animals, and it is modeled using the total antelope population each
year, the annual precipitation and the annual mean temperature. In real-life situations datasets
are imported from external files but now we have to type the data in:

fawn=c (290, 240,180, 255,300,160,340,210)
adult=c(920,870,720,850,960,680,970,790)
prec=c(335,292,274,312,320,269,358,284)
temp=c(23.1,25.2,23.7,21.9,23.5,22.3,26.4,25.3)

VVVYV

Predictors are separated from each other in the formula with the + sign:

> multimod=Tm(fawn~adult+prec+temp)
> summary (multimod)

Call:
Tm(formula = fawn ~ adult + prec + temp)
Residuals:
1 2 3 4 5 6 7 8

-7.1462 -3.1135 1.7719 2.3409 4.1871 0.1939 2.6177 -0.8518

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -325.15584 31.29663 -10.389 0.000485 ***

adult 0.31031 0.04098 7.572 0.001630 **

prec 0.94122 0.13746 6.847 0.002381 **

temp 0.93104 1.26299 0.737 0.501922

Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * ’ 1

Residual standard error: 4.861 on 4 degrees of freedom
Multiple R-squared: 0.9965, Adjusted R-squared: 0.9938
F-statistic: 377.3 on 3 and 4 DF, p-value: 2.322e-05

According to the output, the total number of adult antelopes is an important determinant of the
number of fawns but precipitation is also a significant predictor; probably because if there is
more precipitation, more food is available for the animals. Temperature, however, does not
affect the size of the new generation according to these data. We can also notice that the F-test
of the full model has a much lower p-value than any of the individual predictors. The
coefficient of determination is very high, so our model explains a very high proportion of the
variation of the fawn data.

Predictors that turn out to have no effect on the response variable are unnecessary to include
in the model, and they can even decrease the total explanatory power of the model. So, it is

70

advisable to sort all predictors out that do not increase the explained variance of the data. This
can easily be done with the step() function, which removes superfluous variables one by one:

> multimod2=step(Im(fawn~adult+prec+temp))

Start: AIC=27.76
fawn ~ adult + prec + temp

Df sum of Sq RSS AIC
- temp 1 12.84 107.37 26.775
<none> 94.53 27.756

- prec 1 1108.02 1202.55 46.102
- adult 1 1355.14 1449.67 47.597

Step: AIC=26.77
fawn ~ adult + prec

Df Sum of Sq RSS AIC
<hohe> 107.37 26.775
- prec 1 1096.5 1203.90 44.111
- adult 1 1497.6 1604.94 46.411

The output shares some information of the stepwise process. The removal of unnecessary
variables is based on some information criteria, but we do not discuss this in detail here. It is,
however, clear that R started with the full model with all three predictors but then dropped
temp and terminated the selection with two remaining predictors: the number of adults and the
annual precipitation.

> summary(multimod?2)

Call:
Tm(formula = fawn ~ adult + prec)

Residuals:
1 2 3 4 5 6 7 8
-8.2223 -2.2011 2.2059 0.4684 3.0926 -0.4321 4.4334 0.6552

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -306.5484 17.6372 -17.381 1.16e-05 *¥%*

adult 0.3173 0.0380 8.351 0.000403 ***
prec 0.9338 0.1307 7.146 0.000834 ***
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 “ ’ 1

Residual standard error: 4.634 on 5 degrees of freedom
Multiple R-squared: 0.996, Adjusted R-squared: 0.9944
F-statistic: 622.6 on 2 and 5 DF, p-value: 1.012e-06

The predictors that R retained still have significant effects but their p-values improved a bit
and the p-value of the full model also improved. It should be noted that the decision of
retaining or dropping a variable is not based on its significant effect but on whether it
improves the explanatory power of the full model, so sometimes non-significant predictors are
also retained. This is normal; do not be surprised to see this in a future analysis of yours.

Multiple linear regression has the same assumptions as simple linear regressions but besides
these, the predictors must also be independent of each other, meaning that they should not
correlate with each other. This is often phrased as “there should be no multicollinearity
between predictors. Correlating predictors carry the same information, so including both
means the inclusion of the same information twice. Therefore, if predictors correlate, only one
of them can be used for modeling. The correlation of the predictors can be checked by
calculating and testing correlation between each pair but this can also be done quickly with

71

the cor.table() function of the picante package. The package has to be installed and then
loaded in the R workspace. The function can work with data frames, so we need to make a
data frame from the variables. It is enough to include only the predictors in the data frame:

> multi_data=data.frame(adult,prec,temp)
> head(muTti_data)
adult prec temp

920 335 23.1

870 292 25.2

720 274 23.7

850 312 21.9

960 320 23.5

680 269 22.3

UV WNRE

> cor.table(multi_data)

$r

adult prec temp
adult 1.0000000 0.9035397 0.3725939
prec 0.9035397 1.0000000 0.3077186
temp 0.3725939 0.3077186 1.0000000

$df
[1] 6

$p

adult prec temp
adult 0.000000000 0.002084612 0.3633508
prec 0.002084612 0.000000000 0.4584155
temp 0.363350785 0.458415528 0.0000000

The output is a list of three items; individual items are marked with the $ sign. The $ sign can
be used to extract only certain parts of such outputs in the same way as a variable is specified
in a data frame.

It seems that the number of adults and precipitation correlates; if there is more precipitation,
there are more adults. So, the ultimate driver of fawn number is probably precipitation and our
multimod model is inflated with the same information from precipitation and adult number.
The most correct model, thus, includes only precipitation as the predictor.

Another method to identify multicollinearity is calculating the VIF (variance inflation factor)
using the vif() function of the faraway package. The function allocates a VIF value to every
predictor. If there is at least one predictor with a VIF above 4, there is considerable
multicollinearity. If you have such a variable, remove it and prepare the model again and
check again for remaining multicollinearity. So, remove multicollinearity step by step by
removing one predictor at a time. Variance inflation factor also considers multiple
correlations, so it is more powerful than simply checking pair-wise correlations. It is advisable
to check for VIF before variable selection:

> vif(multimod)
adult prec temp
5.755740 5.475137 1.167387

Note also that the function makes the calculation using the model and not the raw variable
vectors. The number of adults has the highest VIF, so it has to be removed and then
multicollinearity has to be checked again:

> multimod3=Tm(fawn~prec+temp)

72

> vif(multimod3)
prec temp
1.104595 1.104595

There is no more multicollinearity between the remaining variables. Now we can do the
model selection again:
> multimod4=step(multimod3)

Start: AIC=47.6
fawn ~ prec + temp

Df sum of Sq RSS AIC
- temp 1 155.3 1604.9 46.411
<none> 1449.7 47.597

- prec 1 21707.2 23156.8 67.765

Step: AIC=46.41
fawn ~ prec

Df Sum of Sq RSS AIC
<nhone> 1604.9 46.411
- prec 1 25242 26846.9 66.948

> summary(multimod4)

call:
Tm(formula = fawn ~ prec)
Residuals:
Min 1Q Median 3Q Max

-16.799 -9.130 -5.376 8.063 25.286

Coefficients:

Estimate std. Error t value Pr(>|t])
(Intercept) -339.6556 60.6549 -5.600 0.00138 **
prec 1.9199 0.1976 9.714 6.83e-05 #**

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 “ ’ 1

Residual standard error: 16.36 on 6 degrees of freedom
Multiple R-squared: 0.9402, Adjusted R-squared: 0.9303
F-statistic: 94.37 on 1 and 6 DF, p-value: 6.832e-05

The selection removed temperature from the model, and the final model contained only
precipitation as the sole predictor. The corresponding p-value is the best so far, so we can be
satisfied with the result.

73

SUMMARY

Linear cause—effect relationship = Linear regression
Usage:

e Testing the effect of a predictor (beware of influential points with high leverage)
e Predictions

= New data

= Confidence band

= Prediction band

More than one potential predictor - Multiple linear regression
Improving the model:

e Ruling out multicollinearity (pairwise correlations or VIF)
e Variable selection

R functions of Chapter 6
Im

abline
summary
resid
fitted
segments
predict
points
lines
step
cor.table

vif

74

Chapter 7

Analysis of variance

T-tests and their non-parametric alternatives are used to compare a maximum of two samples.
However, there may be need to compare three or more groups, like several different treatment
groups and control groups. Theoretically, it would be possible to do all pairwise comparisons,
but the chance for reaching inappropriate conclusion increases with the number of
comparisons. In a simple pairwise comparison, we choose the H1, if the chance for it is at
least 95%, which means that in 5% of the cases, we are wrong. If having e.g. five groups, we
have to do 10 pairwise comparisons, leading to the accumulation of the error, as the chance
for all results being correct as suggested by the p-values would be only 0.95'°=0.599. As a
result, we approach multiple comparisons in a slightly different way, using a method called
ANOVA (analysis of variance).

ANOVA is used to compare the means of three or more groups, or, with other words, it is
used to test the effect of a nominal variable (whose levels are the groups) on continuous
response variables. Basically, ANOVA compares the total variance of the data to the group
variances. If these do not differ much, it is not possible that any of the groups have a different
mean.

The data8.1.txt file (accessed through Coospace) contains fluorescence values of cells and
their genotypes and age groups. Genotype is a nominal predictor of fluorescence; it has three
levels: wild type, transgenic 1 and transgenic 2. Let’s test its effect on fluorescence with
ANOVA using the aov() function. The formulation of the test is very similar to that of linear
models.

> cells=read.table("data8.1.txt",header=T)

> cells

Fluorescence Genotype Age_group
1 21 wT 1
2 31 WwT 1
3 33 WwT 1
4 40 WT 2
5 41 WwT 2
6 43 WT 2
7 52 wT 3
8 53 WwT 3
9 60 WT 3
10 30 Transl 1
11 42 Transl 1
12 43 Transl 1
13 49 Transl 2
14 53 Transl 2
15 53 Transl 2
16 61l Transl 3
17 64 Transl 3
18 71 Transl 3
19 52 Trans?2 1
20 59 Trans?2 1
21 64 Trans? 1
22 69 Trans? 2

75

23 71 Trans?2 2
24 73 Trans?2 2
25 81 Trans?2 3
26 84 Trans?2 3
27 89 Trans2 3

> anoval=aov(Fluorescence~Genotype,data=cells)
> summary(anoval)

Df Sum Sg Mean Sq F value Pr(>F)
Genotype 2 4121 2060.4 13.71 0.000107 ***
Residuals 24 3608 150.3

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 “ * 1

The data argument of the aov() function specifies the location of the variables in the formula.
This argument structure is usable in linear modeling as well if any of the variables are part of
a larger data frame. Alternatively, it is also possible to attach the cells data frame; in that case
there would be no need for adding the data argument.

The output of the summary clearly indicates that genotype has a significant effect on
fluorescence (F=13.71, p<0.001).

As all tests, ANOVA also has assumptions: (1) normal distribution of the residuals and (2)
similar variances in all groups (homoscedasticity). These can be assessed visually using
diagnostic plots, just like in linear models (the first two plots are of interest again):

> par(mfrow=c(1,2)

> plot(anoval)
> par(mfrow=c(1,1)

Fesiduals vs Fitted Mormal Q-0
= o
o~ o =] o % .«5I'3' o
o =
. 2% 3 o % T 5
_[.'U P J.-'
e T S + 2 =
xr 2 g 8 © 5 :
' < = —] oﬁxp
% 1 Cf_,"
o] o - o
(\Il -1 o1 19 in 1:9'0
o1l
T | | | | | a - T | | | |
45 50 55 GO 65 7O -2 -1 0 1 2
Fitted values Theoratical Quantiles

The assumption of homoscedasticity is met and the QQ-plot also seems acceptable.

However, we still do not know which genotype differs from which. To check this, we can use
Tukey’s test, which performs post hoc pair-wise comparisons, while accounting for multiple
comparisons. The test is done on the ANOVA object in R as follows:

> TukeyHSD(anoval)

76

Tukey multiple comparisons of means
95% family-wise confidence Tevel

Fit: aov(formula = Fluorescence ~ Genotype, data = cells)

$Genotype

diff Twr upr p adj
Trans2-Transl 19.55556 5.121895 33.989216 0.0066852
WT-Transl -10.22222 -24.655883 4.211438 0.2014297
WT-Trans?2 -29.77778 -44.211438 -15.344117 0.0000814

The column of adjusted p-values is of interest in the output. It confirms that the transgenic 2
genotype differs significantly from both the wild type (p<0.001) and the transgenic 1
(p=0.007), while the transgenic 1 does not differ from the wild type (p=0.201). Note that no
further test statistic is provided in the output of the Tukey’s test.

Such results are best illustrated on a figure, preferably on a boxplot, because it gives some
hint about the distribution of the data. Statistically confirmed differences between groups are
also indicated on these figures. There are several options to do this; e.g. different lowercase
letters can indicate differing groups, or asterisks can also be used to indicate differences but
even coloring/shading can be used for the purpose. In the plot below, lower case letters are
used to identify different groups:
plotTop=max(cells$Fluorescence+10)
boxplot(Fluorescence~Genotype,data=cells,xlab="Genotype",
ylab="Fluorescence",ylim=c(min(cells$Fluorescence),plotTop))
text(1l,plotTop-2,"a")

text(2,plotTop-2,"b")
text(3,plotTop-2,"a")

VVYV+ VYV

=
— a b =
-
— !
SR
] ! '
3 B | —T—
5 [T
=
o 2 4 '
I 1
o ;
= -
o I I I
Trans1 Trans? W
Zenotype

Note that it is necessary to adjust the top of the plot, because otherwise the letters do not have
enough space to be shown properly. The + sign at the beginning of the third script line
indicates a line break, i.e. the script was broken into two lines in the script window with a

77

simple Enter for convenience. If having such multiple-line scripts, highlight all lines and then
press Ctrl+Enter to run the entire script properly.

An alternative visual representation of the results is the bar chart or bar plot. A bar chart does
not give as much detail on the distribution of the data but shows only the mean and some error
bars, such as the standard deviation or the standard error of the mean. While standard
deviation gives information on the spread of the data, standard error of the mean (SEM)
informs about the extent of error in the approximation of the population mean using the
sample mean. Standard error is always smaller than standard deviation (and therefore
preferred by researchers...) and can be calculated by dividing the standard deviation by the
square root of the sample size. If choosing barplot, always use error bars, and specify the type
of error bar (SD or SEM) in the figure caption. Drawing barplots is not very straightforward
in R. Without using any specified graphic package, like ggplot2, the below scripts represent a
possible solution. (Good quality barplots can also be drawn simply with MS Excel.)

means=tapply(cells$Fluorescence,cells$Genotype,mean)
names=c("wt","Transl","Trans2")
Sb=tapply(celTs$Fluorescence,cells$Genotype,sd)
plotTop=max(means+SD*2)

barCenters=barplot(means, names.arg=names, las=1l, ylim=c(0,plotTop))
segments(barCenters, means, barCenters, means+SD, Twd=2)
text(barcenters[1],90,"a")

text(barcenters[2],90,"b")

text(barcenters[3],90,"a")

VVVVVYVYVVYV

& b a
20
B0
40
20
[:] |
W Trans1 Trans2

Whiskers are standard deviations in this figure.

If the assumptions of the ANOVA are not met, there is a non-parametric alternative, the
Kruskal-Wallis test. Let’s test the effect of age group on Fluorescence with this test. But
before doing so, notice that Age _group is ordinal but coded as numeric. So first, we need to
convert it to a factor:

> cells$Age_group=as.factor(cells$Age_group)
> kruskal.test(Fluorescence~Age_group,data=cells)

Kruskal-wallis rank sum test

data: Fluorescence by Age_group
Kruskal-wallis chi-squared = 10.3135, df = 2, p-value = 0.00576

78

According to the test, age group has a significant effect on fluorescence (Chi*=10.31,
p=0.006).

Unfortunately, there is no non-parametric post hoc test that accounts for multiple
comparisons, so we need to perform all pairwise comparisons and then manually adjust the p-
values for multiple comparisons. There are several adjusting methods; commonly used ones
include the Holm’s method, the FDR (false discovery rate) method, etc.

Attaching the cells data frame shortens the scripts, so we include this step:

> attach(cells)
> wl=wilcox.test(Fluorescence[Age_group==1],Fluorescence[Age_group==2])
> wl

wilcoxon rank sum test with continuity correction

data: Fluorescence[Age_group == 1] and Fluorescence[Age_group == 2]
w = 20.5, p-value = 0.08477
alternative hypothesis: true location shift is not equal to O

> w2=wilcox.test(Fluorescence[Age_group==1],Fluorescence[Age_group==3])
> w2

wilcoxon rank sum test with continuity correction

data: Fluorescence[Age_group == 1] and Fluorescence[Age_group == 3]
w =7, p-value = 0.003534
alternative hypothesis: true location shift is not equal to O

> w3=wilcox.test(Fluorescence[Age_group==2],Fluorescence[Age_group==3])
> w3

wilcoxon rank sum test with continuity correction

data: Fluorescence[Age_group == 2] and Fluorescence[Age_group == 3]
w = 19.5, p-value = 0.06954
alternative hypothesis: true location shift is not equal to O

> p.adjust(cwl[3],w2[3],w3[3]),method="fdr")
p.value p.value p.value
0.08476711 0.01060305 0.08476711

> detach(cells)

Note that the output of the tests is a list, with the p-value being the third item. The W values
to be reported in a publication can remain the original W values; no adjustment is done on
them.

Two-way ANOVA

Like in linear modeling, there can be more than one independent variable in ANOVA as well.
In two-way ANOVA there are two of these, while in multiple-way ANOVA there can be even
more; however, there are very few real-life situations when more than two factors are

79

considered in explaining the variance of measured data. In the cell1s data frame, there are
two such factors, which can be used in a two-way ANOVA:

> anova2=aov(Fluorescence~Genotype+Age_group,data=cells)

> summary(anova2)

Df Sum sq Mean sq F value
2060.4 111.34 3.10e-12 =**=*
1600.3
Residuals 22 407 18.5

Genotype 2 4121
Age_group 2 3201

Signif. codes:

Pr(>F)

86.48 3.78e-11

0 ‘¥%%’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 *

1

According to the test, both variables have significant effect, but this is no surprise if looking
back to the previous analyses. Tukey’s pairwise test can be applied in two-way ANOVA as
well. The test will do it for us variable by variable:

> TukeyHSD(anova2)
Tukey multiple comparisons

of means

95% family-wise confidence level

Fit: aov(formula = Fluorescence ~ Genotype + Age_group, data

$Genotype
diff

Trans2-Transl 19.55556 14.46143

WT-Transl -10.22222 -15.31635
WT-Trans?2
$Age_group

diff Twr

Twr upr p adj
24.649679 0.0000000
-5.128099 0.0001363

-29.77778 -34.87190 -24.683655 0.0000000

upr p adj

2-1 13.00000 7.905877 18.09412 5.5e-06
3-1 26.66667 21.572544 31.76079 0.0e+00
3-2 13.66667 8.572544 18.76079 2.6e-06

Two-way ANOVA can also account for and can test the interaction of the independent
variables. Interaction in this context means that the effect of one independent variable
depends on the values of the other independent variable and vice versa. So, e.g. if genotype
affects fluorescence only in a specific age group but has no effect in other groups or the
effects are opposite in direction in different age groups, we have interaction between the

independent variables. Interaction should not be mixed up with multicollinearity.

If we are interested in interactions, we have to use asterisk in the formula between the
independent variables and not a plus sign:

> anova3=aov(Fluorescence~Genotype*Age_group,data=cells)

> summary(anova3)

Df Sum Sq
Genotype 2 4121
Age_group 2 3201
Genotype:Age_group 4 0
Residuals 18 407

Mean Sq F value Pr(>F)
2060.4 91.200 3.81e-10 #***
1600.3 70.834 2.94e-09 **x*

0.1 0.005 1
22.6

80

Signif. codes:

Ededede? 0_001 £ e

> 0.01 “*’ 0.05 “.

1

Interaction is indicated with the “Genotyp:Age group” structure and it seems there is no sign

of interaction at all. We do not repeat the post hoc test.

The interaction can also be visualized with a simple plot, using the interaction.plot() function:

> interaction.plot(cells$Genotype,cells$Age_group,cells$Fluorescence)

mean of cellsfFluorescence
2040 50 60 TO O8O0

celsFAg

Trans

Trans?

cells$Genotype

e aro

The first two arguments are the independent variables to be checked and the third is the
dependent one on which the effects are studied.

Let’s see a modified data set with some, albeit still non-significant interaction. The data9.1.txt
is accessible on Coospace.

> cells_int=read.table("data9.1.txt",header=T)

> cells_int

Fluorescence Genotype Age_group

1 21
2 31
3 33
4 40
5 41
6 43
7 52
8 53
9 60
10 30
11 42
12 43
13 49
14 53
15 53
16 61
17 64
18 71
19 52
20 59

WT
WT
WT
WT
WT
WT
WT
WT
WT
Transl
Transl
Transl
Transl
Transl
Transl
Transl
Transl
Transl
Trans?2
Trans?

RPRPNNNWWWRRRWWWNNNRRR

81

21 64 Trans?2 1
22 69 Trans?2 2
23 71 Trans?2 2
24 73 Trans?2 2
25 81 Trans?2 3
26 84 Trans?2 3
27 89 Trans2 3

> interaction.plot(cells_int$Genotype,cells_int$Age_group,cells_int$Fluorescence)

mean of Fluorescence
2040 50 60 TO O8O0

Trans Trans? W

Zenotype

> anova4=aov(Fluorescence~Genotype*Age_group,data=cells_int)
> summary (anova4)
Df Sum Sq Mean Sq F value Pr(>F)

Genotype 2 4121 2060.4 35.056 2.03e-0Q7 ***
Age_group 1 2200 2200.1 37.432 4.53e-06 ***
Genotype:Age_group 2 173 86.7 1.475 0.251
Residuals 21 1234 58.8

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 “ ’ 1

ANOVA can also account for nested design, i.e. a situation when data violate the assumption
of independence. The data9.2.txt file also contains fluorescence data but cells were grown on
a total of only 10 Petri dishes. Since clones on the same dishes are exposed to the same micro-
environmental conditions and these conditions may vary from dish to dish, data are not
completely independent, which matches the concept of nested design.

> nested=read.table("data9.2.txt", header=T)

> nested

Cell.type Petri.dish Fluorescence
1 A Tl 158
2 A Tl 156
3 A Tl 160
4 A T2 139
5 A T2 142
6 A T2 135
7 B T3 185
8 B T3 180
9 B T3 184

82

10 B T4 179
11 B T4 181
12 B T4 174
13 C T5 123
14 C T5 130
15 C T5 127
16 C T6 140
17 C T6 131
18 C T6 135
19 D T7 195
20 D T7 175
21 D T7 191
22 D T8 187
23 D T8 190
24 D T8 188
25 E T9 160
26 E T9 157
27 E T9 161
28 E T10 158
29 E T10 156
30 E T10 163

> anovab5=aov(Fluorescence~Cell.type/Petri.dish,data=nested)
> summary(anovab)
Df Sum Sg Mean Sq F value Pr(>F)

Cell.type 4 12928 3232 161.059 6.55e-15 #***
Cell.type:Petri.dish 5 714 143 7.113 0.000572 #**
Residuals 20 401 20

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 “ 1

The output looks like that of anova4 but there is only one real predictor line, Cell.type, which
has a significant effect on Fluorescence. Without accounting for the nested design, the test
statistic and the p-value are a bit different (and less appropriate).
> anova6=aov(Fluorescence~Cell.type,data=nested)
> summary (anova6)

Df Sum Sgq Mean Sq F value Pr(>F)

cell.type 4 12928 3232 72.46 2.2le-13 w¥¥
Residuals 25 1115 45

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 “ ’ 1

83

SUMMARY

More than two samples > ANOVA
If significant = Tukey’s post hoc test
If assumptions not met - Kruskal-Wallis test
If significant - pairwise Mann-Whitney + correction for multiple comparisons
More than one nominal predictor - two-way or multiple-way ANOVA
Interactions are testable
Nested design > Nested ANOVA

Repeated measurements - Repeated measures ANOVA

R functions of Chapter 7
aov

TukeyHSD

barplot

kruskal.test

p.adjust

interaction.plot

84

Chapter 8

Tests for probabilities and proportions

Parametric tests can be applied only to numeric variables and non-parametric ones to numeric
and with some limitations to ordinal variables. However, none are suitable for the statistical
evaluation of nominal data. From nominal data, we can prepare tables, containing the
occurrences of each level of the variable. From this, it is possible to calculate empirical
probabilities of each level or calculate proportions of such probabilities. In this chapter we
will focus on a restricted but commonly encountered variant of nominal variables, the binary
type. From a binary variable, the empirical proportion of the two outcomes is easily calculated
by dividing the occurrences of each outcome with the total number of occurrences. When
having this proportion, you can ask whether your empirical proportion equal a hypothetical
proportion.

Let’s see an example: You flipped a coin and got 34 heads out of 50 tosses and asked whether
the coin is biased for heads. The HO is that the coin is symmetrical and the probability of
heads and tails is the same. Since there are two outcomes, the probability of each case should
be 0.5, meaning that the hypothetical proportion of heads is 0.5. H1 is the case of a biased
coin with different probabilities for heads and tails. Our empirical proportion is 34/50=0.68.
So, is the difference from 0.5 caused by random chance? This can be answered with a
binomial test:

> binom.test(x=34,n=50,p=0.5)
Exact binomial test

data: 34 and 50

number of successes = 34, number of trials = 50, p-value = 0.01535
alternative hypothesis: true ?robab111ty of success is not equal to 0.5
95 percent confidence interval:

0.5330062 0.8047958

sample estimates:

probability of sucgegg

The x argument is the number of outcomes we counted, n is the total number of observations
and p is the hypothetical proportion. According to the outcome (p=0.015), there is significant
difference from the hypothetical proportion, so the coin is biased.

Just like in t-test, the empirical data can be compared to other empirical data, i.e. two
proportions can be compared whether their difference is real or just caused by random chance.

For example, Donald Trump received 53 votes out of 100 votes in village A and received 41
out of 100 in village B. Is there a statistically confirmable difference in the popularity of
Trump in the two towns? The answer is calculated with a chi-squared test (also spelled as chi?

test or y” test).
> townl=c(53,47)

> town2=c(41,59)
> votes=cbind(townl,town2) ##chisq.test() needs input data as a matrix

85

> rownames(votes)=c("yes",' "No")
> votes
townl town2
Yes 53 41
No 47 59

> chisq.test(votes)
Pearson's Chi-squared test with Yates' continuity correction

data: votes
X-squared = 2.4287, df = 1, p-value = 0.1191

The chisq.test() function needs data in the form of a matrix. Be careful to have
locations/objects/etc. in columns and the occurrences of each outcome in rows. It is not
necessary to name the outcomes.

According to the chi-squared test, there is no difference in the popularity of Trump in the
studied towns (chi-squared=2.43, p=0.119).

The calculation of the chi-squared test can encounter difficulties if any record in the input
matrix is lower than 5. In such cases, the p-values may need to be simulated to get reliable
results. Alternatively, Fisher’s exact test is also frequently used.

town3=c(1,98)
town4=c(10,120)
votes2=cbind(town3, town4)
chisqg.test(votes2)

VVYVYV

Pearson's Chi-squared test with Yates' continuity correction

data: votes?
X-squared = 4.1239, df = 1, p-value = 0.04228

warning message: _ _ _ _
In chisq.test(votes?2) : Chi-squared approximation may be incorrect

There is a warning message with the new data telling us that the results may not be reliable, as
town 3 had only one yes vote for Trump. Note also that the total number of counts is not the
same in town 3 and 4. Equal number of counts is not an assumption of prerequisite for the chi-
squared test.

By setting the simulate.p.value argument to true, the p-value is recalculated:
> chisq.test(votes2,simulate.p.value=T)

Pearson's Chi-squared test with simulated p-value (based on 2000
replicates)

data: votes2
X-squared = 5.4879, df = NA, p-value = 0.02599

The new chi-squared value and p-value are more reliable.

Fisher’s exact test yields similar results:
> fisher.test(votes2)

Fisher's Exact Test for Count Data

86

data: votes?2

p-value = 0.02577

alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

0.002798097 0.893028110

sample estimates:
odds ratio

0.1232511

87

SUMMARY

Empirical probability or proportion vs. hypothetical one = binomial test
Two empirical probabilities or proportions = chi-squared test

If any count <5 - simulate p-values or Fisher’s exact test

R functions of Chapter 8
binom.test
chisq.test

fisher.test

88

Chapter 9

Survival analysis

Several biological studies are designed to follow up the survival of subjects after a treatment
or other impacts the subjects are exposed to. These subjects can be individual cells, lab
animals, patients, endangered wild animals, etc. The main focus of survival analysis is on the
rate of survival over time. This basically means that the f(t)=p(S) survival function (the
probability of being alive at time t) is to be assessed.

In these studies, the investigator starts with a certain set of subjects and later on checks how
many are still alive. Enrollment of new subjects during the study period is also possible, as
well as the loss of subjects due to unknown reasons or known reasons that are different from
the scrutinized effect. In survival analysis, those patients that become unavailable for further
check-up in these ways are frequently called censored subjects.

The situation is better illustrated by a real data set, such as the melanom data frame of the
ISWR package. To access the data, you need to install and load the package in the
Environment.

> head(meTanom)
no status days ulc thick sex
1 789 3 10 1 676 2
2 13 3 30 2 65 2
3 97 2 35 2 134 2
4 16 3 99 2 290 1
5 21 1 185 1 1208 2
6 469 1 204 1 484 2
> str(melanom)
'data.frame': 205 obs. of 6 variables:
$ no :int 789 13 97 16 21 469 685 7 932 944 ...
$ status: int 3323111131...
$ days : int 10 30 35 99 185 204 210 232 232 279 ...
$ ulc tint 1222111111...
$ thick : int 676 65 134 290 1208 484 516 1288 322 741 ...
$ sex tint 2221222211...

The melanoma data set contains the data of patients with melanoma malignum (a type of
cancer), who received a certain surgical treatment. Rows correspond to patients: 205 in total
as indicated by the structure call. The first column (“no”) is the patient ID and the second
column (“status”) tells the fate of the patient. Status 1 means that the patient died of
melanoma x days after the treatment but before the study was terminated. Status 2 means that
the patient was still alive at the end of the study; corresponding days vary due to different
times of enrollment in the study (time of surgery). Patients with status 3 died x days after the
surgery but due to reasons unrelated to their melanoma. The fourth column (“ulc”) tells
whether the tumor was ulcerated at the time of treatment (1 = yes, 2 = no). The “thick”
column is thickness of the tumor and “sex” is the gender of the patient (1 = female, 2 = male).

89

First, we should make a copy of the original data frame by storing it under a different name:

> meTlanoml=melanom

Status 2 and 3 patients are essentially identical for survival analysis; they became unavailable
for further follow-up. These patients are the censored ones according to the terminology. To
ease further analysis, we should change their status to O:

> melanoml[meTanoml$status==2,2]=0
> melanoml[meTanoml$status==3,2]=0

> str(melanoml)

'data.frame': 205 obs. of 6 variables:

$ no :int 789 13 97 16 21 469 685 7 932 944 ...

$ status: num 0000111101...

$ days : int 10 30 35 99 185 204 210 232 232 279 ...

$ ulc :int 1 222111111...

$ thick : int 676 65 134 290 1208 484 516 1288 322 741 ...
$ sex :dint 2221222211...

The new melanoml data frame has only 0 and 1 in the status column; patients with 1 died due
to the cause of interest, while patients with 0 had a censoring event of any kind (died of other
causes or the study ended while still alive) after as many days of follow-up as indicated in the
“days” column.

Survival analysis is done with the survival package, so it has to be installed and loaded in.
Once having access to the functions of the package, the next step is to create a survival object
from the melanom1 data frame.

> s=Surv(meTlanoml$days,melanoml$status)

> S

[1] 10+ 30+ 35+ 99+ 185 204 210 232 232+ 279 295 355+
386 426 469 493+ 529 621 629

[20] 659 667 718 752 779 793 817 826+ 833 858 869 872
967 977 982 1041 1055 1062 1075

[39] 1156 1228 1252 1271 1312 1427+ 1435 1499+ 1506 1508+ 1510+ 1512
+ 1516 1525+ 1542+ 1548 1557+ 1560 1563+

[58] 1584 1605+ 1621 1627+ 1634+ 1641+ 1641+ 1648+ 1652+ 1654+ 1654+ 1667
1678+ 1685+ 1690 1710+ 1710+ 1726 1745+

[77] 1762+ 1779+ 1787+ 1787+ 1793+ 1804+ 1812+ 1836+ 1839+ 1839+ 1854+ 1856
+ 1860+ 1864+ 1899+ 1914+ 1919+ 1920+ 1927+

[96] 1933 1942+ 1955+ 1956+ 1958+ 1963+ 1970+ 2005+ 2007+ 2011+ 2024+ 2028
+ 2038+ 2056+ 2059+ 2061 2062 2075+ 2085+

[115] 2102+ 2103 2104+ 2108 2112+ 2150+ 2156+ 2165+ 2209+ 2227+ 2227+ 225
6 2264+ 2339+ 2361+ 2387+ 2388 2403+ 2426+

[134] 2426+ 2431+ 2460+ 2467 2492+ 2493+ 2521+ 2542+ 2559+ 2565 2570+ 266
0+ 2666+ 2676+ 2738+ 2782 2787+ 2984+ 3032+

[153] 3040+ 3042 3067+ 3079+ 3101+ 3144+ 3152+ 3154+ 3180+ 3182+ 3185+ 319
9+ 3228+ 3229+ 3278+ 3297+ 3328+ 3330+ 3338

[172] 3383+ 3384+ 3385+ 3388+ 3402+ 3441+ 3458+ 3459+ 3459+ 3476+ 3523+ 366
7+ 3695+ 3695+ 3776+ 3776+ 3830+ 3856+ 3872+

[191] 3909+ 3968+ 4001+ 4103+ 4119+ 4124+ 4207+ 4310+ 4390+ 4479+ 4492+ 466
8+ 4688+ 4926+ 5565+

A survival object is not a statistical term, it is only a predefined data structure that can be
handled with the functions of the survival package. The Surv() function that creates it has two

90

compulsory arguments. The duration until an event is provided first (days in this case) and the
second is the type of the event (see above for options). The + sign in the survival object
indicates censoring event. The head() and tail() functions also work on survival objects, so it
IS not necessary to print all records in it to have a brief look. Also, the survival object appears
in the upper right window as

s | Surv [1:205, 1:2] 10+ 30+ 35+ 99+ 185 204 210 ..

The survfit() function is designed to process a survival object as follows:
> sl=survfit(s~1)

> sl
call: survfit(formula = s ~ 1)

n events median 0.95LCL 0.95UCL
205 57 NA NA NA

> summary(sl)
call: survfit(formula = s ~ 1)

time n.risk n.event survival std.err Tower 95% CI upper 95% CI

185 201 1 0.995 0.00496 0.985 1.000
204 200 1 0.990 0.00700 0.976 1.000
210 199 1 0.985 0.00855 0.968 1.000
232 198 1 0.980 0.00985 0.961 1.000
279 196 1 0.975 0.01100 0.954 0.997
295 195 1 0.970 0.01202 0.947 0.994
386 193 1 0.965 0.01297 0.940 0.991
426 192 1 0.960 0.01384 0.933 0.988
469 191 1 0.955 0.01465 0.927 0.984
2108 88 1 0.729 0.03358 0.666 0.798
2256 80 1 0.720 0.03438 0.656 0.791
2388 75 1 0.710 0.03523 0.645 0.783
2467 69 1 0.700 0.03619 0.633 0.775
2565 63 1 0.689 0.03729 0.620 0.766
2782 57 1 0.677 0.03854 0.605 0.757
3042 52 1 0.664 0.03994 0.590 0.747
3338 35 1 0.645 0.04307 0.566 0.735

The survfit function can process a formula, where 1 is provided again to indicate that it is for
the event of interest. Simply calling the output is not very informative; it displays that we had
205 subjects, out of which 57 had the event of interest. The median time of survival is NA
because more than half of the patients were still alive at the end of the study. The summary of
s1 is more interesting. The first column is the time until an event and the survival in the
fourth column tells the estimated probability of being alive after that time. A standard error
and lower and upper 95% confidence limits are also given for this estimate. This estimate is
called the Kaplan-Meyer estimate of survival. The s1 estimate can be plotted easily to display
the survival function:

91

> plot(sl)

0.2 04
l

0.0
|

I I I I I
0 1000 2000 3000 4000 2000

This plot shows the probability of survival over time. Since this function is calculated from a
sample, it can differ from the true function of the entire population (patients with melanoma
having the same treatment ever) due to random chance. The dashed lower and upper
confidence limits confine this true function with a confidence of 95%.

Preparing the survival function is informative on its own, but in studies it is more frequent to
compare survival functions of different groups, like the to test the efficiency of different
treatments or the efficiency of the same treatments on different subject groups. Here we have
female and male patients, so we can compare whether the survival rate depends on gender.
Different groups can be compared also with the survfit() function, but the survival object has
to be modified a bit for this:

> s2=Surv(melanoml$days,melanom$status==1)

> surv.by.gender=survfit(s2~melanoml$sex)
> plot(surv.by.gender)

92

1.0

08
|

04

0.0

| | | | |
0 1000 2000 3000 4000 2000

As a default setting, confidence limits are turned off when plotting more than one survival
function in the same plot to avoid overlapping curves. It possible to turn the confidence limits
on and to use colors to indicate which gender is which on the plot.

> plot(surv.by.gender,conf.int=T,col=c("blue”,"red"))

=
—

0.8

0.6

04

02

I I I [I
0 1000 2000 3000 4000 2000

Red is the color for the gender coded with 1 (females) and blue is for gender 2 (males).

As you can see, the survival function of males is below that of females, indicating that
females have higher survival rate. However, the confidence bands overlap a bit, so we cannot

93

tell if the difference is caused by random chance or it is an acceptable difference. The
difference can be tested for significance with a log-rank test, using the survdiff() function:
> survdiff(s2~meTanoml$sex)

call:
survdiff(formula = s2 ~ melanoml$sex)

N Observed Expected (0-E)A2/E (0-E)A2/V
melanoml$sex=1 126 28 37.1 2.25 6.47
melanoml$sex=2 79 29 19.9 4.21 6.47

Chisg= 6.5 on 1 degrees of freedom, p= 0.011

The test calculates a chi-squared test statistic and gives a p-value. As it is low enough we can
accept the difference and report our findings like this: Females have a statistically higher
survival rate than males if treated with the studied surgical technique (chi-squared=6.5,
p=0.011).

Multiple groupings of survival records, i.e. the use of more than one predictor is not advisable
as the test cannot calculate the effect of separate predictors but will combine them. In practice
this means if we include another nominal (or numeric) variable in the formula in the survdiff()
function, the levels would be combined and each combination would be handled as a separate
group. The output will contain the test of the difference between the combined groups. The
same applies for the Kaplan-Meyer estimate calculated this way and plotted on a graph as
follows:

> survdiff(s2~melanoml$sex+melanoml$ulc)

call:
survdiff(formula = s2 ~ melanoml$sex + melanoml$ulc)

N Observed Expected (0-E)A2/E (0-E)A2/V

meTlanoml$sex=1, melanoml$ulc=1 47 20 12.44 4.602 5.89
melanoml$sex=1, melanoml$ulc=2 79 8 24.71 11.298 19.98
melanoml$sex=2, melanoml$ulc=1 43 21 8.77 17.047 20.26
meTlanoml$sex=2, melanoml$ulc=2 36 8 11.09 0.859 1.07

Chisqg= 34 on 3 degrees of freedom, p= 1.98e-07

> surv.by.gender2=survfit(s2~melanoml$sex+melanoml$ulc)
> plot(surv.by.gender?2)

94

1.0

T‘:EL‘_H

04

| | | I |
0 1000 2000 3000 4000 2000

The survival functions in the plot correspond to combined groups, like females with
ulceration, females with no ulceration, etc.

If it is needed to test the effect of more than one predictor on survival in a single model, the
Cox proportional hazards model (or simply Cox regression) can be recommended. Cox
regression is calculated also with the functions of the survival package. When including only
gender, the formulation and the output are as follows:

> cox=coxph(s2~meTanoml$sex)

> summary (cox)

call:
coxph(formula = s2 ~ melanoml$sex)

n= 205, number of events= 57

coef exp(coef) se(coef) z Pr(>lz])
meTlanoml$sex 0.6622 1.9390 0.2651 2.498 0.0125 *

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 “ 1

exp(coef) exp(-coef) Tower .95 upper .95
melanoml$sex 1.939 0.5157 1.153 3.26

Concordance= 0.59 (se = 0.033)
Rsquare= 0.03 (max possible= 0.937)

LikeTihood ratio test= 6.15 on 1 df, p=0.01314
wald test = 6.24 on 1 df, p=0.01251
Score (logrank) test = 6.47 on 1 df, p=0.01098

Cox regression works with hazards ratios, which equal the ratio of the death rates of the
groups to be compared. In practice, this means that if males have a death rate twice as high as
females, the hazard ratio will be 2 (or 0.5 if viewed from the opposite direction). The coef
value in the output is the logarithm of this hazard ratio, while the exp(coef) corresponds to the

95

exact hazard ratio. The inverted ratio is also provided in the output below the significance
codes. The hazard ratio is tested for significance and yielded a z-value of 2.50 and a p-value
of 0.012, so the Cox regression also confirmed that gender significantly affects survival.

The entire model is also tested for significance using three different methods; their results are
also significant.

Like in multiple linear regression or the two-way ANOVA, it is allowed to include more
predictors:

> cox2=coxph(s2~meTanoml$sex+melanom$ulc)

> summary(cox2)

call:

coxph(formula = s2 ~ melanoml$sex + melanom$ulc)

n= 205, number of events= 57

coef exp(coef) se(coef) z Pr(>|zl)
melanoml$sex 0.5165 1.6761 0.2667 1.937 0.0528 .
melanom$ulc -1.4180 0.2422 0.2969 -4.775 1.79e-06 **=*

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 “ * 1
exp(coef) exp(-coef) Tower .95 upper .95

melanoml$sex 1.6761 0.5966 0.9938 2.8268

melanom$ulc 0.2422 4.1289 0.1353 0.4334

concordance= 0.719 (se = 0.038)

Rsquare= 0.145 (max possible= 0.937)

Likelihood ratio test= 32.16 on 2 df, p=1.039e-07
wald test = 28.59 on 2 df, p=6.206e-07
Score (logrank) test = 33.51 on 2 df, p=5.277e-08

According to this output, if gender and ulceration are modelled together, the significant effect
of gender is lost for the effect of ulceration. the full model is again confirmed to be significant
by every model at the end of the output.

96

SUMMARY

Survival analysis: estimating the survival function
Kaplan-Meier estimate: calculated for individual groups
Comparing groups:

e Log-rank test
e Cox proportional hazards model

R functions in Chapter 9
Surv

survfit

survdiff

coxph

97

Chapter 10

Multivariate statistics

Multivariate data arise when we measure several variables on each sampling unit. In most
cases the variables are related in such a way that all variables must be analysed
simultaneously. In order to summarize the multivariate data we need summary statistics for
each variable separately (e.g. means and variances) and summary for their relationships (e.g.
covariances and correlations). Furthermore, the concept of distance between observations is
used in many methods. There are also many graphical procedures to visualise the pattern.
There are also multiviariate analogues of some single variate statistical test (for example t-test
or ANOVA). But the aims of the multivariate statistical methods are often different from the
others mentioned in the previous chapters. There are approaches that assume a given structure
of the data and divide cases into groups while others seek directly the structure (groups,
relationships). The choice among these exploratory approaches and specific methods depends
on the question that we aim to answer. The following methods will be outlined:

e principal components analysis (prcomp)

e multidimensional scaling (cmdscale and isoMDS)

e factor analysis (factanal)

e cluster analysis (hclust, kmeans) and recursive partitioning (tree)
e discriminant analysis (1da)

Some of these techniques are available as part of the basic installation (stats package), while
others are implemented in the MASS package and there are many specialized packages for a
given set of problems (see CRAN Multivariate task view for an overview). As an example we
use the vegan package in ecological and evolutionary studies. Short introduction to
multivariate analysis using R is given in Crawley (2012) or Everitt & Hothorn (2011).

Data are generally given in a data frame (data.frame) that is imported from a text file (e.g.
with functions read. table or read.csv). We will use the following datasets:

e “plantdw”: The “plantdw.txt” file (subset from “pgfull.txt”, Crawley 2012) contains
mean dry weights for 31 plant species (columns from 1 to 31) on 50 plots (rows). It
contains also information about the plots (“plot” and “plotclass” columns) and the
covariates (hay biomass and soil pH).

e “taxon”: The “planttax.txt” file contains measurements of 5 variables on 80 individual
plants (subset from “taxon.txt”, Crawley 2012). This is an artificial example; we know
that the first 20 rows come from group 1, rows 21-40 from group 2, rows 41-60 from
group 3 and rows 61-80 from group 4.

Most of the following analyses are reproduced from Crawley 2012, more details are given in
the book.

98

Data

First we read the data and create a new data frame (“‘d”’) that contains the 50 plots and the first
31 columns of the original data set.

> d.full=read.table("plantdw.txt",header=T)
> names(d.full)

[1] "acC" "AE" "AM" "AO" "AP" "AS"
[7] "BH" "BM" "cm" "CN" "DG" "FR"
[13] "HL" "HP" "HS" "KA" "Lc" "LH"
[19] "Lm" "LO" "Lp" "pL" "pp" "pT"
[25] "RA" "RC" "sMm" "TE" "TG" "TO"
[31] "TP" "plot" "plotclass" "biomass" "pH"
> d=d.full[,1:31]
> str(d)
'data.frame': 50 obs. of 31 variables:

$ AC: num 11.3 12.4 4.84 7.06 1.98 ...
$ AE: num 0.34 0.14 0 0.15 6.61 6.4 0.22 0.23 5.29 0.32 ...

"$ TP: num 0.33 0.01 0.68 0.16 9.15 2.17 0.03 1.21 1.26 0 ...

Next, we create new labels (denoted by “1”) to display together the treatment (“plotclass”
coded by letters) with the plot identifier.

> table(letters[d.full$plotclass])

a b c d
131513 9
> 1 = paste(d.full$plot,Tetters[d.full$plotclass],sep=""); 1
[1] "10c" "3d" "2.1a" "l2c" "15b" "19.3b" "2.1c"
[8] "9.1c" "19.1c™ "17a" "17c¢" "6b" "1c" "11.1a"
[15] "13.2c" "11.1b"™ "7c" "18.1a" "3b" "11.2c" "11.2a"
[22] "lea" "18.2a" "4.2d" "12a" "14.1a" "8b" "14.1b"
[29] "7a" "18.1b" "20.3b" "8a" "8c" "7b" "7d"
[36] "8d" "4.1c" "4.2b" "13.2b™ "12d" "15d" "14.1c"
[43] "11.1d" "6a" "17b" "14.2d" "3a" "1b" "2.1d"
[50] "9.1b"
Distances

Similarity of two objects on the basis of the variables is a fundamental porperty in many
methods. Similarity is deduced from multivariate distance, the measure of the dissimilarity.
Distance of the objects is stored in a distance matrix, which can be created by the dist
function. Several different distances can be used, the default is the Euclidean distance (see
?dist).

> dist(d)
1 2 3 4 5 6
2 16.505681
3 21.910068 10.176473
4 14.523908 ©6.662282 8.281715
5 25.977679 17.823987 14.435162 16.471032

99

6 25.510257 12.948046 15.097043 16.478759 14.980841
7 15.405136 3.726298 9.150164 4.717913 17.029486 14.692556

45.16.644014 4.028039 9.278960 6.112896 17.015928 14.446391
50 26.537688 17.276921 14.565143 16.631939 13.664981 15.510000

Small distance (e.g. approximately 16.5 between object 1 and 2) means large similarity.
Principal components analysis

Principal components analysis (PCA) tries to find linear combinations of the variables that
capture most of the variation in the data. The aim is to consider a small number of
combinations of variables, called principal components (PC), associated with the objects.
Principal components are uncorrelated and ordered so that the first few account for most of
the variation in all the original variables. We analyse further the “plantdw” dataset.

PCA is carried out by the method using prcomp with the option scale=TRUE, because the
variances are different for the plant species (check it, e.g. apply(d,2,var)). Note that there
is another approach for PCA implemented in the stats package (see ?princomp).

> m=prcomp(d, scale=T)
> summary (m)
Importance of components:

PCl PC2 PC3 PC4 PC5 PC6 PC7
.8855 2.0150 1.8666 1.4173 1.33071 1.12948 1.10706
.2686 0.1310 0.1124 0.0648 0.05712 0.04115 0.03954
.2686 0.3996 0.5120 0.5767 0.63387 0.67502 0.71456

PC8 PC9 PC10 PC11 PC12 PC13 PCl4
.02757 0.96469 0.94519 0.93127 0.88012 0.8239 0.77330
.03406 0.03002 0.02882 0.02798 0.02499 0.0219 0.01929
.74862 0.77864 0.80746 0.83543 0.86042 0.8823 0.90161
PC15 PC16 PC17 PC18 PC19 pPC20 PC21

0.
0.
0.

Standard deviation
Proportion of variance
Cumulative Proportion

OON

Standard deviation
Proportion of variance
Cumulative Proportion

1 0
0 0
0 0
Standard deviation 0.69112 0.6865 0.60113 0.57626 0.53241 0.48481 0.39985
Proportion of variance 0.01541 0.0152 0.01166 0.01071 0.00914 0.00758 0.00516
Cumulative Proportion 0.91702 0.9322 0.94387 0.95459 0.96373 0.97131 0.97647
PC24 PC25 PC26 PC27 PC28
0 .33707 0.33126 0.26256 0.24523 0.19391
0.0047 0.00435 0.00367 0.00354 0.00222 0.00194 0.00121
0.9812 0.98552 0.98918 0.99272 0.99495 0.99689 0.99810
PC29 PC30 PC31
Standard deviation 0.17927 0.1359 0.09117
Proportion of variance 0.00104 0.0006 0.00027
Cumulative Proportion 0.99914 0.9997 1.00000

PC22 PC23
Standard deviation .3818 0.36704
Proportion of variance

Cumulative Proportion

[eNeNe) [eNeNe)

The first principal component explains 26.9% of the total variation; the second explains
13.1% etc. PC1-PC7 together accounts for almost 72% of the total variation. We need 14
components to achieve 90%. The plot of the model (called scree plot) shows the relative
importance of each principal component.

> plot(m, main=""")

100

Variances
4
|

Principal component loadings, defined as the influence of the original variables on the
principal components, can be displayed by using biplot. Loadings can be extracted using
m$rotation (it is an element of the result list of prcomp).

> biplot(m, main=""")

101

T (s8]
o
| — ©
=)
N — <
(e]
St — N
o ©
O 46
LLO
(j_ — O
o
(= Sam — A
™N
o = ¥
op)
o

The numbers represent the rows of the original data frame (the plots) and the arrows show the
relative loadings of the species (the original variables) on the first and second principal
components. Species AP, AE and HS have strong positive loadings on PC1 and LC and LH
have strong negative loadings (among others).

Explanatory variables can be plotted against the principal components to look for patterns.
Principal components of the original plots can be extracted using predict. PC1 is the first
column of matrix returned by the function (see predict(m)[1:5,1:5]; predict(m)[,1]).

> plot(d.full$biomass, predict(m)[,1], xlab="biomass", ylab="pPC1l")

102

w — o
(D —
o
o©
< — oo
o
o o
o - oo
O N - o ©
0o 2 o)
00
o
o 8 5 .
o 08
W g & ° & *°
o] o] o] @
3 o)
o
5 o
¥ % "
| | | | | |
4 S 6 7 8 9
biomass

This relationship suggests that the first principal component is associated with the increasing
biomass (from Crawley 2012).

PCA considers relationships within a set of variables. Canonical correlation analysis (see e.g.
cancor in R stats package) is used widely for insights into the association between two sets of
variables. Correspondence analysis is used in the same way as PCA but for categorical
variables (see e.g. corresp in MASS package). Reducing dimesionality of the original data
and ordering objects according to their similarity (called ordination or gradient analysis) is
addressed by many different methods.

Exercises

1. Show the effect of 14 components in the scree plot!
2. What kind of species has strong positive and negative loadings on PC2?
3. What do you think about the association of PC2 and pH? Plot the relationship!

Multidimensional scaling

Metric multidimensional scaling (also known as principal coordinates analysis, PCoA) is
conceptually very similar to PCA,; both preserve the Euclidean distances as far as possible.

103

But multidimensional scaling is applied to the distances, which are derived from the data.
This provides more flexibility for this method. We carry out PCoA using cmdscale. The
maximum dimensions must be specified (default is two) in this implementation. The scores of
the objects are obtained in a numeric matrix (by default). We use now the the new labels for

[,2]

.69112871
.73565334
.53596952

.79471985

plotting.
> m = cmdscale(dist(d))
> m
[,1]

[1,] -12.1099520

[2,] -9.2996918

[3,] -6.5830315

[49,] -8.8591645

[50,] 3.7434723

.19985487

> plot(m[,1], m[,2], xlab="Coord 1", ylab="Coord 2", main="", type="n")
> text(m[,1], m[,2], Tabels = 1, cex=.7)
11.1d
o
<
o _
™
o~
2 o
8 O 7
O
= .
132c SQdbc
143030 ., 478, 0
O 19.3p 150 2030 78137 fiag Tib
141
a - 11.1a
142d 11.2a
| | | | |
-10 0 10 20 30
Coord 1

Interpretation of a PCoA plot is straightforward. Objects close to each other are more similar
on the basis of the distance matrix used as input. Plot 11.d is very different from the others; it

is dominated by a certain grass species (Crawley 2012).

104

PCoA can only fully represent Euclidean components of the matrix even if the matrix
contains non-Euclidean distances. The solution to overcome this limitation is given by the
non-metric multidimensional scaling (NMDS), or using data transformations. Non-metric
multidimensional scaling (NMDS) is based on rank orders instead of the absolute distances.
It can be used for quantitative, semi-quantitative, qualitative, or mixed variables. It is a robust
technique, e.g. tolerates missing distances. We use isoMDS from the “MASS” package (see
also sammon in “MASS” for another approach). An iterative algorithm is used which starts
from the result of cmdscale by default with the desired number of dimensions (2 by default).
The algorithm minimizes the so called stress criterion to find the coordinates of the best
spatial representation (best fit). Stress in general represents the extent to which the rank order
of the fitted distances disagrees with the rank order of the observed dissimilarities. In practice,
less than 5% stress is considered to suggest good fit.

> Tibrary(MASS)

> m = isoMDS(dist(d))

> m

initial value 22.230754

iter 5 value 20.627186

iter 10 value 13.071990
iter 15 value 10.890715

iter 20 value 9.715061
iter 25 value 8.945729
iter 30 value 8.314638
iter 35 value 7.698929
iter 40 value 6.748821
iter 45 value 5.705382
iter 50 value 4.940255

final value 4.940255

stopped after 50 iterations

> plot(m$points[,1], m$points[,2], xlab="Coord 1", ylab="Coord 2", main="",
type="n")

> text(m$points[,1], m$points[,2], labels = T, cex=.7)

> m$stress

[1] 4.940255

105

o
LO p—
0 1114
O
o -
N
O
o)
(@]
O o
(T'p]
10C42d 14.1a
D _— -.
191@ m% Eb% e ”’&Bb 1B 113a
11.2¢
I I I I I
-10 -5 0 5 10 15 20

Coord 1

MDS is often used to reveal the correlation pattern of the data (e.g. given in the form of
correlation matrix). In this case, correlation must be transformed first to distance (e.g. apply
1 - cor if cor denotes the correlation coefficient).

Factor analysis

Compared to PCA, the variables themself are of little interest here. The aim generally is to
construct usable numerical values for properties that are hard to measure directly. We try to
explore the assumed common factors behind the correlations of variables. In contrast to PCA,
each factor contains a contribution from each variable (loadings, see ?1oadings), so the
length of the factor is the number of variables. Note that “factor” here is not the same as the
categorical variable we are using through the book.

There are different approaches for factor analysis. We demonstrate the factanal from the
stats package. It is necessary to specify the number of factors we are interested in. For
example let us start with 8.

> factanal(d,8)

106

call:
factanal(x = d, factors = 8)

Uniquenesses:
AC AE AM AO AP AS BH BM M CN DG FR HL
0.005 0.005 0.387 0.764 0.131 0.053 0.342 0.421 0.731 0.649 0.310 0.005 0.665
HP HS KA LC LH LM LO LP PL PP PT RA RC
0.238 0.096 0.541 0.399 0.281 0.470 0.275 0.206 0.162 0.558 0.210 0.005 0.383
SM TF TG TO TP
0.676 0.492 0.508 0.352 0.106

Loadings:
Factorl Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
AC -0.454 -0.326 -0.208 0.788

AE 0.944 -0.204 -0.183 -0.120

AM -0.179 0.368 0.546 0.287 0.162 -0.188

AO -0.313 -0.197 -0.122 -0.102 -0.119 -0.120 -0.205
AP 0.850 -0.261 -0.194 -0.148

AS 0.779 -0.115 0.138 -0.148 0.109 -0.111 0.510

BH 0.365 0.715

BM -0.156 0.723 -0.114 -0.109

cM -0.167 0.409 0.162 -0.186
CN -0.333 0.311 -0.243 0.257 -0.111
DG 0.767 -0.138 -0.109 0.194 -0.133
FR -0.366 -0.242 0.119 -0.183 0.866
HL -0.161 -0.480 -0.257
HP 0.856 0.107

HS 0.732 -0.238 0.143 -0.272 0.268 0.360

KA -0.132 0.615 -0.151 0.114 -0.143

LC -0.311 0.535 -0.240 0.279 -0.277

LH -0.226 0.738 -0.168 0.280

LM 0.117 0.709

Lo -0.157 0.804 -0.142 -0.118

LP -0.171 0.852 -0.145

PL 0.182 0.694 0.434 0.354

PP 0.342 -0.163 0.174 -0.387 0.295 0.151

PT 0.799 -0.172 0.157 0.286

RA 0.133 0.334 0.916 0.154

RC 0.504 -0.348 0.207 0.196 0.106 0.369
SM 0.553

TF 0.522 0.200 0.382 -0.150 0.123
TG 0.534 0.436

TO 0.209 -0.200 0.662 -0.324 0.100

TP 0.893 0.242 -0.169

Factorl Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8
SS loadings 5.401 4.504 3.423 1.909 1.725 1.344 1.136 1.130
Proportion var 0.174 0.145 0.110 0.062 0.056 0.043 0.037 0.036
Cumulative var 0.174 0.320 0.430 0.492 0.547 0.591 0.627 0.664

Test of the hypothesis that 8 factors are sufficient.
The chi square statistic is 321.71 on 245 degrees of freedom.
The p-value is 0.000718

For example, on factor 1, strong positive correlations are found with AE and AP and negative
correlations with AC and FR. It was interpreted as this factor captures the gradient from the
neutral to the acidic grasslands. Factor 2 captured the associations with the soil pH; factor 3
picks out the key nitrogen-fixing species and so on (Crawley 2012).

Cluster analysis

107

The aim of the cluster analysis is to separate groups (clusters) within the data on the basis of
the similarity in variables, even if there is a redundancy within the latter ones. There are many
different approaches that fall into one of the following main types:

e hierarchical classification first considers each object as a separate entity and ends up
with a single cluster;

e divisive classification starts with a single aggregate and splits up clusters until all the
objects represent different groups;

e partitioning methods try to allocate objects into predefined number of groups.

Hierarchical cluster analysis algorithms proceed iteratively. Initially each object is assigned
to its own cluster. Then, it joins the most similar clusters step by step until a single cluster is
obtained. Different methods exist for the agglomeration, i.e. the algorithm for calculation of
distances between clusters. We will use the function hclust (from stats package), where the
default method is the “complete linkage” (see ?hclust). Another widely used approach is the
UPGMA (Unweighted Pair Group Method with Arithmetic Mean,
hclust(method="average”)). Another key question is defining the similarity of two objects.
Similarity is deduced from multivariate distance.

Which plots are the most similar in their botanical composition? We calculate the distance
matrix, perform the cluster analysis and display the result as a dendrogram using the new
labels. The plot can be saved in vector format (see e.g. ?pdf) and it can be magnified in
appropriate viewers (e.g. Acrobat reader).

> hc = hclust(dist(d))
> plot(hc,labels=1,main="")

60

—

50
|
1d

"

40

Height

20

10
=
42d —

dist(d)
hclust (*, "complete")

108

It was interpreted as (Crawley 2012) the highest breaks separate plots dominated by a given
grass species (e.g. 11.1d) and high nitrogen plots also receiving phosphorus (e.g. plots 11).
And so on.

Classification of taxonomic data provides a natural use of cluster analysis. We can test it on
the “taxa” dataset.

> tx = read.table("pTanttax.txt",header=T)
> dim(tx)
[1] 80 5

> names (tx)
[1] "Petals" "Internode

Sepal™ "Petiole" "Leaf"

As a first look, we can plot every variable against each other.

> pairs(tx)

L] g%ag-l Df— o
E B 20 o~
Petals - Da%%%g 4 ©
E]
UBE% c?:n':'n -
o [o
of |go ° I
= B oo 0@ o -
— ?Ban = D‘:'@ DD o QDDEEE.
ﬂ 7 D;D d:.':‘ o ED DE?' o [u]
b e, 0
& _%S @E';m% DD = § [n] U:‘B%D ﬁﬂn DD
. 8 d
R] ° D@DDDE &ﬁ ‘E\I:E DD% %%DD g'ﬁﬁ 2o
FE=Td [B0 o =t | [, e
awfm 3% 4 &8 e 0 =]
Sepal -
oy, o L0 o om
L o
Sl
o
[=X=] [=] ("] [=]] (=] [=]=]
= - o2 D 8, iy, @I
S 1k el My 3 Ly N
o S e B o %‘@ =% | Petiole 3 R 4
o = u:::‘gd:, oo DDD Dn DD% ﬁm‘:‘n
M~ — o0 Dn:\ o & & ° Q
=] [%] B T}
oo 2F - fagia] ot e
. o o d) CEPDD oo & 2% - %U&nnn@ Leaf = g
il m | (B ogthy % g |2 o, o R
o
Drﬁdﬁ %ﬁﬁ o GaF o7 I oo’ A I e
4 5 6 7 8 20 30 40 50 1.0 2.0

109

It seems that variables sepal length, petiole length and leaf width result in some subdivision.
Let us repeat the hierarchical clustering on this data with the default distance and
agglomeration method.

> plotChclust(dist(tx)), main="")

Height

dist(tx)
hclust (*, "complete")

We know the real groups in this example. For example we can realise that the rightmost split
contains members from 3 different groups. The result seems to be unacceptable. Let us try
other logics of classification.

Partitioning is another approach for clustering. One basic technique is implemented in
kmeans from the stats package. The number of clusters fitted to the data must be given. In
kmeans each object is simply assigned to the nearest centroid (the multidimensional
equivalent of the mean of a group). Generally this number is unknown, but we know it for the
taxa dataset.

> kmeans(tx,4)
K-means clustering with 4 clusters of sizes 22, 9, 16, 33

Cluster means:
Petals Internode Sepal Petiole Leaf

1 5.555707 27.97927 2.626847 10.518480 1.503062
2 7.803716 29.12466 2.593142 8.325013 1.416201
3 6.561599 29.80285 3.404990 10.128217 2.157938
4 6.651925 25.99485 3.195329 9.721562 1.846728
Clustering vector:
[11 11144411141411111111442214142
[30] 23242422414344433444334341143
[591 2343334331443 444344114414

within cluster sum of squares by cluster:
[1] 53.81026 22.15085 43.90151 125.17553
(between_SSs / total_SS = 52.3 %)

110

Neither kmeans nor hclust is up to the job in this data. In general, when we do not know the
group identities, then the result is often equivocal as illustrated by this artificial example.

Tree models

If we know the group identities of the objects, tree models can be efficient at creating keys
based on the variables to allocate objects into the relevant categories. Tree models are
computationally intensive methods that are used widely as a guidance to select important
explanatory variables. Classification tree will be presented here from the “tree” package.

First we extend the “tx” dataframe with a “Taxon” column in order to include taxon names
(denoted by A-D). “Taxon” is a four level categorical variable and its levels are the taxa. This
is the response variable and we want to use five measurements (the explanatory variables) to
separate the taxa.

> txy = cbind(Taxon=rep(c("A","B","C","D"),each=20),tx)
> nhames (txy)
[1] "Taxon" "pPetals" "Internode

Sepal” "Petiole" "Leaf"

Now we can produce and plot the tree:

> library("tree")
> m = tree(Taxon~.,txy)
> plot(m)
> text(m)
Sepal <,3.55154
I
Leaf < 1.98529
D
Petiole <[9.96224
C
B A

111

Our aim was to find characters that explain most of the variation and finally we obtained a
binary key for the separation of the taxa. Three of the five variables were selected. The key
(from Crawley 2012):

1. Sepal length >4.0 Taxon D
1. Sepal length < 4.0 2.
2. Leaf width >2.0 Taxon C
2. Leaf width < 2.0 3.
3. Petiole length < 10 Taxon B
3. Petiole length > 10 Taxon A

This classification tree does much better than the multivariate techniques mentioned before.
There is no error in the classification of the 80 sample individuals using the obtained key.

> summary(m)
Classification tree:

tree(formula = Taxon ~ ., data = txy)
vVariables actually used in tree construction:
[1] "sepal” "Leaf" "Petiole"

Number of terminal nodes: 4
Residual mean deviance: 0 =0 / 76
Misclassification error rate: 0 = 0 / 80

Finally there is a plotting function for classification trees, for two explanatory variables.
Selecting the two most important ones and repeating the analysis:

> m2 = tree(Taxon~Sepal+Leaf, txy)
> partition.tree(m2))
> with(txy, text(Sepal,Leaf,Taxon, cex=0.7, col=as.numeric(Taxon)+1))

112

¢ e = c
Cc
C
C
T
L
o~ T C c C
¢ Cc
C Cc
Cc
" c
(o O _ =
§ N : B T D
» B A
e @® g
o | AEA-—A A i
. T T ! T T !
2.0 25 3.0 35 40 45 50

Sepal

It displays how the phase space has been divided up between the taxa. The last line added data
points to the figure. Taxa C and D are separated by these two variables (A and B were
separated by “Petiole” - but it is not used here).

Exercises

4. Repeat the hierarchical cluster analysis of the “plantdw” dataset using UPGMA with
Euclidian distances and plot the dendrogram!

5. Display the group name on the dendrogram of the “taxa” dataset!

6. Does the result for “taxa” change with UPGMA?

Discriminant analysis

The aim of the discriminant analysis is to understand how the explanatory variables contribute
to the correct classification. Grouping is known as in the case of tree models. For k groups we
need k-1 discriminators, which are linear combinations of explanatory variables in linear
discriminant analysis (LDA). The resulted model can be used to classify new data. LDA can
be found in the “MASS” package.

> Tibrary(“MASS”)

113

> m =

Tda(Taxon~. ,txy)

> plot(m, col=as.numeric(txy$Taxon))

-4 -2 0 2 4
| | | | |
& DD D_ g
P& D » P Y o
G S o Sl
°®o oo D D 5005p
LD1 A .
:'_" =’EE z 5 A AA a _”; 2 E:A%E
BS .. B A g A s m AST
-: ::: :\-—&é Q A A e - ccA BB AA 5=: 8
— A -
i i o LAa A
A A
N — Afﬁ\ ~ A AA
BA A A = _ ATMA A
r A D oo 50 %, A
® |t R LD2 § °0lem
Ly e T Fm B P £ _
¥ e) S s
. g8 .8 o
Y % = = ™" <
= Za EE = ol 555 K&
8 z2 “= i -] -
A A E A e i« A A
ﬁ # e = = A AA A
2he’ f:ﬁ % o » - =B AA AA
s R Sooo@| |° o%ED 2 LD3
; & C #p geit
e 3 DE p
R I I VS SN
=R R R 32101 2 3

4 2 0 2 4 6 8

Taxon D is separated completely by the linear discriminator LD1, while LD2 and LD3 are
acceptable for Taxon B, LD1 and LD3 are good for taxon A. There is no clear separation for
taxon C (Crawley 2012). The model:

>m
call:
Tda(Taxon ~

Prior proba
A B
0.25 0.25 0

Group means

Petals
A 5.424393
B 7.018869
C 6.724736
D 6.679908

Coefficient

., data = txy)

bilities of groups:
C D
.25 0.25

internode Sepal Petiole Leaf
27 .42605 2.528293 10.958002 1.460611
27.68353 2.585029 8.452770 1.430544

28.02338 2.369592 9.889299 2.498900
27.48412 4.569818 10.159663 1.674055

s of linear discriminants:

LD1 LD2 LD3

114

Petals -0.09252927 -0.45472160 0.02131069
Internode -0.05889892 -0.09634278 -0.05015767

Sepal 3.81477756 -0.37669969 -0.48275447
Petiole 0.21966707 1.37913523 -0.21228365
Leaf -1.25251754 -0.56449276 -3.05274100

Proportion of trace:
LD1 LD2 LD3
0.7627 0.1319 0.1054

As in the case of tree models, the key variables are “Sepal” (3.81, LD1), “Leaf” (-3.05, LD3)
and “Petiole” (1.38, LD2). The prediction for classification using the discriminators:

> predict(m)

$ class’

[1I]1 AAAAAAAAAAAAAAAAAAAABBIBBBIBIBCHEB
[30] BBBBBBBBBBBCCCCCCCccCcCcccccccccc
[S9]) ccDDDDDDDDDDDDDDDDDDDD

Levels: AB CD

One member of taxon B is misclassified (case 28).

Exercises

7. Create a random subset (e.g. for half of the samples) and repeat the LDA!
8. Classify the unused samples using the model obtained from the previous analysis!

Solutions

1. plot(m,npcs=14)

2. For example AC has positive and TF, PL have negative loadings.

3. plot(d.full$pH, predict(m)[,2], xlab="soil pH", ylab="pPc2"). The second
principal component is associated with declining soil pH.
plot(hcTust(dist(d),method="average”),labels=1)

For example 1 = rep(1:4,each=20); plot(hclust(dist(tx)),labels=1)

Yes, but still it is bad, too (pTot(hclust(dist(tx),method="average”))).
. train = sort(sample(1:80,40)); table(txy$Taxon[train]);
m2 = lda(Taxon~., txy, subset=train); predict(m2)
predict(m2,txy[-train,])

No o s

o

References
Crawley M. J. (2012) The R Book (2" ed.). Wiley
Everitt B., Hothorn T. (2011) Introduction to Applied Multivariate Analysis with R. Springer

115

SUMMARY

Multivariate statisctics are used tho explore structure in the data.

e Reduce dimensionality with principal component, factor analysis or multidimensional

scaling.

e Create groups of data with different types of cluster analysis or use recursive

partitioning.

e Explore contribution of variables to a predefined classification using discriminant

analysis.

R functions used in Chapter 10

biplot
cbind
cmdscale
dim

dist
factanal
hclust
isoMDS
kmeans
Ida
library
names
pairs
partition.tree
paste
prcomp
rep

sort

str

table
text

tree
with

116

Chapter 11

Simulations

Simulations are used for many different purposes, for example investigating patterns in time
and space. This chapter introduces a few techniques that demonstrate the power of R in this
type of analysis. The first aim is to show how to generate pattern, with or without data in
hand. It can be used to sharpen intuition and test the estimation toolbox. Our second aim is to
show how to estimate statistical power using simulations. Selected examples of Bolker (2008)
and Crawley (2012) will be reproduced.

Temporal population dynamics, the logistic map

Increase of the biological populations is typically a density-dependent process. The simplest
model for this dynamics is known as the logistic map, defined here by the following quadratic
recurrence equation:

N(t+1) = rN(t)(1-N(t)),

where N(t) is the population size at time t and the parameter r is the per-capita multiplication
rate. We simulate and plot time series of populations for different values of r. First we write a
function, called gm, to calculate the change of the population size from one generation to the
next according to the above equation. The function has two arguments, the per-capita
multiplication rate and actual scaled population size.

> gm = function(r,xt) r*xt*(1-xt);

We can use it similarly to the built-in R functions. For example:

> qm(1.3,0.4)
[1] 0.312

One way to go through the elements of a sequence is the use of for cycles. The index,
denoted by “t” from time in the following example, represents the current element. Note that t
is a function name and reserved in R, it stands for transpose basic function (see ?t), but it is
overwritten here. We will run four different simulations with different parameter values (r =
2;3.3; 3.5; and 4).

x1l = 0.6; maxt = 40; r = 2

X = numeric(maxt)

x[1] = x1; for(t in 2:maxt) x[t] = gm(r,x[t-1])
plot(1l:maxt,x,type="1",ylim=c(0,1),xlab="time",ylab="population",
main=paste("r = ",r,sep=""))

+VVVy

117

1.0

0.8

population
06
|

<

(an]

o™

(e]

o |

o
T T T T T
0 10 20 30 40

fime

With r=2 the equilibrium (N=0.5) is reached quickly. This system has a stable equilibrium
point.

r=3.3

for(t in 2:maxt) x[t] = gm(r,x[t-1])
plot(l:maxt,x,type="1",ylim=c(0,1),xlab="time",ylab="population",
main=paste("r = ",r,sep=""))

+VVvVyv

118

r=3.3

06 08 1.0

population

0.4

0.2

time
Now we have persistent two-point cycles.

r=3.5

for(t in 2:maxt) x[t] = gm(r,x[t-1])
plot(1l:maxt,x,type="1",ylim=c(0,1),xlab="time",ylab="population",
main=paste("r = ",r,sep=""))

+VVyV

119

r=3.5

1.0

08

population

04

0.2

fime

We have persistent four-point cycles.

r=4.0

for(t in 2:maxt) x[t] = gm(r,x[t-1])
plot(1l:maxt,x,type="1",ylim=c(0,1),xlab="time",yTlab="population",
main=paste("r = ",r,sep=""))

+VVyV

120

1.0

0.8
|

086

population

04

0.2

0.0

time

The system has a chaotic behaviour.

Note that the results can be presented on one device, for example by using the Tayout()
function before the first plot call. After the fourth plot command, we can reset the devise by
Tayout(matrix(1l,1)).

VVVVYV

V+ V-

1ayout(matr1x(1 4,2, byrow)

x1l = 0.6; maxt = 40, r =2

X = numer1c(maxt)

x[l] = x1; for(t in 2:maxt) x[t] = gm(r,x[t-1])
plot(1l:maxt,x,type="1",ylim=c(0,1), ...

p1ot(1 maxt, X, type—"]",y11m =c(0,1),xTab="time",ylab="population",

main=paste("'r ,sep=""))
1ayout(matr1x(1 1,)

121

r=2 r=3.3

[ve) [su]
2 1y g
o o
= =
g S g ST
o o
= T T T T 9 T T | T
0 10 20 30 40 0 10 20 30 40
time time
r=3.5 r=4
[se) [su]
c O_ [O_
=] .S
] n ® N
a = _| a = |
8.0 8.0
o o
= T T T T 9 T T | T
0 10 20 30 40 0 10 20 30 40
time time

We created four snapshots for different values of r. But we can also investigate the behaviour
of this system in more detail. Let us describe the dynamics as a function of the r parameter.
We have to write a function that returns a set of sequential population densities (e.g. 30)
following the transient period (e.g. 470 iterations).

xts = function (r) {

X = numeric(500)

x[1] = 0.6

for (t in 2:500) x[t] = gm(r,x[t-1])
§[471:500]

+4++++V

We plot the 30 values against r within the interval we investigated above (from 2 to 4 with
0.01 step). A stable equilibrium point will be represented by one point (as all the 30 values are

the same), two-point cycles by two point etc. This type of plot is called a bifurcation diagram.
> plot(c(2,4),c(0,1),type="n",xTab="r",ylab="population",main="")

> for(i in seq(2,4,0.01))
+ points(rep(i,30),sapply(i,xts),pch=16,cex=0.5)

122

1.0

-.-.-:..:..‘é

L

I-‘t‘ !"‘

wt
™

06
|
e
e R
e '

Yo

population
o
o
£k,
Tt

0.4

|
3
A3
L
Lkl -

X

-""'

g - e

%

o | Y
o

[[[[[

20 25 30 35 40

Pattern in space and time, the simulated random walk

We will follow an individual on a square surface (two dimensions) which scales from 0 to 100
units in both directions. The individual starts at the point (50,50) and leaves a trail. It can
move one step in a time period in a given direction or stay (so the movement options are
given by c(-1,0,1) in x and y directions, respectively). Let us suppose that all motions are
equally likely.

In R, the sample function can be used to select one option randomly (with a specified
probability, see ?sample). We repeat this selection for x and y directions independently in
each time period (say 10000). Note that margins should be handled in a more sophisticated
spatially explicit simulation. It is stopped here when one of the margins is reached.

plot(0:100,0:100,type="n",xTab="",yTlab="")
x =y =50
points(50,50,pch=16,col="blue",cex=1.5)
for (i in 1:10000) {

xs = sample(c(1,0,-1),1D)

ys = sample(c(1,0,-1),1)
Tines(c(x,x+xs),c(y,y+ys))

X = X+XS; Y = Yy+ys

;f (x>100 | x<0 | y>100 | y<0) break

++++++VVVYV

123

100
I

80

60

40

0 20 40 60 80 100

Stochastic simulation of the data

Previous examples presented one way of the use of simulations, where we had a model (based
on a given theory) with fixed parameter values and worked forward to predict patterns
qualitatively from a given initial condition. This approach is often called as forward modeling.
In contrast, in inverse modeling we start from the data and work backward to choose a model
and estimate parameters. When we have data, we can assess the similarity to a simulated
pattern as a first step of the detailed analysis. Similarity may confirm that the model is
reasonable. It also gives a rough estimate of the parameters. For static data, we can use
functions to simulate the deterministic process (e.g. linear function) and add heterogeneity
(e.g. from normal distribution).

Following Bolker (2008; more details are given in the book), the latter is illustrated on a
simple example, where we have one group and one continuous covariate. We use a linear
model with normally distributed errors. Data may represent productivity as a function of
nitrogen concentration. More formally, let us specify Y random variable drawn from a normal
distribution with mean a+bx and variance s°. It can be written as

yi=a+bx+e,e&~ N(0,62) .

The simulation starts by specifying the values of x (1, 2, ..., 20 in our case) and values for the
parameters a (a=1) and b (b=2). We then calculate the deterministic part of the model (vector
ydet).

124

1:20
2; b
t =a

VVYyVv
< o X
oI

1
X

gl

d +b*

Next, we pick 20 random normal deviates (function rnorm). The mean is given by the
deterministic part and standard deviation is fixed to 2, so the call rnorm(20, mu=ydet,
sd=2) gives the desired result. Or, values of y can be obtained using the formula given above
(the mean is zero by default in rnorm).

>y = ydet + rnorm(20, sd=2)
> plot(x,y)

Finally, we can show the theoretical relationship between x and y and the best-fit line by
linear regression, y =Tm(y~x).
> abline(Tm(y~x),Tty=2)

> abline(a,b)
> legend("topleft",c("true","best fit"),lty=1:2,bty="n")

— true .
---- bestfit T o

2 10 15 20

X

Randomness is incorporated in the simulation, so the theoretical (“true”) and best-fit lines
differ slightly.

This logic can be extended for many groups and covariates using more complex models. We
can chain several functions and probability distributions easily in R. Note that the model
usually cannot be expressed as a deterministic function plus error. Instead, we incorporate the

125

deterministic model as a control on one of the parameters of the error distribution (e.g. by
specifying the mu argument as mu=ydet).

Power analysis

Power analysis in a broad sense considers the following question: How do the quality and
quantity of data and parameters affect the quality of the conclusions? Quality and quantity of
the data and true properties of system include the

e number of observations,

e details of the experimental design (distribution of the data)
- temporal and spatial extent and distribution (blocking, balance, etc.),
- distribution of covariates,

e amount of variation,

o effect size.

For example large datasets are better, but there are trade-offs. It requires more effort, namely
time and cost. Or, controlling extraneous variaton allows more powerful analysis - if we know
what is “extraneous".

R has built-in functions for standard cases (see e.g. power.t.test) but more complicated,
realistic situations require simulations. Simulations repeatedly generate random data based on
the predefined model, then analyze each data set and count the proportion of results that are
significant. That proportion is the estimated power for the model. There are packages that
make the process simple (e.g. “paramtest” for general purpose).

For illustration we estimate the statistical power of detecting the linear trend in the data
simulated in the previous section, as a function of the sample size. The elements of a single
simulation step are the following:

e simulate the data points with a given sample size and model parameters
e test the hypothesis and store the result.

The R code for our example:

=1:20

=2; b=1; sd =8

= 20

et = a+b*x

= rnorm(N,mean=ydet, sd=sd)

= ImCy~x)

oef(summary(m)) ["x","Pr(|t])"]
0

X
a
N
yd
y
m
C
1 0.006374994

—,VVVVVVYV

1

We extracted the p-value of the desired parameter from the output matrix of coef(), that
extracts the coefficients from the summary of the linear model fit, using matrix indexing by
names.

126

> coef(summary(m))
Estimate Std. Error t value Pr(>|tl)
(Intercept) 4.036208 3.9944745 1.010448 0.325671773
1.028948 0.3334523 3.085742 0.006374994

The p-value is less then the specified criterion (say a = 0.05), so the null hypothesis is
rejected. But we need the power, the probabily of succesfully rejecting the null hypothesis
when it is false. To estimate the power we have to repeat the procedure many times (denoted
as nsim) and simply calculate the proportion of runs when we reject the null hypothesis. The
p-value of each simulation is stored in the pval vector. We set the number of simulations to
400 (a reasonable choice if we want to estimate percentage).

nsim = 400
pval numeric(nsim)
for (i in 1l:nsim) {
ydet = a+b*x
y = rnorm(N,mean=ydet,sd=sd)
=_Im(y~x)
pval[i] = coef(summary(m))["x","Pr(>|t]|)"]

sum(pval<0.05)/nsim
1] 0.86

—V+++++VVYV

Now we have the power of the single experimental design. But generally we want to know
how the power changes as we modify the design. To do this, we have to repeat the last
procedure many times, each time changing a given parameter such as the slope (or the
distribution of x, etc.). For example for the slopes (stored in the vetor power.b):

> power.b = numeric(length(bvec))
> for (j in 1l:1ength(bvec)) {
b = bvec[j]
for (i in 1l:nsim) {

ydet = a+b*x

y = rnorm(N,mean=ydet,sd=sd)

= Tm(Cy~x)
pval[i] = coef(summary(m))["x","Pr(|t]|)"]

h
} power.b[j] = sum(pval<0.05)/nsim

+++++++++

We can plot the power as a function of the effect size (the distance of the parameter from the
null hypothesis value, actually it equals to the slope). Red dot shows the previous scenario
(where b=1).

> plot(bvec,power.b,type="b",ylab="Power",xlab="Effect size")
> points(1,0.86,pch=16,col="red")

127

1.0

- oocooo 000000

0.8

Power
E O
ﬂ—_____h

04
|
—
O-.,____ho

0.2
|
0
Te——

Effect size

We could calculate the power for many parameter combinations (e.g. add sample size,
standard deviation) using another for loops, and show the result using contour.

References

Bolker B. (2008) Ecological Models and Data in R. Princeton Univ Press
Crawley M. J. (2012) The R Book (2" ed.). Wiley

128

SUMMARY

Simulation models are used for investigating patterns in time and space or for testing our
estimation tools or power. Examples are presented in the R way.

R functions used in Chapter 11

abline
coef
function
layout
legend
for

lines

Im
numeric
points
rnorm
sample
sapply
seq
summary

129

Chapter 12

Phylogenetics

In traditional analyses species were treated as independent entities. In ecology, typical data
matrices (data frames in R) contained the taxon name and abundances in different localities,
perhaps together with explanatory variables. But independence is an invalid assumption.
Species vary in their degree of relatedness and their functional similarity. Thus, analyses may
require phylogenetic trees and ecological (or trait) matrices, too. The “Taxon” dataset used for
multivariate analyses is an example of the latter (Chapter 10).

Phylogenetics deals with evolutionary relationships among different entities, including
species and their properties. It provides the basic framework for biological reasoning. In
statistical sense, the reconstruction of phylogeny is a special multivariate clustering method.
This chapter introduces handling phylogenetic data in R: how it is structured and how it can
be plotted and manipulated. We do not discuss the reconstruction workflow in detail. Paradis
(2011) gives a nice introduction to phylogenies in R (together with comparative analyses).
The package “ape” we use in this book is introduced also in Paradis (2011). Another aim of
this chapter is to illustrate a way how DNA sequences can be handled in R.

We will reproduce some of the analyses from Chapters 3, 5, and 6 of Paradis (2011) for a gall
wasp cytochrome c¢ oxidase sequence dataset (a subset from Nylander et al. 2004). Many
advantages of using R will be demonstrated. For example diagnostic methods can be carried
out easily. The steps of the analysis:

1. Dowload the DNA sequences from the GenBank;

2. Sequence alignment;

3. Play with genetic distances, compare the models of sequence evolution;
4. Phylogenetic reconstruction, visualisation of the trees;

Obtaining the data

We first download sequences for 16 species from the GenBank database using the accession
numbers (these are listed in Nylander et al. 2004).

> 11brary(ape)

> X = c("AY368909", paste(”AY3689” 10:15, sep = ""),

+ "AY368923", paste('AY3689", 29: 31 sep = ""),

+ "AF395174" "AF395176", "AF395178" "AF395181" "AY368932")
>

[1] "AY368909" "AY368910" "AY368911" "AY368912" "AY368913"
[6] "AY368914" "AY368915" "AY368923" "AY368929" "AY368930"
[11] "AY368931" "AF395174" "AF395176" "AF395178" "AF395181"
[16] "AY368932"

> cyn.seq = read.GenBank(x)
> cyn.seq _ _ _ _
16 DNA sequences 1in binary format stored in a Tlist.

Mean sequence length: 1077.75

130

Shortest sequence: 1077
Longest sequence: 1078

Labels:

AY368909
AY368910
AY368911
AY368912
AY368913
AY368914

Base composition:

a C g t
0.324 0.112 0.136 0.428

The length of the downloaded sequences differs.

> table(sapply(cyn.seq, Tlength))

1077 1078
4 12

Four out of the 16 sequences are shorter by one nucleotide.

Sequence alignment

The next step is the alignment of the DNA sequences. We use Clustal here. Note that the
external program must be in the PATH. Alternatively, you can use Clustal separately (later we
will see how sequences can be saved in a standard format).

> cyn.ali = clustal(cyn.seq)

CLUSTAL 2.1 Multiple Sequence Alignments

Sequence format is Pearson
FASTA file created!
Fasta-Alignment file created ...

> image(cyn.ali)

131

HA O G HC

AY368909
AY368910
AY368911
AY368912
AY368913
AY368914
AY368915
AY368923
AY368929
AY368930
AY368931
AF395174
AF395176
AF395178
AF395181
AY368932

{
e
[l
||

1

; |u|

800 1000

O N - L] others

Note that some other alignment programs can be called in a similar way from R (e.g. mafft for

MAFFT in the phyloch package).

For further analysis we need the aligned sequences, the name of the taxa and accession
numbers exclusively. We will collect the names into a vector associated with the accession

numbers, check them and drop all unnecessary information.

> taxa.cyn = attr(cyn.seq, "species")
> names(taxa.cyn) = names(cyn.seq)
> rm(cyn.seq)
> taxa.cyn
AY368909 AY368910
"Synergus_crassicornis" "Ceroptres_cerri"
AY368911 AY368912
"Synophromorpha_sylvestris" "Xestophanes_potentillae"
AY368913 AY368914
"Diastrophus_turgidus" "Diastrophus_potentillae"
AY368915 AY368923
"Liposthenes_glechomae™ "Aylax_papaveris"
AY368929 AY368930
"Pediaspis_aceris" "Neuroterus_numismalis"
AY368931 AF395174
"Biorhiza_pallida" "Diplolepis_rosae"
AF395176 AF395178
"Andricus_kolTlari" "Plagiotrochus_quercusilicis"
AF395181 AY368932
"Periclistus_brandtii" "Parnips_nigripes"

Correction in names (e.g. remove the subspecies name) can be done easly in this stage if it is

necessary.

132

We may also have additional biological data for these species. It is stored in the “cyndata.txt”
file.

> cyn.data = read.table("cyndata.txt")
> str(cyn.data)

'data.frame’: 16 obs. of 3 variables:
$ Host : Factor w/ 8 levels "Acer","Glechoma",..: 556 8 47 4 ...
$ Biology: Factor w/ 3 levels "galler","inquiline",..: 2222111

> head(cyn.data)
Host Biology

Synergus_crassicornis Quercus inquiline
Ceroptres_cerri Quercus inquiline
Periclistus_brandtii Rosa inquiline
Synophromorpha_sylvestris Rubus inquiline
Xestophanes_potentillae Potentilla galler
Diastrophus_turgidus Rosaceae galler

The species names are given as rownames in the cyn.data dataframe. Compare the species
names to the names obtained from the GenBank:
> X = match(as.character(taxa.cyn),rownames(cyn.data))
> X
[1] 1 2 4 5 6NA 8 910 11 12 13 14 15 3 16

> as.character(taxa.cyn)[is.na(x)]
[1] "Diastrophus_potentillae"

The last function returned the name of the aligned sequence that cannot be matched. After
reversing the matching we see that synonymous names were used.
> rownames(cyn.data) [is.na(match(rownames(cyn.data),

+ as.character(taxa.cyn)))]
[1] "Gonaspis_potentillae"

Let us replace the name of the downloaded sequence (it is in the sixth position of the
taxa.cyn character vector, or you can use taxa.cyn[“AY368914”]):

> taxa.cyn[6] = "Gonaspis_potentillae"

Finally, we save together the aligned sequences, species names and additional data objects for
later work.

> save(cyn.ali, taxa.cyn, cyn.data, file = "cyn.RData")

It can be reloaded any time by the function call Toad("cyn.Rpata").

We can save the aligned sequences to a text file in a standard format. By default an
interleaved “phylip” formatted file is created (see also ?write.FASTA).

> write.dna(cyn.ali,"cyn.txt")

Genetic distances

The next step is to compare genetic distances using different models of sequence evolution
(see ?dist.dna for the implemented models and other options). First, distance matrices are
calculated from the aligned sequences. We use pairwise deletion option as we have
incomplete sequences.

133

> cyn.K80 = dist.dna(cyn.ali, pairwise.deletion = TRUE)
> cyn.F84 = dist.dna(cyn.ali, model = "F84", p = TRUE)

> cyn.TN93 = dist.dna(cyn.ali, model = "TN93", p = TRUE)
> Ccyn.GG95 = dist.dna(cyn.ali, model = "GG95", p = TRUE)

Correlation among the models gives some impression about their similarity.

> round(cor(cbind(cyn.k80, cyn.F84, cyn.TN93, cyn.GG95)), 3)
cyn.K80 cyn.F84 cyn.TN93 cyn.GG95

cyn.K80 1.000 1.00 1.000 0.932

cyn.F84 1.000 1.00 1.000 0.930

cyn.TN93 1.000 1.00 1.000 0.929

cyn.GG95 0.932 0.93 0.929 1.000

Model GG95 differs considerably from the others.

Saturation of substitutions can be investigated graphically. For example, comparing the
observed pattern (the p-distance, proportion of different sites) to the simple Jukes-Cantor
(JC69) model informs us about the influence of multiple substitutions.

> cyn.JC69 = dist.dna(cyn.ali, model = "31C69", p=TRUE)

> cyn.raw = dist.dna(cyn.ali, model "raw", p=TRUE)
> plot(cyn.JC69, cyn.raw); abline(b 1, a =0)

018

014 0.16

cyn.raw
0.12

008 0.10

0.06

| l |
0.05 0.10 0.15 0.20

cyn.JC69

Some saturation is expected for the most divergent sequences. Comparing Kimura one
parameter model (K80) to Jukes-Cantor suggests no effect of the transition/transversion ratio.

134

> plot(cyn.kK80,cyn.1C69); abline(b =1, a = 0)

cyn.JCBY

o

(\! —]

o

i

=

2

=

w

= l l T
0.05 0.10 0.15 0.20

cyn.K80

We can create the traditional “saturation plot” for each codon positions separately (number of
transitions and transversions against the K80 distance). Note that postion 1 here is the starting
position of the sequence.

V++++++++++VYV

Tayout(matrix(1:3, 1))

for (i in 1:3) {

s = logical(3); s[i] = TRUE

X = cyn.ali[, s]

d = dist.dna(x, p = TRUE)

ts = dist.dna(x, "Ts", p = TRUE)

tv = dist.dna(x, "Tv", p = TRUE)

plot(ts, d, xTab = "Number of Ts or Tv", col = "blue",
ylab = "K80 distance", xTim = range(c(ts, tv)),
main = paste("Position", 1))

points(tv, d, col = "red")

Tayout(matrix(1,1))

135

Position 1 Position 2 Position 3

i)
oo o © 0 o =] oo
=] (=} - o = o o
o o [o o a9 0 0 O 0
© o0 o0 o S o o o 00 00 o
b 8 o8 8 8
o o - o o
® 9 s o000
@0 0Po O c? g o o
o o
o o o 2 0oL 2o0 @ @ @
- o go ooo o o o © of 6&0 5 oo P
e @ & o o ® Om®°o @
=] oo 00 &q 3 ot coo0000O
@™ o 0 0o @ o © gho OdEn ©
o @ o o o odb dbo
o o o = ®8 g o 9 @ oom
o8 8oo g — o o [=- valanmlnuat]
g o comomo 00D @ bod ol P D an
g o oo cn o g o o g 8 | o @00 0 O
§ | cumo cmme | 3| o ok $ | Tl
5 oo oo o @ 2 ool
o o & fF o ¢
o o oo oo O @O o CB & @O wBooBm
= oo oaP X N 4% o o = 0000
o o o © o o o o
i o o =}
o | 9wooo coowmo o o 8 Lrve
[==) o o o 00
00w woo o o
oo o an o o oo oo
o 0o 0o o “,_’ o o
- S | pomomp &
o -
p= o o =1
00 0O o
® @ woom
o
=S
: oo
-
g | = 2
o o o o oo
cooo o o o o
T T T T 1 Y O S R T T T T 1
5 10 20 30 10 30 S0 70 5 10 20 30
Number of Ts or Tv Number of Ts or Tv Number of Ts or Tv

Histogram of the pairwise distances for each codon position shows further details, namely it
suggests something about the variances. We use the “lattice” package instead of the standard
hist function, as it is easier to keep the same scale on all three figures.

y = numeric()

for (i in 1:3) {

s Togical(3); s[i] = TRUE

{ c(y, dist.dna(cyn.ali[, s], p = TRUE))

g.= 913, length(y) / 3)
Tibrary(lattice)
histogram(~ y | g, breaks = 20)

VVV+++VYV

136

01 0.2 0.3

20 M r

Percent of Total
1

Phylogenetic reconstruction

Let us compare first the effect of model choice on the phylogenetic estimation. We use the
neighbor-joining (NJ) method for illustration.

> nj.cyn.K80 = nj(cyn.K80)
> nJj.cyn.GG95 = nj(cyn.GG95)

To have a first look, we can plot the trees easily using the default settings.

Tayout(matrix(1l:2, 1))
plot(nj.cyn.K80,main="K80")
plot(nj.cyn.GG95,main="GG95")
Tayout(matrix(1,1))

VVVYV

137

K80 GG95

AY368932 AF395181
' — —AF395174 ——AY368914
—AY368929 ——AY368913
——AY368923 AY368912
AF395181 AY368911
——AY368914 ——AF395178
—AY368913 —AF395176
AY368912 —AY368931
| AY368911 —AY368930
AF395178 ——AY368932
AY368931 AY368923
AF395176 AY368910
—AY368930 AY368909
AY368910 —AF395174
—AY368909 AY368929
——AY368915 AY368915

The difference between them can be measured by the topological distance.

> dist.topo(nj.cyn.kK80, nj.cyn.GG95)
treel
tree2 10

The root of the tree can be specified by the root function. We have to give the outgroup as an
argument of the function. The species Parnips_nigripes (accession number AY368932) was

involved for this reason.
> plot(root(nj.cyn.K80, "AY368932"))

138

AY368932

AF395174

AY368929
AY368923

AF395181
| AY368914
AY368913
AY368912
AY368911
AF395178
1 AY368931
AF395176
AY368930
AY368910
AY368909
AY368915

The next step is to perform bootstrap analysis. There are several ways for bootstrapping. We
will use the function boot.phylo with rooted trees. First, we define a function for
reconstruction.

> f = function(xx) root(nj(dist.dna(xx, p=TRUE)), "AY368932")

Next, we create the tree and store it in “tr”. The “tr” object (it is a list) represents a
phylogenetic tree with class “phylo”.

> tr = f(cyn.ali)

> str(tr)

List of 4
$ edge :int [1:29, 1:2] 17 19 18 18 20 20 19 21 22 23 ...
$ edge.length: num [1:29] 0.00685 0.000737 0.091836 0.00255 0.088756 ...
$ tip.Tlabel : chr [1:16] "AY368909" "AY368910" "AY368911" "AY368912" ...
$ Nnode int 14

attr(*, ”c1éss")= chr "phylo"
attr(*, "order")= chr "cladewise"

The function f created above is called in each bootstrap replicate (200 times in this case).
> nj.boot.cyn = boot.phylo(tr, cyn.ali, f, 200, rooted = TRUE)

Running bootstraps: 200 / 200
Calculating bootstrap values... done.

> nj.boot.cyn
[1] 200 16 93 61 62 115 106 110 198 199 143 192 186 185

The ith element of the latter vector is the number associated to the ith node of “tr”” (we have
14, as it is given by tr$nnode).

139

We are working with coding sequences, so codon level resampling may be better for our
purposes.

> nj.boot.codon = boot.phylo(tr, cyn.ali, f, 200, block=3, rooted=TRUE)

Running bootstraps: 200 / 200
Calculating bootstrap values... done.
warning message:...

> nj.boot.codon
[1] 200 36 159 86 77 163 141 122 195 200 186 191 196 195

Note that we obtained a warning as the length of the sequence is not a muliple of 3.

We can now plot the estimated NJ tree with the bootstrap values on the nodes. Furthermore
we substitute the accession numbers with species names from “taxa.cyn” (accession numbers
are the names of the rows, so we can use them for reordering).

nj.cyn = tr

nj.cyn$tip.label = taxa.cyn[tr$tip.label]

p1ot(ng.cyn, nho.margin = TRUE)
nodelabels(round(nj.boot.cyn/200, 2), bg = "white™)

VVYVYV

Parnips nigripes
Diplolepis rosae
0.55
Pediaspis aceris
Aylax papaveris
[

Periclistus brandtii

031 .99l Gonaspis potentillae
Diastrophus turgidus
-Xestophanes potentillae
H0.57] 4,0—_@

Synophromorpha sylvestris

Plagiotrochus quercusilicis

Biorhiza pallida

Andricus kollari

Neuroterus numismalis

Ceroptres cerri
0.08 Synergus crassicornis
Liposthenes glechomae

Scale bar can be added using add.scale.bar.

Finally, we can save the tree in Newick format:

> write.tree(nj.cyn, "cyn_nj_k80.tre")

140

Figures can also be saved from R keeping the vector format for zooming (postscript, pdf).

Phylogenetic reconstruction using maximum likelihood and model selection

Now we will use PhyML. It must be installed independently of R. We can call it from R using
the phymltest function, but aligned sequences must be passed to PhyML in a file (it is
already saved, check “cyn.txt” in the working directory, use getwd() if it is not clear).
Running maximum likelihood analysis may be a time consuming task.

> phyml.cyn = phymltest("cyn.txt", execname = "phyml™)

000000000000000000000 CURRENT SETTINGS 0000000000000000000000000

. Sequence filename: cyn.txt

. Data type: dna

. Alphabet size: 4

. Sequence format: interleaved
. Number of data sets: 1
. Nb of bootstrapped data sets: 0
. Model name: JC69
. Proportion of invariable sites: 0.000000
. Number of subst. rate categs: 1
. Optimise tree topology: yes
. Tree topology search: NNIs
. Starting tree: BioNJ
. Add random input tree: no
. Optimise branch Tengths: yes
. Optimise substitution model parameters: no
. Run ID: none
. Random seed: 1548608834
. Subtree patterns aliasing: no
. Version: 20120412

000

. 377 patterns found (out of a total of 1082 sites).
. 629 sites without polymorphism (58.13%).

. Computing pairwise distances...

. Building BioN] tree...

Phymltest fits 28 models of DNA sequence evolution using PhyML and returns with the log-
likelihood value of each model. PhyML results, including the trees, are saved into files in the
working directory.

> phyml.cyn

nb.free.para Toglik AIC
JC69 1 -7718.556 15439.11
JC69+I 2 -7251.634 14507.27
JC69+G 2 -7164.107 14332.21
JC69+I+G 3 -7159.321 14324.64
K80 2 -7718.534 15441.07
K80+I 3 -7249.740 14505.48
K80+G 3 -7164.057 14334.11
K80+I+G 4 -7159.313 14326.63
F81 4 -7369.560 14747.12
F81+1 5 -6843.155 13696.31
F81+G 5 -6733.356 13476.71
F81+I+G 6 -6726.680 13465.36
F84 5 -7356.862 14723.72
F84+1 6 -6815.458 13642.92

141

F84+G 6 -6697.
F84+I+G 7 -6688.
HKY85 5 -7357.
HKY85+I 6 -6815.
HKY85+G 6 -6699.
HKY85+I+G 7 -6688.
TN93 6 -7355.
TNI3+I 7 -6815.
TNI3+G 7 -6697.
TNI3+I+G 8 -6688.
GTR 9 -7169.
GTR+I 10 -6692
GTR+G 10 -6583.
GTR+I+G 11 -6581.

The paired likelihood ratio tests:

> summary (phyml.cyn)

modell mode12
1 JC69 JC69+I 933.
2 JC69 JC69+G 1108.
3 JC69 J1C69+I+G 1118.
4 JC69 K80 0

.657

.04352

210
444
745
689

819
162
452
193
364
160

13406.
13390.
14725.
13643.
13410.
13391.
14722.
13644.
13408.
13392.
14356.
13405.
13187.

451 13184.

chi2 df Pp.val
84370 1 0.0000
89884 1 0.0000
47100 2 0.0000
1 0.8347

Plotting the result may help to overview the fits.

> plot(phyml.cyn)

Akaike information criterion for phyml.cyn

15500

15000

14500

14000

13500

K80

JC69

81

KY85

84

TNO3

JCB9 +|
80 +1

TR

80+T
C69+T
80+I1+T
Ce9+I1+T
81+1
NO93 +|
KY85 +1
84 +|
81+T
81+I1+T
KY85+T
N93+T
84+T
TR +1
NO93 +I+T
KY85+I1+T
84+1+T

- pee——"GIR+T

N

J
J
T

N

-

T

A\

!

GTR+I1+T

142

The most complex model, general time reversible model (GTR) with proportion of invariable
sites (1) and gamma distributed rate variation among sites (I') is the best in terms of AIC. In
general adding invariant proportions and gamma improves the fit of the models. We can also
recognize other aspects (e.g. importance of transition/transversion ratio or unequal base
frequencies).

PhyML saved the trees into the file “cyn.txt_phyml_tree.txt”.

> tr = read.tree("cyn.txt_phyml_tree.txt")
> tr
28 phylogenetic trees

It contains 28 trees according to the 28 models. The most complex model, we selected
recently, is the last one. We can extract and plot it:

mltr.cyn = tr[[28]]

mltr.cyn$tip.label = taxa.cyn[mltr.cyn$tip.label]
mltr.cyn = root(mltr.cyn, "Parnips_nigripes")
plot(mltr.cyn, no.margin = TRUE)
add.scale.bar(length = 0.01)

VVVVYV

143

Diplolepis rosae

Pediaspis aceris

Parnips nigripes

Ceroptres cerri

Synergus crassicornis

L_{ ———Aylax papaveris

Liposthenes glechomae

Andricus kollari

Neuroterus numismalis

- Biorhiza pallida

Plagiotrochus quercusilicis

Periclistus brandtii

—Xestophanes potentillae

——Synophromorpha sylvestris

——Gonaspis potentillae

—0.01 Diastrophus turgidus

To save the tree:

> write.tree(mltr.cyn, "cyn_ml_gtrig.tre")

The next step should be to fit a partitioned model (see pmiPart in the “phangorn” package).
There are many more possibilities provided by the “ape” package (see Paradise 2011).

DNA barcodes

DNA barcoding approach is illustrated on a data set of a butterfly, Astraptes fulgerator, which
is one of the classical examples for barcoding (reproduced from Paradise 2011).

GenBank contains many records for Astraptes fulgerator complex (check
http://www.ncbi.nlm.nih.gov/Taxonomy/ and search for Astraptes).

144

http://www.ncbi.nlm.nih.gov/Taxonomy/

[Dwplay | 2 Sovels uming hter nore .

4 Nazmares Macwatde LIT Nismc—3e I3 lac Bristew > gre Tome ved Serane
=Dare - itles Camce » SNA Lmrmerns Lok soAst hace
M=ty Szipe Sezuts FRRE Be S0 Adbarty =N

me U8 Gmen Teang Segaty ot Vaw =ast WUChes Tpren
Llnam i) cellula o Rukacrota: Opsatokonte. Metazoa: Enmetazos; Buatens 1 (HOHIR T L..‘_ geoa. Penacdzopods: Adhrgods: Masdbulsta Pascomtaces: Heagods: Luectx
Dicondis: Prarygota. Necptess, Holometaboly: Anglsesmenopien. Legndogtesa. Glossats, L.m;u.u*: Heteronenra: Ditrysia: Otnectomen, Hesperioides: Hegenadas:. Endaminas

o Astraptes L1312 Crekommponim wiwe 2 oo mons (nfbrmanion
o Astraptes n[xnhnn& seted flmber) 33
e Astrapies slandes Iatia 2
o 5-tnlum snaphus (yellow tipped flader) 115
Astreptes snaphes sap. sanettaDFEIOL 5
o Astrapies anaphes sp. annettaDEIY 106
Astraptes apastux 3
siraptes auluy 6
* Astraptes heevicaumds 24
* Astraptes chiriy pm s 7
© Astrant

® Astraptes creteus np_rrgnanﬂml J b
o Astraptes creteus ssp Janaenfi2 56
Astraptes egreginy (unall-pottad flasker) 3
Astraptes enotrwy 127

\luuu
o Astrapies
o Astraptes
* Astraptes sp. LOHAMP 243
o Astraptes sp. LONCHO 36
 Astrapies ap, MYST 7
o Astrapies ap. SENNOY 162
« Astraptes sp, TRIGO 78
o Aatrapies ap, YESENN 276

INGCUP 154

We download 466 sequences from the GenBank, following Paradise (2011). Individuals were

sequenced for a fragment of the mitochondrial gene cytochrome ¢ oxydase I.
> X = paste("AY66", 6597:7060, sep = "")

> X = c(x, "AY724411", "AY724412")
> astr.seq = read.GenBank(x)

Let us check the distribution of the length of the sequences.

> table(sapply(astr.seq, length))

208 219 227 244 297 370 373 413 440 548 555 573 582 599 600 601 603 608
1 1 1 1 3 1 1 1 1 2 2 1

1 1 1 1 1 1
609 616 619 620 623 626 627 628 629 630 631 632 633 634 635 636 638 639
i1 2 1 1 1 4 1 5 3 4 3 7 1 1 12 6 2 389

Lengths vary between 208 and 639, so we have to align them. However, the dataset is large,
so the alignment using Clustal takes time.

> astr.ali = clustal(astr.seq)

Alternatively, save (write.FASTA(astr.seq, "astraptes.fasta")), align externally, and
read the alignment back (astr.ali = read.FASTA("astraptes_clustal.fasta")).

Let us see the alignment (the “barcode” of the samples):

> image(astr.ali)

145

100 200 300 400 500 600

We check the species names and store them together with the accession numbers:

> table(attr(astr.seq, "species™))

Astraptes_sp._BYTTNER Astr‘aptes_sp._CElz_'g Astr‘aptes_sp._FABgV
4 1

Astraptes_sp._HIHAMP Astraptes_sp._INGCUP Astraptes_sp._LOHAMP

16 66 47
Astraptes_sp._LONCHO Astraptes_sp._MYST Astraptes_sp._SENNOV
41 3 105

Astraptes_sp._TRIGO Astraptes_sp._YESENN
51 79

> taxa.astr = attr(astr.seq, "species')
> names(taxa.astr) = names(astr.seq)

Identifiers are given only for specimens; species names are unknown. Then, as before, save
the data for later use:

> save(astr.ali, taxa.astr, file = "astraptes.RData'")

From these data researchers suggested that there are about 10 species instead of one originally
recognized species. Let us see the pairwise genetic distances. Because of the length
differences, we must take care of pairwise deletion. DNA barcoding uses Kimura’s two
parameter (K80) model traditionally, which is the default for dist.dna.
> astr.K80 = dist.dna(astr.ali, pairwise.deletion = TRUE)
Let us look at the distribution of distances (we have 108345, Tength(astr.k80))
> summary (astr.kK80)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.01590 0.02101 0.02747 0.03887 0.08326

> hist(astr.K80)

146

Histogram of astr.K80

(&)
o
O a—
O
N
O
| & |
O pa
= Tp]
o L e
C
@
o |
O o
e (@)
e S 7
o
o _
o
T'p]
O cd l !
| T I I |
0.00 0.02 0.04 0.06 0.08

astr. K80

There are peaks at 0, around 0.02 and around 0.07. It was hypothesized that this pattern of
distances correspond to the within population, among populations and among species
differentiation.

Let us visualize this distance matrix using NJ.

> tr = nj(astr.k80)
> tr$tip.label = taxa.astr[tr$tip.label]

However, the tree is large to be plotted in the usual manner, even without tip labels (try
plot(tr,type="unrooted",show.tip.label=FALSE)).

Ape package provides a solution using the function zoom instead. We may collect the indices
of a given taxon and zoom the subtree(s). For example (from Paradise 2011):

> tX = unique(taxa.astr)

> L = vector(mode = "1ist", length = 10)

> for (i in 1:10) L[[i]] = grep(tx[i], tr$tip.Tabel)

> zoom(tr,L[[9]], show.tip.label=F); mtext(tr$tip.label[L[[9]]1[1]1])

147

Astraptes_sp._ CELT

s .)___f__d{r_v____xaaih___l

i-
|

> pdf("astra

tes.pdf", width = 30, height
> zoom(tr, Lg
> dev.off(Q)

Finally, we can plot all subtrees into a large PDF file, where colours denote different lineages
according to the L index.

= 30)

148

References

Nylander, JAA et al (2004) Bayesian Phylogenetic Analysis of Combined Data. Systematic
Biology 53:47-67

Paradis E (2011) Analysis of Phylogenetics and Evolution with R (2nd ed.). Springer

149

SUMMARY

R is a usefull platform for many stages of the phylogenetic analyses and DNA barcoding.

R functions used in Chapter 12

abline
add.scale.bar
as.character
attr
boot.phylo
cbind

cor

clustal
dev.off
dist.dna
dist.topo
for

function
getwd

gl

grep

head

hist, histogram (lattice)
image

is.na

layout
library

load

logical
match
matrix
mtext

names
nj

nodelabels
numeric

paste

pdf
phymltest
points
read.GenBank
read.FASTA
read.table
read.tree

rm

root

round
rownames
sapply

save

str

summary
table

unique
write.dna
write.FASTA
write.tree
zoom

150

Description of the subject

Master level

Title: Biostatistics Credits: 3

Category of the subject: compulsory

The ratio of the theoretical and practical character of the subject: 10-90 (credit%)

The type of the course: laboratory practice
The total number of the contact hours: 2 per week

Language: English

Evaluation: solving tasks, written
Other methods for evaluation of the student’s competence (if any):

The term of the course: |. semester

Prerequisites (if any): -

Description of the subject

Aims:

The course is designed to provide the students with the basic mathematical and statistical
methods useful for biologists. R is a free software environment for statistics and graphics. The
aim of this course is to learn R via a knowledge of basic statistics. The course surveys the most
important methods as implemented in R.

Students become able to use R to summarize and graph data, calculate confidence intervals, test
hypotheses, assess the goodness-of-fit, and perform analyses of variance and linear regression.
They also acquire a basic knowledge of the methodology behind modern data-based modelling
(simulations, maximum likelihood, bootstrapping and Bayesian analysis).

Topics of the course:

- Basics of R.

- Descriptive statistics and graphics.

- One-sample tests. Two-sample tests.

- Regression and correlation.

- Analysis of variance and nonparametric alternatives.
- Categorical data.

- Power analysis, simulations in R.

- Linear models.

- Nonlinear models.

- Multivariate analysis.

151

Selected bibliography (2-5) (author, title, edition, ISBN)

Dalgaard P: Introductory Statistics with R. 2™ ed., Springer Science+Business Media, LLC,
New York, 2008. ISBN: 978-0-387-79053-4

R software documentation (http://www.r-project.org/)

General competence (knowledge, skills, etc., KKK 8.) promoted by the subject

a) knowledge

Students will

- be familiar with the basic methods of modern biology.

- know the terminology of modern biology and apply it in the correct way.
- understand the social problems with biological relevance.

- understand the significance of the interdisciplinary approach.

- know the coherency among the area of biology.

b) skills
Students will be able to

- participate in biological research project and to create new scientific results under competent
supervision.

- plan research projects in the field of biology

- recognize the coherency among the different area of biology.
- apply new methods and techniques independently.

- interprete and the present their results in a correct way.

c) attitude
Students will be
- open to cooperate with other research groups
- ready to understand the evolution, structure and function of the living organisms

- interested in new results, techniques and methods; contribute to new scientific results and
methods

- keep the ethical rules of the biological research

d) autonomy and responsibility
Students will
- be able to organize the work of small research teams independently
- help his collegues in the completion of the research projects
- build their own scientific career consciously

152

Special competence promoted by the subject:

Knowledge

Skills

Attitude

Autonomy/responsibility

Students will know
the basic statistical
methods useful in
biology.

Students will be
able to use R to
evaluate their data.

Students will know
the basic functions
of R.

Students will be
able to use R to
summarize and
graph their data.

Students will know
the methods to test a
hypothesis.

They will be able
to test hypothesis.

Student will know
the logic of the
analysis of variance
and linear
regression.

They will be able
to perform analyses
of variance and
linear regression
among others.

Students will know
the methodology
behind modern data-
based modelling

They will be able
to perform
simulations.

Open to study new
methods.

Ready to prepare a
correct notebook.

Ready to cooperate

with

colleagues
completion
experiments.

Apply the acquired
methods independently.

Evaluate the results
independently and
correctly.

Instructor of the course (name, position, scientific degree):

Dr. Pénzes Zsolt, associate professor, PhD

Teachers (name, position, scientific degree):

Dr. Pénzes Zsolt, associate professor, PhD

Dr. Tolgyesi Csaba, assistant professor, PhD

153

EFOP-3.4.3-16-2016-00014 SZECHENY!I

This teaching material has been made at the University of Szeged, and supported by the European

Union. Project identity number: EFOP-3.4.3-16-2016-00014

SZECHENYI @

European Union
European Social
Fund

AORRNHRIR 1~V ESTING 1N YOUR FUTURE
GOVERNMENT INVESTING IN YOUR FUTURE

154

University of Szeged, Hungary

Venue: H-6720 Szeged, Dugonics square 13.
www.u-szeged.hu

www.szechenyi2020.hu

