ION TRANSPORT MECHANISMS AT THE BLOOD-BRAIN BARRIER AND BLOOD-CSF BARRIERS

Mária A. Deli, MD, PhD, DSc

Institute of Biophysics Biological Research Centre Szeged, Hungary

Structure and functions of the brain barriers

Ion transporters at the BBB and BCSFB

Ion transporters at brain barriers in pathology

BARRIERS OF THE CENTRAL NERVOUS SYSTEM

BCSFB/ choroid plexus

Ependyma

Neuwelt et al., Nature Rev Neurosci, 2011

MILESTONES IN BLOOD-BRAIN BARRIER RESEARCH

1885 Paul Ehrlich

PERMEABILITY OF BRAIN AND NASAL BLOOD VESSELS

2 % fluorescein + Evans blue dyes injected intravenously RR: respiratory region, RO: olfactory region, BO: olfactory bulb, CTX: brain cortex

Wolburg et al., Histochem. Cell Biol, 2008

MILESTONES IN BLOOD-BRAIN BARRIER RESEARCH

1913 Edwin Goldmann

dye injected to cerebrospinal fluid brain capillaries

1967 Reese and Karnovsky

electron microscopy: brain endothelial cells

1982 Crone and Olesen 1000-2000 Ω electrical resistance of brain microvessels

Christian Crone

LOCALIZATION OF BRAIN CAPILLARIES

Zlokovic, Nature Rev Neurosci, 2011

BLOOD-BRAIN BARRIER = BRAIN CAPILLARIES

Brain capillaries length: 650 km (Budapest – Adriatic sea) surface: 10-20 m² 0.1% of brain volume

BLOOD-BRAIN BARRIER

brain endothelial cell

tight juctions

Dynamic interface between the blood and the central nervous system

Roles creates – **ionic** - homeostasis for neuronal functions provides brain with nutrients defense system against toxic insults communication between the periphery and the CNS

FUNCTIONS AT THE BBB – ORGAN SPECIFIC

BLOOD-BRAIN BARRIER: PROTECTION OF CNS

Physical barrier Protection against toxic compounds or cells

tight junctions (TJ) between brain endothelial cells

COMPOSITION OF TIGHT JUNCTIONS

THE ROLE OF TIGHT JUNCTIONS

GATE

low paracellular permeability cells, macromolecules, water, **ions** high transendotelial electrical resistance *in vivo*: 2000 Ω

FENCE

polarity of the cells

separates membranes luminal (blood) & abluminal (brain) transporter, receptor, enzyme expression

> luminal: P-glycoprotein abluminal: Na⁺/K⁺ATPase

GLYCOCALYX AT THE BBB

Rat brain capillary

Alcian blue staining (cationic dye containing copper) Deli MA, Kittel Á, et al.

Negative charge barrier

Luminal and abluminal

Heparan sulfate proteoglycans: syndecan-1, -2, -4, glypican-1, perlecan

Sialoglycoproteins

Hervé et al. AAPSJ 2008

METABOLIC BARRIER

Protection from toxic compounds & metabolites

Purine & pyrimidine metabolizing enzymes

Adenosine deaminase (ADA) → anti-HIV dideoxynucleotides

Drug metabolizing enzymes

Monoamine oxidase MAO Dopamine and drug metabolism Cytochrome P450 isoforms Glutathione S-transferase (GSTπ, GSTα) Sulfotransferase (SULT1)

Alcohol metabolizing enzymes

CYP2E1 Alcohol dehydrogenase

EtOH \rightarrow ROS + acetaldehyde EtOH \rightarrow acetaldehyde

GENE EXPRESSION PROFILE IN BRAIN CAPILLARIES

TRANSPORT PATHWAYS AT THE BLOOD-BRAIN BARRIER

Open pathways

- 1. Lipid-mediated free diffusion (lipophilic molecules)
- 3. Solute carrier (nutrients)
- 5. Receptor-mediated transcytosis (peptides, proteins)

Blocked pathways

- 2. Paracellular traffic by tight junctions (hydrophilic molecules, cells)
- 4. Efflux transporters (xenobiotics, drugs)
- 6. Non-specific vesicular transcytosis (plasma proteins)

CARRIER MEDIATED TRANSPORT AT THE BBB

Solute carrier family (>40 members at the BBB) Bidirectional Small molecule polar nutrients

Glucose transporter 1 (GLUT1, SLC2A1)

Primary transporter of glucose 1965 C Crone : Facilitated transfer of glucose from blood to brain

GLUT1 deficiency syndrome (GLUT1DS)

hypoglycorrhachia (low glucose in CSF) with normoglycemia brain acquired microcephaly, dementia, spasticity, ataxia, retarded development epilepsy refractory to standard antiepileptic drugs ketogenic diet

Monocarboxylic acid transporters ()

MCT1, SLC16A1: lactate, acetate MCT8, SLC16A2: thyroid hormones

CARRIER MEDIATED TRANSPORT AT THE BBB

Amino acids

Cationic amino acid transporter CAT-1/SLC7A1 (Arg, Lys) Neutral amino acid transporter LAT-1/SLC7A5 (Phe, Leu, IIe) Amino acid transporter SN1/SLC38A3 (Asp, His, Gln)

Fatty acids

Fatty acid transporter FATP1/SLC27A1 (long chain FA)

Creatine CRT1/SLC6A8

Choline CTL1 /SLC44A1, organic cation transporter OCT2

Nucleosides CNTs/SLC28A

Vitamines

Biotin, panthotenate: SMVT/SLC5A6

Folate: RFC/SLC19A1

(vitamin C: choroid plexus!)

Metal ions

DMT1/SLC11A2, IREG1/SLC40A1 **Peptides** PHT2/SLC15A3

EFFLUX TRANSPORT AT THE BBB - SLC TRANSPORTERS

Excitatory amino acid transporters

EAAT1-3/SLC1A glutamate, aspartate

Organic anion transporting polypeptides

OATPB/Oatp2b1 (Slco2b1) bile acids, opiates, drugs

Organic anion transporters (Oat1, Oat3)

antibiotics, cimetidine

Plasma membrane monoamine transporter

PMAT/SLC29A4 monoamines, cationic neurotoxins

Multidrug and toxic compound extrusion protein-1

MATE1/SLC47A1 organic cations and cationic drugs

EFFLUX TRANSPORT AT THE BBB - ABC TRANSPORTERS

Limits the influx : drugs & xenobiotics Efflux: CNS metabolic by-products

P-glycoprotein (ABCB1)

drugs, xenobiotics: ivermectin, anthracyclins, Vinca alkaloids, taxol aldosterone, glucocorticoids cyclosporin A, HIV-protease inhibitors antiepileptics: phenytoin, phenobarbital, valproic acid plant polyphenols, nutraceuticals

Brain multidrug resistance protein

ABCG2/BCRP drugs, xenobiotics

Multidrug resistance-assoc. proteins 1-6

ABCC1-6 glucuronide and glutathione conjugates

RECEPTOR MEDIATED TRANSCYTOSIS AT THE BBB

Receptors for peptides or lipoproteins

Bidirectional system

Insulin receptor Insulin-like growth factor Transferrin receptor LDL receptor LRP-1 és 2 Diphteria toxin/HB-EGF receptor Leptin and ghrelin receptors RAGE

Structure and functions of the brain barriers

Ion transporters at the BBB and BCSFB

Ion transporters at brain barriers in pathology

ION TRANSPORTERS AT THE BBB

Zlokovic, Nature Rev Neurosci, 2011

ION TRANSPORTERS AT THE BBB

Sodium pump / Na⁺, K⁺-ATPase Chloride-bicarbonate exchanger Na⁺-K⁺-2Cl⁻ cotransporter Sodium-hydrogen exchanger

ION TRANSPORTERS AT THE BBB

SODIUM PUMP / Na⁺, K⁺-ATPase (NKAT)

Jens Christian Skou, 1957; Nobel prize 1997

Moves 3 sodium ions out and 2 potassium ions / 1 ATP

Generates ion gradient - heart signals, cell volume regulation

Blocking the sodium-potassium pump

plant (digitalis, ouabain) or animal (poisonous toads) toxins, drugs pumping of ions \downarrow , level of Na⁺↑ inside the cell sodium-calcium exchanger \downarrow , level of Ca²⁺↑, force of heart contractions ↑

PROPAGATION OF ACTION POTENTIAL IN NEURONAL AXONS

SODIUM PUMP / Na⁺, K⁺-ATPase AT THE BBB

Localized on the abluminal membrane of brain endothelium

BBB NKAT REGULATES ION COMPOSITION IN BRAIN FLUIDS

In brain ISF and CSF: Na⁺ \uparrow and K⁺ \downarrow compared with blood Brain endothelial cells 500-fold more NKAT than peripheral endothelium NKAT –at BBB - main source of Na⁺ in brain tissue

CHLORIDE-BICARBONATE EXCHANGER

Anion exchanger 1 (AE-1) - SLC4A1 - Band 3 anion transport protein

Major role in kidney and erythrocytes

Present on the BBB

Both membrane domains

Electroneutral chloride and bicarbonate exchange

Regulation of endothelial cell pH

Links plasma membrane to membrane skeleton (ankyrin and protein 4.2)

SODIUM-POTASSIUM-CHLORIDE COTRANSPORTER

Na⁺, K⁺, 2Cl cotransporter-1 (NKCC1) – **SLC12A2**

Major role in fluid secreting organs (kidney, cochlea) and exocrine glands

Brain: regulation of chloride concentration in neurons

Present on the BBB

only on luminal membrane

symporter: moves all three ions in the same direction

active pump, needs high levels of ATP

SODIUM-HYDROGEN ANTIPORTERS

Na⁺ / hydrogen exchanger-1 (NHE-1) – **SLC9A1**

Na⁺ / hydrogen exchanger-2 (NHE-2) – **SLC9A2**

Major role in kidney

Volume and pH regulation in cells; inhibited by amiloride

Present on the BBB

only on luminal membrane

antiporter: moves Na⁺ in H⁺ out of cells

ROLE OF POTASSIUM CHANNELS IN BRAIN ENDOTHELIAL TURNOVER

Stimulation of metabotropic ATP receptors (P2Y)

↑ intracellular Ca2 concentration ([Ca2]i)
activation of SK2 (apamin-sensitive small-conductance Ca²-activated K channels)
membrane hyperpolarization
↑ cell proliferation

in response to ATP

anomalous membrane hyperpolarization Kir2.1 inward rectifier K channel was extensively expressed ↓ the cell number

P2Y stimulation in brain endothelial cells ↑ cell proliferation by SK2 activation triggers cell death in cells expressing Kir2.1

Dual action of P2Y stimulation: facilitate endothelial turnover

ION TRANSPORTERS AT THE BCSFB

Redzic, FBCNS, 2011

Structure and functions of the brain barriers

Ion transporters at the BBB and BCSFB

Ion transporters at brain barriers in pathology iside the Cell

Outside the Cell

ION TRANSPORTERS AT BBB – ROLE IN BRAIN EDEMA

trauma/ischemia-induced SUR1-regulated NCCa-ATP (SUR1/TRPM4) channel

Simard et al, J Neurosurg, 2010

NKAT AT BBB – ROLE IN MIGRAINE

Migraine inducers which are regulators of NKAT

CGRP, estrogens, glutamate, cannabinoids, NO, NA, 5HT, DA, caffeine BBB: serotonin, estrogen, and phospholipid receptors, and GPCRs

SUMMARY

lon transporters and channels

present at the blood-brain and blood-CSF barriers Regulate

ion composition of the brain fluids

brain endothelial cell volume and pH

Participate in diseases stroke, migraine