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Introduction

Introduction

Electrodynamics and optics deal with interactions between EM fields
and charged particles. In the context of the present course the charges
are atomic electrons. In the earlier lectures the motion of the charges
forced by the electromagnetic fields has been described by the laws of
classical mechanics. Beginning from the present lecture we shall treat
this motion according to the rules of quantum mechanics, but we
retain the classical description for the dynamics of the field. A more
sophisticated possibility would be to work with quantized fields, but
we shall not follow that approach.
We begin the description of the interaction of charged particles with
electromagnetic fields at the most fundamental level, and come later to
the simplifications connected with charges bound to atoms.
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The classical Lagrangian and Hamiltonian

Hamilton’s principle and Lagrange equations

Hamilton’s principle states that the dynamics of a physical system is
determined by a Lagrangian L(x, ẋ, t) which is a function of the general
dynamical coordinates (denoted here by x for short) and their time
derivatives.The principle prescribes that the corresponding action
integral S =

∫
L(x, ẋ, t)dt is extremal – usually minimal – along the

actual orbit x(t) of the system. In classical mechanics this principle
replaces Newton’s second law, but it can be applied to much more
general physical situations including classical and even quantized
fields. As it is well known, the variational principle of getting a
minimum of S is equivalent to the equation:

d
dt
∂L
∂ẋ
− ∂L
∂x

= 0
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The classical Lagrangian and Hamiltonian

Free particle Lagrangian

We shall consider here first the classical dynamics of a single point
charge in an external field. More generally, if we wish to include the
dynamics of the field as well, then L consists of 3 parts: (1) the one
giving the mechanics of a free particle, (2) the free field part and (3) the
interaction term. They can be found by considerations based on
general symmetry and invariance principles.

As it is known (Landau-Lifsic Vol 2, Jackson) the free particle part is
with x→ r, ṙ = v:

Lp = −mc2

√
1− v2

c2 ≈ ( for v� c) = −mc2 +
1
2

mv2

From now on we restrict ourselves to the nonrelativistic limit in the
dynamics of the particles, where the constant term −mc2 can be
trivially omitted.
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The classical Lagrangian and Hamiltonian

Minimal couplig

A very general principle, called the gauge principle, requires – together
with the principle of relativity – that the coupling between a point
charge q and the field must be of the minimal form: charge×four
dimensional (space-time) line integral of a vector field: known as the four
potential

A = {Φ/c,A}
so that the charge-field interaction is determined by the Lorentz
invariant action:

Si =

∫
Lidt = −q

∫
A(x)dx =

∫
q(vA−Φ)dt

and accordingly
Li = qvA(r, t)− qΦ(r, t)

This form of the Lagrangian is called the minimal coupling. (In contrast
to a possible nonminimal form involving the field strengths, dipole
moments etc.)
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The classical Lagrangian and Hamiltonian

Field strengths from potentials

Another consequence of the gauge priciple is that the field strengths E
and B, available to common physical experience should be a
combination of certain derivatives of A and Φ. Omitting the elegant
relativistic considerations (see Landau-Lifsic vol. 2.) we quote the
well-known expressions of the field strengths by the potentials

B = ∇×A, E = −∇Φ− Ȧ

Note that in the usual approach these are considered as the
consequences of the homogeneous Maxwell equations, while we
follow here a reversed argument.

Problem: Starting from the above definition of the field strength show the
validity of the two homogeneous Maxwell equations.
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The classical Lagrangian and Hamiltonian

Field Lagrangian density

Finally, it can be shown that relativistic plus gauge invariance requires
the free-field Lagrangian to be the volume integral of a Lagrangian
density Lf over whole space, giving:

Lf =

∫
Lf dV =

1
2

∫
(ε0E2 − B2/µ0)dV

The total Lagrangian is then Lp + Li + Lf . We only note here that
Maxwell equations can be obtained by the appropriately modified
variational principle for fields from the continuous version of the
Lagrangian, Lf + Li containing the field variables as general
coordinates, where the Lagrangian density of the interaction term is
Li = JA− ρΦ. (J and ρ are the current and charge densities). Note that
in the derivation the dynamical variables in Lf as well as in Li are the
potentials, in terms of which E and B must be expressed.

Problem: Recall the derivation of the Maxwell equations from the Lagrangian
density Lf + Li (Landau-Lifsic, Jackson)
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The classical Lagrangian and Hamiltonian

Equation of motion

From now on we wish to find the equation of motion of the charged
particle in a given external field so we restrict ourselves to the
Lagrangian

L(r,v) = Lp + Li =
1
2

mv2 + qvA(r,t)−qΦ(r,t)

and omit Lf that contains only the field variables.

Problem: Derive the equation of motion of the charge in external field:

m
dv
dt

= q(E + v× B)

from this L. Make use of the rule: df (r,t)
dt =

∂f
∂t + (v∇)f .

This proves a posteriori the validity of the assumptions leading to the
above Lagrangian.
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The classical Lagrangian and Hamiltonian

Gauge transformations and invariance

As it is well known, the potentials A and Φ are not unique, there is a
freedom determined by the gauge transfomation of the second kind:

Ã = A +∇χ, Φ̃ = Φ− χ̇ (GT2)

where χ((r, t) is a completely arbitrary (smooth) function.

Problem: Check that the gauge transformation adds only a constant term to
Si, thus leaving invariant the corresponding equation of motion.

Lf itself is also invariant with respect to GT2 , as according to

B = ∇×A, E = −∇Φ− Ȧ

the transformed quantities Ã and Φ̃ yield the same E and B as do A
and Φ. So Maxwell equations and Lorentz force are invariant with
respect to (GT2 ). This gives us a certain freedom to choose the
potentias in a way that fits most to a given problem.
We shall discuss the gauge principle below in the framework of
quantum mechanics in a little more detail.
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The classical Lagrangian and Hamiltonian

Hamiltonian

The canonical momentum P =∂L
∂v and the kinetic momentum p =mv are

connected by
mv = p = P−qA (mom)

The Hamiltonian defined as H = Pv−L results in

H(P, r) =
1

2m
(P− qA)2 + qΦ (HEM)

The r dependence of the Hamiltonian is contained in the potentials.
Note that H is not gauge invariant, as it depends on the choice of A
and Φ.

Problem: Show that the canonical equations derived from this H yield the
Lorentz force equation of motion.
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Quantum mechanics

Schrödinger equation in EM field

The Schrödinger equation for a single particle of charge q (for an
electron we have q < 0), in external field is the following

i~
∂Ψ

∂t
= HΨ =

(
1

2m
(P−qA)2 + qΦ

)
Ψ =

=

(
1

2m
(−i~∇−qA)2 + qΦ

)
Ψ(r, t)

where we use coordinate representation, thus Ψ is a function of the
coordinate as A and Φ are operators as much as they depend on the
particle location R considered to be an operator here. Note that it is the
canonical momentum and not the kinetic one (!) that is replaced by
−i~∇, as the canonical commutation relation [Xi,Pj] = i~δij is
prescribed for P and not for p. The equation is written here in a
particular gauge given by A and Φ. One can easily see that by
performing a gauge transformation, the Schrödinger equation takes a
different form, thus at first sight it seems to be gauge dependent.
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Quantum mechanics

Gauge transformation of the first kind

This is not the case, however, if together with the transformation (GT2)
we prescribe the gauge transformation of the first kind, which is a local
phase change of the wave function:

Ψ̃(r, t) = Ψ(r, t) exp
[
i
q
~
χ(r, t)

]
(GT1)

Problem: Show that the simultaneous transformations (GT1), (GT2) yield the
same form for the Schrödinger equation, i.e. quantum dynamics is gauge
invariant.

(GT1) is a unitary tarnsformation therefore all physically relevant
quantities, expectaion values, transition probabilities, etc. are invariant
with respect of this transformation of Ψ, which means that quantum
mechanics is gauge invariant, in general.
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Quantum mechanics

On the gauge principle

It is a good place here to point out that the celebrated gauge principle,
quoted above is actually a reversed argument. Thus starting from the
Schrödinger equation with A = 0, Φ = 0, for a certain Ψ(r, t) one
requires its invariance when introducing the local phase change (GT1)
for a charged particle with an arbitrary χ.

One can show that this is only possible if one introduces new
dynamical variables A and Φ, which are to be transformed by (GT2)
simultaneously with (GT1), which compensate the effect of the phase
change and keep the Schrödinger equation invariant.

Problem: Prove the above statement
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Quantum mechanics

Coulomb gauge

It is convenient to write the Schrödinger equation as

i~
∂Ψg

∂t
= HgΨg

where the label g refers to the particular gauge chosen.
A specific and frequently used gauge is the one defined by

∇A =0 called Coulomb gauge,

known also as radiation, or transverse gauge. The condition∇A =0 is
not invariant with respect to Lorentz transformations, but has several
advantages in nonrelativistic calculations in atomic physics. In this
gauge the operators P and A(R,t) commute and the Schrödinger
equation can be written for an appropriately chosen ΨC(r, t) (subscript
refers to Coulomb gauge) as

i~
∂ΨC

∂t
= − ~2

2m
∆ΨC(r, t) + i~

q
m

AC(r, t)∇ΨC(r,t)+
(

q2

2m
A2

C + qΦC

)
ΨC(r, t)

(Coul)
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Quantum mechanics

Coulomb gauge II

We see that we have now

H = H0 + KC(t)

H0 = − ~2

2m
∆ + qΦC

and the interaction term is

KC(t) = − q
m

ACP+
q2

2m
A2

C =i~
q
m

AC∇+
q2

2m
A2

C

For weak fields one sometimes omits the A2 term as a small correction
to the one linear in A.
As we shall see below this is not always necessary, however.
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Dipole approximation

Dipole approximation, B of the field is neglected

In optical problems the wavelength of electromagnetic field λ ∼ 500
nm is at least three orders of magnitude larger than the atomic size,
which is of the order of the Bohr radius a0 ∼ 0.1 nm. Therefore the
spatial variation of the electromagnetic field is negligible. Accordingly
we assumme here that the electric field strength is a sum of two terms
E = Es(r) + Ew(t). The first term is the static Coulomb field of the atom,
assumed to be curl free, while the second one is the external field of
the electromagnetic wave depending only on time and not on the
spatial variable. In such a case the magnetic field is at most a constant
due to the Maxwell equations, and it must be chosen B =0 at the place
of the atom. This is consistent only for weak electromagnetic fields not
accelerating the charge up to relativistic velocities, because then the
magnetic part of the Lorentz force is negligible if compared with the
electric part. This is because in a plane wave |B| = |E|/c and therefore
one can neglect the v× B part of the force for electron velocities v� c.
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Dipole approximation The velocity gauge

Potentials in the velocity gauge

One of the possible pair of potentials reproducing the field strengths
E = Es(r) + Ew(t), B =0 are:

Av(t) = −
∫ t

−∞
Ew(t′)dt′, Φs(r) = −

∫ r

∞
Es(r′)dr′ (1)

The latter being the usual definition of the static potential in terms of a
path independent line integral. In case of a Hydrogen atom e.g.
Φs(R) =

q2

4πε0

1
|R| .

These potentials represent one particular Coulomb gauge as∇Av=0
trivially. This choice is called the velocity gauge or PA gauge, or
sometimes simply P gauge because the Hamiltonian contains the
combination (P− qAv)/m explicitly, which is the operator of the
particle velocity according to mv = p = P−qA see (mom).
One can substitute these potentials into the Schrödinger Eq. as in
(Coul), and obtain the corresponding equation to be solved.
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Dipole approximation The velocity gauge

Another velocity gauge

Problem: Perform a gauge transformation from the v gauge to a v′ gauge with

χvv′(r, t) =
q

2m

∫ t

−∞
A2

v(t′)dt′

Av′,t = Av,t, Φv′(r) = Φs(r)− q
2m

A2
v

Show that the corresponding Schrödinger equation for

Ψv′,t = Ψv exp
[

i
q2

2m~

∫ t

−∞
A2

v(t′)dt′
]

leads to an interaction operator without the A2 term. This v′ gauge is also
called sometimes as a velocity gauge, but it is different from the v gauge.
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Dipole approximation The length gauge

Potentials in the length gauge

Another possibility emerges by performing a gauge transformation
from the v gauge to a new one with the generating function

χvl(r, t) = −rAv(t) = r
∫ t

−∞
Ew(t′)dt′

resulting in

Al(t) := Av(t) +∇χvl(r, t) = 0

Φl(r) := Φs(r)− χ̇vl(r, t) = Φs(r) + rȦv(t) = Φs(r)− rEw(t) (lgauge)

This is another sort of a Coulomb gauge, called the length gauge, where
Al(t) ≡ 0, (obviously∇Al=0) and the time dependence of the field is
carried now by the −rEw(t) part of the scalar potential.
!Note the frequent occurence of the incorrect terminology calling the
nonvanishing quantitity −

∫ t
−∞ Ew(t′)dt′ 6= Al(t) as the vector potential

when using the length gauge, which is to be avoided!
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Dipole approximation The length gauge

Dipole interaction

The length gauge is also called r gauge or rE gauge, or sometimes as
Goeppert-Mayer gauge (see next slide).
In the length gauge the time-dependent Schrödinger equation for the
wave function

Ψl = Ψv exp
[

i
q
~

r
∫ t

−∞
Ew(t′)dt′

]
can be shown to be:

i~
∂Ψl

∂t
= HlΨl = − ~2

2m
∆Ψl(r, t) + qΦs(r)Ψl(r, t)− qrE(t)Ψl(r, t) = (ScheL)

= (H0 −DE(t))Ψl(r, t)

where D is the dipole moment operator of the electron qR (qr in
coordinate rep.).
Problem: Show by directly substituting Ψl into the Schrödinger equation the
validity of (ScheL).
Note that the term with A2 could be eliminated in the length gauge.
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Dipole approximation The length gauge

Maria Goeppert-Mayer

It is worth to note here an interesting fact from the history of 20-th
century physics. The r gauge was first applied by Maria Göppert in
1929 in the theory of two-photon processes. She is the second woman
so far who received the Nobel prize in physics (in 1963) after Marie
Curie, and the only one awarded for a theoretical work. She explained
the role of the spin-orbit interaction in nuclear shell model and the
stability of nuclei with "magic" numbers of nucleons in 1950. The
German born Göppert worked first with M. Born in Göttingen. Later
she married the American physicist J. Mayer, and lived in the USA.
She obtained there a permanent physics professorship only in 1960,
when she was already very close to the Nobel prize. Her name is cited
as Goeppert-Mayer in the English literature.
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