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Overview

Overview

@ Three- and four-wave mixing denote a set of methods and tech-
niques that utilize nonlinear optical media to create and control
light beams by other light (usually strong laser) beams.

@ Three-wave mixing: involves 3 light beams, uses second order non-
linearity.

e Four-wave mixing: involves 4 light beams, uses third order non-
linearity.

@ These methods are of fundamental importance in modern laser sci-
ence.

@ Common terms: frequency doubling, sum frequency generation,
optical rectification, parametric amplification, phase matching, OPO,
OPA, etc.
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Light propagation in a nonlinear medium: General method

Reminder

Polarization and nonlinear susceptibility in a nonlinear medium:

p; —Eole(])E +GOZX1(]kEEk+6OZXI]klEEkEl+
j 7k ikl

Wave equation with the linear and nonlinear polarization as source:
1 1
AB(rt) ~ 0fE(el) = 5 3f (Pu(r.t) + Pr(r.0)

Analogous wave equation for the complex fields (or “analytic signals”,
or “positive frequency parts”) E(*)(r, t) and P(H)(r, ).
Definition of the complex electric field:

(+) / dw e*lwt / dtl elwt E t/)

E(r,t) = EO (1) + EX)(r,), EC)(r,t) = [E< )(r, t)r
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Light propagation in a nonlinear medium: General method

General method

To solve the wave equation for the complex electric field:
1 1
AE(r,t) — SO ED(r,) = 5 —0f (P h) + P (1)

expand the complex electric field over monochromatic plane waves
which already account for the linear polarization of the medium:

Z er&o(r) exp [i(ker — wyt)]

with wave vector k? = n2w?/c?, where n? = 1 + x1) (wy) is the linear
refractive index, and &, - k, = 0.

Note that the amplitudes &(r) still have spatial dependence. To
simplify, we shall only consider the case in which all the waves
propagate in the same direction, along the z-axis.
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Light propagation in a nonlinear medium: General method

General method

Decompose the nonlinear polarization into the same monochromatic
components:

NL (z,t) ZEZPNL z) exp [—iwpt]

Substitute these sums into the wave equation and apply the slowly
varying amplitude approximation. Equating terms of the same
frequency we obtain a set of equations like

0&(z)
0z

. iw( w
exp [lng] = mPNi (Z)

Then express Py (z) in terms of the amplitudes &,(z) using the
nonlinear susceptibilities, to obtain a system of coupled first-order
differential equations that can be solved to yield the amplitudes &(z)
of the different waves.
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Light propagation in a nonlinear medium: General method

A. Czirjak (Dept. of Theoretical Physics)

General method

Self-consistency of the equations, Born approximations:

The incoming light wave generates a polarization density in the
nonlinear medium, which generates a new light wave, which again,
generates another polarization density in the nonlinear medium, etc.
The previous equations have to be solved such that self-consistency is
achieved. This can be done usually by successive approximation.
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Figure: From [Saleh and Teich]
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I EEETENR e Couplings due to a second-order nonlinear medium

What is three-wave mixing?

Consider two intense waves, called pump waves, propagating in the z
direction in a second-order nonlinear medium. The frequency
dependent second-order susceptibility gives rise to the following
terms in the nonlinear polarization, associated with the physical
processes of frequency doubling, addition or difference, and optical
rectification (Figure from [Saleh and Teich]):

X(Q)(—2w| Twp.op) (512 e iwnl 4 c.c.) Frequency doubling
x (=202 w3.0m) (E% e~ 2wt 4 c.c.) Frequency doubling
2x20: ). —wy) €112 Optical rectification
2x20; 0, —w)) 1&2 Optical rectification
2xD(—w) — wy: w1.0) (5152 g i@1ton) | c‘c.) Frequency addition
25 D(—w) + 02 0], —2) (51 &3 g lw1—m)r o c.c.) Frequency difference

We shall consider frequency addition in detail.
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VIRV Frequency addition

Frequency addition
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Figure: From [Saleh and Teich]

Two pump waves, & (z) exp [i(k1z — wit)] and & (z) exp [i(kaz — wat)],
propagating in a second-order nonlinear medium, generate the
following polarization amplitude at the sum frequency ws = w; + w»

P (2) = 2 g xP (—wss w1, wn) E1(2) Ex(2) exp [i(ky + ka)z]

This nonlinear polarization creates a field £;(z) at frequency w3, which
evolves according to

853(2) . B iCU3 ws
5, &P liksz] = 260n3cPNL(Z)
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VIRV Frequency addition

Frequency addition

Substituting the polarization, we get the following first-order ODE that
governs the spatial variation of the sum-frequency wave amplitude:

0&3(z) . w3 x@ .
o e &1(z) &(z) exp [i Ak z]

where Ak = ki + ky — k3 is the wavenumber mismatch. The ususal
initial condition is £3(0) = 0.

To a first approximation, we assume that £ and &, are constant over
the length L of the nonlinear material. If this is also thin, i.e.
0 < z < L << 1/Ak, then the above ODE can be simplified to

(953(2) —i w3 X(Z)
dz  nsc

&E1&

which means that £3(z) increases linearly with z.
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Three-wave mixing

Frequency addition

¥@ Crystal

Therefore the intensity of the generated beam I3 scales with the square
of the length of the crystal:

Iy = CL*L I
with C = (UJ3 X(z))z/(2€0C3n11’l21’l3).
Orders of magnitude: KTP crystal: x?) =5-10"2m/V,L = 1cm,
pump waves of 1 W power around A = 1 um wavelength, focused on

an optimal spot of 1072 mm?, the sum-frequency beam has power
0.2mW.
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Three-wave mixing [EEEIELS (kI

Phase matching

If we can achieve Ak = 0, called perfect phase matching, then the
previous results hold for any z as long as the pump beams can be
considered constant. However, because of dispersion, k3 = ki + k» is
usually not fulfilled in a medium.

If Ak # 0, then the spatial dependence of the sum-frequency beam:
) i _
w3 X exp [iAkz] —1
n3c 2L Ak
i.e. its intensity leaving the medium of lenght L is proportional to

2
2w x@ sin [Ak L/2]\?
2 _ 3 X 2 2
’83(L)’ - ( 13 ) ‘gl‘ ’52| < Ak )

&(z) =

which is maximal if the length of the medium is set as Lopt = 7/|Ak|.
The resulting optimal intensity is still less by a factor of 4/72 than in
the case of perfect phase matching.
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Three-wave mixing [EEEIELS (kI

Phase matching

How can perfect phase matching be achieved?

In a dispersive material k(w) = n(w)w/c, thus for collinear propagation
ks = ki + k, can be achieved using a birefringent material, where the
refractive index depends on the polarization.

For example, in type-I case the waves 1 and 2 have the same
polarization, and the direction of propagation through a uniaxial
crystal can be chosen such, that perfect phase matching is fulfilled.

n X

Figure: From [Gilbert, Aspect, and Fabre]
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Three-wave mixing [EEEIELS (kI

Phase matching

If we drop the collinearity requirement, perfect phase matching
requires k3 = k; 4 ko which is more easily achieved:

k.
/kliii"‘“~~:
\k;\“’)’/.
L

Figure: From [Gilbert, Aspect, and Fabre]
Disadvantage: poor beam overlap limits the interaction length.
Quasi-phase matching:
For long interaction lengths (guided propagation), phase matching for
the whole length is a problem. Quasi solution: several pieces of the
medium of length 7/|Ak| set end-to-end, with alternating signs of x(?),
this compensates phase mismatch. PPLN: periodically poled lithium

niobate
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NG ERTENER R Coupled dynamics of three-wave mixing

Coupled dynamics of three-wave mixing

Consider the second-order nonlinear material, three collinear coupled
waves, and perfect phase matching;:

ks=ki+ky, w3=wi+w

Let us now relax the assumption of constant pumps, i.e. we go beyond
the Born approximation: all the amplitudes are subject to spatial
variation during propagation.

Clearly, if beams 1 and 2 generated already an up-converted beam 3,
this can combine with beam 1 or 2 to generate two other beams by
down-conversion. What about the many other possibilities, like

wq = w3 + wy, ws = 2ws, etc.?

They can not be phase matched simultaneously with the phase
matching for 1, 2 and 3, thus they are suppressed by these, they can be
neglected in the modelling.
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NG ERTENER R Coupled dynamics of three-wave mixing

Coupled dynamics of three-wave mixing

The closed system of coupled ODEs that govern the 3 efficient
processes of collinear phase matched three-wave mixing:

0&1(2) _ W x®

&(2) & (2),

0z nic
06(z) . wr x? *
5y L e &(z) & (z), (coupled)

0&(z) . wzx@
0z =1 1aC 51 (Z) 52(2),

they have a complicated general solution in terms of elliptic functions.

Instead, look for conserved quantities: energy is a good guess, the
Pointing vector’s magnitude is intensity,

Il = || = |y 'E x B| = 2negc £°E
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NG ERTENER R Coupled dynamics of three-wave mixing

Coupled dynamics of three-wave mixing

Calculate the spatial derivative of II for all the 3 waves and add them:
882 (T4 (2) + Tha(2) + TIa(2)) = i(w1 + wn — ws)2e0x @ (E1ELE — c.c.) = 0
which expresses energy conservation. No energy is transferred to the

nonlinear medium, which serves only to facilitate the coupling
process.

The second invariant of the coupled ODEs comes also from the spatial
derivatives of the intensity, since

Lol 1o, 10m,

wlaz_wzaz_ w3827

o (T I
0z w1 wn -

This is the Manley-Rowe relation, which has a simple interpretation in

the quantum theoretical description, in terms of photons.
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NG ERTENER A Parametric amplification
Optical Parametric Amplification

A very important special case of the previous description of coupled
dynamics of three-wave mixing is when a strong pump beam of
frequency w3 and a weak signal of frequency w; (to be amplified)
enters the nonlinear medium with perfect phase matching for

wy = w3 — wi. We make the constant amplitude approximation for the
pump beam, which leads to the following ODEs for beams 1 and 2:

2
Pe(z) P&(z) 2 P&\ wiws
o2 v-&1(2), 02 v&(z), = c P

still coupled by the following initial conditions: &;(z = 0) = &£;(0) and
& (z = 0) = 0. The solution is

wany &3

£1(2) = £10) cosh(y2), &) =1/ 7o

—&7(0) sinh(yz)

i.e. the signal is amplified ca. exponentially, and an amplified

complementary wave appears at w», called the idler.
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N ERVEE GG Frequency doubling with pump depletion

Frequency doubling with pump depletion

Frequency doubling is a degenerate case of sum-frequency generation:
only one incident beam of frequency wq, and one generated wave of
frequency w3 = 2w;. The nonlinear polarization is then proportional to
the square of the incident field, which makes a change of a factor of 2
in the coupled equations for the two fields. Assuming phase matching
ks = 2k,

0€1(z) . wi x@ *
oz | nic &(2) &), 0z  2msc

yield the solution for the initial conditions & (z = 0) = E; (assumed
real), and &3(z =0) =0

~ cosh(v'z)’

&1(2) &(z) = iEjtanh(vz), + = X(Z)Elanlc'
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N ERVEE GG Frequency doubling with pump depletion

Frequency doubling with pump depletion

For z << 1/4' the power of the second harmonic wave grows as the
square of the pump power and as the square of the interaction length,
like for constant pump. At~z ~ 1 the process saturates and tends to
|€3| = E1, while the pump field tends to zero, which means total
conversion of the pump into the second harmonic if the medium is
thick enough. Even in reality, one can achieve extremely high
conversion efficiencies using pulsed lasers with very high peak
powers: frequency doubling of the Megajoule laser with an efficiency
of around 80%.
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Frequency doubling with pump depletion

w3

optic A4

=)

Angle (degrees)

(w2, 62)

0.9 1.0 1.1
Normalized Frequency

Figure 21.2-13 Tuning curves for non-collinear Type-1 0-0-¢ spontaneous parametric downcon-
version in a BBO crystal at an angle 6 = 33.53° for a 351.5-nm pump (from an Ar"-ion laser). Each
point in the bright area of the middle picture represents the frequency w; and angle 6, of a possible
down-converted wave, and has a matching point at a complementary frequency wy = w3 — w; with
angle 6. Frequencies are normalized to the degenerate frequency w, = ws/2. For example, the two
dots shown represent a pair of down-converted waves at frequencies 0.9w, and 1.1w,. Because of
circular symmetry, each point is actually a ring of points all of the same frequency, but each point on
a ring matches only one diametrically opposite point on the corresponding ring, as illustrated in the

right graph.

Figure: From [Saleh and Teich]
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N ERVEE GG Frequency doubling with pump depletion

ELI-ALPS laser system design

Front end OPA chain HR THZ & appl.
160 kHz CW DPSSLpump 5mJ, 160 kHz, t<5fs

Gas HHG: Atto XUV

Attosecond Beamlines
5 SYLOS Applications
Frontend OPA chain
o | W/pulsedDpssLpump  IECTNLAEHD

0.5J, 100 Hz, t<10fs
OPA chain

Synchronized
100 Hz DPSSLpump
Front end HF SHz,401.<155 Atto/PW

1 kHz

OPA chain OPA chain PW applications
pulsed DPSSLpump DPSSL/flashlamppump

Figure: From www.eli-alps.hu
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Four-wave mixing in a nutshell

Third-order nonlinear response of two-level atoms

PP (e, 1) = eox EP(r.1) X =+

¥ = Xf + iX”
, N &
o = N & wo —w 1=y goh(wg — w)
1% é‘oﬁ Sp + + (wg — w)? , N J
B=77 23— 3
lwo — w| > sp v el (wo — @)
) _ i)
, N d> @y — @ P =eox E
v EQF o3

St 4 (wg — w)? P(L_s x5 TET)

Figure: From [Gilbert, Aspect, and Fabre]
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Four-wave mixing in a nutshell

Degenerate four-wave mixing

ED(r.1) = S[gpeikq' +& T gseikz] ool

Py (1) = 2603 EF 0P EF e, 1)

ﬁ—
~lf— Z
/ Kerr medium
% PO (r.1) = deg ] £y Ep e W el
dé. 20
= —i— x{ E,ELEF
dz noc X3 Eppss

Figure: From [Gilbert, Aspect, and Fabre]
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Four-wave mixing in a nutshell

Phase conjugation

EM(z 1) = &l e = Al elft eIt
EEH(Z, = Ec(p)e ' = A e pmika gl

E.(z.1) = 2A" cos (wl +kz+ (pz)
@

0 m @ —
@ Ordinary o Phase
mirror @ conjugate
- mirror
Incident wave-front
(b) —_—
o ] . (b) >
@ Ordinary o
mirror Phase
L @ conjugate
mirror
(©) o - (© -—
) Ordinary o Phase
mirror @ conjugate
L mirror
(d) ~—
) -— o _ o Phase
Ordinary @ conjugate
@ mirror mirror
L reflected wave-front

Figure: From [Gilbert, Aspect, and Fabre]
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Further reading

@ References:
[Gilbert, Aspect, and Fabre]: G. Gilbert, A. Aspect, C. Fabre: Intro-
duction to Quantum Optics, Cambridge University Press, 2010.

[Saleh and Teich]: B. E. A. Saleh and M. C. Teich: Fundamentals of
Photonics, 2nd. ed., Wiley, 2007.
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Summary

Questions

@ Explain the self-consistency problem of light propagation in non-
linear media.

@ How does the intensity of the sum-frequency beam scale with the
length of the medium in the case of perfect phase matching and
collinear propagation?

© How does the intensity of the sum-frequency beam scale with the
intensities of the pump beams?

© Why is perfect phase matching in collinear propagation usually not
possible in isotropic media?

© Why is one of the electric field amplitudes conjugate in two of the
ODEs governing the coupled field dynamics of three-wave mixing,
but not in the third ODE?
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Summary

Questions

O Explain why it is sufficient to have 3 ODEs to describe the coupled
field dynamics of three-wave mixing? What about the processes
like wy = w3 + w1 ?

@ What are the invariants of the coupled dynamics of three-wave
mixing?
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