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Overview

Overview

Three- and four-wave mixing denote a set of methods and tech-
niques that utilize nonlinear optical media to create and control
light beams by other light (usually strong laser) beams.
Three-wave mixing: involves 3 light beams, uses second order non-
linearity.
Four-wave mixing: involves 4 light beams, uses third order non-
linearity.
These methods are of fundamental importance in modern laser sci-
ence.
Common terms: frequency doubling, sum frequency generation,
optical rectification, parametric amplification, phase matching, OPO,
OPA, etc.

A. Czirják (Dept. of Theoretical Physics) 4: Three- and four-wave mixing 3 / 29



Light propagation in a nonlinear medium: General method

Reminder

Polarization and nonlinear susceptibility in a nonlinear medium:

Pi = ε0
∑

j

χ
(1)
ij Ej + ε0

∑
j,k

χ
(2)
ijk EjEk + ε0

∑
j,k,l

χ
(3)
ijklEjEkEl + ...,

Wave equation with the linear and nonlinear polarization as source:

∆E(r,t)− 1
c2∂

2
t E(r,t) =

1
c2ε0

∂2
t (PL(r, t) + PNL(r, t))

Analogous wave equation for the complex fields (or ”analytic signals”,
or ”positive frequency parts”) E(+)(r, t) and P(+)(r, t).
Definition of the complex electric field:

E(+)(r, t) =
1√
2π

∫ ∞
0

dω e−iωt 1√
2π

∫ ∞
−∞

dt′ eiωt′ E(r, t′),

E(r, t) = E(+)(r, t) + E(−)(r, t), E(−)(r, t) =
[
E(+)(r, t)

]∗
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Light propagation in a nonlinear medium: General method

General method

To solve the wave equation for the complex electric field:

∆E(+)(r, t)− 1
c2∂

2
t E(+)(r, t) =

1
c2ε0

∂2
t

(
P(+)

L (r, t) + P(+)
NL (r, t)

)
expand the complex electric field over monochromatic plane waves
which already account for the linear polarization of the medium:

E(+)(r, t) =
∑
`

ε`E`(r) exp [i(k`r− ω`t)]

with wave vector k2
` = n2

`ω
2
`/c2, where n2

` = 1 + χ(1)(ω`) is the linear
refractive index, and ε` · k` = 0.
Note that the amplitudes E`(r) still have spatial dependence. To
simplify, we shall only consider the case in which all the waves
propagate in the same direction, along the z-axis.
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Light propagation in a nonlinear medium: General method

General method

Decompose the nonlinear polarization into the same monochromatic
components:

P(+)
NL (z, t) =

∑
`

ε`Pω`
NL(z) exp [−iω`t]

Substitute these sums into the wave equation and apply the slowly
varying amplitude approximation. Equating terms of the same
frequency we obtain a set of equations like

∂E`(z)

∂z
exp [ik`z] =

iω`

2ε0n`c
Pω`

NL(z)

Then express Pω`
NL(z) in terms of the amplitudes Em(z) using the

nonlinear susceptibilities, to obtain a system of coupled first-order
differential equations that can be solved to yield the amplitudes E`(z)
of the different waves.
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Light propagation in a nonlinear medium: General method

General method

Self-consistency of the equations, Born approximations:
The incoming light wave generates a polarization density in the
nonlinear medium, which generates a new light wave, which again,
generates another polarization density in the nonlinear medium, etc.
The previous equations have to be solved such that self-consistency is
achieved. This can be done usually by successive approximation.

Figure: From [Saleh and Teich]
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Three-wave mixing Couplings due to a second-order nonlinear medium

What is three-wave mixing?

Consider two intense waves, called pump waves, propagating in the z
direction in a second-order nonlinear medium. The frequency
dependent second-order susceptibility gives rise to the following
terms in the nonlinear polarization, associated with the physical
processes of frequency doubling, addition or difference, and optical
rectification (Figure from [Saleh and Teich]):

We shall consider frequency addition in detail.
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Three-wave mixing Frequency addition

Frequency addition

Figure: From [Saleh and Teich]

Two pump waves, E1(z) exp [i(k1z− ω1t)] and E2(z) exp [i(k2z− ω2t)],
propagating in a second-order nonlinear medium, generate the
following polarization amplitude at the sum frequency ω3 = ω1 + ω2

Pω3
NL(z) = 2 ε0 χ

(2)(−ω3;ω1, ω2) E1(z) E2(z) exp [i(k1 + k2)z]

This nonlinear polarization creates a field E3(z) at frequency ω3, which
evolves according to

∂E3(z)

∂z
exp [ik3z] =

iω3

2ε0n3c
Pω3

NL(z)
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Three-wave mixing Frequency addition

Frequency addition

Substituting the polarization, we get the following first-order ODE that
governs the spatial variation of the sum-frequency wave amplitude:

∂E3(z)

∂z
= i

ω3 χ
(2)

n3c
E1(z) E2(z) exp [i ∆k z]

where ∆k = k1 + k2 − k3 is the wavenumber mismatch. The ususal
initial condition is E3(0) = 0.

To a first approximation, we assume that E1 and E2 are constant over
the length L of the nonlinear material. If this is also thin, i.e.
0 < z < L << 1/∆k, then the above ODE can be simplified to

∂E3(z)

∂z
= i

ω3 χ
(2)

n3c
E1E2

which means that E3(z) increases linearly with z.
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Three-wave mixing Frequency addition

Frequency addition

Therefore the intensity of the generated beam I3 scales with the square
of the length of the crystal:

I3 = CL2I1I2

with C = (ω3 χ
(2))2/(2ε0c3n1n2n3).

Orders of magnitude: KTP crystal: χ(2) = 5 · 10−12 m/V , L = 1 cm,
pump waves of 1 W power around λ = 1µm wavelength, focused on
an optimal spot of 10−2 mm2, the sum-frequency beam has power
0.2 mW.
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Three-wave mixing Phase matching

Phase matching

If we can achieve ∆k = 0, called perfect phase matching, then the
previous results hold for any z as long as the pump beams can be
considered constant. However, because of dispersion, k3 = k1 + k2 is
usually not fulfilled in a medium.

If ∆k 6= 0, then the spatial dependence of the sum-frequency beam:

E3(z) =
ω3 χ

(2)

n3c
E1E2

exp [i ∆k z]− 1
∆k

i.e. its intensity leaving the medium of lenght L is proportional to

|E3(L)|2 =

(
2 ω3 χ

(2)

n3c

)2

|E1|2|E2|2
(

sin [∆k L/2]

∆k

)2

which is maximal if the length of the medium is set as Lopt = π/|∆k|.
The resulting optimal intensity is still less by a factor of 4/π2 than in
the case of perfect phase matching.
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Three-wave mixing Phase matching

Phase matching

How can perfect phase matching be achieved?
In a dispersive material k(ω) = n(ω)ω/c, thus for collinear propagation
k3 = k1 + k2 can be achieved using a birefringent material, where the
refractive index depends on the polarization.
For example, in type-I case the waves 1 and 2 have the same
polarization, and the direction of propagation through a uniaxial
crystal can be chosen such, that perfect phase matching is fulfilled.

Figure: From [Gilbert, Aspect, and Fabre]
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Three-wave mixing Phase matching

Phase matching

If we drop the collinearity requirement, perfect phase matching
requires k3 = k1 + k2 which is more easily achieved:

Figure: From [Gilbert, Aspect, and Fabre]
Disadvantage: poor beam overlap limits the interaction length.
Quasi-phase matching:
For long interaction lengths (guided propagation), phase matching for
the whole length is a problem. Quasi solution: several pieces of the
medium of length π/|∆k| set end-to-end, with alternating signs of χ(2),
this compensates phase mismatch. PPLN: periodically poled lithium
niobate
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Three-wave mixing Coupled dynamics of three-wave mixing

Coupled dynamics of three-wave mixing

Consider the second-order nonlinear material, three collinear coupled
waves, and perfect phase matching:

k3 = k1 + k2, ω3 = ω1 + ω2

Let us now relax the assumption of constant pumps, i.e. we go beyond
the Born approximation: all the amplitudes are subject to spatial
variation during propagation.
Clearly, if beams 1 and 2 generated already an up-converted beam 3,
this can combine with beam 1 or 2 to generate two other beams by
down-conversion. What about the many other possibilities, like
ω4 = ω3 + ω2, ω5 = 2ω3, etc.?
They can not be phase matched simultaneously with the phase
matching for 1, 2 and 3, thus they are suppressed by these, they can be
neglected in the modelling.
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Three-wave mixing Coupled dynamics of three-wave mixing

Coupled dynamics of three-wave mixing

The closed system of coupled ODEs that govern the 3 efficient
processes of collinear phase matched three-wave mixing:

∂E1(z)

∂z
= i

ω1 χ
(2)

n1c
E3(z) E∗2 (z),

∂E2(z)

∂z
= i

ω2 χ
(2)

n2c
E3(z) E∗1 (z), (coupled)

∂E3(z)

∂z
= i

ω3 χ
(2)

n3c
E1(z) E2(z),

they have a complicated general solution in terms of elliptic functions.
Instead, look for conserved quantities: energy is a good guess, the
Pointing vector’s magnitude is intensity,

Π = |Π| = |µ−1
0 E× B| = 2nε0c E∗E
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Three-wave mixing Coupled dynamics of three-wave mixing

Coupled dynamics of three-wave mixing

Calculate the spatial derivative of Π for all the 3 waves and add them:
∂

∂z
(Π1(z) + Π2(z) + Π3(z)) = i(ω1 + ω2 − ω3)2ε0χ

(2)(E∗1E∗2E3 − c.c.) = 0

which expresses energy conservation. No energy is transferred to the
nonlinear medium, which serves only to facilitate the coupling
process.

The second invariant of the coupled ODEs comes also from the spatial
derivatives of the intensity, since

1
ω1

∂Π1

∂z
=

1
ω2

∂Π2

∂z
= − 1

ω3

∂Π3

∂z
,

therefore
∂

∂z

(
Π1

ω1
− Π2

ω2

)
= 0.

This is the Manley-Rowe relation, which has a simple interpretation in
the quantum theoretical description, in terms of photons.
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Three-wave mixing Parametric amplification

Optical Parametric Amplification

A very important special case of the previous description of coupled
dynamics of three-wave mixing is when a strong pump beam of
frequency ω3 and a weak signal of frequency ω1 (to be amplified)
enters the nonlinear medium with perfect phase matching for
ω2 = ω3 − ω1. We make the constant amplitude approximation for the
pump beam, which leads to the following ODEs for beams 1 and 2:

∂2E1(z)

∂z2 = γ2E1(z),
∂2E2(z)

∂z2 = γ2E2(z), γ2 =

(
χ(2)|E3|

c

)2
ω1ω2

n1n2

still coupled by the following initial conditions: E1(z = 0) = E1(0) and
E2(z = 0) = 0. The solution is

E1(z) = E1(0) cosh(γ z), E2(z) = i
√
ω2n1

ω1n2

E3

|E3|
E∗1 (0) sinh(γ z)

i.e. the signal is amplified ca. exponentially, and an amplified
complementary wave appears at ω2, called the idler.
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Three-wave mixing Frequency doubling with pump depletion

Frequency doubling with pump depletion

Frequency doubling is a degenerate case of sum-frequency generation:
only one incident beam of frequency ω1, and one generated wave of
frequency ω3 = 2ω1. The nonlinear polarization is then proportional to
the square of the incident field, which makes a change of a factor of 2
in the coupled equations for the two fields. Assuming phase matching
k3 = 2k1,

∂E1(z)

∂z
= i

ω1 χ
(2)

n1c
E3(z) E∗1 (z),

∂E3(z)

∂z
= i

ω3 χ
(2)

2n3c
E2

1 (z),

yield the solution for the initial conditions E1(z = 0) = E1 (assumed
real), and E3(z = 0) = 0

E1(z) =
E1

cosh(γ′z)
, E3(z) = iE1tanh(γ′z), γ′ = χ(2)E1

ω1

n1c
.
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Three-wave mixing Frequency doubling with pump depletion

Frequency doubling with pump depletion

For z << 1/γ′ the power of the second harmonic wave grows as the
square of the pump power and as the square of the interaction length,
like for constant pump. At γ′z ≈ 1 the process saturates and tends to
|E3| = E1, while the pump field tends to zero, which means total
conversion of the pump into the second harmonic if the medium is
thick enough. Even in reality, one can achieve extremely high
conversion efficiencies using pulsed lasers with very high peak
powers: frequency doubling of the Megajoule laser with an efficiency
of around 80%.
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Three-wave mixing Frequency doubling with pump depletion

Parametric fluorescence

Figure: From [Saleh and Teich]
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Three-wave mixing Frequency doubling with pump depletion

Optical parametric devices

Figure: From [Saleh and Teich]
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Three-wave mixing Frequency doubling with pump depletion

ELI-ALPS laser system design

Figure: From www.eli-alps.hu
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Four-wave mixing in a nutshell

Third-order nonlinear response of two-level atoms

Figure: From [Gilbert, Aspect, and Fabre]
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Four-wave mixing in a nutshell

Degenerate four-wave mixing

Figure: From [Gilbert, Aspect, and Fabre]
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Four-wave mixing in a nutshell

Phase conjugation

Figure: From [Gilbert, Aspect, and Fabre]
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Summary

Further reading
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Summary

Questions

1 Explain the self-consistency problem of light propagation in non-
linear media.

2 How does the intensity of the sum-frequency beam scale with the
length of the medium in the case of perfect phase matching and
collinear propagation?

3 How does the intensity of the sum-frequency beam scale with the
intensities of the pump beams?

4 Why is perfect phase matching in collinear propagation usually not
possible in isotropic media?

5 Why is one of the electric field amplitudes conjugate in two of the
ODEs governing the coupled field dynamics of three-wave mixing,
but not in the third ODE?
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Summary

Questions

6 Explain why it is sufficient to have 3 ODEs to describe the coupled
field dynamics of three-wave mixing? What about the processes
like ω4 = ω3 + ω1 ?

7 What are the invariants of the coupled dynamics of three-wave
mixing?
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