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Introduction, Motivation

Reminder
For weak external fields, we have P(ω) = ε0χ(ω)E(ω),where (for homo-
geneous media) the susceptibility χ is a complex valued function of the
frequency. The Lorentz model (assuming harmonically bound classical
electrons) results in χ(ω) ∝ 1/

(
ω2

0 − ω2 − iγω
)
, where γ describes the

damping. Note that this expression leads to a causal P–E relation.

Nonlinearities
However, when the external field is strong enough
(e.g., in solids: comparable to the interatomic electric
fields ranging between 105–108 V/m), nonlinear ef-
fects inevitably appear. The figure illustrates the typi-
cal situation in this parameter range. During the cur-
rent lecture, we consider a nonlinear extension of the
Lorentz model in order to gain a basic understanding
of nonlinear light-matter interactions.
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Introduction, Motivation

Experimental relevance of nonlinear effects

Generation of difference and sum frequencies

Considering two-color excitation (ω and ω′), nonlinear effects lead to
polarization response oscillating also at the difference ω − ω′ and the
sum ω + ω′ of the exciting frequencies.

High harmonics generation (HHG)*

A strong enough excitation corresponding to a single carrier frequency
ω can lead to measurable harmonics n× ω up to orders of n around 50.

Ultrashort pulses*

Having multiple harmonics with appropriate phase (frequency do-
main) can lead to extremely short (attosecond) laser pulses (time do-
main).

* Theoretical description is beyond the perturbative methods presented here.
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Nonlinear dipole oscillator

Basic concepts

Similarly to the Lorentz model, we consider a single active electron in
the atom as a classical point charge e0(< 0) of mass m. A damping force
should also be included on physical grounds.
The exciting field is assumed to be linearly polarized, monochromatic:
E(z, t) = E(z, t)x̂, with

E(z, t) = E0 cos(ωt− kz) =
1
2

E0e−i(ωt−kz) + c.c..

That is, the wave propagates along the z axis, while it is polarized in the
x direction. (Note that x is also used to label the deviation of the electron
from the equilibrium position with the center of charge at the nucleus.
Generally x = x(z, t), but the spatial dependence will be omitted at this
point.)
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Nonlinear dipole oscillator Quadratic nonlinearity

Dynamical equation

The previous assumptions lead to

ẍ(t) + γẋ(t) + ω2
0x(t) + ax2(t) + bx3(t) + . . . =

e0

m
E0 cos(ωt), (NlinOsc)

where the most important nonlinear terms proportional to a and b exp-
licitly appear.
Notes

The quadratic term in (NlinOsc) is absent for e.g., isolated atoms
(for symmetry reasons).
In the following we shall not consider higher order terms than the
cubic one proportional to b above.
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Nonlinear dipole oscillator Quadratic nonlinearity

Series expansion

In order to see the role of various orders of approximation, the solution
of Eq. (NlinOsc) is usually assumed to have a form of a power series:

x(t) =

∞∑
n=1

x(n)(t),

where, according to the previous lecture,

x(1)(t) =
e0

m
1

ω2
0 − ω2 − iγω

1
2

Eωe−iωt + c.c.

Higher order terms (corresponding to solutions with increasing acc-
uracy) are obtained by successive approximation. E.g., assuming qu-
adratic nonlinearity,

N+1∑
n=1

d2

dt2 x(n) + γx(n) + ω2
0x(n) + a

[
N∑

n=1

x(n)
]2

=
e0

2m
E0e−iωt. (Sum)
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Nonlinear dipole oscillator Quadratic nonlinearity

Details
Let us investigate the simplest case of Eq. (Sum) with N = 1. Note that
– by construction – the terms linear in the first order solution x(1) cancel
the driving field. That is, we have:

d2

dt2 x(2) + γx(2) + ω2
0x(2) = −a

[
x(1)
]2
.

Let us observe that [x(1)(t)]2 can be written as a sum of a constant (dc)
term and an additional one oscillating with 2ω. Therefore the form

x(2)(t) =
1
2

[
x(2)dc + x(2)2ω e−2iωt + c.c.

]
is plausible. By substituting this expression back to the equation on the
top of the slide and equating terms with the same time dependencies,
we can calculate the coefficients x(2)dc and x(2)2ω , i.e., we can obtain a solu-
tion up to second order.
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Nonlinear dipole oscillator Remark on cubic nonlinearity

Second order solution for quadratic nonlinearity

x(2)dc = − a
2ω2

0

∣∣∣x(1)(0)
∣∣∣2 , x(2)2ω = − a

2

(
x(1)(0)

)2 1
ω2

0 − (2ω)2 − iγ2ω
.

(dc2w)
These coefficients provide the leading order nonlinear correction when
there is no inversion symmetry and quadratic nonlinearities appear.
Note that around resonance, both x(2)dc and x(2)2ω are divided by essen-
tially ω2

0, i.e., these corrections are usually small.

Let us recall, that the appearance of the second harmonics in the solu-
tion above was due to the fact that this frequency component was pre-
sent already in the term

[
x(1)(t)

]2
. When the leading order nonlinearity

is cubic, x(1)(t) has to be raised to third power (instead of the second),
and a term oscillating with 3ω also appear.
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Sum and difference frequency generation

Two-color excitation
Let us consider

E(z, t) = E10 cos(ω1t + kz) + E20 cos(ω2t + kz). (2color)

Following the same route as before, we easily see that the polarization

P(z, t) = N e0x(z, t)

will contain terms with spatiotemporal dependences of cos[(k1z −
ω1t)], cos[(k2z−ω2t)], and cos[(k±z−ω±t)], where ω± = ω1±ω2, and k±
are the corresponding wave numbers.

Assuming quadratic nonlinearity, x(2)+ and x(2)− can be obtained as a stra-
ightforward generalization of Eq. (dc2w).
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Sum and difference frequency generation

Coupled mode equations

As a simple generalization, let us assume that the amplitudes in
Eq. (2color) are slowly varying functions of space and time E1 = E1(z, t)
and E2 = E2(z, t). According to the previous discussion, two additional
field modes also arise as a consequence of the nonlinearity:

E±(z, t) = E0±(z, t) cos(ω±t + kz).

According to the first lecture, the slowly varying amplitude equations
in steady state read:

∂

∂z
Ei0(z, t) = − k

2ε0
Im Pi0(z, t), (Amp)

where Pi0(z, t) denote the (complex valued) slowly varying amplitude
of the corresponding polarization, i = 1, 2,+,−.
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Sum and difference frequency generation

Coupled mode equations II

In general, different modes are not independent (in fact, the presence of
modes 1 and 2 in the nonlinear medium is the origin of the appearance
of modes + and -). Although it is not visible explicitly in Eq. (Amp), this
fact appears as the dependence of the polarization corresponding to a
given mode on the amplitude of different modes as well. (Recall again
the case of second harmonic, sum or difference frequency generation.)
The resulting complex system of coupled equations is usually relatively
difficult to solve.

However, in order get an insight into the physical mechanisms, we can
rely on simple approximations. Let us concentrate on difference frequ-
ency generation, and assume on physical grounds that the weak mode
’-’ does not act back on the considerably more intense modes 1 and 2.
This (and arguments to be prested a little later) allows us to use the li-
near theory for P10 and P20, and consider the consequences of second
order nonlinearity only for P−0.
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Sum and difference frequency generation

Coupled mode equations III

Using the assumptions summarized on the previous slide, it can be
shown [1] that in our simple collinear model (all fields propagate along
the z axis), the intensity of the weak difference frequency signal is given
by

I−(L) ∝ I1I2
sin2(∆kL/2)

(∆kL/2)2 , (Iminus)

where L is the length of the nonlinear medium (typically a crystal), and
∆k = k1 − k2 − k−. The maximum of the function above is reached for
∆k = 0, which is an appearance of momentum conservation. However,
for collinear propagation, ∆k can only vanish for dispersionless media.
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Sum and difference frequency generation

Phase matching

If ∆k 6= 0 in Eq. (Iminus), the output intensity I−(L) will be an oscil-
lating function of ∆kL : maxima and minima appear according to con-
structive and destructive interferences at the output point L.
Maxima of (Iminus) appear periodically at

∆kL = mπ,

with m being integer. When this phase matching condition is fulfilled for
e.g., difference frequency generation, additional nonlinear effects (like
sum frequency generation, appearance of harmonics for any of the two
exciting frequencies) are suppressed. The reason is that the conditions
(k1 − k2 − k−)L = mπ and, e.g., (k1 − k2 − k+)L = mπ are incompatible,
they cannot be satisfied at the same time. That is, phase matching is
usually possible only for a given nonlinear process.

Note that in 3D, the vectorial version of the phase matching condition
has to be fulfilled, e.g., by using birefringent media.
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Nonlinear susceptibility

A reminder on causality

The polarization P is usually generated by an external electric field E in
a medium with polarizable atoms, and it is also a source of a secondary
electric field. In both cases, causality requires that even in the presence
of memory effects, P at a certain time instant t and spatial point r cannot
depend on E(r′, t′) if t′ > t. In other words, the most general P–E relation
in a linear medium is the following:

Pi(r, t) = ε0

∫
d3r′

∫ t

−∞
dt′χij(r− r′, t− t′)Ej(r′, t′). (Causality)

In frequency-wavenumber domain (after 4D Fourier transform) the
convolutions above become a local product, i.e., we have

Pi(k, ω) = χij(k, ω)Ej(k, ω).

Note that any physically relevant expression for χij(k, ω) must respect
(Causality). The oscillator model of Lecture 2 can be seen to be causal.
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Nonlinear susceptibility

Nonlinear susceptibility

The nonlinear version of Eq. (Causality) to second order nonlinearity
can be written as

Pi(r, t)
ε0

= linear contribution

+

∫∫ t∫
−∞

t∫
−∞

d3r′d3r′′dt′dt′′χ(2)
ijk (r− r′, r− r′′, t− t′, t− t′′)Ej(r′, t′)Ek(r′′, t′′).

Generalization to higher orders is straightforward.

In frequency domain (let us omit spatial/wavenumber dependence for
now) P(ω) is nonzero only if the nonlinear effect we consider allows
the appearance of the frequency component ω. E.g., for second order
nonlinerity with excitation at ω1 and ω2, nonlinear processes induce
P(ω1−ω2) and P(ω1 +ω2). For sum frequency generation, e.g., we have

Pi(ω1 + ω2) = χ
(2)
ijk (ω1 + ω2)Ej(ω1)Ek(ω2).
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Nonlinear susceptibility

Remarks
When the exciting field is essentially monochromatic (although
strong) one usually writes:

Pi = ε0
∑

j

χ
(1)
ij Ej + ε0

∑
j,k

χ
(2)
ijk EjEk + ε0

∑
j,k,l

χ
(3)
ijklEjEkEl + . . . .

We have not mentioned so far the possible appearance of combi-
nation tones: For higher order processes, assuming excitation at
frequencies ω1 and ω2, the polarization that arise will contain fre-
quency components nω1 + mω2, with n,m being integer.
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Outlook, further reading

Outlook

Nonlinear optical phenomena cover a wide, experimentally important
area. During the current lecture we introduced a transparent, classical
model that helped us to see the basic concepts in this field. Obviously,
sophisticated quantum mechanical models can provide a more realistic
description, but this is beyond the scope of the current course.

Special nonlinear effects that are of experimental importance (like 3 and
4 wave mixing together with the corresponding phase matching condi-
tions) will be discussed in the next lecture.
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Outlook, further reading

Questions

1 Summarize the assumptions of the Lorentz model.
2 In what way have we generalized the Lorentz model in this lec-

ture?
3 Considering strong, monochromatic excitation, and quadratic non-

linearity, what frequency components does the induced polariza-
tion have?

4 Considering strong, monochromatic excitation, and cubic nonline-
arity, what frequency components does the induced polarization
have?

5 Explain the physical mechanism that can couple different modes
of electromagnetic radiation traversing a nonlinear crystal.

6 What is phase matching?
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Outlook, further reading

Questions (continued)

7 Can the phase matching conditions be fulfilled (in general) for dif-
ferent nonlinear processes?

8 In what sense does the notion of causality appear in P– E relations?
9 Explain, why the linear relation between P and E is local in the

variables k and ω.
10 What is the physical role of nonlinear susceptibility?
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Outlook, further reading
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