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The macroscopic Maxwell equations in a medium

The macroscopic Maxwell equations in a medium

The phenomenological form of the Maxwell equations is

∇×H(r,t)− Ḋ = Jm, (M1)

∇×E(r,t) + Ḃ = 0, (M2)

∇D = ρm, (M3)

∇B = 0. (M4)

Here ρm and Jm are the charges and currents available for macroscopic measurements.
They can be derived from the Maxwell-Lorentz equations with microscopic (atomic) charges
and currents by taking a spatial average [1].
The phenomenological quantities D and H are those parts of the electric and magnetic
�elds that are created only by the charges and currents, which are seen macroscopically.

D = ε0E + P, H =
1

µ0
B−M.
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The macroscopic Maxwell equations in a medium

The macroscopic Maxwell equations in a medium II

The di�erence between D and E is hidden in the presence of atomic polarization charges
ρP = −∇P; in polarization currents JP = Ṗ; and that between B and H in the presence of
magnetic currents Jmag = ∇×M.

In a little more detail:
The source of E is the total charge in the medium which is ρm + ρP , therefore the
macroscopic electric �eld obeys

∇E =
1

ε0
(ρm + ρP ) =

1

ε0
(ρm −∇P),

leading to:
∇(ε0E + P) =ρm, i.e., ∇D = ρm.

Similarly the total current in a medium is Jm + JP + Jmag , the macroscopic E and B obey
therefore:

∇×B(r,t)− ε0µ0Ė=µ0(Jm + JP + Jmag) = µ0(Jm + Ṗ+∇×M),

which is equivalent to ∇×H− Ḋ = Jm.
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The inhomogeneous wave equation

The inhomogeneous wave equation

From the viewpoint of optical �elds

1 The magnetic properties of the medium are inessential: M =0 in most cases. Then
magnetic �elds are connected like in vacuum, B = µ0H.

2 Macroscopic currents are absent or do not play any role: ρm = 0, but we keep JP = Ṗ.

Field losses can be essential in certain cases, and can be introduced by a term proportional
to Ė, the �rst time derivative of E which is not invariant with respect to time reversal. This
is done usually with a �ctitious conductivity, σ which � like in a metal � can represent the
losses, even in nonconducting materials by writing

Jm=σE.

The curl of the second Maxwell equation and the time derivative of the �rst one, yields for
E:

∇×∇×E+µ0σ Ė + µ0ε0Ë = −µ0P̈

or ∇(∇E)−∆E+µ0σĖ+
1

c2
Ë = −µ0P̈
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The inhomogeneous wave equation

The inhomogeneous wave equation

The previous equation is now

−∇(∇E)+∆E−µ0σĖ− Ë/c2=µ0P̈.

∇E ≈0 in optics, since most light �eld vectors vary little along the directions in which they
propagate. For example, a plane wave �eld is transversal, causing ∇E to vanish identically.
Further on we shall also neglect the direct �eld losses so we omit the term with Ė :

∆E−
1

c2
Ë =µ0P̈. (inhwave)

This is the well known inhomogeneous wave equation, the source term on the right hand
side is the polarization originating from the atomic dipole moments
In most cases we assume a �eld propagation in one direction, let it be the z direction, and a
linearly polarized electric �eld, as well as polarization density both in the x̂ direction
E =Ex̂, P =P x̂.
Equation (inhwave) now becomes:

∂2E

∂z2
−

1

c2
∂2E

∂t2
=µ0

∂2P (z, t)

∂t2
. (lpwave)
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The inhomogeneous wave equation Quasi monochromatic �elds

Quasi monochromatic �elds, positive and negative
frequency parts

We are concerned mostly with the interaction of quasi-monochromatic light with matter.
Then the �eld can be written as

E(z, t) = E+(z, t) + E−(z, t)

with

E+(z, t) =
1

2
E0(z, t) exp[i(kz − ωt− φ(z, t)], E−(z, t) = (E+(z, t))∗.

Here E0(z, t) and φ(z, t) are the real amplitude and the real phase "constant" .
Be aware that in the older literature the factor of 1/2 was usually omitted!
Very often one also uses the complex amplitude

E+(z, t) = E0(z, t)e−iφ(z,t),

E+(z, t) =
1

2
E+(z, t) exp[i(kz − ωt)].

E+(z, t) is the positive frequency component, E−(z, t) is the negative frequency component

of the �eld. In the semiclassical description this separation and the introduction of the

complex quantities is only a convenient tool but it acquires important physical signi�cance

in quantum optics, where E+ and E− become distinct operators.
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The inhomogeneous wave equation Slowly varying envelope approximation (SVEA)

Slowly varying envelope approximation SVEA

If E(z, t) is truly monochromatic, then E0 and φ are constants in time and space.
More generally, in the quasi monochromatic case we can suppose that they vary su�ciently
slowly in time and space on the time scale 2π/ω and spatial distance 2π/k = λ, i.e., on the
time and spatial period of the phase in the exponent.
Mathematically this means that∣∣∣∣ ∂∂tE+(z, t)

∣∣∣∣� |ωE+(z, t)|,
∣∣∣∣ ∂∂z E+(z, t)

∣∣∣∣� k|E+(z, t)|. (SVEA)

Which is equivalent to the inequalities∣∣∣∣ ∂∂tE0(z, t)

∣∣∣∣� ωE0(z, t),

∣∣∣∣ ∂∂zE0(z, t)

∣∣∣∣� kE0(z, t),∣∣∣∣ ∂∂tφ(z, t)

∣∣∣∣� ω,

∣∣∣∣ ∂∂z φ(z, t)

∣∣∣∣� k

for the real amplitude and phase.
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The inhomogeneous wave equation Slowly varying envelope approximation (SVEA)

Slowly varying envelope approximation SVEA

For a quasi-monochromatic �eld, the polarization induced in the medium P (z, t) is also
quasi-monochromatic, for an isotropic medium it is of the same direction as E, but in
general its phase is di�erent from that of the �eld. The polarization is also decomposed into
positive and negative frequency parts:

P (z, t) = P+(z, t) + P−(z, t),

P+(z, t) =
1

2
P+(z, t) exp[i(kz − ωt)] =

1

2
P0 exp[i(kz − ωt)− iφ(z, t)],

but we do not assume that P0 is real. The phase of P0 will be just be the phase shift

between E+ and P+.
In order to proceed, we substitute E+(z, t) and P+(z, t) into the wave equation, calculate
the necessary time and spatial derivatives and make use of k = ω/c. Additionally, we

neglect the second derivatives ∂2

∂z2
E+(z, t), ∂2

∂t2
E+(z, t) when compared with terms

∂
∂z
E+(z, t), ∂

∂t
E+(z, t), as well as both the �rst and the second time derivative of P+

compared with ω2P+. This yields(
∂

∂z
+

1

c

∂

∂t

)
E+(z, t) =

ik

2ε0
P+.
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Amplitude and phase equations

Amplitude and phase equations

As we have just obtained,(
∂

∂z
+

1

c

∂

∂t

)
E+(z, t) =

ik

2ε0
P+.

Put E+ = E0e
−iφ(z,t), and P+ = P0e

−iφ(z,t), with E0 real but P0 is not.
By separating the real and imaginary parts, we �nd(

∂

∂z
+

1

c

∂

∂t

)
E0(z, t) = −

k

2ε0
ImP0, (Amp)

E0

(
∂

∂z
+

1

c

∂

∂t

)
φ(z, t) = − k

2ε0
ReP0. (Phase)

These two equations play a central role in optical physics and quantum
optics.

They tell us how light propagates through a medium and speci�cally
how the real and imaginary parts of the polarization act.
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Amplitude and phase equations

Amplitude and phase equations

(
∂

∂z
+

1

c

∂

∂t

)
E0(z, t) = −

k

2ε0
ImP0 (Amp)

E0

(
∂

∂z
+

1

c

∂

∂t

)
φ(z, t) = − k

2ε0
ReP0 (Phase)

Equation (Amp) shows that the �eld amplitude is driven by the imagi-
nary part of the polarization. This in-quadrature component gives rise
to absorption and emission.
Equation (Phase) allows us to compute the phase velocity with which the
electromagnetic wave propagates in the medium. It is the real part of
the polarization, i.e, the part in-phase with the �eld, that determines the
phase velocity. The e�ects described by this equation are those associated
with the index of refraction of the medium, such as dispersion and self
focusing.
In both cases the solution requires the knowledge of the source term on
the right hand side.
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Amplitude and phase equations Average of atomic dipole moments

The polarization as an average of atomic dipole moments

The polarization is P, which is the volume density of the dipole
moments in the medium, builds up from the individual dipole moments
of the entities (atoms, molecules) of the medium.
Denote the number of atoms/(unit volume) by N (z) in a small but
macroscopic (containing many atoms) slice element of the sample
around z, and let the time dependent average dipole moment in this
slice be denoted by Da(z, t). Then the dipole moment density, i.e. the
polarization is

P = N (z)Da(z, t).

and according to the SVEA we write Da as

Da = d
X(z, t)

2
exp[i(kz − ωt− φ(z, t)] + c.c.

where d has the dimension of dipole moment being an intrinsic property
of the atom and X(z, t) is a slowly varying dimensionless amplitude.
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Amplitude and phase equations The Amplitude and Phase equations II

The Amplitude and Phase equations II

With the real quantities U and V we write

X(z, t) := U(z, t)− iV (z, t)

which characterizes the magnitude of the response of the atomic dipole
moments to the external �eld at the actual macroscopic location around
z and time t. The polarization amplitude P0 is obtained accordingly

P0 = dN (z)(U(z, t)− iV (z, t))

With this separation and assuming that d is real, we obtain:(
∂

∂z
+

1

c

∂

∂t

)
E0(z, t) =

k

2ε0
NdV, (Amp)

E0

(
∂

∂z
+

1

c

∂

∂t

)
φ(z, t) = − k

2ε0
NdU. (Phase)
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The principle of a self consistent solution

The principle of a self consistent solution

Equations (Amp) and (Phase) alone are not su�cient to describe
physical problems completely, since they only tell us how a plane
electromagnetic wave responds to a given polarization of the medium.
That polarization must still be determined. Of course, we know that
the polarization of a medium is in�uenced by the �eld to which it is
subjected. In particular, for atoms or molecules without permanent
polarization, it is the electromagnetic �eld itself that induces their
polarization! Thus the polarization of the medium drives the �eld,
while the �eld drives the polarization of the medium. In general this
leads to a description of the interaction between the electromagnetic
�eld and matter expressed in terms of coupled, nonlinear, partial
di�erential equations that have to be solved self-consistently.
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The principle of a self consistent solution

Models of polarization

The quantities on the right hand sides of (Amp) and (Phase) can be
calculated from di�erent models

1 The polarization of a medium is assumed to be simply proportional

to the instantaneous value of the �eld strength. This case will be

discussed below in this lecture

2 The polarization of a medium consisting of classical simple harmonic

oscillators will be discussed in the next lecture

3 Lectures 3 and 4 discuss similar media with anharmonic (nonlinear)

oscillators.

4 Quantum mechanical models of so called two-level atoms or multi-

level systems are discussed in later lectures.
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Solution in terms of the susceptibility

Solution for the linear steady state in terms of the
susceptibility

We come to the simplest possibility to determine P0 (or U and V ) by
assuming a linear response from the system when

P0 = {dN (U − iV )} = ε0χE0(z) = ε0(χ
′ + iχ′′)E0(z)

is assumed to be valid at each time instant, where χ′ and χ′′ are the
real and imaginary parts of the linear susceptibility. An explicit
solution of the system (Amp) and (Phase) is possible then in the steady
state limit when ∂E0

∂t = 0. Substituting into (Amp):

d

dz
E0(z) = −

k

2ε0
ImP0 = −k

2
χ′′E0,

E0(z) = E0(0)e
− k

2
χ′′z,

showing that the imaginary part of χ describes absorbtion.
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Solution in terms of the susceptibility

Solution for the linear steady state in terms of the
susceptibility

The (phase) equation allows us to relate the in-phase component of the
susceptibility to the index of refraction n. As for the amplitude, we
consider the stationary limit, for which ∂

∂tφ(z, t) = 0.
This, together with P0 = ε0(χ

′ + iχ′′)E0, gives

dφ

dz
= −k

2
χ′.

Expanding the slowly varying phase as φ(z) = φ(0) + zdφ/dz, we �nd
that the total phase reads

kz − ωt− φ = kz − ωt− φ(0)− z dφ
dz

= −ω
(
t− k

ω

(
1 +

1

2
χ′
)
z

)
,

and read o� the phase velocity and the real part of the index of
refraction:

v =
ω

k

1

1 + χ′/2
=

c

1 + χ′/2
=⇒ n = 1 + χ′/2
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Solution in terms of the susceptibility

Questions

1 Recall the main physical assumptions beyond the method of Lorentz
leading to the phenomenological Maxwell equations.

2 Is the role of the magnetic e�ects crucial at optical frequencies?

3 What is the source term in the inhomogeneous wave equation for
the electric �eld?

4 What does the term "positive frequency part of a quasi monochro-
matic �eld" mean?

5 What does SVEA mean? What are the main assumptions that lead
to this approximation?

6 What are the amplitude and phase equations in SVEA?
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Solution in terms of the susceptibility

Questions (continued)

7 What is the physical signi�cance of the imaginary part of the polar-
ization?

8 What is the physical signi�cance of the real part of the polarization?

9 What are the principles of a self consistent description of matter-�eld
interaction?

10 Recall a few physical models of polarization!

11 What physical e�ect is described by the imaginary part of χ?

12 In the simplest model, which part (real or imaginary) of χ is related
to the phase velocity and the index of refraction?
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Solution in terms of the susceptibility
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