Teaching Mathematics and Statistics in Sciences, IPA HU-SRB/0901/221/088

Biostatistics

Author: Krisztina Boda PhD

Nonparametric tests, rank-based tests, chi-square tests

Parametric tests

- Parameter: a parameter is a number characterizing an aspect of a population (such as the mean of some variable for the population), or that characterizes a theoretical distribution shape.
- Usually, population parameters cannot be known exactly; in many cases we make assumptions about them.
- Parameters of the normal distribution: μ, σ
- Parameter of the binomial distribution: n, p
- Parameter of the Poisson distribution: λ

Parametric tests

- The null hypothesis contains a parameter of a distribution. The assumptions of the tests are that the samples are drawn from a normally distributed population. So ttests are parametric tests.
■ One sample t-test: $\mathrm{H} 0: \mu=\mathrm{c}$,
■ Two sample t-test: H_{0} : $\mu_{1}=\mu_{2}$ assumptions: $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$

Nonparametric tests

- We do not need to make specific assumptions about the distribution of data.
- They can be used when
- The distribution is not normal
- The shape of the distribution is not evident
- Data are measured on an ordinal scale (low-normal-high, passed - acceptable - good very good)

Ranking data

- Nonparametric tests can't use the estimations of population parameters. They use ranks instead. Instead of the original sample data we have to use its rank.
- To show the ranking procedure suppose we have the following sample of measurements: 199, 126, 81, 68, 112, 112.
- Sort the data in ascending order: 68, $81,112,112,126,199$
- Give ranks from 1 to n : $1,2,3,4,5,6$
- Two cases are equal, they are assigned a rank of 3.5, the average rank of 3 and 4 . We say that case 5 and 6 are tied.
- Ranks corrected for ties:
$1,2,3.5,3.5,5,6$

Result of ranking data

Case Data Rank Ranks corrected for ties

$\mathbf{4}$	68	$\mathbf{1}$	$\mathbf{1}$
3	81	2	$\mathbf{2}$
5	112	3	$\mathbf{3 . 5}$
6	112	4	$\mathbf{3 . 5}$
2	126	5	$\mathbf{5}$
1	199	6	$\mathbf{6}$

- The sum of all ranks must be $\sum_{i=1}^{n} r_{i}=\frac{n(n+1)}{2}$
- Using this formula we can check our computations.
- Now the sum of ranks is 21 , and $6(7) / 2=21$.

Nonparametric tests for paired data

 (nonparametric alternatives of paired t-test)- Sign test
- Wilcoxon's matched pairs test
- Null hypothesis: the paired samples are drawn from the same population

Nonparametric test for data in two independent groups
(nonparametric alternatives of two sample t-test)
■ Mann-Whitney U test

- Null hypothesis: the samples are drawn from the same population
- Assumption: the distribution of variables is continuous and the density functions have the same shape

Patient	Change in body weight (kg)	Group	Rank	Rank corrected for ties
1.	-1	Diet	3	3
2.	5	Diet	16	16.5
3.	3	Diet	12	13
4.	10	Diet	21	21
5.	6	Diet	18	19
6.	4	Diet	15	15
7.	0	Diet	4	5.5
8.	1	Diet	8	9
9.	6	Diet	19	19
10.	6	Diet	20	19
Sum of ranks, R_{1}				140
11.	0	Control	11	11
12.	1	Control	5	5.5
13.	0	Control	9	9
14.	3	Control	6	5.5
15.	1	Control	13	13
16.	5	Control	10	9
17.	0	Control	7	9
18.	-2	Control	1	16.5
19	-2	Control	2	5.5
20.	3	Control	14	1.5
21.				1.5
Sum of ranks R_{2}			13	

SPSS output

	group	N	Mean Rank	Sum of Ranks
VAR00001	1.00	10	14.00	140.00
	2.00	11	8.27	91.00
	Total	21		

Test Statistics ${ }^{\text {b }}$

	VAR00001
Mann-Whitney U	25.000
Wilcoxon W	91.000
Z	-2.129
Asymp. Sig. (2-tailed)	.033
Exact Sig. [2*(1-tailed	$.036^{\text {a }}$
Sig.)]	

a. Not corrected for ties.
b. Grouping Variable: group

Nonparametric alternative of the correlation coefficient : Spearman's rank correlation coefficient.

- The rank correlation coefficient r_{s} one of the nonparametric measure of statistical dependence. It is the Pearson's correlation coefficient based on the ranks of the data if there are no ties (adjustments are made if some of the data are tied).
- $-1 \leq r_{s} \leq+1$
- Its significance can be tested using the same formula as in testing the Pearson's coefficient of correlation.

Nonparametric tests but they are not based on ranks

The chi-square distribution

TABLE C: χ^{2} CRITICAL VALUES

	Tail probability p										
df	. 25	. 20	. 15	:10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83
2	2.77,	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25
17	20.49	$21.61{ }^{*}$	22.98	24.77	27.59	30.19	31.00	33.41	35,72	37.95	40.79
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51,18
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31,	46.93.	49.44	52.62
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	$48.29{ }^{\circ}$	50.83	54.05
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61
80	88.13	90.41	93.11	96.58	101.9	106.6	108.1	112.3	116.3	120.1	124.8
100	109.1	111.7	114.7	118.5	124.3	129.6	131.1	135.8	140.2	144.3	149.4

Example

- A study was carried out to investigate the proportion of persons getting influenza vary according to the type of vaccine. Given below is a 3×2 table of observed frequencies showing the number of persons who did or did not get influenza after inoculation with one of three vaccines.
- Does proportion of getting influenza depend on the type of vaccine?

Type of vaccine	Number getting influenza	Number not getting influenza	Total
Seasonal only	$\mathbf{4 3 (1 5 . 3 5 \%)}$	237	$280(100 \%)$
H1N1 only	$52(\mathbf{2 0 . 8 \%)}$	198	$250(100 \%)$
Combined	$\mathbf{2 5 (9 . 2 \%)}$	245	$270(100 \%)$
Totals	120	680	800

Test of independence

- In biology the most common application for chi-squared is in comparing observed counts of particular cases to the expected counts.
- A total of n experiments may have been performed whose results are characterized by the values of two random variable X and Y.
- We assume that the variables are discrete and the values of X and Y are $x_{1}, x_{2}, \ldots, x_{\mathrm{r}}$ and $y_{1}, y_{2}, \ldots, y_{\mathrm{s}}$, respectively, which are the outcomes of the events $A_{1}, A_{2}, \ldots, A_{f}$ and $B_{1}, B_{2}, \ldots, B_{s}$. Let's denote by $k_{i j}$ the number of the outcomes of the event $\left(A_{i}, B_{j}\right)$. These numbers can be grouped into a matrix, called a contingency table. It has the following form:

Contingency table

	B_{1}	B_{2}	\ldots	B_{s}	Total	nt
A_{1}	k_{11}	k_{12}	...	$k_{1 \mathrm{~s}}$	k_{1+}	$i=1,2, \ldots r$
A_{2}	k_{21}	k_{22}	...	$k_{2 \mathrm{~s}}$	k_{2+}	
...	\ldots	...	\cdots	...		$\geq k_{i+}=\sum_{j=1} k_{i j}$
A_{r}	$k_{\text {r1 }}$	$k_{\text {r2 }}$...	$k_{\text {rs }}$	$k_{\text {r }+}{ }^{\text {a }}$	
Total	k_{+}			$k_{\text {本 }}$	n	

Frequency of B_{i} event $\quad k_{+j}=\sum_{i=1}^{r} k_{i j}$
$j=1,2, \ldots s$

Chi-square test (Pearson)

- H_{0} : The two variables are independent. Mathematically: $\mathrm{P}\left(A_{i} B_{j}\right)=\mathrm{P}\left(A_{i}\right) \mathrm{P}\left(B_{j}\right)$
- Test statistic:

$$
\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(k_{i j}-\frac{k_{i+} \cdot k_{+j}}{n}\right)^{2}}{\frac{k+\cdot k_{+j}}{n}}
$$

- If H_{0} is true, then χ^{2} has asymptotically χ^{2} distribution with $(r-1)(s-1)$ degrees of freedom.
- Decision: if $\chi^{2}>\chi^{2}$ table then we reject the null hypothesis that the two variables are independent, in the opposite case we do not reject the null hypothesis.

Observed and expected frequencies

	B_{1}	B_{2}	...	B_{j}	...	B_{s}	Total
A_{1}	k_{11}	k_{12}	...	$k_{1 j}$...	k_{15}	k_{1+}
A_{2}	k_{21}	k_{22}	...	$k_{2 j}$...	$k_{2 \mathrm{~s}}$	k_{2+}
\ldots
A_{i}	$k_{i 1}$	$k_{i 2}$...	$k_{i j}$...	$k_{\text {is }}$	+
...	\ldots
A_{r}	$k_{\text {r1 }}$	$k_{\text {r2 }}$...	$k_{\text {rj }}$...	$k_{\text {rs }}$	$k_{\text {r }}+$
Total	k_{+1}	k_{+2}	...	$k^{*}+$...		n

Example

- A study was carried out to investigate the proportion of persons getting influenza vary according to the type of vaccine. Given below is a 3×2 table of observed frequencies showing the number of persons who did or did not get influenza after inoculation with one of three vaccines.

Type of vaccine	Number getting influenza	Number not getting influenza	Total
Seasonal only	$\downarrow 43$	237	
H1N1 only	52	198	250
Combined	25	245	270
Totals	120	680	800

- There are two categorical variables (type of vaccine, getting influenza)
- H_{0} : The two variables are independent
- proportions getting influenza are the same for each vaccine

Calculation of the test statistic

Observed frequencies

- $\chi^{2}=13.6$
- Degrees of freedom: $\{(\mathrm{r}-1)(\mathrm{c}-1)=\}(2-1)^{*}(3-1)=2$
- Here $\chi^{2}=13.6>\chi^{2}$ table $=5.991$; $(\mathrm{df}=2 ; \mathrm{\alpha}=0.05)$. We reject the null hypothesis
- We conclude that the proportions getting influenza are not the same for each type of vaccine

Assumption of the chi-square test

- Expected frequencies should be big enough
- The number of cells with expected frequencies < 5 can be maximum 20\% of the cells.
- For example, in case of 6 cells, expected frequencies <5 can be in maximum 1 cell (20% of 6 is 1.2)

SPSS results

Chi-Square Tests

	Value	df	Asymp. Sig. $(2-$ sided $)$
Pearson Chi-Square	$13,603^{\mathrm{a}}$	2	, 001
Likelihood Ratio	13,941	2	, 001
Linear-by-Linear	3,878		, 049
Association	800		
N of Valid Cases			

a. 0 cetls $(, 0 \%)$ have expected count less than 5 . The minimum expected coutht is 37,50 .

- a. Assumption for expected frequencies are OK
- $\chi^{2}=13.06$ and $p=0.001$
- Here $p=0.001<\alpha=0.05$ we reject the null hypothesis.
- We conclude that the proportions getting influenza are not the same for each type of vaccine

Testing for independence

Chi-squre test: 2 by 2 tables

	Risk factor		Total
	Yes	No	
Group 1	k_{11}	k_{12}	k_{1+}
Group 2	k_{21}	k_{22}	k_{2+}
Total	k_{+1}	k_{+2}	n

Chi-square test for 2×2 tables

- Formula of the test statistic

$$
\chi_{p}{ }^{2}=\frac{n\left(k_{11} k_{22}-k_{12} k_{21}\right)^{2}}{k_{+1} k_{+2} k_{1+} k_{2+}}, \mathrm{df}=1 \text {; }
$$

- Frank Yates, an English statistician, suggested a correction for continuity that adjusts the formula for Pearson's chisquare test by subtracting 0.5 from the difference between each observed value and its expected value in a 2×2 contingency table. This reduces the chi-square value obtained and thus increases its p-value.

$$
\chi^{2}=\frac{n\left(k_{11} k_{22}-k_{12} k_{21}-n / 2\right)^{2}}{k_{+1} k_{+2} k_{1+} k_{2+}}, \mathrm{df}=1 \text {; Yates }
$$

Example

- We are going to compare the proportions of two different treatments' output. Our data are tabulated below.
- H0: the outcome is independent of treatment in the population.
outcome
Treatment

A	Death	Survival
B	5 45 8 42	Total
50		
Total	13	87
	$\chi_{p}{ }^{2}=\frac{n\left(k_{11} k_{22}-k_{12} k_{21}\right)^{2}}{k_{+1} k_{+2} k_{1+} k_{2+}}=\frac{100(5 * 42-8 * 45)^{2}}{50 * 50 * 13 * 87}=0.79, \mathrm{df}=1 ;$	

Solution based on obseved and expected fr cies

Decision

- Here Pearson $\chi^{2}=0.796<\chi_{\text {table }}^{2}=3.841$ thus we accept the null hypothesis that the two variables are independent
- SPSS p-value ($=0.372$) is greater than $\alpha=0.05$ so thus we accept also the null hypothesis that the two variables are independent

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square Continuity Correction Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases	$\begin{gathered} \hline, 796^{6} \\ , 354 \\ , 802 \\ , 788 \\ 100 \end{gathered}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline, 372 \\ & , 552 \\ & , 370 \end{aligned}$,375	,554	,277
a. Computed only for a 2×2 table b. 0 cells $(, 0 \%)$ have expected count less than 5 . The minimum expected count is 6,50 .					

Notes

- Both variables are dichotomous
- The Chi-squares give only an estimate of the true Chi-square and associated probability value, an estimate which might not be very good in the case of the marginals being very uneven or with a small value (~less than five) in one of the cells
- In that case the Fisher Exact is a good alternative for the Chi-square. However, with a large number of cases the Chi-square is preferred as the Fisher is difficult to calculate.

Fisher's-exact test

Calculation of the p -value is based on the permutational distribution of the test Statistic (without using chi-square formula).

Display of data

	Disease status		
	Disease	No	Total
Exposed	a	b	$\mathrm{a}+\mathrm{b}$
Non-exposed	c	d	$\mathrm{c}+\mathrm{d}$
Total	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	n

Fisher-exact test

- The procedure, ascribed to Sir Ronald Fisher, works by first using probability theory to calculate the probability of observed table, given fixed marginal totals.
- Note: n factorial: n!=1•2•3....n, 0!=1

$$
\frac{(a+c)!(b+d)!(a+b)!(c+d)!}{n!a!b!c!d!}
$$

Example

	Disease status		
	Yes	No	Total
Exposed	2	3	5
Non-exposed	4	0	4
Total	6	3	9

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	$3,600^{6}$	1	,058		
Continuity Correction ${ }^{\text {a }}$	1,406	1	,236		
Likelihood Ratio	4,727	1	,030		
Fisher's Exact Test				,167	,119
Linear-by-Linear Association	3,200	1	,074		
N of Valid Cases	9				

a. Computed only for a 2×2 table
b. 4 cells $(100,0 \%)$ have expected count less than 5 . The minimum expected count is 1,33.

Original table

Observed probabilities

	Disease	Status
	Yes	No
Exposed	2	3
Non-exposed	4	0

Possible re-arrangements

	Disease	Status
	Yes	No
Exposed	3	2
Non-exposed	3	1
		$\mathrm{p}=0,4762$
Exposed	4	1
Non-exposed	2	2
		$\mathrm{p}=0,3571$
Exposed	5	0
Non-exposed	1	3
		$\mathrm{P}=0,0476$

$$
p_{\text {obs }}=\frac{5!4!6!3!}{9!2!3!4!0!}=\frac{12441600}{104509440}=0,1190
$$

Fisher's p-value $=0,119+0,0476=0,167$

Fisher showed that to generate a significance level, we need consider only the cases where the marginal totals are the same as in the observed table, and among those, only the cases where the arrangement is as extreme as the observed arrangement, or more so.

The chi-square test for goodness of fit

The chi-square test for goodness of fit

■ Goodness of fit tests are used to determine whether sample observation fall into categories in the way they "should" according to some ideal model. When they come out as expected, we say that the data fit the model. The chi-square statistic helps us to decide whether the fit of the data to the model is good.

- H0: the distribution of the variable X is a given distribution

The distribution of the sample depending on the type of the variable

- Categorical variable.

Example. A dice is thrown 120 times. We would like to test whether the dice is fair or biased.
Observed frequencies

- Continuous variable

Example. We would like to test whether the sample is drawn from a normally distributed population. Distribution of ades

Histogram

Mean $=19,03$
Std. Dev. $=1,132$
$\mathrm{~N}=86$

- Suppose we have a sample of n observations. Let's prepare a bar chart or a histogram of the sample - depending on the type of the variable. In both cases, we have frequencies of categories or frequencies in the interval.
- Let's denote the frequency in the i-th category or interval by k_{i}, $i=1,2, \ldots, r$ (r is the number of categories).
- Let's denote p_{i} the probabilities of falling into a given category or interval in the case of the given distribution.
- If HO is true and n is large, then the relative frequencies are

- The formula of the test statistic has $\chi 2$ distribution with ($r-1-s$) degrees of freedom. Here s is the number of the parameters of the distribution (if there are).

$$
X^{2}=\sum_{i=1}^{r} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\sum_{i=1}^{r} \frac{\left(k_{i}-n \cdot p_{i}\right)^{2}}{n \cdot p_{i}}
$$

Test for uniform distribution

- Example. We would like to test whether a dice is fair or biased. The dice is thrown 120 times.
- H0: the dice is fair, the probability of each category, $p_{i}=1 / 6$.
- Calculation of expected frequencies: $n \cdot p_{i}=120 \cdot 1 / 6=20$.
- If it is fair, every throwing are equally probable so in ideal case we would expect 20 frequencies for each number.

	1	2	3	4	5	6
Observed frequencies	25	18	21	17	20	19
Expected frequencies	20	20	20	20	20	20

$$
\begin{aligned}
& X^{2}=\sum_{i=1}^{6} \frac{\left(k_{i}-20\right)^{2}}{20}= \\
& =\frac{1}{20}\left[(25-20)^{2}+(18-20)^{2}+(21-20)^{2}+17-20\right)^{2}+(20-20)^{2}+(19-20)^{2}= \\
& =\frac{1}{20}(25+4+1+9+0+1)=2
\end{aligned}
$$

The degrees of freedom is 5 , the critical value in the table is $=11.07$.
As our test statistic, $2<11.07$ we do not reject H 0 and claim that the dice is fair.

Test for uniform distribution

- Example 2. We would like to test whether a dice is fair or biased. The dice is thrown 120 times.
- H0: the dice is fair, the probability of each category, $p_{i}=1 / 6$.
- Calculation of expected frequencies: $n \cdot p_{i}=120 \cdot 1 / 6=20$.
- If it is fair, every throwing are equally probable so in ideal case we would expect 20 frequencies for each number.

	1	2	3	4	5	6
Observed frequencies	5	18	21	17	20	36
Expected frequencies	20	20	20	20	20	20

$$
\begin{aligned}
& X^{2}=\sum_{i=1}^{6} \frac{\left(k_{i}-20\right)^{2}}{20}= \\
& =\frac{1}{20}\left[(5-20)^{2}+(18-20)^{2}+(21-20)^{2}+(17-20)^{2}+(20-20)^{2}+(39-20)^{2}=\right. \\
& =\frac{1}{20}(225+4+1+9+0+361)=30
\end{aligned}
$$

The degrees of freedom is 5 , the critical value in the table is $=11.07$. As our test statistic, $30>11.07$ we reject H 0 and claim that the dice is not fair.

Test for normality

- Let's suppose we have a sample and would like to know whether it comes from a normally distributed population.
- HO: the sample is drawn from a normally distributed population.
- Let's make a histogram from the sample, so we get the "observed" frequencies. To test the null hypothesis we need the expected frequencies.
- We have to estimate the parameters of the normal density functions. We use the sample mean and sample standard deviation. The expected frequencies can be computed using the tables of the normal distribution

Using Gauss-paper

There is a graphical method to check normality . The "Gauss-paper" is a special coordinate system, the tick marks of the y axis are the inverse of the normal distribution and are given in percentages. We simply have to draw the distribution function of the sample into this paper. In the case of normality the points are arranged approximately in a straight line.

1. ábra. Egy mért valószinũségi változó (n adat) empinkus eloszl ásfuggvénye.

SPSS: Q-Q plot (quantile-quantile plot)

Mean $=170,73$
Std. $0.0=10 ; 42$
$N=86$

Normal Q-Q Plot of Height

Normal Q-Q Plot of Age

Comparing a single proportion

- In a country hospital were 515 Cesarean section (CS) in 2146 live birth in 2001. Compare this proportion to the national proportion 22%. Does proportion of CS in this hospital differ from the national one?
- $\mathrm{H}_{0}: \mathrm{p}=22 \%$
- $\mathrm{H}_{\mathrm{A}}: \mathrm{p} \neq 22 \%$

$$
z=\frac{\hat{p}_{1}-p}{\sqrt{\frac{p(1-p)}{n}}}=\frac{(515 / 2146)-0.22}{\sqrt{\frac{0.22 \cdot 0.78}{2146}}}=\frac{0.24-0.22}{0.0089}=2.234
$$

Review questions and problems

- When to use nonparametric tests
- Ranking data
- The aim and null hypothesis of the test for independence
Contingency table
Observed and expected frequencies
The assumption of the chi-square test
Calculation of the degrees of freedom of chi-square test Calculation of the test statistic of chi-square test and decision based on table
- Evaluation possibilities of a 2×2 contingency table
- Fisher's exact test

Problems

1. The following table shows the results of placebo and aspirin in an experiment, with the number of people in each treatment group who did and did not develop thromboses. Decide whether the aspirin had or had not effect on thrombus formation.

	Developed thrombi	Free of thrombi
Placebo	10	5
Aspirin	10	20

Find the value of the test statistic, and give your conclusion. (alfa=0.05, $\chi 2_{\text {table }}=3.84$)
This conclusion was based on the value \qquad .because.
2. Two medicines are being compared regarding a particular side effect, 60 similar patients are split randomly into two groups, one on each drug. The results are presented in the following table:

	Side effects	no side effects
Drug A	10	20
Drug B	5	25

Are drug type and side effects independent?
Find the value of the test statistic, and give your conclusion. (alfa $=0.05, \chi 2_{\text {table }}=3.84$)
This conclusion was based on the value \qquad .because.

Problems

- Boys and girls were asked whether they find biostatistics necessary or not. The answers were evaluated by a chisquare test. Interpret the SPSS result

Sex * Is biostatistics necessary? Crosstabulation

		Is biostatistics necessary?		Total
			nes	

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	1.264^{b}	1	.261		
Continuity Correctio口甲	.777	1	.378		
Likelihood Ratio	1.243		1	.265	
Fisher's Exact Test				.333	.188
Linear-by-Linear	1.253	1	.263		
Association	114				
N of Valid Cases					

a. Computed only for a 2×2 table

b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 8.68 .

